UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Support vector machines with clustering for training with very large datasets

Evgeniou, T; Pontil, M; (2002) Support vector machines with clustering for training with very large datasets. In: Vlahavas, I and Spyropoulos, C, (eds.) METHODS AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE. (pp. 346 - 354). SPRINGER-VERLAG BERLIN

Full text not available from this repository.

Abstract

We present a method for training Support Vector Machines (SVM) classifiers with very large datasets. We present a clustering algorithm that can be used to preprocess standard training data and show how SVM can be simply extended to deal with clustered data, that is effectively training with a set of weighted examples. The algorithm computes large clusters for points which are far from the decision boundary and small clusters for points near the boundary. This implies that when SVMs are trained on the preprocessed clustered data set nearly the same decision boundary is found but the computational time decreases significantly. When the input dimensionality of the data is not large, for example of the order of ten, the clustering algorithm can significantly decrease the effective number of training examples, which is a useful feature for training SVM on large data sets'. Preliminary experimental results indicate the benefits of our approach.

Type:Proceedings paper
Title:Support vector machines with clustering for training with very large datasets
Event:2nd Hellenic Conference on Artificial Intelligence
Location:THESSALONIKI, GREECE
Dates:2002-04-11 - 2002-04-12
ISBN:3-540-43472-0
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record