UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

A Synchronous Chopping Demodulator and Implementation for High-Frequency Inductive Position Sensors

Rahal, M; Demosthenous, A; (2009) A Synchronous Chopping Demodulator and Implementation for High-Frequency Inductive Position Sensors. IEEE T INSTRUM MEAS , 58 (10) 3693 - 3701. 10.1109/TIM.2009.2019314.

Full text not available from this repository.

Abstract

We describe a new method for high-frequency precision sensing. The method combines synchronous detection with chopping in a fully differential architecture that includes an instrumentation amplifier. An integrated circuit implementation of the proposed synchronous chopping demodulator front end was designed and fabricated in a 0.35-mu m CMOS process technology and tested with high-frequency inductive position sensors. The measured results show that the new technique offers considerable advantages in terms of offset reduction compared to traditional techniques for these sensors, which rely on a microcontroller to measure the offset before each position measurement is taken. The measured average input-referred offset for the 20 fabricated chip samples is 87 mu V at a chopping frequency of 500 kHz when the resonant target is off and synchronous demodulation and transmitter excitation are both applied at 1 MHz. The technique, in addition to improving system resolution and immunity to common-mode interference, allows these high-frequency position sensors to work with multiple targets, thus increasing speed and functionality.

Type:Article
Title:A Synchronous Chopping Demodulator and Implementation for High-Frequency Inductive Position Sensors
DOI:10.1109/TIM.2009.2019314
Keywords:Analog, chopping, CMOS integrated circuits, inductive position sensor, low-offset design, mixer, synchronous detection, INSTRUMENTATION AMPLIFIER, OFFSET, TRANSDUCER, NOISE
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Electronic and Electrical Engineering

Archive Staff Only: edit this record