Pontil, M; Verri, A; (1998) Properties of support vector machines. **NEURAL COMPUT** , 10 (4) 955 - 974.

Full text not available from this repository.

## Abstract

Support vector machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed support vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this article, we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending on only the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m + 1 margin vectors and observe that m + 1 SVs are usually sufficient to determine the decision surface fully. For relatively small m,this latter result leads to a consistent reduction of the SV number.

Type: | Article |
---|---|

Title: | Properties of support vector machines |

UCL classification: | UCL > School of BEAMS > Faculty of Engineering Science > Computer Science |

Archive Staff Only: edit this record