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Ro-vibronic transition intensities for triatomic molecules from the exact
kinetic energy operator; electronic spectrum for the C̃ 1B2← X̃ 1A1
transition in SO2

Emil J. Zaka) and Jonathan Tennyson
Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

(Received 7 June 2017; accepted 10 August 2017; published online 5 September 2017)

A procedure for calculating ro-vibronic transition intensities for triatomic molecules within the
Born-Oppenheimer approximation is reported. Ro-vibrational energy levels and wavefunctions are
obtained with the DVR3D suite, which solves the nuclear motion problem with an exact kinetic
energy operator. Absolute transition intensities are calculated both with the Franck-Condon approx-
imation and with a full transition dipole moment surface. The theoretical scheme is tested on
C̃ 1B2← X̃ 1A1 ro-vibronic transitions of SO2. Ab initio potential energy and dipole moment surfaces
are generated for this purpose. The calculated ro-vibronic transition intensities and cross sections
are compared with the available experimental and theoretical data. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4986943]

I. INTRODUCTION

A considerable number of triatomic species are of great
importance in studies of Earth’s and exoplanetary atmo-
spheres: H2O, CO2, SO2, O3, H2S, NO2, HCN, etc.1,2 All
these molecules absorb the ultraviolet (UV) light, which is
associated with an electronic transition. This fact can be
utilized in qualitative and quantitative characterisations of
atmospheres, by comparing measured spectra to theoreti-
cal predictions. Qualitative molecular fingerprint studies with
low-resolution remote-sensing instruments need only approx-
imate band shapes and intensities provided by theory. On
the other hand, quantitative analysis of concentrations of
molecules from UV absorption spectroscopy requires high
quality modeling of ro-vibronic line positions, line intensities,
as well as line shapes.

Spectroscopic datasets such as HITRAN,3 HITEMP,4 and
GEISA5 provide such line-by-line data at infrared and visi-
ble wavelengths. However at present, these databases contain
no UV line-by-line data for polyatomics, although HITRAN
2016 provides cross sections for a large number of molecules
including SO2. Quantification of many compounds in Earth’s
atmosphere relies on the absorption of the UV radiation
and line-by-line data, if available, are best for this. How-
ever, for successful retrieval of molar fractions of molecules
in the atmospheric measurements, all absorption lines in a
given spectral region have to be characterized, requiring high-
resolution supporting data, and this currently represents a
major challenge. In addition to that, reference spectra taken
directly from experiment show issues with completeness of
the data as well as insufficient quality of line intensities. This
creates a demand for a systematic scheme for producing low

a)Author to whom correspondence should be addressed: emil.j.zak@
gmail.com

uncertainty spectroscopic parameters for ro-vibronic transi-
tions. In the infrared absorption region, theoretical calculations
with the DVR3D suite by Tennyson et al.6 were shown to
provide high accuracy line intensities for molecules such as
CO2

7–10 and H2O.11–15

The present paper proposes a theoretical procedure that
can be used to generate UV absorption line positions and tran-
sition intensities for triatomic molecules. This is achieved by
extending the existing DVR3D code for ro-vibrational infrared
calculations onto electronic transitions in the UV. The resulting
calculated parameters of ro-vibronic transitions are supposed
to serve as a theoretical reference model for measured line
positions and transition intensities, for further utilization in
the atmospheric science.

There are a number of theoretical methods and their
computer implementations for the calculation of UV absorp-
tion spectra of triatomic molecules. Transition frequencies
are often directly determined from measurements or indi-
rectly from effective Hamiltonian models,16–18 which give
much higher accuracy than variational calculations. On the
other hand, transition intensity calculations often require sup-
port from ab initio models.19 These models, in order to
meet the high accuracy requirement, need to be derived from
appropriately high level electronic structure calculations and
nuclear motion theory. Resolution of rotational lines is thus
necessary which means that couplings between the rota-
tional, vibrational, and sometimes electronic motion must be
considered.

Electronic transitions triggered by UV photons can be
modeled quantum-mechanically from a range of perspectives.
The most common approach uses empirically tuned effective
Hamiltonians supported by Franck-Condon transition inten-
sities.20 Effective Hamiltonians rely heavily on the experi-
mental data that are often of limited availability and quality.
Thus, although accurate, the effective Hamiltonian approach
has a drawback of limited robustness, as typically a separate
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quantum mechanical model is needed for every molecule and
every isotopologue.21–23 For this reason, ab initio method-
ologies for calculating ro-vibronic transition frequencies and
intensities are usually employed, serving as the first stage in
the modeling process.7–9,24 Furthermore, the ab initio method
can be extended to consider highly excited states that are
important for high temperature studies such as those needed
for exoplanets. Exotic or poisonous chemical species, such
as TiO, VO, PH3, or H2F+, some of which exist in the inter-
stellar medium, are prominent examples of systems, for which
ab initio theory is the only viable approach to prediction of
infrared (IR) or UV spectra.25–27 Experimental characteriza-
tion of this type of molecules is largely inhibited by prob-
lems with synthesis and stability of compounds, as well as
temperature limitations in laboratory measurements.

A number of programs for solving the ro-vibronic
Schrödinger equation are available, such as RENNER28–30

by Odaka et al., which is dedicated to linear Renner-type
triatomic molecules or more general variational codes for
solving the triatomic spin-ro-vibronic problem based on MOR-
BID by Jensen et al.,31–34 which uses an approximate kinetic
energy operator for nuclei, RVIB335–37 by Carter and Handy
et al. is designed only for semi-rigid triatomic molecules with
three or less interacting electronic states. A bottleneck in the
variational methodology is diagonalising the large matrices
required for calculations of highly excited rotational states;
thus its applicability is limited by computing power. This lim-
itation can be partially overcome with the use of the discrete
variable representation (DVR),38–40 which is presently well-
known for its computational efficiency. The DVR3D suite by
Tennyson et al.6,41 uses an exact kinetic energy (EKE) oper-
ator and further optimized the solution to the ro-vibrational
Schrödinger equation in a two-step procedure.42 The DVR3D
computer code has been used to generate a considerable num-
ber of ro-vibrational line lists,7–9,43,44 with wavefunctions and
energy levels calculated in several cases up to values of the
rotational quantum number J > 100. The accuracy of these
wavefunctions and energy levels is largely determined by the
quality of the potential energy surface (PES) and the dipole
moment surface (DMS). The accuracy of transition inten-
sities in our recent ro-vibrational line lists generated with
ab initio DMS has reached and arguably exceeded experi-
mental accuracy.7–10,45 As a result, for 12 isotopologues of
carbon dioxide in the 0–8000 cm�1 wavenumber range, the
theoretical transition intensities calculated with DVR3D were
included in the HITRAN2016 spectroscopic database.3 Here,
we extend the thoroughly tested DVR3D computer code to
electronic excitations.

Time-dependent methods have also been used to simulate
IR and UV molecular spectra. Although primarily designed
for larger systems, time-dependent methods, such as multi-
configuration time-dependent Hartree-Fock (MCTDH)46 or
molecular dynamics, are applicable to triatomics too.47 The
main issue with current application of MCTDH and molecu-
lar dynamics approaches is the absence of detailed modeling
of J > 0 transitions, and that no rotation-vibration couplings
are reflected in wavefunctions. The effect of Coriolis cou-
plings is, for instance, visible in the UV spectrum of SO2

(C̃ 1B2← X̃ 1A1 electronic transition).20,48 Another serious

disadvantage of MCTDH methods is the approximate Hamil-
tonians used, which bring a limited control over accuracy
of calculations for highly anharmonic systems. For this rea-
son, the EKE operator, with complete description of rota-
tional motion as well as rotation-vibration couplings, remains
the best option for high accuracy calculations. For exam-
ple, some remote-sensing experiments rely on measurements
of a single rotational line; hence after the identification
stage, based on the recognition of a fingerprint for a given
molecule, a quantitative study based on absolute and accu-
rate ro-vibronic intensities is needed. Many models based
on Franck-Condon calculations often provide only relative
intensities of bands, calculated from overlaps of the vibra-
tional wavefunctions, which are of limited use in quantitative
spectroscopy.49,50

The primary goal of the present paper is to introduce
a procedure for solving the Schrödinger equation for any
triatomic molecule, with two un-coupled electronic states
in the Born-Oppenheimer approximation, and subsequent
computation of transition intensities between the station-
ary states obtained. This theoretical scheme is tested on
the SO2 molecule. As a basis for extension of the com-
putational scheme, we choose the well-established DVR3D
suite, which operates with the EKE operator in the Born-
Oppenheimer approximation. Here, we explore the possibility
of extending DVR3D to the calculation of ro-vibronic spectra
of triatomic molecules within the Born-Oppenheimer approx-
imation and with transition dipole moment surface (TDMS)
between two electronic states. DVR3D has already been suc-
cessfully applied in ro-vibrational calculations of energy levels
and wavefunctions in electronically excited states of FeCO.51

The next procedural step is to enable computation of tran-
sition intensities between two Born-Oppenheimer electronic
states. Here, this is done at two levels of approximation: the
Franck-Condon (FC) approximation52 with ro-vibrationally
coupled wavefunctions and the transition dipole moment sur-
face approach, which accounts for the dependence of the elec-
tronic transition dipole moment on internal coordinates of the
molecule.

As a case study for the new procedure, the UV absorp-
tion spectrum for the C̃ 1B2← X̃ 1A1 electronic transition
in SO2 is calculated. Sulfur dioxide plays a substantial role
in atmospheric chemistry. Detailed understanding of vibronic
absorption properties of all major isotopologues of sulfur diox-
ide is essential for explaining the mass-independent isotope
fractionation effect observed for SO2 in Earth’s atmosphere.53

SO2 is a major component of Venus’ atmosphere, it also
accompanies Earth’s volcanic activity and industrial activities.
Sources and migrations can be monitored by detecting hazes of
SO2.

The infrared absorption spectra of atmospheric sulfur
dioxide are often congested with absorption bands from other
molecules, especially water. For this reason, measurements of
SO2 in the UV region have gained a growing attention over
the years, and a few satellite instruments are currently oper-
ating in the UV light, for example, GOME-254 and OMI,55

reviewed in Ref. 56. These measurements require high accu-
racy spectroscopic models to support assignment of lines
and to provide reference line strengths for concentration
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retrieval. In addition to that, cross sections at different tem-
peratures and pressures for several molecules need to be
provided prior to the measurement, in order to retrieve accu-
rately concentrations of the molecule of interest in the atmo-
sphere, here SO2. Currently, such parameters can be obtained
consistently only from theoretical calculations. Thus, along
with the development of experimental instrumentation and
methodology, a parallel progress is needed in the accurate
description and understanding of the nuclear dynamics in
excited electronic states of SO2 and other atmosphere-present
compounds.

The most popular choice for the UV absorbing bands are
the A and B bands of SO2 located in the 270–400 nm wave-
length region,57,58 for which a theoretical description has been
given by Xie et al.59 The strongest absorption in the UV is
however attributed to the dipole allowed C̃ 1B2 state. This
electronic state, chosen here as a case study, has a highly anhar-
monic potential energy surface with a double-well structure.60

Although the strongest absorption for the C̃ 1B2← X̃ 1A1 tran-
sition is located near 200 nm,61 for the present purposes, we
chose the longer wavelength 220–235 nm absorption region,
which involves transitions to the lowest vibrational states of
the C̃ 1B2 electronic state, due to limitations of the ab initio
potential energy surface used here.

High resolution spectra for the C̃ 1B2← X̃ 1A1 elec-
tronic transition in the 220–235 nm region were recorded by
Yamanouchi et al.,50 Rufus et al.,62 and more recently by
Blackie et al.,63 where a review on past measurements is pre-
sented. Other lower resolution measurements were published
by several authors, see, for example, the work of Danielache
et al.64 and Sako et al.65 There are a number of theoretical
studies on spectroscopy of the C̃ 1B2 state. Early papers by
Xie et al.66 and Bludský et al.67 paved the way for more
accurate descriptions, recently provided by Kłos et al.68 and
Kumar et al.69 High quality ab initio spectra for the transition
to the C̃ 1B2 state do not so far however include rotational
structure. Results from Kłos et al.68 will serve as a bench-
mark for J = 0 calculations with our procedure. Particularly for
non-symmetric triatomic molecules, our present approach can
provide information on the so-called axis-switching effect,70–74

which is inherently accounted for in the model.
In Sec. II, general expressions for ro-vibronic line

strengths in the FC and TDMS approach are derived.
Section III discusses the electronic structure calculations and
Sec. IV discusses the nuclear motion calculations. Results of
calculations are given in Sec. V, where integral transition inten-
sities are compared against other theoretical calculations as
well as experimental data, and the significance of the TDMS
is discussed.

II. METHODOLOGY
A. Ro-vibronic wavefunctions

In the new generalised version of DVR3D, transitions
occur between spin-ro-vibronic states of the molecule. In the
present, generic model, the total spin-ro-vibronic molecular
state is assumed separable into the nuclear spin part |Φnspin〉,
the electronic part |Φel〉, and a coupled ro-vibrational part
|Φrv 〉,

|Φtotal〉 = |Φnspin〉 ⊗ |Φel〉 ⊗ |Φrv 〉 . (1)

Such separation means that the electronic state |Φel〉 = |S, i〉 is
characterized by the total electronic spin quantum number S
(spin-orbit coupling is neglected) and an index i, which enu-
merates Born-Oppenheimer electronic states. Future releases
of the DVR3D code is planned to allow for mixing between
electronic states. |Φnspin〉 = |I , mI 〉 is the nuclear spin function
characterized by the total nuclear spin I and the projection mI

of the total nuclear spin vector on the space-fixed Z-axis. For a
given total nuclear spin I, the nuclear spin wavefunctions form
a finite orthonormal set and molecular energy levels associated
with all nuclear spin states |I , mI 〉, mI = −I , − I + 1, . . . , I−1, I
are degenerate (no hyperfine interactions).75 The total ro-
vibrational state of the molecule |Φrv 〉 = |J , M, v , i〉 is charac-
terized by the total angular momentum J, the projection of the
total angular momentum M = −J ,−J + 1, . . . , J − 1, J on the
space-fixed Z-axis. v is the index enumerating ro-vibrational
states. In general, the ro-vibrational part of the wavefunction
also depends on the electronic state “i.”

In the introduced convention, the total molecular state will
be denoted as

|N , v , i, ~D〉 = |I , mI 〉 ⊗ |S, i〉 ⊗ |J , M, v , i〉 , (2)

where vector ~D contains all quantum numbers labelling degen-
erate states: M, mI . Note that the ro-vibrational state in general
depends on the electronic state i, which will be explained
below. N = J � S is the ro-vibronic angular momentum quan-
tum number. Because we use here the uncoupled basis for the
characterisation of ro-vibrational and electronic states, and we
will be considering singlet electronic states only (S = 0), J label
will be used for the ro-vibronic angular momentum further
on.

Below, for explanatory purposes, we consider only tri-
atomic symmetric XY2 molecules for which the molecule-
fixed axis system is chosen so that the x-axis bisects the Y–X–Y
angle.76 With a choice of symmetric internal coordinates, an
additional symmetry label is possible: the vibrational parity
q quantum number, related to the permutation symmetry of
identical nuclei in XY2.76 Generalisation to non-symmetric
molecules is straightforward.6 The present version of DVR3D6

allows for the choice of axis embeddings and internal coordi-
nates including Jacobi and Radau coordinates.77 Our present
study is based on the use of Radau coordinates that are assumed
in the derivations below. The ro-vibrational wavefunction can
be expanded in a sum of products of rotational and vibrational
wavefunctions

|J , M, v , i〉 =
∑
m,n,j

J∑
k=−J

CJ ,M,i,v
mnjk |m, n, j, i〉 ⊗ |J , M, k, i〉 , (3)

where summation goes over m, n, j which label vibrational
states for stretching, stretching, bending, respectively, and k is
the projection of the total angular momentum on the molecule-
fixed z-axis. |J , M, k, i〉 is the symmetric-top Hamiltonian
eigenfunction, which in general needs to be defined separately
for every electronic state. Similarly the vibrational basis is
defined separately for every electronic state i. As shown by
Sutcliffe and Tennyson,76 a very efficient definition of ro-
vibrational states involves coupling of vibrational bending
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states with rotational states separately from the vibrational-
stretching states. For this reason, instead of the general
rotation-vibration sum of products functional form given in
Eq. (3), a modified basis is used,

|J , M, k, j, i, p〉 =
1

√
2(1 + δk0)

| jk, i〉 ⊗
(
|J , M, k, i〉∗

+ (−1)p+k |J , M, k, i〉
)
, (4)

where | jk, i〉 is a normalized bending basis state in the elec-
tronic state i, given in the position representation by the associ-
ated Legendre polynomials. The phase convention of Condon
and Shortley78 is used for the bending states. |J , M, k, i〉vectors
are the previously defined rotational basis states correspond-
ing to the eigenstates of the symmetric-top Hamiltonian. The
quantum number p is associated with the parity symmetry and
determines the e/f labels for ro-vibrational states (p = 0 for the
e state and p = 1 for the f state); k takes integer values from p
to J.

In addition to the rotation-bending coupled basis, the
vibrational-stretching basis can be further symmetry-adapted
by utilizing the vibrational parity q quantum number

|m, n, i, q〉 =
1

√
2(1 + δmn)

(|m, i〉 ⊗ |n, i〉

+ (−1)q |n, i〉 ⊗ |m, i〉
)

, (5)

where |m, i〉⊗ |n, i〉 stands for the tensor product of vibrational
basis states for the electronic state i associated with the first r1

and the second r2 stretching Radau coordinate, respectively.
m and n label the 1D basis states. Vibrational parity takes two
values: q = 0 for “even” vibrational states and q = 1 for “odd”
vibrational states. Note that the character of the permutation
P12 of identical nuclei acting on the basis state in Eq. (5) is
(�1)q+k and the character of the parity E∗ operation acting on
the basis state in Eq. (4) is (�1)p+J .

Utilization of the rotational parity and the vibrational par-
ity decomposes the Hilbert space of the problem into simple
sum of four independent sub-spaces for each J and i values:
HJ ,i

p,q
⊕

HJ ,i
p,1−q

⊕
HJ ,i

1−p,q

⊕
HJ ,i

1−p,1−q. The electronic dipole
moment operator µ̂el mixes these subspaces according to rig-
orous selection rules: |∆q| = 1 and for ∆J = 0: |∆p| = 1 and
∆J =± 1: |∆p| = 0.

To summarize, the final ro-vibronic basis set used in the
present implementation of DVR3D is given by the expression

|J , M, v , i, p, q〉 =
∑
m,n,j

J∑
k=p

CJ ,M,i,v,p,q
mnjk |m, n, i, q〉

⊗ |J , M, k, j, i, p〉 . (6)

A two-step procedure78–80 of solving the nuclear Schrödinger
equation in the basis defined by Eqs. (5) and (4) is applied.
This is the key to efficient solution for problems with high
J. The first step involves solving the Coriolis-decoupled ro-
vibrational motion problem for every combination of the (J,
|k|, i) quantum numbers separately. A complete rotational
basis set is used, meaning that k = p, p + 1, . . . , J and p = 0,
1. The integrated over rotational degrees of freedom effective
Hamiltonian for the first step of calculation can be written
as

Ĥk,i = K̂v + δk,k′K̂rv + Vi, (7)

where K̂v is the vibrational part of an exact kinetic energy
operator and δk,k′K̂rv is the diagonal part of the exact effective
kinetic energy operator produced by rotational integration of
the ro-vibrational part of the total EKE operator. V i is the i-th
electronic state potential energy function of nuclei generated
from electronic structure calculations. Solutions to the first
step, in which k is a good quantum number, supply a basis for
the second step, where the full ro-vibrational Hamiltonian is
considered, with a non-diagonal ro-vibrational Hamiltonian.
The excellent basis from the first stage ensures very fast con-
vergence of solutions in the second stage. In addition to this,
matrix elements of the Hamiltonian are represented on a previ-
ously optimized discrete variable representation (DVR) grid.
In DVR3D, the stretching degrees of freedom are modeled with
the spherical-oscillator basis set of a Morse-like oscillator basis
set, which in DVR corresponded to Gauss-Laguerre quadra-
tures. For bending motion, the associated Legendre polynomi-
als are used, which in DVR correspond to a Gauss-Legendre
quadrature scheme. The choice of associated Legendre poly-
nomials has also another motivation: it eliminates singularity76

at linear geometries from the Hamiltonian in Eq. (7). By defi-
nition, the number of chosen vibrational basis states is equal to
the number of DVR integration points. The solution strategy
described above has been proven very successful in accurate
calculations of energy levels with high values of J quantum
number.7–9,43,44

B. Axis-switching effect

Not only does the equilibrium geometry of the molecule
change upon the electronic transition but also an additional
rotation of the molecule-fixed coordinate system is required.70

The former effect can be directly attributed to the difference in
shapes of the potential energy surfaces for the two electronic
states that cause the vibrational basis set optimized for the
electronic excited state to be no longer optimal for the elec-
tronic ground state. In the terminology of normal modes, it
means that normal coordinates in the electronic excited states
are rotated (leading to the so-called Duschinsky effect72,73,81)
with respect to normal coordinates in the electronic ground.
The effect of rotation of the molecule-fixed coordinate sys-
tem affects the Euler angles, causing rotation of the rotational
basis set. Although in many systems these artifacts of the elec-
tronic transition are marginal, they sometimes significantly
soften rotational selection rules, allowing for the appearance of
whole vibrational bands forbidden, as observed in HCN71 and
SiHD.74 For example, in the HCN molecule, for the (π∗← π)
electronic transition, only ∆K =± 1 sub-bands are allowed
by rotational selection rules. However stimulated-emission-
pumping (SEP) experiments82 observed weak ∆K = 0 transi-
tions to levels with non-zero vibrational angular momentum
(l = 1). This type of transition is forbidden by rotational selec-
tion rules and has been convincingly attributed to non-rigidity
of the molecule during the transition between linear X̃ elec-
tronic ground state and bent Ã electronic state.70,71 In calcu-
lations, the magnitude of the axis-switching effect depends
on the choice of the molecule-fixed frame and the choice
of coordinates and the basis set. Axis-switching is strongly
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pronounced in the Eckart frame, the molecule-fixed coordinate
system which needs to be rotated when changing the elec-
tronic state, in order to satisfy the conditions of the minimal
rotational-vibrational coupling in both states separately.

The axis-switching effect tells us that the rotational basis
functions should be labelled with the quantum numbers for
electronic states too. However, the completeness of the rota-
tional basis used in the present model guarantees that the
rotational part is accounted for exactly regardless of the elec-
tronic states. Therefore, rotational states in the electronic
excited state, which are nominal functions of rotated Euler
angles can be modeled with the un-rotated rotational basis of
the electronic ground state (or vice-versa). An appropriately
large vibrational basis set can also eliminate any inaccura-
cies resulting from the Duschinsky effect, meaning that the
vibrational basis is nearly complete hence does not depend
on the electronic state. For the reasons discussed above, we
can drop the electronic index i for the rotational and vibra-
tional basis states in Eqs. (4) and (5). Thus, at the cost of
extra computational time, the geometric effects associated with
the electronic transition are almost entirely eliminated. Thus,
ro-vibronic transitions forbidden by rotational selection rules,
which appear in line lists calculated with our model, may be
attributed to the axis-switching effect.

Our approach utilizes an identical basis set to calculate
ro-vibrational energies and wavefunctions in the ground and
the excited state of the molecule (we assume a system with two
electronic states). In DVR, this means that the ro-vibrational
wavefunctions for both electronic states are defined on the
same grid, which provides the advantage of straightforward
integration over internal coordinates of the molecule. For this
reason, matrix elements between ro-vibrational states of the
electronic ground and excited states can be evaluated as a sum
of products of respective functions at given grid points.

C. Transition intensities

Quantum probability for the |v ′′〉 ≡ |J ′′, v ′′, i′′, p′′, q′′,
~D′′〉 → |v ′〉 ≡ |J ′, v ′, i′, p′, q′, ~D′〉 ro-vibronic transition is
given in the dipole approximation by the square modulus of the

electric transition dipole moment vector
∑

A=X,Y ,Z
����T

A,~D′′,~D′

v′′v′
����
2
,

where the summation is carried out over three Cartesian com-
ponents of the electric dipole moment of the molecule in the
laboratory frame A = X, Y, Z. Individual transition probabili-
ties are then summed over all degenerate states, labelled by
vector ~D,

Sv′′v′ =
∑

A=X,Y ,Z

∑
~D′′,~D′

����T
A,~D′′,~D′

v′′v′
����
2

, (8)

giving a quantity called the line strength, which can be directly
related to experimentally measured integral line intensity,

I(ṽv′′v′) =
8π2NA

12ε0hc
ṽv′′v′

Q(T )
exp

(
−Ei

kbT

) [
1 − exp

(
−
ṽv′′v′

kbT

)]
Sv′′v′ ,

(9)
where ṽv′′v′ is the transition wavenumber between the v ′′’th
and v ′’th ro-vibronic state and Q(T ) is the partition function at
temperature T. NA is the Avogadro number, kb is the Boltzmann
constant, h is the Planck constant, c is the speed of light in

vacuum, and ε0 is the permittivity of vacuum. Units for integral
line intensity are cm/molecule.

The electric transition dipole moment is defined as

TA,~D′′,~D′

v′′v′ = 〈J ′′, v ′′, i′′, p′′, q′′, ~D′′ ���µ̂
A,space
el

��� J ′, v ′, i′, p′, q′, ~D′〉

and its value is identical for all components of ~D, hence this
index can be dropped from the expression. The space-fixed
transition dipole moment can be transformed into a spherical
tensor form, which transforms irreducibly in the 3D rotations
group

~µ
space
el,sph = K~µ

space
el , (10)

where

K =

*.......
,

−
1
√

2

i
√

2
0

1
√

2

i
√

2
0

0 0 1

+///////
-

(11)

is a unitary (| det(K)| = 1, K†K= 1) transformation matrix
between the Cartesian operator and rank 1 spherical tensor
operator. Dipole moment for a neutral molecule is invariant
under translations in free space, the ’LAB′ components (X, Y,
Z) of the transition dipole moments can be rewritten in terms
of Cartesian components in the space-fixed coordinate system
(ξ, η, ζ) with the origin at the nuclear center of mass.75 What
follows, the transition dipole moment may be expressed as

TA
v′′v′ =

∑
A=ξ ,η,ζ

1∑
σ=−1

K†Aσ
∑
~D,~D′

T̃σ,M,M′

v′′v′ . (12)

As a result of new transformation properties of the tran-
sition dipole vector, a straightforward transformation to
the molecule-fixed coordinate system can be achieved with
Wigner D-matrices

~µ
space
σ =

1∑
σ′=−1

D(1)
σσ′(φ, θ, χ)~µmol

σ′ , (13)

where φ, θ, χ denote Euler angles and subscripts “el” and
“sph” have been dropped for clarity of presentation. After
rather lengthy algebra with extensive use of properties of 3-j
symbols, the line strength takes the form

Sv′′v′ =
1
4

gns
(
2S′′ + 1

) (
2S′ + 1

) (
2J ′′ + 1

)
×

(
2J ′ + 1

) [
(−1)J′′+J′+1 + (−1)p′′+p′

]2

×

����������

+1∑
σ=−1

J′,J′′∑
k′=p′

k′′=p′′

(−1)k′′bσq′q′′

(
1 J ′ J ′′

σ k ′ k ′′

)

×
∑

m′,n′,j′

m′′,n′′,j′′

CJ′,i′,v′,p′,q′

m′n′j′k′ CJ′′,i′′,v′′,p′′,q′′

m′′n′′j′′k′′ Mσ,i′′,i′

m′m′′n′n′′j′j′′k′k′′

����������

2

.

(14)

The (2S′ + 1)(2S′′ + 1) prefactor in Eq. (14) comes from sum-
mation over all combinations of degenerate electron spin func-
tions. As the electronic spin is preserved in a transition within
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the present model, S′′ = S′. Similarly, the (2J ′ + 1)(2J ′′ + 1)
prefactor comes from summation over all combinations of
degenerate rotational basis functions, characterized by the M
quantum number. gns is the spin statistical weight for the ini-
tial state i result from summation over degenerate nuclear spin
functions. The values of spin statistical weights depend on the
ro-vibronic symmetry of the state. bq′q′′ is a symmetry depen-
dent numerical factor defined in Ref. 6. Mσ,i′′,i′

m′m′′n′n′′j′j′′k′k′′ is the
matrix element of the electric dipole moment operator in the
primitive vibrational basis,

Mσ,i′′,i′

m′m′′n′n′′j′j′′k′k′′ = 〈j
′′k ′′ | 〈m′′ | 〈n′′ |

× µi′′,i′
σ (r1, r2, θ) |n′〉 |m′〉 | j′k ′〉 , (15)

where
µi′′i′
σ (r1, r2, θ) = 〈Φel

i′′
���µ̂

mol
σ

���Φ
el
i′ 〉 (16)

is the σ-th spherical tensor component of the molecule-fixed
electronic transition dipole moment surface between elec-
tronic states i′′ and i′. In Eq. (16), integration is carried over
electronic coordinates only, leaving dependence on three inter-
nal (Radau) coordinates r1, r2, θ. This function is called the
electronic transition dipole moment surface (TDMS). For
many molecules, the dependence of TDMS on internal coor-
dinates is weak, and it is often replaced by a constant
value of the transition dipole at equilibrium geometry µ

eq
σ

≡ µ
ge
σ

(
req

1 , req
2 , θeq

)
. In such a case, we talk about the Condon

approximation to the electronic transition dipole moment

Mσ,i′′,i′

m′m′′n′n′′j′j′′k′k′′ = µ
i′′,i′
σ

(
req

1 , req
2 , θeq

)
〈m′′ |m′〉

× 〈n′′ |n′〉 〈 j′′k ′′ | j′k ′〉 (17)

due to the choice of the identical orthonormal basis in the
ground and the excited electronic states, the integrals in Eq.
(17) become Kronecker’s deltas

Mσ,i′′,i′

m′m′′n′n′′j′j′′k′k′′ = µ
i′′i′
σ

(
req

1 , req
2 , θeq

)
δm′′m′δn′′n′δj′′j′ , (18)

which significantly reduces the number of summed terms in the
expression for the line strength so that only the elements with
the same indices in the coefficients vectors CJ′′,M′′,i′′,v′′,p′′,q′′

m′n′j′k′

are needed. This simplification compensates the extra compu-
tational time needed for wavefunction calculations when using
identical grid for all electronic states,

Sv′′v′ =
1
4

gns
(
2S′′ + 1

)2 (
2J ′′ + 1

)
×

(
2J ′ + 1

) [
(−1)J′′+J′+1 + (−1)p′′+p′

]2

×

����������

+1∑
σ=−1

µ
eq
σ

J′,J′′∑
k′=p′

k′′=p′′

(−1)k′′bσq′q′′

(
1 J ′ J ′′

σ k ′ k ′′

)

×
∑

m′′,n′′,j′′
CJ′,i′,v′,p′,q′

m′n′j′k′ CJ′′,i′′,v′′,p′′,q′′

m′′n′′j′′k′′

�������

2

. (19)

The 3-j symbol appearing in Eqs. (14) and (19) and the
[(−1)J′′ + J′ + 1 + (−1)p′′ + p′]2 factor are responsible for selec-
tion rules. From the former, it follows that in order for the
line strength not to vanish, the following conditions must be

satisfied: |J ′′ − J ′ | = 0, 1, J ′′ + J ′ ≥ 1, and ∆|k | = 0,±1. Selec-
tion rules for the J quantum number define P, Q, R branches
for ∆J = J ′′ − J ′ =+ 1, 0,−1, respectively. Selection rules for
the k quantum number allow transitions of type k → −k, which
reflects time-reversal symmetry of the system. For ∆k = 0,
only the z-component of the molecule-fixed electronic tran-
sition dipole moment contributes to the overall line intensity,
and because z-axis is chosen here as the axis of quantiza-
tion, we call these transitions parallel. Accordingly ∆k =± 1
corresponds to perpendicular transitions, as both x compo-
nents of the electronic transition dipole moment contribute
to the total intensity. For the Q branch (∆J = 0), only transi-
tions which change the p quantum number are allowed, i.e.,
e↔ f , e= e, f = f . Conversely, P and R branches allow tran-
sitions conserving p, i.e., e= f , e↔ e, f ↔ f . Neglecting the
dependence of the TDMS on nuclear coordinates does not
affect the rotational selection rules, it can however make the
vibrational selection rules stronger, for example, by forbidding
vibrational overtone transitions.

The DIPOLE3 code, which we use for the calculation
of intensities in the present work, uses a DVR represen-
tation for ro-vibrational wavefunctions, which are related
to the finite basis representation by an unitary composite
transformation6

CJ′′,i′′,v′′,p′′,q′′

m′′n′′j′′k′′ =
∑
α,β,γ

(T )k′′=0
jγ (T )mα (T )nβ CJ′′,i′′,v′′,p′′,q′′

αβγk′′ , (20)

where the unitary transformation matrix for the bending coor-
dinate (T )k = 0

jγ is defined on a Gauss-Legendre quadrature
grid for k = 0 and the unitary transformation matrices for
stretching coordinates (T )mα and (T )nβ are defined over the
Gauss-Laguerre quadrature grid.

III. POTENTIAL ENERGY AND TRANSITION DIPOLE
MOMENT SURFACES

The potential energy surface for the C̃ 1B2 electronic state
was generated from 3000 geometries in bond length–bond
angle coordinates. Stretching coordinates were chosen in the
range: r1, r2 ∈ [1.2; 1.9] Å, with 0.05 Å increment. Angles
between the S–O bonds were sampled from 60◦ to 180◦ with
5◦ increments.

Electronic structure calculations were performed with the
explicitly correlated multi-reference internally contracted con-
figuration interaction method with Davidson correction (ic-
MRCI-F12 + Q) in the aug-cc-pVTZ basis set, as implemented
in the MOLPRO2015 package.83 The reference wavefunctions
were calculated with the state-averaged CASSCF method, with
equal weight averaging over two singlet states. For 18 elec-
trons occupying 19 orbitals, 12 orbitals were used (9a′, 3a′)
for the active space and 7 as core orbitals (6a′, 1a′′). The
PES was fitted with the least-squares method to the functional
form

V (y1, y2, y3) =
∑
j,k,l

Cjkly
j
1yk

2yl
3, (21)

where y1 =
1
2 (x1 + x2), y2 =

1
2 (x1 − x2), and y3 = θ − θeq. Here

x1, x2 are the Morse coordinates x1 = 1− e−a1(r1−req
1 ) and

x2 = 1− e−a2(r2−req
2 ). The functional form and coefficient were
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chosen to secure the correct shape of the PES at C23 geome-
tries. For a fixed angle θ = θ0, the PES V (r1, r2, θ0) has a saddle
point when r1 = r2, and two non-C2v minima in the r1–r2 plane,
which are symmetry connected, as shown in Fig. 1. A non-
uniformly weighted fit to 623 ab initio points with energies
below 5000 cm�1 in θ ∈ [90◦; 130◦] gave σ = 12 cm�1 root-
mean square residual (rmsr) between the fitted surface and
ab initio points.

The global Cs equilibrium geometry for C̃ 1B2 is located at
req

1 = 1.640 aÅ, req
2 = 1.496 Å, and θeq = 104.3◦. There are two

other local minima near θ = 80◦ and θ = 165◦. The latter is a C23

symmetric minimum with energy 400 cm�1 above the global
minimum. This well, displayed in Fig. 8, generates additional
low lying energy levels that have not yet been characterized by
infrared absorption spectroscopy. A separate fit for the second
well near linearity gave rmsr = 17 cm�1.

For the electronic X̃ 1A1 state, we used a highly accurate
potential energy surface of Huang et al.84,85 This is a semi-
empirical PES based on CCSD(T)/cc-pVQZ-DK calculations
and refinement to experimental energy levels in the J = 0–80
range. The rmsr of the fit to ab initio points was 0.21 cm�1

below 30 000 cm�1 and the root-mean square deviation from
experimental levels was 0.013 cm�1. The equilibrium geome-
try of the electronic ground state req

1 = 1.431 Å, req
2 = 1.431 Å

and θeq = 119.32◦ corresponds to C23 symmetry.
The transition dipole moment surface between X̃ 1A1

and C̃ 1B2 electronic states was calculated as the expecta-
tion value of the electric dipole moment operator, at the same
level of theory as the C̃ 1B2 PES. A fit to the functional form
from Eq. (21) was performed with 1852 ab initio points in
the [85◦:140◦] angle range. The rmsr for the x-component
of the surface (x-axis chosen to bisect the angle between
S–O bonds) was 0.03 a.u., and the rmsr for the z-component
of the surface was 0.02 a.u. High accuracy is not the aim
of the present paper, thus these values for residuals were
acceptable. At equilibrium geometry, the z-component of the
transition dipole moment vanishes, as shown in Fig. 2. The
transition dipole moment depends on the nuclear coordinates
relatively weakly, nevertheless the non-constant TDMS may

FIG. 1. Potential energy surface for the C̃ 1B2 electronic state calculated at
θ = 120.0◦. Ab initio points are marked in red.

FIG. 2. Two components of the transition dipole moment function between
X̃ 1A1 and C̃ 1B2 electronic states for θ = 120.0◦. The upper surface is the
y-component and the lower surface is the x-component, which vanishes for
C2v geometries. Ab initio points are marked with red.

significantly influence transition intensities; this is discussed in
Sec. V.

Both the C̃ 1B2 PES and TDMS are available in the
supplementary material in the form of Fortran95 routines.

IV. NUCLEAR MOTION CALCULATIONS

Born-Oppenheimer ro-vibrational wavefunctions and
energy levels were obtained separately for the X̃ 1A1 and
the C̃ 1B2 electronic states. For each electronic state, a two-
step procedure described in Sec. II of solving the nuclear
Schrödinger equation was applied. The DVR representation
of matrix elements of the Hamiltonian, as implemented in
DVR3D, carries the advantage of a diagonal potential energy
matrix in any chosen basis. A Morse-like oscillator basis set6,86

was used for the S–O stretching coordinates and associated
Legendre functions for the bending motion. The parameters
of the stretching basis set were optimized to ensure the fastest
convergence of J = 0 energy levels in the C̃ 1B2 electronic
state. The vibrational energy levels are insensitive to the value
of the dissociation energy De in the Morse-like oscillator basis
functions, hence De was set to 0.3 a.u in all cases. The equilib-
rium bond length re and width α of the Morse-like basis were
scanned in the re ∈ [2.8; 3.5]a0 and α ∈ [0.008; 0.030]Eh

regions for different sizes of the stretching basis (the NPNT
parameter in DVR3D in the 30–90 range). The number of
angular basis functions was independently optimized, and the
corresponding NALF parameter was set to 60. As a result,
the optimal set of basis set parameters was: re = 2.9 a0,
De = 0.30 Eh, α = 0.012 Eh, and NPNT = 90. With this basis
optimal basis set, the accuracy of vibrational energy levels in
the electronic ground state was controlled by comparison with
the ExoAmes line list.44 In light of the main idea of the present
paper, we do not require spectroscopic accuracy for present
calculations. For this reason, we established convergence crite-
ria at 2 cm�1 and tolerance for deviation from the experiment at
20 cm�1 for the lowest J = 0 energy level of the C̃ 1B2 electronic
state.

The final size of the Hamiltonian was truncated at 1000,
which was sufficient to provide good convergence for the low-
est 100 energy levels. Diagonalisation of this matrix leads to
ro-vibrational energy levels and wavefunctions labelled by the
J-rotational quantum number and the e/f-Wang symmetries.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-044732


094305-8 E. J. Zak and J. Tennyson J. Chem. Phys. 147, 094305 (2017)

Nuclear masses in Dalton units (Da) for sulfur and oxygen
were used: 31.963 294 Da (32S) and 15.990 525 Da (16O).87

For the evaluation of integrals, 90-point Gauss-Laguerre and
60-point Gauss-Legendre quadratures were used, for stretch-
ing and bending coordinates, respectively. With this choice,
the range of quadrature points for stretching coordinates is
ri ∈ [1.13; 1.86] Å; thus, this range is contained in the domain
of applicability of the present fit. With this basis set, the
zero-point energies for the X̃ 1A1 and C̃ 1B2 electronic states
are ZPEg = 1538.19 cm�1 and ZPEe = 776.45 cm�1, respec-
tively. In the second variational step (program ROTLEV3),
for each J value, 200 ro-vibrational basis functions were sep-
arately used to solve the full Coriolis-coupled nuclear motion
problem.

Identical embeddings, coordinates, and DVR grids were
chosen for both electronic states. The criterion for this choice
was to optimize the accuracy of the electronic excited state.
The simple shape of the ground state PES gives weaker depen-
dence on the choice of embedding and basis set parameters,
when appropriately large basis set is used. Radau internal coor-
dinates were chosen for the description of vibrational degrees
of freedom. The z-axis of the molecule-fixed frame was cho-
sen along one of the Radau coordinates (r1), which nearly
overlaps with one of the S–O bonds (“bond embedding”).
The bond embedding was observed to give a significantly bet-
ter convergence than the bisector embedding for the C̃ 1B2

electronic state, which has its equilibrium geometry at two
non-equivalent S–O bond lengths, that is at Cs symmetry.
The fit of the PES for the C̃ 1B2 state necessitated adding
walls at large internuclear distances to avoid potential drop-
ping to non-physical values. The positions of these walls were
adjusted so as not to influence the values of energy levels
for the present basis size. For larger basis sizes, the range
of quadrature points for stretching coordinates can sample
regions of the fitted PES, which are beyond the range of appli-
cability of the present fit. These regions have high energy,
thus adding walls with energy 0.1Eh to the present fit assures
the correct asymptotics for all r1 and r2 values. The poten-
tial walls were added at r = 1.3 Å, r = 2.0 Å and θ = 85◦,
θ = 130◦.

V. RESULTS AND DISCUSSION

J = 0 energy levels calculated with the present ab initio
PES for the C̃ 1B2 electronic state are listed in Table I, where a
comparison with literature calculations based on two different
ab initio surfaces is made. The ab initio MRCI + Q/aug-cc-
pVTZ PES by Tokue et al.88 was based on 6300 geometries
and was interpolated by the moving least-squares method
combined with the Shepard method.89 The ab initio ic-MRCI-
F12 + Q/aug-cc-pVTZ PES of Kłos et al.68 was interpolated
with spline functions. Table I also gives the semi-empirical
energy levels from Jiang et al.20 and measured energies of
Yamanouchi et al.50 The present calculated values for vibra-
tional energy levels are in a good agreement with experiment
and semi-empirical calculations by Jiang et al.20 Clearly the
present PES is more accurate than the one given by Tokue
et al.88 The root-mean square deviation (RMSD) between the
experimentally tuned energy levels from Jiang et al.20 and

TABLE I. Comparison of the J = 0 energy levels (cm�1) calculated with the
present ab initio PES for the C̃ 1B2 electronic state to theoretical values from
Kłos et al.,68 Tokue et al.,88 semi-empirical calculations by Jiang et al.20 and
measured energies.50 In the first column, a vibrational assignment is given; the
second column gives the symmetry of the state in the C2v group. The b2 levels
are dipole forbidden from the vibrational ground state of the X̃ 1A1 electronic
state. Energy levels from the second potential well localized around θ = 165◦

were excluded from the table.

Kłos Tokue Jiang
(ν1 ν2 ν3) Sym. Present et al.68 et al.88 et al.20 Expt.50

(001) b2 195 223 212
(010) a1 368 375 394 377 377
(002) a1 544 575 598 561 561
(011) b2 560 590 582
(020) a1 734 748 772 751 752
(003) b2 880 912 890
(012) a1 916 943 979 929
(021) b2 924 956 949
(100) a1 960 960 935 960 960
(030) a1 1101 1118 1122 1122
(004) a1 1246 1264 1245 1245
(013) b2 1258 1271 1252
(101) b2 1258 1275 1261
(022) a1 1289 1309 1299 1300
(031) b2 1291 1313
(110) a1 1330 1337 1337
(005) b2 1465 1595
(014) a1 1609 1604 1604
(023) b2 1631 1611
(102) a1 1641 1653 1654
(032) a1 1647 1662

the present calculation for J = 0 energy levels is 13 cm�1

below 1500 cm�1 which practically equals the RMSD for the
ab initio calculations by Kłos et al. The level of the present
PES is comparable to the PES of Kłos et al.,68 as both surfaces
were calculated with the same ab initio method. The advantage
of the present approach, which is based on a fit to a functional
form, manifests in savings in the number of ab initio points
necessary. This way of producing a PES would be thus recom-
mended when a higher level of theory is used for the electronic
structure calculations.

Analysis of Table I suggests that the present ab initio PES
for the C̃ 1B2 state is applicable in the 0–1700 cm�1 range
above the zero-point vibrational energy. This range covers
vibrational energy levels involved in strong vibronic progres-
sions thus is sufficient for comparisons to experimental room
temperature electronic spectra below the dissociation thresh-
old (≈ 3000 cm�1) of the C̃ 1B2 state. To conclude, the present
PES is the most accurate ab initio potential energy surface for
the C̃ 1B2 state in SO2, which has been fitted to a predefined
functional form. A previous fit to ab initio points performed
below 5000 cm�1 by Bludský et al.67 gave 55 cm�1 rmsd with
respect to measurement.

Note that at room temperature (296 K), only the lowest
vibrational states of the electronic ground states are popu-
lated. Population of the asymmetric stretching fundamental
X̃ 1A1(0, 0, ν3) (≈1362 cm�1) is barely 0.1% at that tem-
perature. Therefore in practical calculations, the number of
vibrational states needed for the X̃ 1A1 electronic state is
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limited to the lowest few. The variational methodology means
that these lowest energy levels are calculated more accurately
than higher lying states. For this reason, if the PES is accurate,
as the Ames-1 PES is, satisfactory convergence can be easily
achieved, even with a non-optimized basis set.

With the common basis set used in nuclear motion cal-
culations for both electronic states, the DVR3D calculated
vibrational zero-point energies for the X̃ 1A1 and C̃ 1B2 states
are ZPEg = 1538.19 cm�1 and ZPEe = 776.45 cm�1, respec-
tively. The former value is consistent with the 1535.63 cm�1

ZPE reported by Huang et al. and the latter value is somewhat
lower than 785.75 cm�1 calculated by Kłos et al. The ver-
tical excitation energy for the C̃ 1B2← X̃ 1A1 transition was
taken from the experiment:20 T e = 42 573 cm�1. Partition func-
tion at 296 K used for intensity calculations was taken from
Huang et al.84 [Q(296) = 6336.789]. The temperature range
for which calculated vibronic spectra are reliable is determined
by the accuracy of the ground state PES. Here, the Ames-1
PES, as very accurate, provides an opportunity for accurate
modeling of vibronic hot bands. Room temperature spectra
are certainly within the applicability range of the Ames-1
PES.

A. Vibronic spectra

Ab initio vibronic spectra were calculated using Eq. (9)
for two cases: the Franck-Condon approximation [Eq. (18)]
and with the use of the transition dipole moment surface
[Eq. (14)]. The resulting transition intensities are compared in
Fig. 3.

Figure 3 shows no significant alternation in strong tran-
sition intensities when the FC spectrum is compared with
the TDMS spectrum. In general, for strong transitions, which
contribute to the overall shape of the absorption band, the dif-
ference in the transition intensity between the FC and TDMS
approach is usually less than 10%, typically 4%–6%. How-
ever, as displayed in the lower panel in Fig. 3, allowing for
the dependence of the electronic transition dipole moment
on nuclear coordinates can noticeably increase certain tran-
sition intensities, which are nominally very weak in the FC
approximation.

Transitions from the a1 symmetry states in the elec-
tronic ground state to the b2 states in the electronic excited
state are forbidden by vibrational dipole selection rules. How-
ever rotation-vibration interactions, especially c-axis Coriolis-
type interactions, can mix states of different vibrational
symmetries. The ro-vibrational selection rules require only
that the irreducible representations of ro-vibrational states
are identical: Γrv = Γ

′
rv , where Γrv = Γvib ⊗ Γrot . In the C2ν

group, vibrational and rotational selection rules for the X̃ 1A1

→ C̃ 1B2 electronic transition allow for transitions (a1, eo)B2

← (a1, ee)A1 or (a1, oe)B2← (a1, oo)A1 in the notation where
ka, kb (even) is denoted as ee and ka, kb (odd) is denoted as
oo. Ro-vibrational selection rules, which apply when states are
vibrationally forbidden but are mixed by Coriolis interactions,
give the following ro-vibrationally allowed transitions from a1

states: (b2, oo)B2← (a1, ee)A1 or (b2, ee)B2← (a1, oo)A1 .
Indeed, such transitions forbidden by vibrational selection

rules but allowed by ro-vibrational selection rules have been

FIG. 3. Comparison of ab initio calculated transition intensities for the
C̃ 1B2← X̃ 1A1(ν = 0) electronic transition (J′ = 1← J′′ = 0) between the
Franck-Condon and the transition dipole moment surface levels of theory.
The upper panel represents the relative deviation in intensities in the 10�18–
10�24 cm/molecule intensity range. The lower panel displays transitions to 40
lowest J′ = 1 energy levels of the C̃ 1B2 state. Transitions to states with a1
and b2 symmetries are distinguished.

observed in the C̃ 1B2← X̃ 1A1 ro-vibronic spectrum.48,90,91

The lower panel in Fig. 3 shows several transitions to “b2”
states. The rotation-vibration interaction feeds such transi-
tions with intensity, which is nonetheless usually of 1–3 orders
of magnitude weaker than typical vibrationally allowed tran-
sitions. We have found a large number of ro-vibrationally
allowed and vibrationally forbidden transitions in our line list,
for example, transitions in the X̃ 1A1(0, 0, 0)→ C̃ 1B2(0, 1, 1)
and X̃ 1A1(0, 0, 0)→ C̃ 1B2(0, 0, 3) manifold. Intensity calcu-
lations with Coriolis-decoupled wavefunctions do not reveal
any vibrationally forbidden transitions, thereby proving that
the rotational-vibrational coupling is responsible for soften-
ing of the selection rules for transitions to b2 states in the
C̃ 1B2 electronic state. The strongest transition to a b2 state
X̃ 1A1(0, 0, 0) → C̃ 1B2(0, 1, 3) has comparable intensity to
many moderately weak vibrationally allowed transitions. In
this particular case, the large intensity borrowing can be ratio-
nalized by strong Coriolis interaction between the (0, 1, 3)
states of b2 symmetry and the (0, 0, 4) states of a1 symmetry,
which are only separated by 12 cm�1 and this leads to strong
mixing. A comprehensive discussion of Coriolis interaction
between ro-vibrational energy levels of the C̃ 1B2 electronic
state was given by Park et al.48
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Comparison of the FC and TDMS spectrum with semi-
empirical FC calculations of Yamanouchi et al.50 is given in
Fig. 4. The assumption of marginal difference between the FC
and TDMS spectra is further confirmed in the upper panel
in Fig. 4. Line positions in the lower panel correspond to
measured values. The agreement between the present study
and semi-empirical calculations is satisfying. As previously
asserted, the contribution from the TDMS to the spectrum is
negligible in this spectral region. Thus for qualitative UV spec-
trum modeling purposes, the Franck-Condon approximation is
sufficient. For higher accuracy, which is required, for exam-
ple, by remote sensing experiments, the full transition dipole
moment surface may be necessary.

Figure 5 gives a comparison between experimental laser-
induced fluorescence spectrum by Yamanouchi et al.50 (upper
panel), semi-empirical Franck-Condon vibronic spectra cal-
culated by Xie et al.66 (middle panel), and present Franck-
Condon and TDMS calculations (lowest panel). The overall
agreement between the two theoretical studies in the middle
and lowest panels is good, with relative intensities following
a similar pattern. Changes in intensity caused by the break-
down of the Condon approximation are small in this spec-
tral region. In contrast to emission, the initial wavefunction
for room-temperature absorption is well localized around the
equilibrium geometry of the vibronic ground state, which sup-
presses transitions to states with largely distorted geometries
(cf. Fig. 2). In the 225 nm–235 nm range, line positions and
intensities agree well between the present theory and exper-
iment. This agreement however becomes worse for shorter
wavelengths. Therefore, below 225 nm, the present C̃ 1B2 state
PES is not accurate enough even for qualitative studies.

Based on the new PES and TDMS, a room tempera-
ture (295 K) UV line list for the X̃ 1A1 → C̃ 1B2 electronic
transition was calculated in the J = 0–40 range. The partition
function for the electronic ground state was taken from Huang
et al.84 This line list is designed for the 225 nm–235 nm wave-
length range, where it can be considered reliable. A qualitative
comparison of the present line list with low-resolution mea-
surements by Wu et al.92 is given in Fig. 6. Dashed lines

FIG. 4. Comparison of three calculated vibronic spectra: semi-empirical cal-
culations from Yamanouchi et al.50 in the lower panel; FC and TDMS ab
initio calculations from the present study in the upper panel. Line positions
are given in the 42 500–44 500 cm−1 range.

FIG. 5. Comparison of calculated vibronic spectra with measurement by
Yamanouchi et al.50 and semi-empirical calculations of Xie et al.66 Vibrational
assignments were given for 10 lowest calculated transitions. These transitions
can be considered as modeled reliably with the present PES and TDMS. The
experimental and theoretical spectra were reprinted with permission from Xie
et al., Chem. Phys. Lett. 329, 503–510 (2000). Copyright 2000 Elsevier.

correspond to the experimental cross section (in cm2) mea-
sured at 295 K with 0.5 Å resolution. Ab initio absorption
cross sections are marked in red and green in Fig. 6 and were
obtained from integral line intensities by convolution with the
Gaussian profile function with full-width at half-maximum
(FWHM) of 0.3 cm�1 and 8 cm�1, respectively; no scaling of
line intensities or line positions was made.

The low-resolution theoretical cross section depicted by
a green thick line in Fig. 6 qualitatively reproduces the band
centers measured by Wu et al. Comparison of line intensities
is however less straightforward due to the non-uniform base
line in the measurements. Hot bands, assigned by Wu et al.,92

are also visible in the ab initio spectrum, as expected. Qual-
itatively, the calculated spectrum reproduces the features of
the measured spectrum; however, for a more detailed insight,
the accuracy of the present model should be tested on higher
resolution experimental data.

High-resolution measurements of the X̃ 1A1 → C̃ 1B2

electronic band were reported by Rufus et al.62 (at 295 K)
and Blackie et al.63 (at 198 K). Cross sections from Blackie
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FIG. 6. Comparison of the ab initio and measured absorption cross sections.
The ab initio cross sections were calculated from the room temperature (295 K)
ro-vibronic line list for the X̃ 1A1 → C̃ 1B2 electronic transition in SO2 in the
J = 0–40 range. Gaussian line shapes were used with FWHM of 0.3 cm�1 (red
thin stick spectrum) and 8 cm�1 (green thick line spectrum). Measurements
were made by Wu et al.92 at 295 K. The experimental spectrum was reprinted
with permission from Wu et al., Icarus 145, 289–296 (2001). Copyright 2001
Elsevier.

et al.63 are compared with cross sections calculated at 198 K
from the present ab initio line list in Fig. 7. The FWHM
of the experimental rotationally resolved cross sections was
0.3 cm�1. In calculations, the Gaussian line shape profile with
FWHM = 0.3 cm�1 was used and the partition function at
198 K (3246.3) was calculated from ro-vibrational energy lev-
els available from the work of Underwood et al.44 The shape of
the cross section spectrum is nearly insensitive to the addition
of transitions with J > 40; thus no higher J energy levels need
to be calculated for the present comparison. Nonetheless, it is
technically possible to obtain a line list with J > 100, with the
present implementation of the DVR3DUV code.

The uncertainty of the cross sections measured by
Blackie et al. was estimated 9%–15% for the strongest bands

FIG. 7. Comparison of the ab initio and measured absorption cross sections.
The ab initio cross sections were calculated at 198 K from the ro-vibronic line
list for the X̃ 1A1 → C̃ 1B2 electronic transition of SO2 in the J = 0–40 range.
Measurements were made by Blackie et al.63 at 198 K. Our vibrational assign-
ments of the spectrum are indicated by dashed lines. All marked transitions
are from the vibronic ground state to vibrational states of C̃ 1B2.

FIG. 8. Potential energy surfaces for X̃ 1A1 electronic state (purple/grey) and
C̃ 1B2 electronic state (green/blue) of SO2. The other bond length is fixed
at r2 = 1.7 Å. Wavefunctions for the vibrational ground state of each well
are added, with arrows marking Franck-Condon vertical transitions from the
electronic ground state.

σ ∈ (10−17 cm2, 10�18 cm2) and more than 20% for bands
weaker than 10�18 cm2. Overall agreement between the unas-
signed measured cross sections in Fig. 7 and theoretical cross
sections is very good though. Vibronic assignments are also
given in Fig. 7. These assignments agree with experimen-
tal assignments of Danielache et al.64 Unfortunately, no ro-
vibronic assignments for the experimental spectrum are avail-
able, which makes a line by line comparison difficult. A major
reason for which the spectrum measured by Blackie et al.
cannot be presently assigned in the rotational resolution is 10–
20 cm�1 uncertainty in ab initio line positions. Future studies
should focus on obtaining a higher quality, more global PES for
the C̃ 1B2 state. Then, with the use of the present procedure, a
purely ab initio based ro-vibronic assignment of experimental
spectra could become possible.

B. Franck-Condon intensities for a large
geometry displacement

The wavefunction for the vibrational ground state in the
electronic ground state X̃ 1A1 of SO2 is very compact, and
most of its amplitude is localized near the C23 equilibrium
geometry req

1 = 1.431 Å, req
2 = 1.431 Å, and θeq = 119.32◦, as

displayed in Fig. 8. For this reason, the wavefunction overlap
between the vibrational ground state of X̃ 1A1 and vibrational
states localized in the second well near θ = 165◦ is likely to
be very small. Indeed, Table II shows that calculated over-
lap integrals for transitions to the second well are 4–8 orders

TABLE II. Comparison of vibrational overlap integrals calculated between
J = 0 wavefunctions of the vibronic ground state and vibrational states of the
C̃ 1B2 state. Given in columns are, respectively, ID of the vibrational state
belonging to the electronic excited state, overlap integral calculated for the
1st well located at θ = 104◦, overlap integral calculated for the 2nd well located
at θ = 165◦.

State ID Overlap integral (1st well) Overlap integral (2nd well)

1 8.48 × 10−3 2.92 × 10−10

2 1.41 × 10−2 1.12 × 10−10

3 1.73 × 10−2
�1.41 × 10−11

4 �2.28 × 10−2
�2.14 × 10−9

5 1.67 × 10−4
�1.84 × 10−9

6 1.71 × 10−2 1.12 × 10−9
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of magnitude smaller than the respective factors to the main
well, where the global minimum for the C̃ 1B2 state is
located.

It is thus justified to neglect the second well completely
in the theoretical intensity calculations. This conclusion is
expected to be, in general, applicable to other molecules and
other electronic states.

VI. CONCLUSION

In the present work, we report a procedure for calculation
of ro-vibronic transition intensities for triatomic molecules.
The theoretical scheme is based on accurate calculations of
ro-vibrational energy levels and wavefunctions for isolated
electronic states in the Born-Oppenheimer approximation, fol-
lowed by ro-vibronic transition intensity calculations between
two electronic states. The scheme presented here gives abso-
lute integral intensities thus is advantageous to traditional
approaches based on the Franck-Condon approximation, for
which only relative intensities are theoretically available.
Rotation-vibration coupled wavefunctions used in the present
paper render calculated intensities as inherently more accu-
rate than the standard vibrational Franck-Condon calculations.
Inclusion of the transition dipole moment surface alternates
intensities of the strongest bands by less than 10% hence
may be considered only in quantitative studies. The accuracy
of calculated transition intensities depends strongly on the
quality of potential energy surfaces, especially for the elec-
tronic excited state, for which many vibrational states are
required, and which is normally more challenging to gen-
erate. This aspect is particularly important for atmospheric
science. For example, in the case of SO2, the high resolu-
tion modeling of the strongest absorption region associated
with the C̃ 1B2← X̃ 1A1 electronic transition is still trouble-
some with the model presented here. However, this is solely
because the location of the strongest absorption in this band
near 50 000 cm�1 requires the calculation of highly excited
ro-vibrational states of the C̃ 1B2 electronic state, and for this
reason an accurate and global PES for this state is needed. With
high quality potential energy surfaces provided, the theoreti-
cal framework presented in this work can be readily applied to
other ro-vibronic bands of SO2 and other molecules, such as
ozone.

An aspect of the ro-vibronic problem which we do not
address is extending beyond the single state approxima-
tion. As shown by Yurchenko and co-workers for diatomic
molecules,26,93,94 often a significant number of electronic
states contribute to the vibronic spectrum; this number is typ-
ically larger than three. The computer program DUO due to
Yurchenko et al.95 treats full ro-vibronic calculations, allow-
ing for interaction of an arbitrary number of electronic states
in diatomic molecules. A triatomic analogue of DUO is the
ultimate aim of the study initiated in this work.

SUPPLEMENTARY MATERIAL

See supplementary material for Fortran95 routines gen-
erating the potential energy surface and the transition dipole
moment surface described in Sec. III.
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