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Abstract	(380	words)	27	

Filamentous	and	coccoidal	microfossils	have	been	reported	since	the	1950’s	from	a	28	

range	of	granular	cherts	from	the	Late	Paleoproterozoic	southwestern	Superior	Craton,	29	

Canada-United	 States.	 However,	 the	 chemical	 and	mineral	 compositions	 of	 granules,	30	

the	 presence	 of	 microfossils	 in	 granules,	 and	 the	 common	 presence	 of	 granules	 in	31	

intercolumnar	 space	 of	 stromatolitic	 chert	 are	 poorly	 documented	 and	 explained.	32	

Furthermore,	the	depositional	model	for	the	origin	of	granules	in	wave-agitated	waters	33	

does	not	entirely	explain	their	mineral	diversity	nor	their	characteristic	morphologies	34	

and	patterns.	We	report	on	 the	crystallinity	of	organic	matter,	mineral	diversity,	and	35	

compositions	 of	 microfossils	 in	 granules	 from	 three	 different	 kinds	 of	 late	36	

Paleoproterozoic	 cherts,	 namely	 phosphatic,	 organic,	 and	 haematitic.	 Stromatolitic	37	

organic-rich	chert	from	the	Gunflint	Fm	contains	granules	with	euhedral	carbonate	and	38	

equidistant	concentric	laminations	of	organic	matter,	akin	to	fractal	patterns	from	the	39	

Belouzov-Zhabotinsky	 (B-Z)	 chemically-oscillating	 reaction.	 These	 granules	 also	40	

contain	 authigenic	 anatase,	 ferric-ferrous	 silicates,	 and	 Fe-oxides.	 Filamentous	 and	41	

coccoidal	microfossils	similar	to	those	of	the	Gunflint	occur	in	chert	from	the	Biwabik	42	

Formation	and	share	morphology,	and	co-occur	with	Mn-siderite	and	apatite.	Granules	43	

in	 phosphatic	 chert	 in	 the	 Michigamme	 Formation	 often	 contain	 filamentous	 and	44	

coccoidal	 microfossils	 composed	 of	 organic	 matter,	 sericite,	 and	 apatite.	 Bulk	45	

carbonate	 associated	 with	 these	 Michigamme	 granular	 phosphatic	 chert	 beds	 has	46	

systematically	 negative	 d13Ccarb	 values	 around	 -3.1	 ±	 0.9	 ‰	 (1s)	 and	 d18Ocarb-SMOW	47	

between	 +20.8	 and	 +30.7‰,	 which	 suggest	 some	 contribution	 from	 the	 diagenetic	48	

oxidation	of	organic	matter.	Notably,	residual	carboxylic	acid	is	detectable	in	C-XANES	49	

spectra	of	organic	matter	from	granular	phosphatic	chert,	which	is	a	residual	reactant	50	

of	 B-Z	 type	 reactions.	 Along	 with	 previously	 reported	 observations	 of	 pyritised	51	

microfossils	from	the	Gunflint	Formation,	these	distinct	mineralogies	indicate	variable	52	
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modes	of	 preservation	 for	 the	products	 of	 chemically-oscillating	 reactions	 that	 likely	53	

relate	 to	 the	 availability	 of	 different	 oxidants	 in	 the	 diagenetic	 environment.	 We	54	

conclude	 that	 the	 Late	 Paleoproterozoic	 shallow-marine	 environments	 of	 the	 Lake	55	

Superior	 area	were	 populated	 by	morphologically	 similar	micro-organisms,	 and	 that	56	

the	 diagenetic	 oxidation	 of	 organic	 matter	 through	 chemically-oscillating	 reactions	57	

contributed	to	the	formation	of	spheroidal	rosettes,	granules,	and	concretions	during	a	58	

late	 Paleoproterozoic	 Great	 Putrefaction	 Event.	 Diagenetic	 spheroids	 in	 chert	 that	59	

contain	organic	matter	or	microfossils	thus	provide	a	reliable	petrographic	context	to	60	

search	 for	 a	 record	 of	 putrefaction	 of	microbial	 life	 on	 the	 early	 Earth	 and	 on	 other	61	

ancient	planetary	surfaces.	62	

	63	

Keywords:	phosphorite,	jasper,	apatite,	Proterozoic,	organic	matter,	carbon	isotopes,	64	

concretion,	granule,	Raman,	XANES	65	
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	67	

Highlights:	3-5	bullet	point	125	characters	each	68	

1-	Microfossils	are	sometimes	preserved	in	granules	from	Late	Paleoproterozoic	chert	in	Lake	69	

Superior	area.	70	

2-	Diagenetic	carbonate	in	Michigamme	chert	associated	with	apatite	granules	has	negative	71	

d13C	values.	72	

3-	Some	minerals	in	granules	form	from	precursor	reaction	products.	73	

4-	Carboxyl	in	biomass	likely	plays	a	role	in	chemically-oscillating	reactions.	74	

5-	Chemically-oscillating	reactions	need	to	be	considered	in	future	interpretations	of	75	

diagenetic	spheroids.	76	

	77	

	78	
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1.	Introduction	79	

	 After	 the	 end	 of	 the	 greatest	 unprecedented	 perturbation	 in	 the	 carbon	 cycle	 (the	80	

Lomagundi-Jatuli	Event	or	LJE)	and	associated	Great	Oxidation	Event	(GOE)	about	two	billion	81	

years	ago	(Karhu	and	Holland,	1996),	a	number	of	biological	evolutionary	changes	took	place	82	

in	Earth’s	biosphere	(Papineau,	2010).	This	is	the	time	when	unusual	mineralogies	associated	83	

with	 stromatolites,	 granules,	 and	microfossils	 first	 became	widespread.	 These	 biologically-84	

influenced	 rock	 types	 include	 organic-rich,	 haematitised,	 phosphatised,	 and	 pyritised	85	

stromatolitic	 and	 granular	 cherts	 in	 a	 range	 of	 marine	 environments,	 including	 some	 in	86	

proximity	 to	 hydrothermal	 activity.	 However,	 there	 is	 still	 no	 satisfactory	 comprehensive	87	

model	 for	 the	 formation	 of	 granular	 chert	 that	 relates	 their	 mineralogy,	 geochemistry,	88	

sedimentology,	and	micropaleontology.	For	example,	rounded	granules	present	in	ferruginous	89	

cherts	 have	 been	 interpreted	 as	 detrital	 or	 re-worked	 structures	 formed	 in	 high-energy	90	

environments,	 with	 wave	 action	 causing	 the	 rounded	 morphology	 of	 granules.	 Many	91	

arguments	to	support	this	model	have	been	used	over	the	years	and	include:	1)	the	similarity	92	

of	 granules	 with	 carbonate	 oolites,	 which	 have	 internal	 concentric	 structures	 and	 form	 in	93	

shallow-marine	 wave-agitated	 water	 (Lougheed,	 1983;	 Sommers	 et	 al.,	 2000),	 although	94	

oolites	 in	themselves	are	 increasingly	regarded	as	a	product	of	biological	activity	(Brehm	et	95	

al.,	2003;	Pacton	et	al.,	2012),	2)	the	narrow	size	range	of	observed	granules,	typically	from	a	96	

few	 hundred	microns	 to	 a	 few	millimetres,	 thought	 to	 indicate	water-based	 sorting,	 3)	 the	97	

observation	 of	 desiccation	 cracks,	 fractures	 or	 plastic	 deformation	 features	 suggest	 that	98	

granules	 were	 fully-formed	 and	 either	 plastic	 or	 brittle	 before	 final	 deposition	 (Lougheed,	99	

1983),	4)	 the	occurrence	of	haematite	granules	associated	with	algal	 fragments	and	detrital	100	

quartz	grains	suggest	a	dynamic	shallow	water	environment	(Gruner,	1946;	French,	1968),	5)	101	

and	 their	 common	association	with	 siliciclastic	 sedimentary	 rocks.	However,	many	of	 these	102	

observations	could	also	be	explained	by	concretionary-type	growth	of	granules,	 for	 instance	103	

during	the	diagenetic	oxidation	of	organic	matter	(OM),	such	as	during	putrefaction.			104	
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A	 chemically-oscillating	 reaction	 known	 since	 the	 1950’s,	 the	 Belousov-Zhabotinsky	105	

(B-Z	 from	 hereon)	 reaction,	 involves	 the	 spontaneous	 out-of-equilibrium	 oxidation	 of	 the	106	

carboxylic	 acid	 malonate	 with	 bromate-bromine	 and	 sulphate.	 Under	 standard	 conditions,	107	

this	 reaction	 is	 known	 to	 produce	 characteristic,	 millimetre	 to	 decimetre	 in	 size,	 fractal	108	

patterns	of	concentric	circles,	rounded	or	curved	equidistant	 laminations,	spirals,	 individual	109	

single	spots,	and	cavity-like	structures,	variably	accompanied	by	CO2	bubbles	(Fig.	1).	While	110	

some	of	 those	patterns	 are	 akin	 to	 those	 found	 in	 agate	 geodes,	 the	 single-spot	 patterns	 in	111	

particular	 (Fig.	 1e,	 1f)	 are	 akin	 to	 millimetric	 to	 centimetric	 ooids	 and	 peloids.	 Such	112	

spontaneous	reactions	could	occur	during	sedimentary	diagenesis	as	ferric	oxides	and	other	113	

oxidants	 can	 contribute	 to	 oxidise	 organic	 remains.	 This	 organic	 oxidation,	 or	 putrefaction,	114	

might	 be	 facilitated	 by	 the	 presence	 of	 extracellular	 polymeric	 substances	 derived	 from	115	

microorganisms.	The	concentric	nature	of	many	granules	(e.g.	Lougheed	et	al.,	1989;	Maliva	et	116	

al.,	 2005)	 combined	 with	 common	 outward-radiating	 acicular	 crystal	 further	 suggest	 the	117	

possibility	 of	 an	 internal	 or	 authigenic	 process	 of	 formation	 for	 at	 least	 some	 granules.	118	

Chemically-oscillating	 experiments	 thus	 show	 that	 fractal	 patterns	 occur	 in	 millimetre	 to	119	

centimetre	sizes	and	that	they	share	similarities	with	some	features	in	the	rock	record.	120	

Wave-action	is	unlikely	to	produce	delicate	curved	equidistant	laminations	often	seen	121	

in	granules.	Any	formational	model	for	granules	should	also	be	compatible	with	the	observed	122	

carbonate	minerals	 in	 these	 structures	 from	 chert	 and	 associated	 Banded	 Iron	 Formations	123	

(BIF)	and	Iron	Formations	(IF)	that	have	systematically	negative	d13Ccarb	values,	which	is	an	124	

important	 clue	 consistent	 with	 the	 oxidation	 of	 OM	 during	 diagenesis	 (e.g.	 Heimann	 et	 al.,	125	

2010).	During	the	degradation	of	biomass,	chemicals	such	as	HCO3-,	HS-,	NH4+,	and	PO43+	are	126	

released	 and	 hence	 could	 become	mineralised	 in	 carbonates,	 sulphides,	 phyllosilicates,	 and	127	

phosphates	as	concentrically-layered	diagenetic	spheroids.	We	thus	aim	to	test	a	new	model	128	

for	granule	formation,	which	recognises	the	facts	that	biomass	is	rich	in	carboxylic	acids	(as	129	

they	are	found	in	phospholipids,	amino	acids,	and	intermediary	metabolites)	and	that	various	130	
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oxidants	can	occur	in	different	oxidation	states	in	the	environment,	thereby	setting	the	stage	131	

for	out-of-equilibrium	conditions	such	as	those	illustrated	in	Fig.	1.	132	

In	 general,	 granules	 are	 taken	 here	 to	 be	 millimetre-size	 sub-spheroidal	 structures	133	

with	distinct	concentric	mineral	layers	in	chert,	and	often	between	stromatolite	columns	or	in	134	

horizons	above	stromatolite	beds.	In	haematitic	chert	(i.e.	jasper),	laminations	are	dominated	135	

by	 haematite	 (Lougheed,	 1983),	whereas	 in	 organic-rich	 chert,	 laminations	 in	 granules	 are	136	

composed	 of	OM	 (Lanier,	 1989).	 Granule	 interiors	 are	 often	 coarse-grained	 and	 because	 of	137	

their	 variable	 concentricity	 and	 mineralogy,	 they	 have	 been	 alternatively	 referred	 to	 as	138	

peloids	 (e.g.	 Knoll	 and	 Simonson,	 1981;	 Lanier,	 1989;	 Hiatt	 et	 al.,	 2015),	 pisoids	 (e.g.	139	

Simonson,	1985),	and	ooids	(e.g.	Hofmann,	1972;	Buick,	1992;	Sommers	et	al.,	2000).	These	140	

reports	 document	 diverse	 types	 of	 microscopic	 rounded	 structures	 with	 interiors	141	

characterised	by	 various	minerals,	 grain	 sizes,	 and	 textures,	which	 are	 collectively	 grouped	142	

here	and	called	‘granules’.		143	

The	 objective	 of	 this	 study	 is	 to	 provide	 a	 comprehensive	 geochemical	 and	144	

sedimentological	 documentation	 of	 mineralogically	 different	 granular	 cherts	 in	 order	 to	145	

better	 understand	 both	 the	 biological	 and	 non-biological	 processes	 of	 putrefaction	 and	 the	146	

possible	 role	 of	 chemically-oscillating	 reaction	 in	 organic-rich	 siliceous	 oozes.	 The	 focus	 of	147	

this	 study	 is	 on	 late	Paleoproterozoic	 granular	 cherts	 from	 the	 southwestern	margin	of	 the	148	

Superior	 Craton,	 namely	 from	 the	 near-synchronous	 Michigamme,	 Biwabik,	 and	 Gunflint	149	

Formations.	Granular	cherts	of	nearly	the	same	age	from	a	unique	region	hold	the	potential	to	150	

preserve	 evidence	 for	 how	 the	 oxygenation	 of	 surface	 environments	 resulted	 in	 the	151	

preservation	of	diagenetic	structures	and	the	preservation	of	microfossils.	152	

 153	

2. Geology and samples 154	

During	 the	 accretion	of	 supercontinent	Nuna	 (Laurentia)	 in	 the	 SW	Superior	Craton,	155	

the	 Penokean	Orogeny	 resulted	 in	 the	 closure	 of	 the	 Baraga	 Basin	 in	 the	Marquette	 range.	156	
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These	 events	 took	 place	 between	 1.85	 and	 1.83	 Ga	 (see	 Shultz	 and	 Cannon	 (2007)	 and	157	

references	 therein)	 and	 resulted	 in	 the	 closing	 of	 many	 coeval	 basins	 with	 hydrothermal	158	

activity	 that	 delivered	 vast	 quantities	 of	 Fe	 on	 the	 seafloor,	 now	preserved	 as	Banded	 Iron	159	

Formations	(BIFs)	of	the	Cuyuna,	Mesabi,	Iron	River,	Marquette,	Gogebic,	and	Gunflint	ranges	160	

(Fig.	2a).	The	Penokean	Orogen	is	thought	to	have	ended	by	1.84	Ga	(Schneider	et	al.,	2002)	161	

and	to	have	resulted	in	the	suture	of	island	arcs	and	the	Wisconsin	Magmatic	Terrain	south	of	162	

the	 Superior	 Craton	 (Van	 Wyck	 and	 Johnson,	 1997).	 Regional	 volcanism	 at	 1.88	 Ga	163	

(Rasmussen	et	al.,	2012)	was	swiftly	 followed	by	widespread	hydrothermal	activity	and	the	164	

deposition	of	late	Paleoproterozoic	BIFs.	Notably,	if	the	younger	rocks	of	the	1.15	to	1.10	Ga	165	

mid-continental	 rift	 (Heaman	 et	 al.,	 2007)	 are	 removed	 from	 the	map	 in	 Figure	2a	 and	 the	166	

Superior	 BIFs	 are	 stitched	 back	 together,	 the	 time-correlative	 late	 Paleoproterozoic	 BIF-167	

pelite-chert	 successions	 of	 the	 Cuyuna	 and	 Mesabi	 ranges	 in	 Minnesota,	 the	 Iron	 River,	168	

Gogebic,	 and	Marquette	 ranges	 in	Michigan,	 and	 the	 Gunflint	 range	 of	 west	 Ontario	would	169	

form	a	continuous	mostly	linear	belt	more	than	600	km	long	(Schulz	and	Cannon,	2007).	The	170	

Animikie	 Group	 of	 Ontario	 and	 Minnesota	 thus	 has	 an	 equivalent	 in	 the	 Baraga	 Group	 of	171	

Michigan	such	that	the	Rove	Fm	is	synchronous	to	the	Michigamme	Fm	(Nelson	et	al.,	2010).	172	

The	late	Paleoproterozoic	basins	of	Michigan’s	Upper	Peninsula	have	thus	been	dissected	and	173	

extended	 in	 an	 aulacogen	 toward	 the	 southeast	 during	 the	 late	 Mesoproterozoic	 mid-174	

continental	 rift	 leaving	 the	Marquette,	 Gogebic,	 and	 Iron	 River	 ranges	 on	 the	 south	 side	 of	175	

Lake	Superior	 (Ojakangas	et	 al.,	 2001).	Metamorphic	grades	generally	 increase	 towards	 the	176	

southwest	such	that	the	Gunflint	formation	is	generally	considered	to	be	the	least	affected	by	177	

metamorphic	 recrystallization.	Metamorphic	grades	 in	 the	Gunflint	Fm	are	below	 the	 lower	178	

greenschist	 facies,	 whereas	 the	 Biwabik	 and	 Michigamme	 formations	 have	 been	179	

metamorphosed	 at	 the	 sub-greenschist	 to	 greenschist	 facies,	 respectively.	 Collectively,	 the	180	

BIFs	of	the	Animikie	and	Baraga	Groups	include	various	types	of	chert-associated	mineralogy	181	

and	sedimentology,	including	stromatolitic	and	granular	jasper	(Lougheed,	1983;	Maliva	et	al.,	182	
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2005),	 cherty	 stromatolites	with	 grey	 and	 red	 haematite	 columns	 (Shapiro	 and	Konhauser,	183	

2015),	coarse	and	 fine	 laminated	grey-red	Fe-silicate	BIFs	(i.e.	 taconite)	and	grey	magnetite	184	

cherty	BIFs	(French,	1968).	Age	constraints	include	precise	U-Pb	ages	on	zircons,	which	give	185	

an	age	of	1.878	Ga	to	1.836	Ga	for	tuff	beds	of	the	Gunflint	Fm	and	1.874	Ga	for	the	Hemlock	186	

volcanics	 that	 intrude	 the	 Negaunee	 Fm	 below	 the	 Michigamme	 Fm	 (Fralick	 et	 al.,	 2002;	187	

Rasmussen	et	al.,	2012).		188	

Samples	 in	 this	study	come	 from	the	Gunflint,	Biwabik,	and	Michigamme	 formations.	189	

Black	chert	samples	from	Gunflint	Fm	(samples	GF-1	and	GF-7)	were	collected	from	the	type	190	

locality	 at	 Schreiber	 Beach	 (Fig.	 2b;	 Tyler	 and	 Barghoorn,	 1954).	 Black	 cherts	 from	 the	191	

Gunflint	Fm	contain	unambiguous	and	exceptionally	well-preserved	microfossils	 (Tyler	 and	192	

Barghoorn,	1954;	Schopf	et	al.,	1965;	Awramik	and	Barghoorn,	1977;	Lanier,	1989;	Wacey	et	193	

al.,	 2013;	 2012;	 Brasier	 et	 al.,	 2015).	 In	 the	 correlative	Biwabik	 Fm	of	 the	Mesabi	 range	 in	194	

Minnesota	(Fig.	2a),	there	is	stromatolitic	jasper	with	columns	that	vary	between	about	1	and	195	

3	cm	in	diameter	and	intercolumns	with	haematite-magnetite	granules	(sample	ME-B1)	(Fig.	196	

2c;	Gruner,	1946;	Lougheed,	1983;	Shapiro	and	Konhauser,	2015).	Samples	of	concretionary	197	

jasper	 (sample	 AG1108)	 from	 Thunderbird	 mine	 dumps	 came	 from	 the	 ‘Upper	 Cherty’	198	

member	of	the	Biwabik	Fm	(Fig.	2d).	Lastly,	in	the	Huron	River	locality	at	Big	Eric’s	Crossing	199	

locality	 of	 the	 Baraga	 Basin	 in	 Michigan’s	 Upper	 Peninsula,	 the	 Michigamme	 Fm	 contains	200	

silicified	argillaceous	sedimentary	rocks	 that	 formed	 in	a	 shallow-marine	environment	with	201	

decimetre-size	 stromatolites	 (Fig.	 2e)	 and	 centimetre-size	 apatite	 concretions	 (sample	202	

MA0708)	 (Fig.	 2f).	 Samples	 from	 the	MMTU	drill	 core	 (Michigan	 Technological	 University)	203	

came	from	the	Mulligan	Creek	locality	in	the	Dead	River	Basin	(Fig.	2a).	204	

 205	

3.	Analytical	methods	206	

3.1.	Optical	microscopy	and	µRaman	imaging	207	
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Optical	microscopy	was	performed	with	an	Olympus	BX51	microscope	with	4X,	10X,	208	

20X,	 50X,	 and	 100X	 objectives	 on	 30	µm	 thin	 sections	 polished	with	 0.25	µm	Al2O3.	No	 oil	209	

immersion	was	used,	but	Buelher®	epoxy	was	used	to	make	the	thin	sections.	Micro-Raman	210	

imaging	was	performed	at	 the	London	Centre	 for	Nanotechnology	of	 the	University	College	211	

London	with	a	WITec	a300	Confocal	Raman	 Imaging	system.	A	532	nm	 laser	was	used	and	212	

focused	at	200X	magnification	for	large	area	scans	and	at	up	to	1000X	for	smaller	area	scans.	213	

An	 optic	 fiber	 50	microns	 in	 diameter	was	 used	 to	 collect	 a	Raman	 spectrum	at	 a	 confocal	214	

depth	 at	 least	 1	 micron	 below	 the	 polished	 surface	 of	 the	 thin	 section.	 Each	 pixel	 was	215	

recorded	with	a	typical	dwell	time	of	0.4	to	0.6	seconds.	All	Raman	spectra	were	corrected	for	216	

cosmic	rays	using	the	cosmic	ray	reduction	function	in	the	WITec	Project	Four	Plus	software.	217	

For	 all	 presented	 average	 Raman	 spectra,	 pixels	 from	Raman	 images	were	 selected	 on	 the	218	

basis	of	their	nearly	identical	point	spectra	and	the	resulting	average	spectra	were	corrected	219	

with	 a	 background	 subtraction	 using	 polynomial	 fits	 typically	 of	 order	 4,	 5	 or	 6.	 Raman	220	

spectral	parameters	such	as	peak	positions,	Full	Width	at	Half	Maximum	(FWHM),	and	areas	221	

under	the	curve	were	extracted	from	well-resolved	Raman	peaks	of	 interest	 in	background-222	

corrected	spectra,	normalised	to	the	spectral	baseline,	and	then	modelled	with	a	Lorenz-fitted	223	

equation.	To	extract	crystallisation	temperature	estimates	from	Raman	spectra	(Beyssac	et	al.,	224	

2002)	in	the	Michigamme	chert,	the	following	peaks	were	used:	D1	(around	1345	cm-1),	G	+	225	

D2	(around	1605	and	1620	cm-1,	respectively).	The	D3	band	at	around	1510	cm-1	and	the	D4	226	

band	 around	 1245	 cm-1	 used	 in	 the	 Lahfid	 et	 al.	 (2010)	 and	 Kouketsu	 et	 al.	 (2014)	227	

geothermometer	were	expectedly	not	resolved,	but	were	nevertheless	extracted	from	Lorenz-228	

fitted	 equations	 for	 the	 Gunflint,	 Biwabik,	 and	 Michigamme	 formations	 (Fig.	 3;	 Table	 1),	229	

where	the	low	crystallization	temperatures	make	this	geothermometer	more	suitable,	but	still	230	

with	 uncertainties	 of	more	 than	 50oC.	 Raman	hyperspectral	 images	 of	mineral	 associations	231	

were	generated	by	mapping	the	main	peak	intensities	(or	unique	peaks)	for	specific	minerals	232	

using	the	WITec	Project	Four	Plus	data	processing	software;	the	peaks	include	those	distinct	233	
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for	 stilpnomelane	 (~3620	 cm-1),	 OM	 (~1600	 cm-1),	 haematite	 (~1320	 cm-1),	 carbonate	234	

(~1090	 cm-1),	 apatite	 (~965	 cm-1),	 muscovite	 (~705	 cm-1),	 magnetite	 (~670	 cm-1),	 rutile	235	

(~612	 cm-1),	 quartz	 (~465	 cm-1),	 and	 anatase	 (~138	 cm-1).	All	Raman	peak	positions	were	236	

read	directly	from	measured	average	spectra	calculated	from	representative	regions	with	low	237	

signal-to-noise	and	after	background	removal.	238	

	239	

3.2.	Isotope	Ratio	Mass	Spectrometry	240	

Analyses	of	microdrilled	carbonate	powders	were	performed	with	a	Gas	Bench	heated	241	

at	 70oC	 and	 connected	 to	 a	 ConFlo	 III	 system	 and	 finally	 injected	 into	 a	 Delta	 XL	 mass	242	

spectrometer	 at	 the	 Geophysical	 Laboratory	 of	 the	 Carnegie	 Institution	 for	 Science.	 The	243	

reproducibility	 (precision	 and	 accuracy)	 on	 d13Ccarb	 and	 d18Ocarb	 values1	was	 better	 than	244	

±0.5‰	(1s)	and	usually	better	than	±0.2‰	(1s)	for	d13Ccarb	values.	Accuracy	was	evaluated	245	

on	the	basis	of	repeated	measurements	of	internal	calcite	standard	‘Chi’	and	dolomite	‘Tytyri’	246	

as	 well	 as	 with	 a	 few	 analyses	 of	 NBS	 18	 and	 NBS	 19.	 Carbonate	 carbon	 isotope	 data	 are	247	

reported	with	a	0.1‰	correction	and	oxygen	isotope	data	were	corrected	with	a	9.7‰	shift,	248	

based	 on	 the	 average	 difference	 between	 the	 measured	 d18Ocarb	 of	 the	 internal	 standard	249	

standards	and	their	true	values,	which	is	due	to	instrumental/procedural	fractionation.	250	

Organic	matter	was	obtained	by	dissolving	about	5	to	10	mg	of	powder	in	pre-muffled	251	

Ag	 boats	 with	 10%	 ultrapure	 HCl	 followed	 by	 air	 drying	 in	 a	 laminar	 air	 flow	 hood.	 The	252	

residue	was	then	combusted	in	a	CE2500	Elemental	Analyser	and	injected	into	a	Delta	V	mass	253	

spectrometer	 through	a	Conflo	 III	 system	(Papineau	et	al.,	 2013).	Reproducibility	on	d13Corg	254	

values	was	better	 than	±0.2‰	(1s)	on	 standards	of	Peru	mud,	acetanilide,	 and	better	 than	255	

±5%	for	abundance	(1s)	based	on	the	long-term	reproducibility	of	standards.		256	

																																																								
1 	Carbon	 and	 oxygen	 isotope	 data	 are	 reported	 in	 the	 conventional	 form	 d13Corg	 or	 d13Ccarb	 =	

[(13C/12C)microdrill/(13C/12C)PDB	–	1]	x	1000‰	and	d18Ocarb	=	[(18O/16O)microdrill/(18O/16O)SMOW	–	1]	x	1000‰.		
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	257	

3.3.	Scanning	Electron	Microscopy	(SEM)	and	Energy	Dispersive	Spectroscopy	(EDS)		258	

	 Analyses	by	SEM	were	performed	using	a	JEOL	JSM-6480L	SEM	in	the	Department	of	259	

Earth	sciences	at	University	College	London.	Operating	conditions	for	SEM	imaging	and	EDS	260	

analysis	 included	 a	 15kV	 accelerating	 voltage	 for	 an	 electron	 beam	 current	 of	 1nA,	 and	 a	261	

working	distance	of	about	10mm.	Polished	thin	sections	were	cleaned	with	clean	wipes	and	262	

isopropyl	alcohol,	dried	with	dry	N2,	before	the	deposition	of	a	few	nanometres	of	Au	(1	or	2	263	

minutes	coating	under	a	current	of	about	1.8	mA	in	Ar)	for	analysis	in	the	SEM.	Analyses	were	264	

calculated	by	 the	software	using	ZAF	correction	and	normalized	 to	100.0	%,	which	yield	an	265	

error	of	about	1%.	266	

	267	

3.4.	Synchrotron-based	Scanning	Transmission	X-ray	microscopy	(STXM)	268	

Sample	 preparation	 for	 X-ray	 absorption	 near-edge	 structure	 (XANES)	 spectral	269	

analysis	 involved	 dissolution	 of	whole-rock	 powder	 (about	 5g)	 from	 cherts	with	 a	 density-270	

calibrated	CsF-HF	 solution	 (r	 =	 1.8	 g/cm3)	 and	dioxane	 treatment	 (Alexander	 et	 al.,	 2007).	271	

Dioxane	was	used	to	generate	a	separate	solution	of	lower	density,	which	visibly	floats	on	top	272	

of	the	CsF-HF	in	a	clear	teflon	tube,	and	thus	isolating	the	acid	insoluble	OM	at	the	interface	273	

between	 the	 two	 solutions.	 After	 centrifugation,	 the	 acid-insoluble	 OM	 was	 pipetted	 with	274	

sterile	disposable	plastic	pipettes	in	muffled	glass	vials,	washed	twice	in	2	M	HCl,	and	rinsed	275	

three	times	in	DI	water,	before	drying	in	a	laminar	air	flow	hood.	Once	dried,	small	clumps	of	276	

OM	were	sampled	and	mixed	with	a	molten	bead	of	S	(~80oC)	on	a	glass	slide.	Upon	cooling,	277	

the	 sulphur	 crystallized	 and	 trapped	 the	 acid-insoluble	 OM.	 The	 S	 bead	 was	 subsequently	278	

detached	from	the	glass	slide	and	glued	onto	an	epoxy	stub	and	microtomed	with	a	diamond	279	

knife	into	100	nm	slices.	Microtome	sections	of	OM	were	transferred	to	different	200	mesh	Cu	280	

TEM	grids	coated	with	silicon	monoxide.	The	S	was	removed	by	sublimation	at	~70oC	in	air	281	

for	a	few	minutes	over	a	hot	plate.		282	
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Samples	 were	 analyzed	 with	 the	 polymer	 STXM	 beamline	 5.3.2.2.	 at	 the	 Advanced	283	

Light	 Source	 (ALS),	 Lawrence	 Berkeley	 National	 Laboratory	 (Kilcoyne	 et	 al.,	 2003).	 During	284	

analysis,	 the	electron	current	 in	 the	storage	ring	was	held	constant	 in	 “topoff	mode”	at	500	285	

mA	at	energy	of	1.9	GeV,	providing	a	nearly	constant	flux	of	photons	at	the	STXM	end-station.	286	

The	dispersive	and	non-dispersive	exit	slits	were	set	at	25	μm.	Focusing	of	the	photon	beam	is	287	

produced	by	a	Fresnel	zone	plate	with	a	spot	size	of	around	30	nm.	STXM	data	were	acquired	288	

as	spectral	image	stacks	(i.e.	a	series	of	X-ray	absorption	images	at	sequential	energies),	from	289	

which	XANES	 spectra	 of	 regions	 of	 interest	were	 extracted.	 The	highest	 spectral	 resolution	290	

(0.1	eV	step	between	subsequent	images)	was	in	the	282-292	eV	range,	where	the	near-edge	291	

spectral	 features	 for	electronic	 transitions	 from	core	shell	 states	 to	anti-bonding	s*	and	p*-292	

orbitals	are	 located.	XANES	spectra	are	presented	as	 the	 ratio	of	 transmission	spectra	 from	293	

the	 region	of	 interest,	 I,	 relative	 to	 background	 transmission	 spectra,	 I0,	 calculated	 as	A	=	 -294	

ln(I/Io).	295	

	296	

4.	Results	297	

4.1.	Crystallinity	of	organic	matter	from	Gunflint,	Biwabik,	and	Michigamme	cherts	298	

Raman	spectra	for	OM	in	granules	from	the	black	chert	of	the	Gunflint	Fm	show	highly	299	

disordered	OM	with	a	broad	D1-band	peaking	at	1344	cm-1	(FWHM	between	90	and	130	cm-1)	300	

and	a	sharp	and	intense	G-band	between	1603	and	1609	cm-1	(FWHM	between	45	and	57	cm-301	

1)	(Fig.	3a).	These	features	are	consistent	with	the	C-XANES	spectra	for	OM	in	the	Gunflint	Fm,	302	

which	include	a	weak	285	eV	absorption	for	aromatic	C=C	and	resolvable	absorptions	at	286.8	303	

and	 288.6	 eV,	 respectively	 for	 aromatic	 alcohol	 and	 carboxyl	 (De	 Gregorio	 et	 al.,	 2009).	304	

Together	 with	 the	 presence	 of	 greenalite	 and	 exceptionally-preserved	 microfossils	 and	305	

granules	 (Lanier,	 1989),	 these	 characteristics	 are	 consistent	 with	 metamorphism	 at	 the	306	

prehnite-pumpellyite	 facies	 and	with	 a	 complex	 residual	 organic	 structure	 (Vandenbroucke	307	

and	Largeau,	2007).	This	is	further	supported	by	the	presence	of	aliphatic	functional	groups	308	
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suggested	by	Raman	peaks	in	the	region	of	2700-3000	cm-1	(Fig.	4j),	and	consistent	with	CH2	309	

and	CH3	bonds	detected	by	FTIR	analyses	of	OM	in	Gunflint	microfossils	(Igisu	et	al.,	2009).	It	310	

is	 unclear	 whether	 the	 broad	 fluorescence	 peak	 centred	 near	 1400	 cm-1	 represents	 an	311	

analytical	artefact,	but	these	have	unusually	strong	Raman	scattering	in	the	region	expected	312	

for	 OM	 (Fig.	 4m).	 The	 metamorphic	 temperature	 calculated	 for	 OM	 in	 the	 Gunflint	 Fm	 is	313	

between	200	and	350oC	(average	of	262	±	77	oC)	using	Lorenz-fitted	D-	and	G-bands	and	the	314	

equations	of	Lafhid	et	al.	(2010)	and	Kouketsu	et	al.	(2014)	(Fig.	3	and	Table	1).	315	

In	 the	 Biwabik	 Fm,	 OM	 is	 frequently	 associated	 with	 haematitic	 microfossil-like	316	

structures,	 but	 typically	 has	 lower	 signal-to-noise	 ratios	 (Fig.	 3c,	 3d),	 which	 due	 to	 the	317	

micrometre	 size	 of	 the	 OM	 particles.	 Organic	matter	 from	 Biwabik	 has	 resolvable	 G-bands	318	

between	1569	and	1599	cm-1	(with	FWHM	around	60	cm-1)	and	D1-bands	around	1337-1356	319	

cm-1	 (with	 FWHM	 between	 110	 and	 130	 cm-1),	 which	 can	 have	 interference	 from	 the	320	

haematite	 peak	 around	 1320	 cm-1	 (Marshall	 et	 al.,	 2011;	 2013).	 Interference	 from	 the	321	

haematite	 peak	 combined	 with	 low	 signal-to-noise	 of	 the	 spectra	 prevent	 reliable	322	

determination	 of	 crystallization	 temperatures,	 here	 tentatively	 estimated	 between	 229	 and	323	

280oC.	These	new	observations	are	consistent	with	the	notion	that	metamorphism	from	the	324	

prehnite-pumpelleyite	facies	to	the	greenschist	facies	shifts	the	position	of	the	G-band	toward	325	

lower	wavenumbers	and	the	D-band	toward	higher	wavenumbers	(Schopf	et	al.,	2006).	326	

Raman	 spectra	 of	 OM	 associated	 with	 apatite	 coccoids	 and	 filaments	 in	 the	327	

Michigamme	cherty	phosphorite	have	intense	and	narrow	D1-bands	between	1338	and	1353	328	

cm-1	 (full	width	 at	 half	maximum	 (FWHM)	between	44	 and	65	 cm-1)	 and	G-bands	 between	329	

1567	to	1587	cm-1	(FWHM	between	41	and	77	cm-1)	(Fig.	3e,	3f).	These	characteristics	can	be	330	

used	 to	 estimate	 the	 crystallisation	 temperature	 using	 the	 Beyssac	 et	 al.	 (2002)	331	

geothermometer	between	352	and	398oC	and	indicate	a	‘poorly	crystalline	graphite’	structure	332	

for	 this	OM,	which	 is	 characterized	by	similarly-shaped	narrow	and	sharp	G-	and	D1-bands	333	

(e.g.	 Papineau	 et	 al.,	 2011).	 X-ray	 Absorption	 Near-Edge	 Structure	 (XANES)	 spectra	 of	 OM	334	
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from	 this	 sample	 revealed	 significant	 absorption	 by	 the	 aromatic	 C=C	 and	 C-C	 bonds,	335	

respectively	 at	 285.3	 and	291.7	 eV	 (Fig.	 4a),	 consistent	with	 the	 crystallinity	 inferred	 from	336	

Raman	spectra	(Bernard	et	al.,	2009)	and	with	metamorphic	grade	at	the	greenschist	facies.	337	

	338	

4.2.	Petrology	of	stromatolitic	and	granular	organic	chert	from	the	Gunflint	Formation	339	

The	organic-rich	stromatolitic	and	granular	chert	from	the	Gunflint	Fm	in	Ontario	also	340	

contain	 granules	 in	 intercolumnar	 space	 and	 finely	 disseminated	 OM	 preserved	 in	341	

stromatolitic	 laminae.	 Stromatolites	 occur	 as	 centimetre-size	 columns	 branching	 in	342	

multifurcate	 and	 anastomosed	 columnar	morphologies	 (Fig.	 5a-5b),	whereas	 intercolumnar	343	

granules	are	often	concentrically-laminated	and	typically	around	500	µm	in	diameter	(Fig.	5c;	344	

5f).	 Here,	 the	 chert	 is	 essentially	 cryptocrystalline	 throughout	 and	 inter-granular	 outsized	345	

carbonate	rhombs	are	up	 to	400	µm	in	size.	 	The	concentrically-laminated	granules	contain	346	

fine	 layers	 of	 OM	 about	 10	 µm	 in	 thickness	 and	 frequent	 authigenic-diagenetic	 euhedral	347	

carbonate	minerals	 occur	 in	 external	 layers	 (Fig.	 5g-5j).	 Some	 granules	 contain	 concentric	348	

layers	 of	 pyrite	 (Fig.	 5e).	 Diagenetic	 euhedral	 carbonate	 rhombs	 also	 occur	 in	 the	349	

intergranular	 spaces	 between	 stromatolite	 columns	 (Fig.	 5k),	 and	 these	 are	 occasionally	350	

replaced	by	pyrite	remobilised	from	later	diagenetic	veins	(Fig.	5d).		Similar	euhedral	crystals	351	

in	the	Biwabik	Fm	are	composed	of	gypsum	partly	replaced	by	magnetite	(Lougheed,	1983).	352	

Other	 large	 euhedral	 carbonate	 crystals	 several	 hundred	 microns	 in	 size	 contain	 highly	353	

fluorescent	 OM	 (Fig.	 5k-m),	 analogous	 to	 other	 occurrences	 from	 the	 Gunflint	 chert	where	354	

carbonate	has	been	replaced	by	Fe-oxides	(Sommers	et	al.,	2000).	355	

Microscopic	 filamentous	 structures	 and	 the	 commonly	 co-occurring	 spheroidal	356	

structures	are	relatively	common	in	 fine	stromatolitic	 laminations	and	 less	common	in	non-357	

concentrically	laminated	Gunflint	granules	(Fig.	6	and	7).		Filaments	are	2	to	4	µm	in	diameter	358	

with	lengths	of	up	to	400	µm	and	they	also	occur	embedded	in	the	laminae	of	the	stromatolite	359	

columns	 (Fig.	6a-g),	 all	 consistent	with	previous	observations	 (Tyler	and	Barghoorn,	1954).	360	
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They	 are	 composed	 of	 finely	 disseminated	 OM	 (Fig.	 6g)	 that	 has	 the	 usual	 spectral	361	

characteristic	 of	 amorphous	 OM,	 but	 sometimes	 has	 highly	 fluorescent	 domains	 (Fig.	 6h).		362	

Spheroidal	organic	structures	range	in	size	between	about	6	and	50	µm	and	tend	to	occur	in	363	

granules	 where	 they	 can	 be	 accompanied	 by	 filaments	 (Fig.	 7a-d)	 and	 more	 complex	364	

reticulated	 spheroidal	 structures	 (Fig.	 7e).	 In	 one	 of	 the	 studied	 granules,	 spheroidal	365	

structures	between	about	10	and	25	µm	(Fig.	7f-h)	co-occur	with	diagenetic	brown	dolomite,	366	

which	contains	OM	(Fig.	7i-j).	367	

	368	

4.3.	Petrology	of	stromatolitic	and	granular	jasper	from	the	Biwabik	Formation	369	

Stromatolitic	and	granular	haematitic	chert	from	the	Biwabik	Fm	is	characterized	by	a	370	

similar	 but	 chemically	 distinct	 diagenetic	 history	 to	 the	 Gunflint	 and	 Michgamme	 cherts.	371	

Jasper	 from	 the	 Mary	 Ellen	 mine	 in	 the	 Biwabik	 Fm	 contains	 grey	 magnetite	 and	 red	372	

haematite	 granules	 (>	 200	 µm	 in	 diameter),	 which	 occur	 between	 millimetre-size	373	

multifurcate	 and	 anastomosed	 stromatolite	 columns	 made	 of	 finely	 laminated	 chert	 and	374	

haematite-rich	 layers	 (Fig.	 8a-8b).	 Jasper	 occurrences	 in	 the	 Thunderbird	 mine	 include	375	

centimetre-sized	 concretions	 that	 are	 typically	 flattened	and	no	greater	 than	about	5	 cm	 in	376	

size	 (Fig.	 8c).	 Granules	 and	 concretions	 are	 variably	 composed	 of	 finely	 disseminated,	377	

microscopic	to	nanoscopic	red	haematite	(Fig.	8d-7f).	Some	granules	contain	regular	patterns	378	

of	 spheroidal	 haematite	 structures	 associated	with	monazite	 (Fig.	 8e)	 or	 central	 patches	 of	379	

stilpnomelane	 surrounded	 by	Mn-siderite	 (Fig.	 8f).	 Fe-oxide	minerals	 that	 form	 concentric	380	

layers	 in	 granules	 are	 generally	 concentrated	 in	 layers	 of	 similar	 thickness	 (Fig.	 8g).	 Some	381	

granules	 are	 mostly	 formed	 of	 such	 mixtures	 of	 magnetite	 or	 haematite	 with	 apatite	 and	382	

carbonate	both	commonly	have	poikilitic-type	textures	(Fig.	8h-8k).	These	authigenic	apatite	383	

crystals	occur	as	brown	subhedral	blades	more	than	100	µm	in	size	and	are	associated	with	384	

micron-size	particles	of	OM	and	carbonate	 (Fig.	9a-c).	Other	granules	have	rims	of	 rounded	385	
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equidistant	 laminations	 of	 nanoscopic	 carbonate	 and	 interiors	 of	 coarse	 magnetite,	 fine	386	

hematite,	and	micron-size	particles	of	OM	and	carbonate	(Fig.	9d-9i).	387	

In	 the	 chert-hematite	 matrix	 of	 stromatolite	 columns,	 there	 are	 micron-size	 apatite	388	

grains	 that	 occur	 as	 isolated	 euhedral	 crystals	 with	 nanoscopic	 inclusions	 of	 chert	 and	389	

haematite	 (Fig.	 8k).	 Filamentous	 and	 spheroidal	 microscopic	 structures	 occur	 in	 some	390	

haematite-magnetite	granules	and	concretions	(e.g.	Fig.	8c)	in	association	with	haematite	(Fig.	391	

10,	11).	Some	granules	contain	patches	of	filaments	with	diameters	between	0.5	and	4	µm	and	392	

lengths	of	hundreds	of	microns	(Fig.	10a-10c).	 In	some	other	granules,	spheroids	have	sizes	393	

typically	around	10	µm	(Fig.	11a,	11b,	11e),	although	some	spheroids	have	sizes	more	than	394	

100	µm	(Fig.	11d).	Some	spheroids	also	contain	microscopic	carbonate	 (Fig.	10d	and	 inset)	395	

and/or	micron-size	particles	of	OM	(Fig.	11i-l).	While	some	peaks	of	Biwabik	OM	are	mixed	396	

with	epoxy	(Fig.	10f,	11l),	as	inferred	from	the	presence	of	peaks	at	2854,	2904,	and	2952	cm-1	397	

–attributable	 to	CH2	and	CH3	bonds	 in	epoxy,	 their	G-band	positions	are	between	1569	and	398	

1599	 cm-1,	 which	 indicates	 an	 indigenous	 origin	 overprinted	 by	 sub-greenschist	 facies	399	

metamorphism.	 Both	 filamentous	 and	 spheroidal	 structures	 are	 composed	 of	 finely	400	

disseminated	 red	 haematite	 associated	 with	 micron-size	 particles	 of	 OM	 and	 cross-cutting	401	

stilpnomelane	(Fig.	11j),	which	demonstrates	their	pre-metamorphic	origin.	402	

	403	

4.4.	Petrology	of	granular	phosphatic	chert	in	the	Michigamme	Formation	404	

Grey	 chert	 interlayered	 with	 green	 argillite	 and	 carbonate	 constitutes	 the	 main	405	

lithologies	associated	with	 the	Michigamme	phosphatic	 chert	at	 the	Mulligan	Creek	 locality.	406	

Pyrite	and	haematite	replacing	pyrite	occur	as	authigenic	disseminations,	rosettes,	cubes,	and	407	

occasional	massive	bands.	The	dominantly	grey	chert	is	banded	and	often	stromatolitic.	Chert	408	

sometimes	occurs	as	black	and	white	bands	and	interlayered	with	argillite	rich	in	OM.	Higher	409	

in	the	stratigraphy	of	the	MMTU	drill	core,	the	chert	contains	dark	grey	granules	and	wrinkly	410	

and	 finely	 laminated	microbial	mats	 of	 apatite.	 In	 the	MMTU	 drill	 core,	 dolomite	 occurs	 as	411	
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granules,	rhombs,	cement,	matrix	micrite,	and	microcrystalline	dolomite	beds	and	veins.	Field	412	

exposures	in	Huron	River	locality	reveal	the	occurrence	of	coarsely	laminated	decimetre-scale	413	

domal	 stromatolitic	 chert	 (Fig.	 2e).	 Concretions	 of	 apatite	 form	 pinching	 and	 swelling	414	

millimetre-long	 structures	 and/or	 centimetre-size	 sub-ellipsoidal	 concretionary	 masses	415	

mixed	with	the	matrix	of	chert	(Fig.	2f,	12a-b).	416	

The	 studied	 phosphatic	 chert	 samples	 are	 dominated	 by	 microcrystalline	 quartz	417	

(<4µm),	carbonate,	apatite,	disseminations	and	structures	of	OM,	haematite,	and	euhedral	to	418	

anhedral	pyrite.	Authigenic	apatite	is	systematically	associated	with	OM	and	appears	diffuse	419	

with	high-relief	brown	to	dark	grey	patches	in	transmitted	light	(e.g.	Fig.	12a).	Apatite	occurs	420	

as	millimetre-	 to	centimetre-size	apatite-sericite	 concretions	 (Fig.	12a-12b)	and	as	granules	421	

that	are	typically	more	than	200	µm	in	size	(Fig.	12d-12i).	Granules	are	usually	sub-ellipsoidal	422	

and	contain	disseminated	OM	that	often	form	a	network	with	a	regular	pattern	(Fig.	12d-12i).	423	

There	 are	 compartmentalised	 spheroidal	 structures	 around	 100	 µm	 in	 size	 composed	 of	424	

apatite	and	OM	in	the	intergranular	matrix	(Fig.	12j,	12k).	Some	granules	have	angular	edges	425	

that	 form	 a	 sub-hexagonal	 habit	 (Fig.	 12l-12m)	 sometimes	 accompanied	 by	 curved	426	

equidistant	laminations	of	nanoscopic	anatase	(Fig.	12n-12o).	In	some	apatite	beds	(Fig.	12c),	427	

there	 are	 spheroidal	 granules	 of	 carbonate	 with	 fine	 spheroidally	 concentric	 equidistant	428	

laminations	(Fig.	12p-s)	that	also	contain	filaments	of	OM	in	their	geometric	centres	(Fig.	12r-429	

s).	430	

Apatite	in	granules	and	concretions	from	these	rocks	is	often	associated	with	OM	and	431	

muscovite-sericite	 and	 often	 occurs	 as	 microscopic	 filamentous	 and	 spheroidal	 structures	432	

(Fig.	 13,	 14).	 A	 millimetre-	 to	 centimetre-size	 concretion	 of	 apatite	 contains	 distinct	433	

filamentous	structures	more	 than	200	µm	in	 length	and	2	 to	6	µm	in	diameter	 (Fig.	13a-g).	434	

The	 filaments	 are	 composed	 of	 OM	 and	 apatite	 and	 are	 intermixed	 with	 chert,	 sericite,	435	

haematite,	and	rutile	at	the	micron	scale	(Fig.	13f,	13g).	Micro-Raman	imaging	shows	that	OM	436	

systematically	 occurs	 in	 the	 apatite	 (Fig.	 13g-13h),	 but	 it	 also	 occurs	 in	 association	 with	437	
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carbonate	and	chert.	Other	apatite	granules	 contain	a	 ring	of	microscopic	apatite	 spheroids	438	

each	between	10	and	50	µm	in	size	with	rims	enriched	in	OM	(Fig.	14a-14c).	These	structures	439	

are	filled	with	apatite-sericite,	which	usually	contains	OM	but	sometimes	devoid	of	it,	as	in	the	440	

case	of	 euhedral	 apatite	 filling	 some	 interior	 (Fig.	 14c).	A	 rosette	 about	60	µm	 in	diameter	441	

occurs	 inside	 the	 latter	 granule	 and	 is	 composed	 of	 sub-micron-sized	 radiating	 acicular	442	

muscovite	(sericite).		Muscovite	was	identified	from	its	acicular	habit,	transparent	colour	(Fig.	443	

14d),	low	second	order	birefringence	colours	(Fig.	14e),	Raman	peaks	at	198,	266,	705,	and	at	444	

3629	(for	hydroxyl)	cm-1	(Fig.	14h),	and	the	fact	that	it	contains	K,	Mg,	and	Al	as	detected	by	445	

EDS.		The	radiating	acicular	nature	of	this	rosette,	best	seen	in	cross	polars	(Fig.	14e),	and	its	446	

rim	of	apatite,	best	seen	in	BSE	images	(Fig.	14f),	suggests	outward	or	centrifugal	growth.	The	447	

core	of	muscovite	in	this	granule	is	surrounded	by	an	outer	layer	of	quartz	(about	80-100	µm	448	

thick)	with	various	minerals:	spheroidal	grains	of	apatite	coated	with	OM,	euhedral	anatase	449	

crystals	4	 to	10	microns	 in	 size,	 and	diffuse	haematite	possibly	 from	weathering	 (Fig.	14g).	450	

The	 composition	of	 apatite	 in	 the	Michigamme	Fm	 is	 fluorapatite	with	minor	 levels	 of	 rare	451	

Earth	 elements	 (Table	 2).	 Raman	 images	 show	 the	 occasional	 contamination	 of	 the	 thin	452	

section	 by	 diamonds	 and	 epoxy	 (Fig.	 13g-h),	 but	 the	 graphitic	 OM	 is	 indigenous	 and	453	

systematically	associated	with	apatite.	454	

	455	

4.5.	Isotope	and	molecular	compositions	of	carbon	in	the	Michigamme	Formation	456	

	 In	chert	and	argillite	 from	the	Michigamme	Fm	at	the	Mulligan	Creek	locality	(MMTU	457	

samples),	there	is	typically	less	than	1.5	wt%	of	total	organic	carbon	(TOC),	and	levels	average	458	

at	0.4	±	0.4	wt%	(1s)	 (Fig.	15,	Table	3).	The	d13Corg	values	vary	between	-20.8	and	-46.7‰	459	

with	an	average	of	 -26.2	±	4.8‰	(1s).	There	are	only	two	chert	samples	that	have	a	d13Corg	460	

value	below	-35‰	(Fig.	15;	Table	3).	The	pyrite–bearing	chert	sample	at	27.1m	has	a	d13Corg	461	

value	of	-44.5‰	and	occurs	just	before	about	10	metres	of	stromatolitic	chert	beds.	The	chert	462	

sample	at	3.5m	has	a d13Corg	value	of	-46.7‰	and	is	directly	overlain	by	the	first	two	metres	of	463	
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drill	 core,	 which	 consists	 of	 chert-bearing	 dark	 grey	 clumps	 of	 apatite	 seen	 in	 all	 samples	464	

above	 3.3	 m.	 These	 observations	 show	 that	 highly	 13C-depleted	 OM	 can	 occur	 before	 the	465	

stratigraphically	overlying	 stromatolites	 followed	by	phosphate-rich	 concretionary-granular	466	

chert	beds.	In	comparison,	the	phosphatic	chert	from	the	Huron	River	locality	(MA0708)	has	467	

variable	d13Corg	values	on	millimetre	scale	between	-26.7	and	-35.3‰	(Fig.	12b).	The	carbon	468	

isotope	 composition	 of	 carbonate	minerals	 in	Michigamme	 chert	 is	 systematically	 negative	469	

and	with	d13Ccarb	values	between	-1.4	and	-5.2‰	with	an	average	of	-3.1‰	and	1s standard	470	

deviation	of	0.9‰	(Fig.	15;	Table	3).	These	compositions	are	also	characterized	by	highly	18O-471	

enriched	values	between	+20.7	and	+10.8‰,	that	yield	an	average	d18Ocarb	value	of	+14.8	±	472	

2.3‰	(1s).	473	

Acid-insoluble	OM	from	MA0708	has	major	C-XANES	peaks	at	285.3	eV	and	291.7	eV	474	

(Fig.	 4a),	 typical	 of	 OM	 in	 Late	 Paleoproterozoic	 stromatolitic	 phosphorites	 also	475	

metamorphosed	 around	 the	 greenschist	 facies	 (Papineau	 et	 al,	 2016).	 Weak	 peaks	 are	476	

resolvable	 at	 287.6	 and	 288.5	 eV	 (Fig.	 4a),	 which	 independently	 confirms	 the	 presence	 of	477	

residual	 aliphatic	 C	 and	 carboxyl	 respectively	 (Cody	 et	 al.,	 1996;	 De	 Gregorio	 et	 al.,	 2011;	478	

Bernard	et	 al.,	 2012).	 Such	pair	 of	peaks	has	been	 reported	 in	OM	 from	unmetamorphosed	479	

Cretaceous	 concretionary	 and	organic-rich	 shales	 from	Germany	 (Bernard	 et	 al.,	 2012)	 and	480	

from	Late	Paleoproterozoic	stromatolitic	phosphorites	from	the	Jhamarkotra	Fm	(Papineau	et	481	

al.,	2016).	The	C-XANES	spectra	for	the	Michigamme	OM	are	similar	to	those	of	OM	from	the	482	

Gunflint	 Fm	 (De	 Gregorio	 et	 al.,	 2009;	 Alléon	 et	 al.,	 2016)	 and	 in	 fact	 to	 OM	 in	 general	483	

preserved	in	metamorphosed	sedimentary	rocks	(Bernard	et	al.,	2007;	2009;	2011).	The	OM	484	

analysed	also	contains	N	as	shown	with	a	peak	at	404.0	eV	that	points	to	N-bearing	functional	485	

groups	 (Cody	 et	 al.,	 2011;	 Fig.	 4b),	 and	 O	 with	 peaks	 at	 531.7	 and	 538.9	 eV	 that	 point	 to	486	

ketone	groups	(Fig.	4c	–	Hitchcock	and	Biron,	1980).		487	

	488	

5.	Discussion	489	
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5.1.	Carbon	cycling	in	chert	from	the	Michigamme,	Gunflint,	and	Biwabik	formations	490	

Evidence	 for	 the	 diagenetic	 oxidation	 of	 OM	 in	 the	 Michigamme	 Fm	 is	 seen	 in	 the	491	

systematically	negative	d13Ccarb	values	down	to	-5.2‰,	hence	a	13C-depleted	oxidised	source	492	

of	 OM	 was	 assimilated	 by	 Michigamme	 carbonate.	 Most	 d13Corg	 values	 measured	 for	493	

sedimentary	rocks	from	the	Michigamme	Fm	are	within	the	average	composition	in	the	 late	494	

Paleoproterozoic	 and,	 considering	 the	near-zero	d13C	of	 seawater	 at	 that	 time,	 these	 values	495	

are	therefore	consistent	with	fractionation	by	the	pentose	phosphate	pathway	for	CO2-fixation	496	

(Desmarais,	2001;	Schidlowski,	2001).	For	comparison,	 the	Gunflint	Fm	has	similar	average 497	

d13Corg	value	around	-27	‰	and	down	to	-34‰	(Strauss	and	Moore,	1992).	Two	samples	of	498	

chert	 from	 the	Michigamme	Fm	have	d13Corg	 values	of	 -44.5	and	 -46.7‰	(Fig.	15),	which	 is	499	

similar	 to	 a	 small	 number	 of	 analyses	 from	 the	 Gunflint	 Fm	with	 d13Corg	 values	 down	 to	 -500	

45.8‰	 that	 characterise	 some	 Huroniospora-like	 microfossils	 (House	 et	 al.,	 2000).	 Such	501	

highly	13C-depleted	values	are	generally	attributed	to	methane	cycling	(e.g.	Hayes,	1994),	and	502	

thus	observations	for	the	Michigamme	Fm	possibly	point	to	methanotrophy	before	a	transient	503	

episode	of	stromatolite	formation	followed	by	phosphatisation.	Similar	large	ranges	of	d13Corg	504	

values	 have	 been	 reported	 from	 sedimentary	 rocks	 from	 the	 early	 Paleoproterozoic	505	

Hamersley	 Group	 in	 Western	 Australia	 and	 indicate	 the	 co-existence	 of	 aerobic	 shallow	506	

waters	and	anaerobic	deep	waters	(Eigenbrode	and	Freeman,	2006).	Michigamme	cherts	are	507	

thus	 interpreted	 to	 have	 originated	 in	 aerobic	 shallow-marine	 sedimentary	 environments	508	

where	diagenetic	processes	associated	with	OM	oxidation	included	a	combination	of	aerobic	509	

heterotrophy,	methanotrophy,	and	possibly	other	metabolic	pathways.	510	

In	 the	 black	 chert	 from	 the	 Gunflint	 Fm,	 late	 diagenetic	 dolomite	 rhombs	 occur	 as	511	

outsized	 crystals	 between	 granules	 (Fig.	 5d)	 as	 well	 as	 smaller	 crystals	 within	 concentric	512	

equidistant	laminations	of	OM	(Fig.	5i).	Systematically	negative	bulk	d13Ccarb	compositions	in	513	

the	Michigamme	 Fm	 are	 similar	 to	 siderite-bearing	 rocks	 from	 the	 Gunflint	 Fm,	 down	 to	 -514	

5.5‰	 (Winter	 and	 Knauth,	 1992),	 and	 to	 the	 Biwabik	 iron	 formation	 between	 -3.7	 and	 -515	
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18.6‰	(Perry	et	al.,	1973)	(Table	4).	These	compositions	point	to	carbonate	formation	from	516	

the	 product	 of	 diagenetically-oxidised	 OM.	 The	 d18OSMOW	 values	 from	 the	 carbonate	 in	517	

Michigamme	Fm	average	at	+14.8‰,	which	is	similarly	affected	by	diagenesis	as	carbonate	in	518	

the	Biwabik	 Fm	with	d18OSMOW	 values	 between	+10	 and	+18‰	(Perry	 et	 al.,	 1973)	 and	 the	519	

Gunflint	Fm	with	d18OSMOW	values	between	+14	and	+23‰	(Winter	and	Knauth,	1992)	(Table	520	

4).	 Euhedral	 pyrite	 can	 replace	 dolomite	 during	 later	 diagenesis	 (Fig.	 5d)	 and	 in	521	

concentrically-layered	granules	of	haematite	 in	 the	Gunflint	 chert,	pyrite	has	d34S	value	of	 -522	

1‰	(Fig.	13a	in	Papineau	et	al.,	2005),	which	does	not	unambiguously	suggest	fractionation	523	

by	microbial	 sulphate	 reduction	because	mantle	 sulphur	also	has	 this	 isotopic	 signature.	 In	524	

brief,	diagenetic	carbonate	produced	from	the	oxidation	of	biomass	is	interpreted	here	to	be	525	

indicated	 by	 the	 presence	 of	 1)	 direct	 association	 with	 microfossils	 (Fig.	 7b,	 7i,	 11d),	 2)	526	

disseminations	inside	granules	(Fig.	5i,	8f,	8i,	8j,	9b,	9g),	3)	rounded	equidistant	laminations	527	

in	rims	of	nanoscopic	crystals	(Fig.	9g,	10d),	4)	spheroidal	carbonate	granules	with	rounded	528	

equidistant	 laminations	 (Fig.	 12p-12s),	 and	 5)	 outsized	 and	 zoned	 intergranular	529	

rhombohedral	crystals	(Fig.	5d,	5k).	530	

The	 graphitization	 of	 OM	 into	 graphite	 is	 a	 unidirectional	 process,	 and	 as	 such	 the	531	

crystallinity	 of	 graphitic	 carbon	 can	 be	 used	 to	 estimate	 crystallization	 temperatures	 from	532	

Raman	D-	and	G-bands	(Beyssac	et	al.,	2002;	Lafhid	et	al.,	2010).	Metamorphic	temperatures	533	

derived	from	Raman	spectra	of	OM	in	Michigamme	cherty	phosphorite	are	between	352	and	534	

398oC,	which	are	consistent	with	metamorphism	at	the	greenschist	facies.	The	diffuse	apatite	535	

and	OM	segregated	 from	chert	 in	 filamentous	microfossils	and	spheroids	probably	acquired	536	

this	 glassy	 high-relief	 texture	 (e.g.	 Fig.	 13d)	 during	 such	 thermal	 metamorphism.	 Lower	537	

metamorphic	 temperatures	 between	 209	 and	 333oC	 were	 calculated	 for	 the	 OM	 in	 the	538	

Gunflint	 Fm,	 consistent	 with	 other	 estimates	 (Alléon	 et	 al.,	 2016)	 and	 with	 prehnite-539	

pumpellyite	facies	metamorphism.	The	OM	in	the	Gunflint	Fm	has	three	broad	peaks	at	2649	540	
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cm-1,	 2934	 cm-1,	 and	 3196	 cm-1	 that	 indicate	 a	 better	 degree	 of	 preservation	 than	 in	 the	541	

Biwabik	and	Michigamme	formations.	542	

	543	

5.2.	The	variable	preservation	of	spheroidal	and	filamentous	microfossils		544	

The	petrography	of	microfossils	in	granules	and	stromatolite	laminae	from	the	Gunflint	545	

black	 chert	 was	 first	 described	 in	 detail	 by	 Tyler	 and	 Barghoorn	 (1954)	 whose	 later	546	

systematic	description	became	the	taxonomic	foundation	of	Precambrian	micropaleontology	547	

(Barghoorn	 and	 Tyler,	 1965).	 It	 was	 then	 recognized	 that	 these	 microfossils	 could	 be	548	

preserved	as	primary	OM,	or	be	replaced	by	pyrite,	carbonate,	or	haematite.	Both	the	Biwabik	549	

and	 Michigamme	 formations	 contain	 spheres	 and	 filaments	 that	 have	 identical	 sizes	 and	550	

morphologies	 to	 the	 well-described	 microfossils	 from	 the	 Gunflint	 Fm	 (Awramik	 and	551	

Barghoorn,	1977;	Barghoorn	and	Tyler,	1965;	Cloud	and	Licari,	1968;	Knoll	and	Barghoorn,	552	

1975;	 Lanier,	 1989;	 Shapiro	 and	 Konhauser,	 2015;	Wacey	 et	 al.,	 2013).	 The	 filaments	 and	553	

spheroidal	microscopic	structures	we	report	from	our	samples	are	morphologically	similar	to	554	

the	 above	 as	 well	 as	 to	 haematitic	 microfossils	 from	 late	 Paleoproterozoic	 phosphorite	555	

(Crosby	et	al.,	2014)	and	BIF	(Karkhanis,	1976;	Shapiro	and	Konhauser,	2015).	They	are	also	556	

compositionally	distinct	from	biomimicking	structures	grown	in	so-called	‘chemical	gardens’	557	

(Garcia-Ruiz	et	al.,	2017;	Barge	et	al.,	2016).	The	mineralogical	preservation	of	microfossils	in	558	

chert	is	thus	likely	dependent	on	the	abundance	of	oxidants	such	as	sulphate,	oxygen,	and/or	559	

haematite	during	diagenesis.	560	

In	granules	and	intergranular	matrix	of	our	samples	of	the	Gunflint	black	chert,	typical	561	

Gunflintia	minuta	 comprises	 straight	 to	 slightly	 sinuous	organic	 filaments,	 between	1	 and	3	562	

µm	in	diameter,	and	up	to	several	hundred	microns	in	length	(Fig.	6).	Spheroidal	microfossils	563	

composed	 of	 OM	 range	 from	 3	 to	 25	 µm	 in	 diameter	 (Fig.	 7)	 and	 they	 have	 the	 typical	564	

morphology	of	Huroniospora.	Other	well-preserved	specimens	of	Gunflintia	and	Huroniospora	565	

have	been	analysed	 in	situ	by	SIMS,	which	reveals	similar	ranges	of	d13C	values	between	-30	566	
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and	 -38‰	 for	Gunflintia	and	Huroniospora	(House	 et	 al.,	 2000;	Williford	 et	 al.,	 2013).	 Such	567	

compositions	are	consistent	with	the	pentose	phosphate	or	acetyl	CoA	metabolic	pathways	of	568	

CO2-fixation	 (House	 et	 al.,	 2003).	 Morphologically	 similar	 microfossils	 are	 found	 in	 the	569	

Michigamme	 and	 Biwabik	 formations,	 although	 they	 have	 been	 preserved	 in	 different	570	

minerals.	571	

In	 the	Michigamme	 phosphatic	 chert,	 spheroidal	microfossils	 composed	 of	 OM	with	572	

apatite	occur	within	granules	composed	of	apatite,	chert,	muscovite,	haematite,	and	anatase.	573	

They	occur	as	spheroidal	apatite	grains	with	rims	composed	of	OM	and	they	have	diameters	574	

between	10	and	50	µm,	similar	 to	the	multicellular	modern	cyanobacteria	Chroococcidiopsis	575	

sp.	(e.g.	Knoll	and	Barghoorn,	1975).	These	spheroidal	microfossils	are	generally	larger	than	576	

typical	Huroniospora	or	Myxococcoides,	but	they	are	also	similar	to	coccoidal	microfossils	such	577	

as	Eosphaera	tyleri	 in	 the	Gunflint	 Fm	 (Barghoorn	 and	Tyler,	 1965),	which	 have	 a	 cell	wall	578	

thickness	 of	 about	 100	 nm	 (Brasier	 et	 al.,	 2015).	 A	 few	 discreet	 occurrences	 of	579	

compartmentalised	microfossils	 composed	 of	 apatite	 and	 OM	 occur	 in	 the	matrix	 (Fig.	 12j,	580	

12k)	and	are	similar	to	some	compartmentalised	organic	microfossils	 from	the	Gunflint	Fm,	581	

also	interpreted	to	share	affinity	with	Chroococcus	(e.g.	Fig.	8	in	Lanier,	1989).		582	

Some	Michigamme	filaments	closely	resemble	Gunflintia	microfossils	from	the	Gunflint	583	

Fm	and	occur	 inside	millimeter-size	granules	of	OM	and	apatite	mixed	with	 chert	 (Fig.	13).	584	

Their	 morphologies,	 sizes,	 compositions,	 and	 mode	 of	 occurrence	 collectively	 point	 to	 an	585	

assignment	as	filamentous	microfossils,	possibly	as	Gunflintia	minuta.	Phosphatic	chert	from	586	

the	 Michigamme	 Fm	 is	 known	 to	 contain	 pyrite	 framboids,	 abundant	 OM	 within	 apatite	587	

granules,	 fossil	 microbial	 mat	 structures,	 and	 filamentous	 apatite	 structures	 on	 the	 outer	588	

coating	of	some	apatite	granules,	which	have	been	interpreted	as	microfossils	of	Fe-oxidising	589	

bacteria	(Hiatt	et	al.,	2015).	In	the	Paleoproterozoic	Zanoega	Fm,	phosphatic	mudstones	have	590	

layers	of	apatite	concretions	that	likewise	contain	tubular	filamentous	microfossils	composed	591	

of	OM	with	apatite	(Joosu	et	al.,	2015)	and	some	have	been	interpreted	to	have	formed	from	592	
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sulphur-oxidising	 bacteria	 (Lepland	 et	 al.,	 2013).	 Finally,	 while	 a	 microfossil	 origin	 is	593	

suspected	 for	 the	 variably	 patterned	 networks	 of	 OM	 and	 apatite	 in	 some	 granules	 from	594	

Michigamme	 Fm	 (Fig.	 12d-12i),	 these	 are	 more	 highly	 degraded	 and	 not	 unambiguously	595	

recognizable	as	microfossils.	596	

In	 the	 Biwabik	 Fm,	 another	 taphonomic	 variety	 of	 Gunflintia	 and	 Huroniospora	 is	597	

preserved	 as	 dense	 disseminations	 of	 nanoscopic	 haematite	 (Barghoorn	 and	 Tyler,	 1965;	598	

Shapiro	 and	 Konhauser,	 2015).	 Putative	 filamentous	 haematite	 microfossils	 can	 be	 found	599	

inside	 rare	 granules	 from	 the	Biwabik	 Fm	and	 they	 have	diameters	 between	0.5	 and	4	µm	600	

along	with	 lengths	of	 tens	 to	hundreds	of	microns.	 Similar	 filaments	previously	 reported	 in	601	

samples	 from	 the	 Corsica	 mine	 of	 the	 Biwabik	 Fm	 have	 Gunflintia-like	 filaments	 with	602	

diameters	 between	 1	 and	 5	 µm	 and	 composed	 of	 fine	 haematite	 disseminations	 in	 chert	603	

(Cloud	and	Licari,	1968;	Shapiro	and	Konhauser,	2015).	 Some	of	 the	 filamentous	haematite	604	

microfossils	 in	 the	 Biwabik	 Fm	 share	 similarities	 in	 size	 and	 morphology	 with	 modern	605	

filamentous	Fe-oxidising	bacteria	in	the	Franklin	seamount	of	Papua	New	Guinea	(Boyd	and	606	

Scott,	 2001).	 Such	 filamentous	 haematite	 microfossils	 are	 similar	 to	 others	 in	 the	 Lake	607	

Superior	 area	 interpreted	 to	 have	 a	 biological	 origin	 (Leith,	 1903;	 Gruner,	 1946;	 LaBerge,	608	

1967;	1973;	Lougheed,	1983,	Shapiro	and	Konhauser,	2015).	609	

Other	 haematite	 granules	 contain	 spheroids	 typically	 around	 10	 µm	 composed	 of	610	

disseminated	haematite	and	accessory	carbonate	and	morphologically	resemble	Huroniospora	611	

(Fig.	 11a,	 11b,	 11e,	 11j).	 In	 coarse	 chert	 laminations	 inside	 stromatolite	 columns,	 there	 are	612	

micron-size	haematitic	 coccoidal	microfossils	 that	 are	 similar	 to	Myxococcoides,	 smaller	but	613	

morphologically	 similar	 to	 others	preserved	 in	 granules.	 In	 some	haematite	 granules,	 there	614	

are	spheroidal	structures	with	sizes	more	than	100	µm	in	diameter	(Fig.	11c,	11d),	which	are	615	

composed	 of	 haematite	 and	 carbonate	 in	 chert.	 These	 large	 spheroids	 are	 not	 necessarily	616	

microfossils;	 if	 they	 are,	 many	 specimens	 would	 be	 larger	 than	 the	 large	 extant	617	

cyanobacterium	Chroococcidiopsis	sp,	which	are	generally	smaller	than	50	µm.	Alternatively,	618	
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they	could	be	sulphur-oxidising	bacteria,	akin	to	Thiomargarita	sp.,	which	are	known	to	grow	619	

large	sizes,	sometimes	in	excess	of	hundreds	of	microns,	in	phosphorites	(Schulz	and	Schulz,	620	

2005;	Bailey	et	 al.,	 2007).	Cases	have	also	been	made	 for	 sulphur-metabolising	 filamentous	621	

microfossils	 preserved	 in	 pyrite	 in	 late	 Paleoproterozoic	 chert	 from	 the	 Duck	 Creek	 Fm	622	

(Schopf	et	al.,	2015)	and	for	large-size	microfossils	in	the	Neoarchean	Gamohaan	Fm	(Czaja	et	623	

al.,	2016).	Lastly,	similar	to	regular	network	patterns	in	Michigamme	organo-apatite	granule,	624	

some	 regular	 patterns	 of	 haematite	 structures	 in	 Biwabik	 granules	might	 represent	 highly	625	

degraded	microfossils	(Fig.	8d,	8e),	but	they	might	not	even	be	microfossils	at	all.	In	brief,	the	626	

filaments	 and	 spheroids	 in	 Lake	 Superior	 chert	 are	 preserved	 either	 as	 degraded	 OM,	 an	627	

admixture	of	apatite	with	finely	disseminated	OM,	and	associated	detrital-diagenetic	sericite-628	

muscovite	and	anatase-rutile,	or	as	partial	replacements	with	pyrite	or	haematite.	Therefore,	629	

there	are	morphological	similarities	between	bona	fide	filamentous	and	coccoidal	microfossils	630	

in	 granules	 from	 late	 Paleoproterozoic	 cherts	 from	 Lake	 Superior	 area	 and	 microfossils	631	

previously	 reported,	 and	 while	 these	 occur	 in	 a	 range	 of	 mineral	 assemblages,	 some	632	

associated	specimens	are	highly	degraded.	633	

		634	

5.3.	Wave	action	and	the	diagenetic	oxidation	of	biomass	in	the	formation	of	granules	635	

Leith	(1903)	and	Gruner	(1924,	1946)	discussed	the	“mottled	granules”	or	“spherites”	636	

in	 individual	 granules	 from	 the	 Biwabik	 Fm	 and	 specifically	 proposed	 that	 they	 might	 be	637	

microfossils.	Later	papers	 (LaBerge,	1973;	Lougheed,	1983)	summarized	and	expanded	 this	638	

earlier	work	on	granules	and	discussed	 further	 the	biogenicity	of	BIFs.	Millimetric	and	sub-639	

millimetric	 granules	 of	 concentric,	 equidistant,	 and	 laminated	 OM	 in	 black	 chert	 from	 the	640	

Gunflint	 Fm	 (Fig.	 5e,	 5g)	have	 the	 simplest	mineralogy	of	 all	 granules	 studied	 and	 thus	 are	641	

likely	 an	 end-member	 in	 terms	 of	 preservation.	 Evidence	 that	 some	 granules	 formed	 as	642	

primary	 features	 in	a	wave-agitated	environment	 includes	1)	 their	occurrence	 in	a	unit	 just	643	

above	 the	 Pokegama	 sandstone,	 a	 well-sorted	 orthoquartzite	 interpreted	 as	 a	 beach	 or	644	
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nearshore	 deposit,	 2)	 association	 with	 broken	 fragments	 of	 algal	 columns,	 which	 suggests	645	

significant	 wave	 and	 current	 action,	 as	 well	 as	 3)	 various	 sedimentological	 textures	 and	646	

shapes	 that	 can	 be	 variably	 interpreted	 by	 wave-action	 or	 possible	 Liesegang	 effects.	 The	647	

presence	 of	 hematite	 in	 Biwabik	 granules	 can	 be	 explained	 by	 the	 dehydration	 of	 primary	648	

ferrihydrite,	while	 the	adsorption	of	 these	 such	nanoscopic	phases	by	microbial	mats	 could	649	

have	contributed	to	form	granules	by	wave-action	during	sedimentation.	In	addition,	the	co-650	

occurrence	 of	 anatase,	 rutile,	 and	 sericite-muscovite	 in	 the	Michigamme	 chert	 suggest	 that	651	

these	are	detrital	particles	and	that	wave	action	could	also	have	contributed	to	the	rounding	652	

of	 these	 granules	 prior	 to	 organic	 degradation.	 However,	 the	 Biwabik	 and	 Michigamme	653	

granules	also	preserve	mineralogical	and	textural	evidence	for	oxidised	biomass.		654	

The	 presence	 of	 diagenetic	 carbonate,	 apatite,	 magnetite,	 and	 stilpnomelane	 inside	655	

granules,	such	as	those	from	the	Biwabik	Fm,	requires	a	corollary	to	the	wave-action	model;	656	

one	that	takes	into	account	their	overall	geochemical-mineralogical	compositions.	Also,	some	657	

morphological	 features	of	 the	granules	 remain	unexplained	by	 this	model,	 such	as	granules	658	

with	 concentric	 equidistant	 laminations	 composed	of	OM	 (Fig.	 5g),	 pyrite	 (Fig.	 5e),	 anatase	659	

(Fig.	12o),	haematite	 (Fig.	8g)	and	magnetite	 (Fig.	10d).	A	 comprehensive	model	of	 granule	660	

formation	 should	 thus	 take	 into	 account	 all	 these	 independent	 observations,	 which	 we	661	

suggest	involves	in	situ	diagenetic	oxidation	reactions	of	OM	during	putrefaction	of	microbial	662	

biomass	and	the	resulting	formation	of	granules	that	form	fractal	patterns	akin	to	those	seen	663	

in	the	B-Z	reaction	(Fig.	1e,	1f).	664	

Organic	 matter	 can	 be	 oxidised	 by	 Fe3+	 in	 the	 absence	 of	 biologically-mediated	665	

reactions	 (Amstaetter	 et	 al.,	 2012;	 Kohler	 et	 al.,	 2013).	 The	 non-biological	 oxidation	 of	 OM	666	

during	diagenesis	 can	occur	 according	 to	Equations	1	 to	4,	 depending	on	 the	availability	of	667	

electron	acceptor	compounds:	668	

CH3COOH	+	3Fe(OH)3	->	2HCO3-	+	Fe3O4•xH2O	+	2H+	 	 (Eq.	1)	669	

CH3COOH	+	SO42-	->	2HCO3-	+	HS-	+	H+				 	 	 (Eq.	2)	670	
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CH3COOH	+	4PO43-		->	2HCO3-	+	4PO33-	+	2H+	 	 (Eq.	3)	671	

CH3COOH	+	BrO4-	->	2HCO3-	+	Br-	+	2H+	 	 (Eq.	4)	672	

In	 these	 equations,	 CH3COOH	 is	 acetic	 acid	 taken	 as	 a	 simplification	 for	 carboxyl	 groups	 in	673	

humic	 acids.	 Humic	 acids	 are	 essentially	 alkylated	 and	 polyaromatic	 hydrocarbons	 with	674	

carboxyl,	 ketone,	 and	 alcohol	 functional	 groups,	 and	 is	 thus	 similar	 to	 biological	 OM	675	

(Vandenbroucke	 and	 Largeau,	 2007).	 This	 is	 important	 because	 OM	 with	 such	 molecular	676	

functional	 groups	 can	 be	 preserved	 during	 the	 metamorphic	 maturation	 of	 biomass	 (e.g.	677	

Boyce	et	al.,	2002;	Bernard	et	al.,	2007;	2009).	This	background	can	be	used	 to	explore	 the	678	

hypothesis	that	the	concentric	equidistant	laminated	mineral	patterns	that	characterize	many	679	

cherty,	 haematitic,	 phosphatic,	 clay-rich,	 and	 OM-rich	 granules	 can	 be	 attributed	 to	 the	680	

preservation	of	oxidative	reaction	fronts	in	chemically-oscillating	reactions	during	diagenesis	681	

(Fig.	16).	682	

Organic	matter	 in	 the	Michigamme	phosphatic	 chert	has	C-XANES	 spectra	 that	 show	683	

the	 residual	 presence	 of	 aliphatic	 and	 carboxyl	 groups	 (Fig.	 4),	 which	 have	 been	 reported	684	

from	various	other	sources	of	natural	carbons	(Bernard	et	al.,	2012;	Boyce	et	al.,	2002;	Cody	685	

et	al.,	1996;	De	Gregorio	et	al.,	2011;	Hitchcock	and	Ishii,	1987).	These	functional	groups	are	686	

similar	 to	 those	 from	 OM	 in	 Triassic	 fossil	 spores	 in	 limestones,	 which	 include	 ketones,	687	

phenols,	 and	 carboxylic	 acids	 (Bernard	 et	 al.,	 2007),	 and	 to	 OM	 in	 the	 Gunflint	 Fm,	 which	688	

contains	 phenols	 and	 carboxylic	 acid	 as	 well	 as	 strong	 1s-p*	 and	 1s-s*	 transitions	 of	689	

polyaromatic	carbon	(De	Gregorio	et	al.,	2009;	Moreau	and	Sharp,	2004).	Together	with	single	690	

broad	peaks	for	OM	in	the	centres	of	diagenetic	dolomite	rhombs	and	broad	Raman	D-bands	691	

that	encompass	several	of	these	functional	groups,	these	characteristics	are	further	consistent	692	

with	the	presence	of	heteroatoms	of	O,	N,	S,	and	P	in	acid-insoluble	residues	from	the	Gunflint	693	

Fm,	 and	 thus	 a	 biological	 origin	 for	 this	 OM	 (De	 Gregorio	 et	 al.,	 2009).	 The	 heteroatom-694	

bearing	 degraded	OM,	 from	 the	 Gunflint	 and	Michigamme	 formations	 thus	 originated	 from	695	

biomass	that	was	degraded	and	oxidized	by	both	biological	and	non-biological	processes.		696	
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In	 our	 samples	 from	 the	 Gunflint	 Fm,	 we	 only	 found	 evidence	 for	 chemically-697	

precipitated	minerals	such	as	quartz,	carbonate,	and	pyrite,	and	hence,	this	is	consistent	with	698	

the	 compositions	 of	 reactants	 and	 products	 of	 known	 chemically-oscillating	 reactions	 of	699	

oxidising	microbial	biomass,	which	can	be	invoked	as	a	major	process	for	these	granules.	In	700	

comparison,	 the	 co-occurrence	 of	 anatase,	 rutile,	 sericite-muscovite,	 and	 disseminations	 of	701	

hematite	in	both	the	Michigamme	and	Biwabik	chert	suggest	that	these	are	detrital	particles.	702	

Wave	action	may	thus	also	have	contributed	to	the	rounding	of	the	granules	prior	to	organic	703	

degradation,	but	the	Biwabik	and	Michigamme	granules	also	preserve	mineralogical	evidence	704	

for	 oxidised	 biomass	 in	 the	 form	 of	 rosettes,	 granules,	 and	 concretions,	 which	 can	 be	705	

considered	fractal	patterns	as	they	present	similar	patterns	at	various	scale	dimensions.	The	706	

mineralogical	 mode	 of	 preservation	 of	 granule	 is	 thus	 related	 to	 the	 presence	 of	 detrital	707	

particles,	 carboxylic	acids,	and	 the	availability	of	oxidants	 in	 the	diagenetic	environment,	as	708	

suggested	in	equations	1	to	4.		709	

	710	

5.4.	Chemically-oscillating	reactions	in	mineralogy,	sedimentology,	and	micropaleontology	711	

In	the	classical	B-Z	reaction,	carboxylic	acids	are	oxidised	with	bromate-bromide	and	712	

sulphate	 while	 the	 reaction	 products	 include	 sulphide,	 brominated	 organic	 molecules,	 and	713	

bicarbonate.	 In	 natural	 environments,	 other	 oxidants	 such	 as	 phosphoric	 acid,	 ferrihydrite,	714	

sulphate,	 and	 oxidised	 halogens	must	 contribute	 to	 the	 oxidation	 of	 biomass.	 The	 products	715	

can	 then	 include	 13C-depleted	bicarbonate	 that	precipitates	 as	 various	diagenetic	 carbonate	716	

minerals,	 phosphate	 with	 variable	 oxidation	 states	 (e.g.	 White	 and	 Metcalf,	 2007)	 that	717	

precipitates	as	apatite,	hydrogen	sulphide	 that	 readily	 forms	greigite	and	pyrite,	 and	 ferric-718	

ferrous	 hydrated	 oxides	 and	 silicates	 that	 can	 become	 diagenetic	 (and	 metamorphically-719	

crystallized)	 magnetite	 and	 phyllosilicates.	 These	 reaction	 products	 then	 co-exist	 with	 the	720	

unreactive	 residue	 of	 oxidised	 biomass,	 which	 are	 polycyclic	 aromatic	 hydrocarbons	 and	721	

kerogen	 that	 can	 thermally	 convert	 to	 graphitic	 carbons.	 Oxidized	 wavefronts	 of	 OM	 are	722	
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proposed	here	to	start	from	randomly	located	centres	within	masses	of	degrading	microbial	723	

colonies	 in	 silica-saturated	 waters,	 expanding	 centrifugally	 outward	 within	 the	 chemical	724	

sedimentary	gel	precursor	to	chert	(Fig.	16a).	Such	non-equilibrium	reactions	under	standard	725	

conditions	(P	=	1atm,	T	=	298	K;	Fig.	1)	must	be	favoured	in	diagenetic	settings	in	which	the	726	

limited	availability	of	 free	water	 leads	 to	higher	 (molar)	 concentrations	of	oxidants	 in	pore	727	

spaces	 and	 the	 production	 of	 acid	 (Eq.	 1-4).	 In	 the	 classical	 B-Z	 reaction,	 malonic	 acid	728	

(C3H4O4)	 is	 oxidised	with	 strong	 oxidants	 such	 as	 KBrO4,	 which	 creates	 out-of-equilibrium	729	

concentric	 redox	 fronts	 that	 propagate	 away	 from	 oxidising	 sites	 over	minutes	 time	 scales	730	

(Fig.	 1;	 Zaikin	 and	 Zhabotinsky,	 1970;	 Epstein	 et	 al.,	 1983;	 Vanag	 and	 Epstein	 2003).	 The	731	

presence	of	carboxyl	groups	in	OM	from	the	Gunflint	and	Michigamme	formations	shows	that	732	

key	 residual	 reactants	 from	 the	 reactions	 in	 equations	 1	 to	 4	 are	 preserved	 in	 minerals	733	

associated	with	OM	and	inside	granules.		734	

The	 mineralised	 products	 of	 the	 proposed	 chemically-oscillating	 reactions	 include	735	

carbonate,	pyrite,	and	ferric-ferrous	silicates	(e.g.	stilpnomelane)	and	oxides	(e.g.	magnetite),	736	

which	are	variably	found	within	granules	(Fig.	16).	Notably,	some	of	these	minerals	in	granule	737	

rims	 can	 precipitate	 from	 reaction	 products	 in	 equations	 1	 to	 4.	 Characteristic	 B-Z	 fractal	738	

patterns	 can	 thus	 be	 recognised	 as	 mineralised	 rims	 or	 concentric	 layers	 of	 1)	 magnetite,	739	

hematite,	 apatite,	 and	 carbonate	 in	 the	Biwabik	 chert	 (Fig.	 8h,	 9b,	 9g),	 2)	1)	 carbonate	 and	740	

pyrite	 in	 the	 Gunflint	 chert	 (Fig.	 5e,	 5i),	 and	 3)	 apatite,	 carbonate,	 graphitic	 carbon,	 and	741	

anatase	in	the	Michigamme	chert	(Fig.		12o,	12p-12s,	14g).	The	systematic	occurrence	of	13C-742	

depleted	carbonate	in	chert	from	the	Gunflint	(Winter	and	Knauth,	1992),	Biwabik	(Perry	et	743	

al.,	1973),	and	Michigamme	formations	(Tables	3	and	4)	points	to	the	oxidation	of	OM	as	an	744	

important	reaction	during	diagenesis.	 In	brief,	 the	proposed	chemically-oscillating	reactions	745	

during	 the	 oxidation	 of	 biomass	 could	 be	 mineralised	 as	 fractal	 patterns	 preserved	 as	746	

laminated	 concentric	 and	 non-intersecting	 mineral	 patterns,	 including	 granules,	 rosettes,	747	

concretions,	and	botryoid-type	laminations.	Botryoids	share	similarity	with	B-Z	type	patterns	748	
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and,	while	this	observation	has	never	been	adopted,	botryoids	have	been	previously	reported	749	

in	ferruginous-silicified	microbial	mats	and	directly	associated	with	microfossils	(e.g.	Preston	750	

et	 al.,	 2011).	Hence,	 key	 diagenetic	minerals	 occurring	 as	mineralised,	 rounded,	 concentric,	751	

and/or	 equidistant	 layers	 in	 granules	 can	 be	 interpreted	 to	 represent	 fractal	 patterns	 that	752	

repeat	at	multiple	dimension	scales,	and	forming	from	putrefying	microbial	biomass.	753	

In	phosphatic	 chert	 from	 the	shallow-marine	Michigamme	Fm,	apatite	granules	have	754	

millimetre	 sizes	 and	 often	 contain	 microfossils	 composed	 of	 OM	 with	 apatite	 or	 degraded	755	

microfossil-like	patterns.	The	precursor	phosphate	 to	 these	mineral	 assemblages	was	 likely	756	

concentrated	by	micro-organisms	that	would	have	 included	cyanobacteria	(Benzerara	et	al.,	757	

2014)	 or	 by	 large	 sulphur-oxidising	 bacteria	 (Schulz	 and	 Schulz,	 2005).	 The	 oxidation	 of	758	

putrefying	microbial	 biomass	would	 have	 generated	HCO3-	 and	H+,	 lowering	 alkalinity,	 and	759	

would	have	triggered	diagenetic	apatite	precipitation.	Authigenic	apatite	forms	in	pore	water	760	

solutions	 under	 oxic	 or	 sub-oxic	 conditions	 when	 fluorapatite	 supersaturation	 is	 achieved	761	

(van	 Cappellen	 and	 Berner,	 1991;	 Ruttenberg,	 2005).	 Oxidants	 such	 as	 O2,	 ferrihydrite,	762	

sulphate,	and	phosphate	can	contribute	to	the	non-biological	oxidation	of	microbial	OM	and	to	763	

the	propagation	of	redox	fronts.	Anatase	and	rutile	in	Michigamme	granules	is	interpreted	to	764	

be	diagenetic	minerals	that	grew	from	Ti	ions	in	pore	water,	most	likely	from	a	detrital	source	765	

(Force,	1991).	Submicron-size	anatase	crystals	can	form	concentric	layers	that	envelope	some	766	

apatite	granules	 (Fig.	12o)	and	are	 interpreted	 to	 form	patterns	 from	chemically-oscillating	767	

reactions.	Their	size	is	comparable	to	anatase	crystals	a	few	tens	of	nanometres	in	diameter,	768	

which	 are	 thermodynamically	 more	 stable	 than	 similarly-sized	 rutile	 crystals	 (Gribb	 and	769	

Banfield,	1997).	Besides,	TiO2	crystals	are	also	known	to	be	excellent	photocatalysts	that	help	770	

degrade	OM	(Fujishima	and	Zhang,	2006),	and	thus	could	have	contributed	to	oxidise	biomass	771	

during	 the	 earliest	 stages	 of	 diagenesis.	 These	 reactions	 are	 thus	 proposed	 to	 produce	772	

spheroidally-concentric	 B-Z	 type	 patterns	 akin	 to	 those	 in	 Fig.	 1e	 and	 1f	 around	microbial	773	

colonies	during	the	diagenetic	oxidation	of	their	biomass	(Fig.	16).	Another	useful	comparison	774	
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is	 with	 apatite	 granules	 from	 the	 Neoproterozoic	 Doushantuo	 phosphorite	 that	 contain	775	

ubiquitous	microfossils	and	rims	with	rounded	equidistant	laminations	of	apatite	and	pyrite	776	

(She	et	al.,	2014),	which	could	have	 formed	 from	similar	processes.	Therefore,	 the	origin	of	777	

granules	 involves	 diagenetic	 chemically-oscillating	 reactions	 as	 seen	 from	 the	 mineral	778	

compositions	of	rounded,	equidistant,	and	laminated	patterns.	779	

Microscopic	 rosettes	 are	proposed	 to	 represent	 fractals	 one	dimension	 scale	 smaller	780	

than	granules,	some	of	which	can	be	also	located	between	stromatolite	columns	–	for	instance	781	

in	the	Jhamarkotra	phosphorite	(Papineau	et	al.,	2016).	Siderite	rosettes	are	known	to	form	782	

during	diagenetic	 to	 low	grade	metamorphic	 conditions	 (at	T	=	170oC	 and	P	=	1.2	 kbar)	 in	783	

experiments	 where	 glucose	 is	 oxidised	 by	 ferrihydrite	 to	 produce	 siderite	 (Kohler	 et	 al.,	784	

2013).	Other	long-term	experiments	at	room	temperature	with	phosphate	and	bacteria	have	785	

further	 shown	 that	 rosettes	 can	 develop	 as	 individual	 radially	 fibrous	 apatite	 spheroids,	786	

which	 sometimes	 forms	 pairs	 as	 dumbbell-shaped	 structures	 (Blake	 et	 al.,	 1998).	 Rosettes	787	

with	 apatite	 have	 been	 reported	 to	 occur	 in	 a	 number	 of	 rocks,	 including:	 1)	 in	 Lower	788	

Cambrian	and	Neoproterozoic	phosphorites	from	China	associated	with	chert	and	framboidal	789	

pyrite	 (Sun	 et	 al.,	 2014),	 2)	 in	 the	 intercolumnar	 space	 of	 stromatolitic	 phosphorite	 in	 late	790	

Paleoproterozoic	Aravalli	Supergroup	 in	 India	where	 they	also	contain	carbonate	 inclusions	791	

in	 apatite	 and	 cores	 of	 chert	 (Papineau	 et	 al.,	 2016),	 3)	 in	 organic-rich	 chert	 of	 the	 late	792	

Paleoproterozoic	FB	Fm	in	the	Francevillian	Supergroup	in	Gabon	where	they	occur	as	apatite	793	

cores	 surrounded	 by	 quartz	 and	 embedded	 in	 a	 matrix	 of	 siderite	 and	 stilpnomelane	794	

(Mossman	 et	 al.,	 2005),	 and	 4)	 in	 the	Gunflint	 iron	 formation	where	 they	 are	 composed	 of	795	

siderite,	 apatite,	 and	 haematite	 or	 only	 of	 siderite	 or	 haematite	with	 chert	 (LaBerge,	 1973;	796	

Lougheed	 et	 al.,	 1983;	 Heaney	 and	 Veblen,	 1991;	 Carrigan	 and	 Cameron,	 1991).	 Many	797	

hypotheses	 have	 been	 proposed	 for	 the	 origin	 of	 rosettes	 including	 fossil	 cyanobacteria	798	

(LaBerge,	1973;	Awramik	and	Barghoorn,	1977;	Chauhan,	1979),	fossil	eukaryotic	organisms	799	

(Kazmierczak,	1979),	structures	that	crystallize	 from	viscous	and	impure	silica	gels	(Oehler,	800	
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1976),	 and	 as	 early	 diagenetic	 structures	 (Carrigan	 and	 Cameron,	 1991;	 Papineau	 et	 al.,	801	

2016).	 In	 light	 of	 our	 new	 data,	 the	 mineral	 compositions,	 and	 the	 concentric	 nature	 of	802	

rosettes	 shows	 consistency	 with	 a	 similar	 mechanism	 to	 that	 invoked	 for	 granules:	803	

chemically-oscillating	 reactions	 during	 the	 early	 diagenetic	 oxidation	 of	 microbial	 biomass	804	

(Fig.	16;	Papineau	et	al.,	2016).	805	

	806	

6.	Conclusions		807	

While	 some	 granules	 have	 a	 detrital-accretionary	 origin,	 for	 instance	when	 they	 are	808	

composed	of	detrital	phase	like	clays,	titanium	dioxide,	or	hematite,	but	our	new	observations	809	

suggest	 that	both	biological	and	diagenetic	processes	were	also	 involved	 in	 their	 formation.	810	

The	 occurrence	 of	 13C-depleted	 carbonate	 in	 the	 Michigamme,	 Gunflint,	 and	 Biwabik	811	

formations	suggests	the	oxidation	of	OM	into	carbonate.	The	common	co-occurrence	of	pyrite	812	

in	 these	 cherts	 suggest	 the	 oxidation	 of	 OM	 during	 diagenesis	 in	 the	 presence	 of	 sulphate.	813	

Some	highly	depleted	d13Corg	values	down	to	-46‰	in	the	Michigamme	Fm,	suggest	transient	814	

episodes	 of	 methane	 cycling,	 possibly	 associated	 with	 anaerobic	 and	 aerobic	815	

microenvironments.	816	

We	 report	 new	 observations	 of	 mineral	 patterns	 akin	 to	 the	 characteristic	 fractal	817	

patterns	from	the	classical	B-Z	reaction	(Fig.	1)	and	suggest	that	these	are	fractal	patterns	that	818	

form	 micrometre-size	 rosettes,	 millimetre-size	 granules,	 to	 centimetre-plus	 size	 of	819	

concretions	(Table	4).	While	the	morphologies	of	life	forms	are	often	characterised	by	fractal	820	

patterns	(e.g.	dendrite,	stripes,	veins)	powered	in	part	by	the	metabolism	of	carboxylic	acids	821	

(e.g.	 the	tri-carboxylic	acid	cycle),	other	fractal	patterns	continue	to	be	produced	during	the	822	

putrefaction	 of	 biomass	 and	 the	 oxidation	 of	 carboxylic	 acids.	 Detailed	 petrographic,	823	

mineralogical,	 and	 sedimentological	 documentation	 of	 granules	 in	 Lake	 Superior	 cherts	824	

reveals	 the	 occasional	 occurrence	 of	 putative	 microfossils,	 diagenetic	 minerals,	 as	 well	 as	825	

repeating	 patterns	 made	 of	 precipitated	 minerals	 (quartz,	 apatite,	 carbonate,	 magnetite,	826	
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ferric-ferrous	phylosilicates).	 In	particular,	 the	presence	of	 carboxyl	groups	 in	OM	 from	 the	827	

Gunflint	and	Michigamme	cherts	shows	the	preservation	of	residual	reactants.	Products	of	B-Z	828	

type	 reactions	 include	 precursor	 molecules	 to	 13C-depleted	 carbonate,	 as	 well	 as	 pyrite,	829	

apatite,	 and	 ferric-ferrous	 silicates	 (e.g.	 stilpnomelane,	 greenalite,	 vermiculite)	 and	 oxides	830	

(e.g.	magnetite),	all	of	which	are	considered	diagenetic	minerals	when	they	occur	in	granules,	831	

most	 clearly	 when	 they	 have	 rounded,	 equidistant,	 and	 finely	 laminated	 concentric	 layers.	832	

Chemically-oscillating	 reactions	are	proposed	 to	 significantly	 contribute	 to	 the	 formation	of	833	

diagenetic	 spheroids	 such	 as	 rosettes,	 granules,	 and	 concretions,	 all	 of	 which	 share	834	

similarities	with	B-Z	type	fractal	patterns,	in	particular	regarding	the	fact	that	they	preserve	835	

similar	mineral	 patterns	 of	 concentric	 equidistant	 laminations	 at	 several	 dimension	 scales.	836	

We	further	suggest	that	the	origin	of	rosettes	of	muscovite,	haematite,	apatite,	and	pyrite	are	837	

due	to	such	processes	during	early	diagenesis.	Under	standard	conditions,	concentric	patterns	838	

made	of	reaction	products	would	expand	outward	through	an	EPS-silica	gel,	possibly	through	839	

liesegang-type	 diffusion,	 forming	 layers	 of	 OM	 mixed	 with	 oxidised	 (e.g.	 phosphate	 and	840	

carbonate)	 or	 reduced	products	 (e.g.	 pyrite	 and	 ferric-ferrous	minerals).	 Authigenic	 apatite	841	

occurs	 as	 granules	 and	 is	 usually	 associated	 with	 OM,	 which	 often	 preserves	 microfossil	842	

morphologies	or	patterned	networks.	Pyrite	or	haematite	can	also	replace	OM	in	microfossils,	843	

and	anatase	and	rutile	occur	as	diagenetic	phases	associated	with	concentric	rims	or	among	844	

microfossils.	 The	 proposed	 chemically-oscillating	 reactions	 likely	 significantly	 contribute	 to	845	

the	 preservation	 and	 degradation	 of	 microfossils,	 analogously	 to	 animal	 and	 plant	 fossils	846	

being	often	present	in	concretions.	We	conclude	that	these	late	Paleoproterozoic	microfossils	847	

from	 the	 Lake	 Superior	 area	were	 variably	 preserved	 because	 of	 the	 local	 and	 pore	water	848	

abundances	 of	 ferrihydrite,	 phosphate,	 sulphate,	 oxygen,	 and	 other	 oxidants	 (i.e.	 possibly	849	

bromate).		850	

Future	work	will	 investigate	 trace	bromine	and	sulphate	concentrations	 in	accessory	851	

minerals.	 Additionally,	 experiments	 utilising	 naturally-occurring	 microbial	 remains	 and	852	
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various	 siliceous	 gels	 containing	 ferric	 iron	 or	 phosphate	 need	 to	 investigate	 the	 range	 of	853	

possible	reactants	and	concentrations	for	chemically-oscillating	reactions	under	standard	or	854	

diagenetic	conditions.	This	new	theory	of	putrefaction	after	the	GOE,	suggests	that	diagenetic	855	

spheroids	should	be	more	abundant	 in	 late	Palaeoproterozoic	rocks	and	predicts	 that	 these	856	

processes	 and	 objects	 should	 not	 be	 restricted	 to	 the	 Lake	 Superior	 area	 and	 may	 occur	857	

worldwide	 in	 contemporary	 rocks.	 Diagenetic	 spheroids	 can	 thus	 be	 regarded	 as	 mineral	858	

fractal	 patterns	 precipitated	 from	 chemically-oscillating	 reactions,	 which	 creates	859	

characteristic	patterns	around	decaying	dead	organisms,	over	several	scale	dimensions.	860	

Our	 new	 model	 provides	 many	 new	 hypotheses	 to	 test:	 1)	 B-Z	 type	 processes	 can	861	

produce	 rosettes	 and	 granules	 in	 cherts	 and	 phosphorites	which	 should	 contain	 diagenetic	862	

carbonate	 and	 phosphate	 minerals,	 2)	 microfossil	 remains	 of	 OM	 in	 chert	 should	 be	863	

preserved,	 perhaps	 rarely,	 in	 granules	 including	 in	 Paleoarchean	 cherts	 (e.g.	 Schopf	 and	864	

Kudryavtsev,	 2012),	 3)	 jaspers	 with	 concretions	 and	 granules	 should	 occasionally	 contain	865	

haematitic	microfossils,	 and	since	 the	Eoarchean	 (Dodd	et	al.,	2017),	and	4)	phosphate-rich	866	

rocks	may	contain	metabolically-diverse	microbial	ecosystems	variably-preserved	 in	apatite	867	

concretions,	 granules,	 and	 rosettes.	 Notably,	 microfossils	 are	 often	 concentrated	 within	868	

granules	 and	 associated	 with	 a	 range	 of	 diagenetic	 mineral	 products,	 which	 represents	 a	869	

robust	petrologic	 context	 to	 conclude	on	 the	biological	 origin	of	 candidate	microfossils	 and	870	

thus	a	promising	model	to	resolve	past	controversies	on	their	biogenecity.	These	conclusions	871	

and	 predictions	 are	 thus	 highly	 relevant	 to	 the	 debates	 on	 evidence	 of	 Paleoarchean	 and	872	

Eoarchean	 life,	 and	 they	 augment	 the	 repertoire	 of	 biosignatures	 to	 search	 for	 fossil	873	

extraterrestrial	life.	874	
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Table	1:	Raman	band	parameters	for	best	fit	with	linear	combinations	of	Lorentz	functions.	

	
Lorentz-
fitted	
parameters	

GF-7	
coccoidal	
microfossil	

GF-7	
filamentous	
microfossil	

ME-B1	
large	

coccoids	

MaryEllen-1	
coccoid	
granule	

MA0708	
coccoidal	
microfossil	

MA0708	
filamentous	
microfossil	

G	pos	 1590	 1590	 1575	 1595	 1586	 1587	

G	fwhm	 43	 43	 60	 60	 33	 39	

G	area	 2000	 2250	 2900	 1800	 2400	 7900	

D1	pos	 1340	 1342	 1346	 1337	 1352	 1349	

D1	FWHM	 95	 130	 120	 110	 37	 44	

D1	area	 17000	 18000	 5000	 4500	 3200	 14700	

D2	pos	 1615	 1615	 1620	 1620	 1620	 1620	

D2	FWHM	 40	 40	 40	 35	 25	 25	

D2	area	 8200	 7000	 580	 600	 350	 1500	

D3	pos	 1510	 1510	 1510	 1510	 	 	

D3	FWHM	 200	 100	 135	 135	 	 	

D3	area	 6500	 2200	 2200	 1200	 	 	

D4	pos	 1245	 1245	 1245	 1245	 	 	

D4	FWHM	 160	 100	 160	 150	 	 	

D4	area	 7000	 3500	 2200	 900	 	 	

D5	pos	 	 	 1450	 1450	 	 	

D5	FWHM	 	 	 100	 100	 	 	

D5	area	 		 		 450	 500	 		 		
Temperature	
Lafhid	RA1	 267	 346	 229	 280	 	 	

Temparture	
Beyssac	 243	 245	 359	 323	 387	 352	
Temperature	
Kuketsu	 274	 199	 220	 242	 398	 383	
average	of	
estimates	 261	 263	 269	 282	 393	 367	

1	sigma	 16	 75	 78	 41	 8	 23	
Temperature	estimates	are	calculated	according	to	calibrated	geothermometres	from	Beyssac	et	al.	(2002),	
Lafhid	et	al.	(2010),	and	Kouketsu	et	al.	(2015).	Note	that	the	Beyssac	thermometer	was	not	calibrated	for	
crystallization	temperatures	below	350oC.	



Table 2: Carbonates analyses by EDS in ME-B1 and of phosphates analysed by WDS in MA0708
Targets ME-B1 ME-B1 ME-B1 MA0708 MA0708 MA0708 MA0708
Wt.(%) spot 1a spot 2a spot 3a spot 1f spot 1h spot 1l spot 3a
C K 12.0 4.4 4.9
O K 36.9 19.8 19.4 39.7 39.9 39.5 39.5
P K 9.9 10.3 18.0 18.2 17.8 17.8
Mg K 1.4
Ca K 2.6 39.0 39.0 39.4 39.4
Si K 1.7 3.5 2.0 0.1 0.0 0.1 0.0
F K 5.6 3.9 3.5 4.1 4.0
Mn K 21.0
Fe K 18.8 6.5 3.6
Ni K 4.8 5.7
La L 12.3 14.9
Ce L 20.6 22.3 0.2 0.1 0.1
Nd L 9.2 7.9
Sm L 4.3 4.6
Gd L 4.8 4.4
Y L 0.1 0.1
Totals 100.0 100.1 100.0 100.7 100.8 100.9 101.0

Mn-siderite Monazite Monazite Fluorapatite Fluorapatite Fluorapatite Fluorapatite



Table	3:	Stable	isotope	data	of	rocks	from	MMTU	drill	core	(Michigan	Technical	University).	
	

Identifier** 
1 

position (m) d13Ccarb err. d18Ocarb-SMOW	 d18Ocarb-PDB err. d13Corg TOC (wt%) 
((wt%(wt%) MMTU-4.40	 1.3	

	  	   
-23.8	 0.49	

MMTU-4.5	 1.4	
	  	   

-28.0	 0.59	
MMTU-5.69	 1.7	 -3.3	 0.1	 +20.7	 -10.1	 0.2	 -23.2	 0.23	
MMTU-5.75	 1.8	 -4.6	 0.1	 +19.1	 -11.6	 0.2	 -22.4	 0.84	
MMTU-6.25	 1.9	

	  	   
-33.6	 0.50	

MMTU-6.6	 2.0	
	  	   

-22.9	 0.38	
MMTU-7.3	 2.2	

	  	   
-23.5	 0.65	

MMTU-8.6	 2.6	 -2.8	 0.2	 +20.5	 -10.2	 0.3	 -23.9	 0.24	
MMTU-9.5	 2.9	 -3.1	 0.0	 +19.0	 -11.8	 0.1	 -25.5	 0.57	
MMTU-10.8	 3.3	

	  	   
-20.8	 0.35	

MMTU-11.6	 3.5	 -4.3	 0.2	 +15.6	 -15.1	 0.3	 -46.7	 0.21	
MMTU-12.3	 3.7	

	  	   
-25.4	 0.25	

MMTU-13.87	 4.2	 -3.3	 0.2	 +13.7	 -16.8	 0.3	 -25.2	 0.24	
MMTU-17.7	 5.4	 -1.5	 0.1	 +13.9	 -16.7	 0.3	 -25.0	 0.32	
MMTU-18.4	 5.6	 -2.8	 0.2	 +13.6	 -16.9	 0.3	 -23.7	 0.10	
MMTU-20.5	 6.2	 -4.7	 0.2	 +13.5	 -17.1	 0.3	 -26.8	 0.48	
MMTU-21.59	 6.6	

	  	   
-31.8	 0.84	

MMTU-25.7	 7.8	 -2.2	 0.1	 +14.4	 -16.2	 0.1	 -26.4	 0.16	
MMTU-28.2	 8.6	

	  	   
-33.4	 0.45	

MMTU-32.7	 10.0	
	  	   

-29.1	 0.38	
MMTU-38.0	 11.6	 -5.2	 0.2	 +10.8	 -19.7	 0.2	 -24.4	 0.16	
MMTU-40.0	 12.2	

	  	   
-29.1	 0.55	

MMTU-42.1	 12.8	 -2.9	 0.1	 +14.5	 -16.1	 0.5	 -24.1	 0.18	
MMTU-44.0	 13.4	

	  	   
-29.4	 0.31	

MMTU-45.9	 14.0	
	  	   

-25.6	 0.31	
MMTU-48.6	 14.8	

	  	   
-24.0	 0.10	

MMTU-52.3	 15.9	 -3.7	 0.5	 +14.9	 -15.7	 0.3	 -26.9	 1.24	
MMTU-53.7	 16.4	 -3.7	 0.1	 +13.7	 -16.9	 0.1	 -25.4	 0.36	
MMTU-60.0	 18.3	

	  	   
-26.4	 1.38	

MMTU-61.7	 18.8	
	  	   

-27.2	 0.44	
MMTU-63.3	 19.3	 -2.8	 0.1	 +15.4	 -15.2	 0.2	 -28.4	 0.41	
MMTU-66.1	 20.1	

	  	   
-28.0	 0.37	

MMTU-69.2	 21.1	
	  	   

-25.1	 1.45	
MMTU-71.5	 21.8	

	  	   
-23.2	 0.27	

MMTU-74.6	 22.7	 -2.9	 0.2	 +13.8	 -16.8	 0.2	 -28.9	 0.62	
MMTU-75.8	 23.1	 -3.3	 0.2	 +14.2	 -16.4	 0.2	 -24.5	 0.67	
MMTU-88.8	 27.1	

	  
+17.3	

  
-44.5	 0.21	

MMTU-93.0	 28.3	 -1.4	 0.2	 +15.0	 -15.6	 0.2	 -23.3	 0.30	
MMTU-93.6	 28.5	 -2.0	 0.2	 +15.3	 -15.3	 0.2	 -23.2	 0.40	
MMTU-94.9	 28.9	

	  	   
-21.5	 0.05	

MMTU-96.0	 29.3	
	  

+13.4	
  

-20.9	 0.10	
MMTU-97.2	 29.6	

	  	   
-21.2	 0.19	

MMTU-100.0	 30.5	 -2.5	 0.1	 +13.7	 -16.8	 0.2	 -25.3	 0.89	
MMTU-102.0	 31.1	 -3.2	 0.2	 +13.3	 -17.3	 0.3	 -25.1	 0.99	
MMTU-103.8	 31.6	 -2.5	 0.1	 +14.3	 -16.3	 0.2	 -23.3	 0.19	
MMTU-105.1	 32.0	 -3.5	 0.2	 +16.4	 -14.2	 0.1	 -25.0	 1.35	
MMTU-106.7	 32.5	

	  	   
-27.4	 0.26	

MMTU-107.8	 32.9	 -3.0	 0.2	 +14.0	 -16.6	 0.2	 -26.5	 0.30	
MMTU-111.9	 34.1	 -3.6	 0.1	 +14.5	 -16.0	 0.2	 -27.1	 0.08	
MMTU-115.8	 35.3	 -3.4	 0.0	 +11.8	 -18.5	 0.2	 -22.3	 0.19	
MMTU-124.0	 38.0	 -3.6	 0.1	 +11.8	 -18.7	 0.4	 -22.6	 0.16	
MMTU-127.3	 38.8	

	  	   
-22.1	 0.05	

MMTU-129.5	 39.5	 -1.5	 0.1	 +14.4	 -16.1	 0.2	 -23.4	 0.12	
MMTU-129.8	 39.6	 -2.7	 0.1	 +14.0	 -16.6	 0.1	 -25.3	 1.23	
MMTU-130.5	 39.8	 -3.0	 0.2	 +12.7	 -17.8	 0.3	 -23.4	 0.05	
MMTU-132.1	 40.3	

	  	   
-30.4	 0.08	

	    	     
 

max	 -1.4	 		 +20.7	 -10.1	 	 -20.8	 1.4	

	
min	 -5.2	 		 +10.8	 -19.7	 	 -46.7	 0.0	

	
average	 -3.1	 		 +14.8	 -15.8	 	 -26.2	 0.4	

	
stdev	 0.9	 		 2.3	 2.3	 	 4.8	 0.4	

*	Sample	name	includes	the	depth	(in	feet,	as	originally	measured)	for	each	sample.	



	
Table	4:	Summary	table	of	observations	for	the	mineralogically	distinct	cherts	of	
the	Lake	Superior	Area.	 	 	 	

	 Gunflint	–		
Organic	(Prehnite-
pumpelleyite	facies)	

Biwabik	–		
Hematitic	(Sub-
Greenschist	facies)	

Michigamme	–		
Phosphatic	(Greenschist	
facies)	

Size	and	morphology	of	
stromatolites	

Finely	laminated	columnar	
and	columnar	branching	with	
diameter	of	0.5	to	3	cm;	
intercolumnar	granules	

Columnar	branching	with	
diameter	of	0.5	to	3	cm;	
intercolumnar	granules	

Coarsely	laminated	domal	
and	turbinate	with	diameter	
of	tens	of	cm	

Mineralogy	of	
stromatolites	

Chert,	OM,	carbonate,	apatite,	
pyrite	hematite	

Chert,	hematite,	carbonate,	
apatite,	OM	

Chert,	carbonate,	apatite,	
OM,	pyrite,	hematite	

Size	and	morphology	of	
granules	

Ca.	120	to	1200	µm;	sub-
spheroidal	to	sub-ellipsoidal;	
most	have	fine	concentric	
lamination		

Ca.	150	to	>2000	µm;	sub-
ellipsoidal	to	sub-angular	,	
varied	coarse-grained	to	
fine-grained,	some	
concentric	

Ca.	200	to	>2000	µm;	sub-
spheroidal	to	sub-hexagonal;	
most	have	a	network	of	OM	
as	regular	pattern	interior	

Mineralogy	of	granules	 Chert	+	OM	+	carbonate	±	
hematite	±	pyrite	±	greenalite	

Chert	+	hematite	±	OM	±	Mn-
dolomite	±	apatite	(some	
monazite)	±	stilpnomelane	±	
greenalite	±	vermiculite	

Chert	+	apatite	+	OM	±	
hematite	±	muscovite	±	
anatase	±	magnetite	±	pyrite	

Size	and	morphology	of	
rosettes	

Ca.	25	to	100	µm5	 ?	 Ca.	30	to	200	µm,	sub-
spheroidal	with	finely	
concentric	laminations	

Mineralogy	of	rosettes	 Ankerite+siderite,	
apatite+chert5	

Chert	+	hematite,	siderite		 Muscovite	+	apatite,	and	
dolomite	+	OM	

Size	and	morphology	of	
filamentous	microfossils	

Diameter:	1-3	µm;	length:	
>200	µm	and	curved	to	
straight	(Gunflintia	minuta1)		

Diameter:	0.5-4	µm;	length:	
>200	µm	mostly	straight,	
some	curved	(Gunflintia	
minuta1)	

Diameter:	2-6	µm;	length:	
>200	µm	and	curved	to	
straight	(Gunflintia	minuta1)		

Mineralogy	of	
filamentous	microfossils	

Nanoscopic	OM,	OM	+	pyrite2,	
OM	+	phyllosilicate3,	
carbonate1,	

Hematite	+	chert	±	OM	 OM	+	apatite,	OM	+	pyrite		

Size	of	coccoidal	
microfossils	

3	to	25	µm		 Generally	2	to	30	µm	with	
some	up	to	80	µm	

10	to	50	µm	

Mineralogy	of	coccoidal	
microfossils	

OM,	OM	+	pyrite2,	OM	+	
phyllosilicate3,	carbonate1	

Hematite,	hematite	+	OM		 OM	+	apatite,	OM	+pyrite	

Raman	D-band	
parameters	

Between	1339	and	1357	cm-1	
with	a	FWHM	between	90	and	
130	cm-1	

Between	1337	and	1356	cm-1	
with	FWHM	between	90	and	
160	cm-1	(interference	with	
hematite	and	epoxy)	

Between	1338	and	1352	cm-1	
with	a	FWHM	between	44	
and	65	cm-1	

Raman	G-band	
parameters	

Between	1586	and	1604	cm-1	
with	a	FWHM	between	45	and	
57	cm-1	

Between	1569	and	1599	
with	FWHM	between	58	and	
80	cm-1	

Between	1566	to	1587	cm-1	
with	a	FWHM	between	41	
and	77	cm-1	

Range	of	d13Ccarb	values	 d13Ccarb		=	-8.7	to	-0.2‰	(4)	
d18Ocarb	=	+15.2	to	+24.6‰	(4)	

d13Ccarb		=	-18.6	to	-3.7‰	(6)	
d18Ocarb	=	+12	to	+20‰	(6) 

d13Ccarb		=	-5.2	to	-1.4‰	
d18Ocarb	=	+20.8	to	+30.8‰	

1Barghoorn	and	Tyler	(1965),	2	Wacey	et	al.	(2014),	3	Wacey	et	al.	(2015),	4	Winter	and	Knauth	(1992),	5	Heaney	
and	Veblen	(1990),	6	Perry	et	al.,	(1973).	
	



Figure 1 – Papineau et al. (2017)

Figure 1: Reflected light images of different chemically-oscillating experiments
performed with the same chemicals as in the classical Belousov-Zhabotinsky
experiment (6ml of {67 ml (H2O + 2 ml H2SO4 + 5g NaBr03} + 0.5ml of {1g NaBr + 10
ml H2O} + 1ml of {1g Malonic acid + 10 ml H2O} + 1ml of {25mM pheanthroline
ferrous sulphate (or Ferroin (3 mM) – a coloured redox indicator} + 0.5ml of {1g
Triton X-100 + 1000ml H2O (to decrease surface tension)}. a) Formation of a ‘cavity’
from oxidation spots along the edge of the Petri dish (10 cm diameter), b) formation
of oxidation spots and concentric oxidation fronts with characteristic rounded
equidistant lines, c) curved equidistant lines forming a ‘cavity’ that encloses
concentric oxidation spots, d) rounded oxidation spots with finely equidistant
oxidation fronts and CO2 bubble formation (white arrow), e) centimetre to
millimetre-size single rounded spot pattern with CO2 bubbles, f) individual
millimetre-size spots inside centimetre-size non-circular structures.
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Figure 2: Geological context of the studied stromatolitic and concretionary cherts from the Gunflint,
Biwabik, and Michigamme formations. a) regional geological map (modified from Pufhal and Fralick,
2004) showing the main iron ranges (bold) and the localities where samples from this study come from
(red). Images of field outcrops of b) black chert from the Gunflint Fm. at the Schreiber Beach locality with
centimeter-size columnar stromatolites, c) finely laminated columnar stromatolitic and granular jasper
and d) bed of centimeter-size gray and red haematite-magnetite concretions with white carbonate
patches in the Biwabik Fm., and e) coarse laminated decimeter-size cherty domal stromatolites and f)
concretionary granular phosphatic chert stained yellow by ammonium molybdate from the Michigamme
Fm. at the Huron River locality. Coin diameter is 19mm in b) and 24mm in c-f).

Figure	2	– Papineau	et	al.	(2017)
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Figure 3 – Papineau et al. (2017)

Figure 3: Measured (red) and modelled (blue) Raman spectra, after cosmic-ray reduction and
polymonial-fitted background subtraction on OM from Gunflint, Biwabik, and Michigamme chert.
Lorenz-fitted peaks are labelled in green (D1), turquoise (D2), orange (D3), purple (D4), yellow (D5),
and black (G). Subsequent linear combination of lorenz-fitted D1, D2, D3, D4, D5, and G peaks is
shown in blue - see calculated parameters in Table 1.
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Figure 4 – Papineau et al. (2017)

Figure 4: X-ray Absorption Near-Edge Structure spectra of acid-insoluble graphitic carbon from the Michigamme
phosphatic chert MA0708. Spectrum in a) was acquired at C-edge and shows two strong peaks and two weak
peaks, in b) shows a single weak peak at the N-edge, and in c) shows two peaks at the O-edge. The former XANES
spectrum confirms the presence of carboxyl groups, while the latter two spectra confirm the presence of N and O
functional groups in Michigamme graphitic carbon.
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5 mm

Figure 5 – Papineau et al. (2017)

Figure 5: Petrography of stromatolitic and granular black chert sample GF-1 from the Gunflint Formation. a) A slab of the
Gunflint cherty columnar stromatolite below white chert layer, b) granules between stromatolitic chert columns with
finely laminated OM, c) concentrically-laminated granules, d) intergranular dolomite rhombs, some almost completely
replaced by later pyrite, e) concentrically-laminated granule with a nucleus coated with a spheroidal pyrite layer, f)
Granules with dispersed dolomite rhombs, g-h) granule with finely laminated OM associated with dolomite shown by
arrows in (h), i) micro-Raman image of several granules with carbonate associated with OM layers, j) Raman spectra for
the three phases in (i) and (l), k-l) dolomite rhombohedron zoned with fluorescent OM, m) Raman spectra for dolomite
rhomb. Raman colours here are the same for all subsequent figures: blue = quartz, green = carbonate, and red = OM.
Abbreviations: BSE = Back-Scattered Electron, TL = transmitted light, CP = crossed polars, RL = reflected light, py = pyrite,
dol = dolomite, qtz = quartz, OM = organic matter.
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Figure 6 – Papineau et al. (2017)

Figure 6: Petrography of filamentous structures composed of OM in black chert sample GF-1 from the Gunflint
Formation. a-b) Stromatolite laminations with filamentous structures, c-e) filaments of OM in the inter-
columnar and intergranular matrix, f-g) filamentous structures composed of OM inside a granule, h) Raman
spectra of OM along with occasional fluorescent regions.
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Figure 7 – Papineau et al. (2017)

Figure 7: Examples of spheroidal structures in granules between columns of stromatolitic black chert from the
Gunflint Fm (sample GF-7). a-c) granule with spheroidal and filamentous structures composed of OM, d) mixed
spheroidal and filamentous structures in the chert matrix, e) spheroidal structure similar to Huroniospora
macroreticulata in the matrix, f-h) granule with spheroidal structures and dolomite inside. i) Raman image of
spheroidal structures composed of OM and carbonate in the granule in g), j) Raman spectra of the different
phases in the Raman image.
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Figure 8 – Papineau et al. (2017)
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Figure 8: Petrography of stromatolitic and granular jasper from the Biwabik Fm (sample ME-B1 – Mary Ellen locality) in
all panels except c-d, which are from sample AG1108 (Thunderbird locality). a) Polished slab of stromatolitic and
granular jasper chert, b) thin section image of an area with intercolumnar granules and stromatolitic chert layered with
microscopic red haematite showing the location of microscopic Mn-carbonate (blue circles) and apatite (green circles),
c) polished slab of jasper with jasper and magnetite concretions, d) millimetre-size haematite-magnetite concretion
amongst granules with fine internal disseminations of haematite forming wavy and spheroidal patterns, e) haematite
granule with a grain of monazite, f) haematite granule with stilpnomelane core and anhedral carbonate (red arrows), g)
haematite granule with fine concentric laminations, h) magnetite granule with blades of yellow-brown apatite, i)
subhedral Mn-siderite in a coarse-grained haematite granule, j) anhedral Mn-siderite with poikilitic texture, k) euhedral
apatite with nanoscopic inclusions of quartz and haematite inside a stromatolite column. Spot numbers (in red in panels
e and m) are for EDS analyses listed in Table 2. Abbreviations: mon = monazite, hem = haematite, qtz = quartz, carb =
carbonate, apa = apatite, stl = stilpnomelane.
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Figure 9 – Papineau et al. (2017)

Figure 9: Detailed examples of occurrences of micron-size particles of OM in the Biwabik jasper-chert. (a-c)
Apatite associated with carbonate and organic matter inside magnetite-haematite granule shown in inset.
(d-g) Magnetite-haematite granule with coarse grained interior of quartz, magnetite, and haematite and
with a rim of micron-size carbonate grains. (h-i) colour-coded masks corresponding to Raman image in (g)
for micron-size particles of organic matter inside magnetite and related to their spectra in (i), most having
low signal-to-noise ratio. Colours in Raman images are same as before along with yellow = magnetite,
turquoise = apatite, and purple = haematite. mag = magnetite.
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Figure 10 – Papineau et al. (2017)
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Figure 10: Filamentous structures in granular and stromatolitic jasper from the Biwabik
Formation. a-c) Filamentous structures composed of haematite inside granules (with insets
showing detailed view), d) Raman image of a section of the granule showing micron-size
particles of OM, e) Raman spectra of the main minerals associated with this granule, f)
diversity of Raman spectra for OM associated with haematite (numbers refer to OM
particles circled in d).
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Figure 11 – Papineau et al. (2017)
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Figure 11: Spheroidal structures in granular and stromatolitic jasper from the Biwabik Formation. a-f)
Spheroidal structures composed of haematite inside granules shown with zoomed-in insets, g) coarse grained
chert interlayer in stromatolite column with micron-size spheroidal structures (shown in inset), i-j) Raman
images of haematitic spheroidal microfossils associated with micron-size particles of OM, k) Raman spectra of
the main minerals associated with spheroidal structures, i) range of Raman spectra for OM associated with
haematite (numbers refer to those in i). colours in Raman image are same as in Fig. 9 with white =
stilpnomelane.

10 µm

40 µm 50 µm 200 µm 200 µm

200 µm200 µm

40 µm

80 µm 80 µm

b) c)a) CP

µRaman

OM

Wavenumber	(cm-1)

Wavenumber	(cm-1)

1

2

3

4

5

6

carbonate	+	haematite

haematite

stilpnomelane

quartz

µRaman

e) g)

i)

j)

k)

l)

TL

TL TL

CP TL CP

TL

i)

j) 

d)

f) h)

10 µm

50 µm

stp

j)



200	µm

Figure 12 – Papineau et al. (2017)

Figure 12: Petrographic context of apatite in phosphatic chert and carbonate from the Michigamme
Fm. a-b) transmitted and reflected light images of sampleMA0708 (Huron River Locality) with arrows
pointing to dark concretionary apatite structures, c) sample MMTU-9.5 (Dead River Basin).
Photomicrographs (d-o) are for MA0708: d-i) apatite granules with OM forming regular patterns
shown in greater detail in inset for d), j-k) two examples of compartmentalized spheroidal structures
composed of apatite and OM in intergranular matrix, l-o) sub-hexagonal granule of apatite-graphitic
carbon along with muscovite-sericite rosettes (white arrows) and surrounded by rounded equidistant
laminations of nanoscopic anatase (best seen in n and o (yellow)). Sample MMTU-9.5: p-s) zoned
carbonate granules with concentric rounded equidistant laminations (white arrows) around a center
of nanoscopic OM, and intergranular pyrite and Fe-oxide. Abbreviations same as before with mus =
muscovite (sericite). Colours in Raman image are blue = quartz, red = graphitic carbon, turquoise =
apatite, yellow = anatase. Spot number in panel l) is for an EDS analysis listed in Table 2.
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Figure 13 – Papineau et al. (2017)d)

XP

50 µm 50 µm

BSETL

a) TL

Figure 13: Filamentous structures composed of apatite with OM and associated with haematite and rutile in a
granule from the Michigamme phosphatic chert (MA0708). a-f) Groups of filamentous structures composed of
apatite and OM inside an apatite granule, g) Raman image of the apatite granule with filamentous structures
(inset shows the 670 cm-1 filter for rutile in the same field), h) Raman spectra of the major minerals in this chert,
along with detected contaminant diamonds. Colours are same as before and correspond between the
hyperspectral image and the spectra, with purple = haematite and yellow = rutile. Spot number in red (in panel
f) is for an EDS analysis listed in Table 2.
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Figure 14 – Papineau et al. (2017)d)
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Figure 14: Spheroidal structure in a granule from the Michigamme phosphatic chert. a-c) Images of a granule that
contains spheroidal structures composed of OM with apatite and that form an hexagonal shape (red dotted line
in (c)), d-f) images of a muscovite rosette with a rim of apatite located near the center of the granule, g) Raman
image of the different phases in this granule based on major peaks in Raman spectra shown in h). Spot numbers
in red are for EDS analyses listed in Table 2. Mineral abbreviations and Raman colour codes are the same as
before, and mus = muscovite. Colours in Raman image are same as Fig. 12 with pink = muscovite.
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Figure 15 – Papineau et al. (2017)

Figure 15: Chemostratigraphic profile of the MMTU drill core from the Michigamme Fm with carbon isotope
composition of acid-insoluble OM, total organic carbon (TOC), and carbon and oxygen isotope compositions of
carbonate. Vertical lines show averages (light gray) and 1s standard deviations (black). Stratigraphic details modified
from IMR drill core log (Mulligan Plains, Sec. 15, R28W, T49N, Marquette County, Michigan).
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Figure	16	- Papineau	et	al.	(2017)

Figure 16: Proposed models for the diagenetic growth of granules from the non-biological oxidation of organic matter in
a) organic granular chert (e.g. in Gunflint Fm), b) haematite-rich chert (e.g. in Biwabik Fm), and phosphatic and clay-rich
granular chert (e.g. in Michigamme Fm).
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II.	Diffusion	from	oxidation	
spots	forms	fractal	patterns	of	
OM	(brown	ellipses)	along	with	
of	bicarbonate	(green)	and	

sulphide	(yellow),	which	start	
precipitating.
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III.	Lower	alkalinity	triggers	
precipitation	of	colloidal	silica	

(white).
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IV.	Permineralisation	in	silica	leads	
to	the	formation	of	granules	with	
rounded	equidistant	laminations	of	

OM	and	diagenetic	minerals.
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V.	Sub-greenschist	facies	
metamorphism	converts	kerogen	
to	graphitic	carbon,	destroys		

most	microfossils.

I.	Biomass	adsorbs	on	detrital	
clays	and	mixes	with	

hydrothermal	ferrihydrite
(purple	dots).

II.	The	oxidation	of	OM	by	
ferrihydrite results	in	oxidation	
spots	and	the	replacement	of	
OM	by	haematite and	the	
formation	of	bicarbonate	

(green).

III.	Fractal	patterns	of	ferrihydrite
and	hydromagnetite (yellow	

lines)	are	mixed	with	diagenetic	
carbonate	and	apatite	

(turquoise).

IV.	Permineralisation	in	silica	
immobilizes	the	expansion	of	
haematite,	carbonate,	apatite,	

magnetite,	and	oxidised OM	(red)	
in	granules.

V.	Sub-greenschist	facies	
metamorphism	destroys	most	

microfossils	and	leads	to	outsized	
acicular	stilpnomelane	and	

graphitic	carbon.
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I.	Cyanobacteria	rich	in	
polyphosphate	(turquoise)	
adsorbs	on	detrital	clays	and	
Ti-oxides	and	forms	clumps	

aided	by	wave-action.

II.	Oxidation	spots	form	
during	the	decay	of	OM,	

which	triggers	the	formation	
of	fractal	patterns.

III.	Oxidation	spots	expand	the	
precipitated	diagenetic	minerals	into	
fractal	patterns	(rosettes	in	brown)	
and	concentric	layers	of	apatite	

microfossils	and	of	anatase	(yellow).

IV.	Permineralisation in	silica	
stops	diffusion	and	yields	

concentrically-layered	granules.	

V.	Greenschist facies	metamorphism	
destroys	microfossils,	and	yields	
sericite-muscovite	rosettes,	sub-
hexagonal	granule	rims,	and	

graphitic	carbon.
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