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We discuss contributions to the friction between rough perfectly 
elastic media. One mechanism could well describe the friction of diamond 
on diamond in air. 

It is well known that friction is dominated by processes which involve 
bonding, plastic deformation, ploughing and wear. The purpose of this note 
is to show that even when these contributions are small, as may be the case 
for diamond in air, purely elastic processes still give finite friction. 

All that is required for friction is that, when one body moves over 
another, energy should be dissipated. If a point load moves on the surface of 
a solid it will radiate sound waves, and the eventual degradation of those 
sound waves into heat constitutes a dissipation mechanism. The contact 
between asperities on two bodies results in time-varying point loads, and we 
have considered two extreme models. In model 1 we consider a particular 
asperity on body A moving over a smooth flat region of body B; the load on 
A is constant but the moving load on B will radiate sound waves into B. 
Model 2 involves intermittent contact between asperities on A and asperities 
on B; each contact will radiate pulses of sound into both A and B. 

We consider the sliding of similar bodies of density p, shear modulus /J 
and compression and shear wave velocities C, and C, respectively. We define 
/3 = C,/C,; p is related to Poisson’s ratio IJ by 

2(1 - V) @=I i V2 

l-2?? 

We suppose that the bodies slide relative to each other with a velocity V and 
that the contacts may be represented by discs of radius a with pressures P on 
the discs. We ignore lateral forces caused by bonding and local slopes of the 
surfaces and assume a single contact radius rather than a distribution of sizes; 
both these simplifications could be removed quite easily. The pressure P is 
unknown but it is obviously limited by the yield stress of the material. 
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For model 1 two cases occur, depending on the nature of the substrate. 
Examples which are soluble analytically and which illustrate the two classes 
of behaviour are (a) an elastic isotropic half-space as substrate and (b) a sub- 
strate of Einstein oscillators. 

For an asperity modelled by a disc with a normal pressure P moving 
over the isotropic elastic substrate (case l(a)) we may use the results of 
Eason [I] to deduce that the energy dissipation (and hence the friction co- 
efficient r_tr& is identically zero for velocities below the velocity of sound, 
This striking result means that, in the steady state that we consider, the work 
done in depressing the substrate at the front of the moving disc is exactly 
balanced by the energy recovery at the rear. A necessary (but possibly not 
sufficient) condition for this is that ali Fourier components of the displace- 
ment travel at least as fast as the asperity. All models of which we are aware 
show finite energy dissipation (hence finite friction) for asperity velocities 
exceeding sound velocities. Parallels with the phenomenon of Cerenkov 
radiation [2] are evident. 

We may expect finite friction in model 1 whenever the sound velocity 
tends to zero for some wavelengths. This follows from comments on case 
l(a) and from parallels with situations such as the resistance to ship motion 
on water. Case l(b) illustrates this explicitly. For a substrate of Einstein 
oscillators with an elastic constant u. and an asperity stress with a maximum 
value emax, we find that 

Ill(b) = knaxloo (1) 

Here A is dimensionless and of order unity (mathematical details will be 
given elsewhere: the precise value depends on geometric factors involving the 
bulk and surface densities of the oscillators, on the precise time dependence 
of the applied stress and on how the stress is presumed to fall off with depth 
into the bulk). We suspect that the form of eqn. (1) has much wider validity. 
If so, purely elastic friction requires that o,,, is less than the stresses for 
plastic deformation or for fracture so that fll(b) could be as large as 0.1 but 
is unlikely to become much higher. We note that the observed friction of 
diamond on diamond in air is characterized by values of /J in the range 
0.05 - 0.1 [3}. 

Systems for which mechanism l(b) applies need a sound velocity 
that is zero for some wavelength. An important case includes layered systems 
[4], Lamb waves giving an extreme case. The existence of surface layers, 
or of modified or contaminate surface regions, may therefore be an impor- 
tant contributing feature of this elastic friction term. We may also make a 
more general conjecture. For the elastic system (case l(a)) at velocities less 
than the velocity of sound it is impossible to tell the direction of motion 
from a snapshot of the d~pla~ement field (U(F) at a given t) alone. For case 
l(b) systems (where the ship-on-water case is the easiest to visualize) the 
direction is easily identified. We conjecture that, in general, this feature of 
the displacement field distinguishes between the cases of zero (case l(a)) and 
finite (case l(b)) h. 
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For model 2 we use the results of Miller and Pursey [ 51 in a manner 
similar to the treatment of impact by Hunter [ 63. For a disc oscillating on a 
half-space with frequency f, energy is radiated at the rate 

(E, + E, + Ea)(2nf)2(na2P)2 

P CD2 

The coefficients E,, E, and ER correspond to compression, shear and Rayleigh 
waves respectively; they take the values 0.083,0.311 and 0.814 for a Poisson 
ratio of l/4. We extract the energy radiated during brief contacts between 
asperities by assuming a characteristic time variation in pressure during each 
contact and calculating the corresponding frequency spectrum. The general 
form of the result is not particularly sensitive to the form of the time varia- 
tion: we assume a gaussian form 

t 2 
P(t) = PO exp - T IO/ 

and then the energy radiated 

E = 0.2, (ra2Po)2 
PC,~T 

by each brief contact is 

If the “collision time” T is taken to be a/V, and we evaluate the 
number of collisions made by each asperity to find a time-averaged contact 
force, the energy radiated into each medium leads to 

(2) 

Here pL is the Lame elastic constant. The velocity-dependent term is very 
small; p2 is reduced to less than 1-1 Ic,j by roughly the ratio of the asperity 
velocity to the velocity of the compression waves. 

The friction coefficients in both models have particularly simple forms. 
The velocity-dependent term is, as expected, very small. If typical experi- 
mental values for diamond are used in model 1, the contact pressure P is 
found [2] to be of the same order of magnitude as measured values of the 
compressive strength of diamond. 

In the absence of plastic deformation, the topography of rubbing 
surfaces dictates the time-dependent forces and hence the friction. We have 
shown how friction can arise from purely elastic effects. This involves some 
subtle issues (notably the distinction between cases l(a) and l(b)) but may 
account for the observed friction of diamond on diamond in air. Our models 
can be extended to include bonding, elastic anisotropy and more general 
topographies. 

We are indebted to Professor D. Tabor and Dr. J. A. Greenwood for a 
most helpful correspondence. 



380 

1 G. Eason, The stresses produced in a semi-infinite solid by a moving surface force, Int. 
J. Eng. Sci., 2 (1965) 581 - 609. 

2 A. M. Stoneham and A. H. Harker, Friction between non-bonding elastic solids without 
plastic deformation, A ERE Rep. TP 891, 1981 (Atomic Energy Research Establish- 
ment). 

3 M. Seal, The friction and wear of diamond, Proc. R. Sot. London, Ser. A, 248 (1958) 
379. 
M. Casey and J. Wilks, The friction of diamond sliding on polished cube faces of 
diamond, J. Phys. D, 6 (1973) 1772. 
D. Tabor, Adhesion and friction. In J. E. Field (ed.), The Properties of Diutnond, 
Academic Press, New York, 1979, p. 325. 

4 K. F. Graff, Wave Motion in Elastic Solids, Oxford, 1975. 
L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon, Oxford, 1970, Sec- 
tions 24 and 25. 

5 G. F. Miller and H. Pursey, On the partition of energy between elastic waves in a semi- 
infinite solid, Proc. R. Sot. London, Ser. A, 233 (1955) 55 - 69. 

6 S. C. Hunter, Energy absorbed by elastic waves during impact, J. Mech. Phys. Solzds. 5 
(1957) 162 - 171. 


