UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines

Yao, Y; Marcialis, GL; Pontil, M; Frasconi, P; Roli, F; (2003) Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines. PATTERN RECOGN , 36 (2) 397 - 406.

Full text not available from this repository.

Abstract

We present new fingerprint classification algorithms based on two machine teaming approaches: support vector machines (SVMs) and recursive neural networks (RNNs). RNNs are trained on a structured representation of the fingerprint image. They are also used to extract a set of distributed features of the fingerprint which can be integrated in the SVM. SVMs are combined with a new error-correcting code scheme. This approach has two main advantages: (a) It can tolerate the presence of ambiguous fingerprint images in the training set and (b) it can effectively identify the most difficult fingerprint images in the test set. By rejecting these images the accuracy of the system improves significantly. We report experiments on the fingerprint database NIST-4. Our best classification accuracy is of 95.6 percent at 20 percent rejection rate and is obtained by training SVMs on both FingerCode and RNN-extracted features. This result indicates the benefit of integrating global and structured representations and suggests that SVMs are a promising approach for fingerprint classification. (C) 2002 Published by Elsevier Science Ltd on behalf of Pattern Recognition Society.

Type:Article
Title:Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines
Keywords:fingerprint classification, error-correcting output codes, recursive neural networks, support vector machines, RECOGNITION
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record