Posterior Vitreous Detachment and the Posterior Hyaloid Membrane

Gregory S. Fincham, MD(Res), FRCOphth,1 Sean James, MSc,2 Carl Spickett, PhD,3 Michael Hollingshead, PhD,3 Christopher Thrasivoulou, PhD,4 Arabella V. Poulson, FRCOphth,1 Annie McNinch, SRN,1,3 Allan Richards, PhD,3,5 David Snead, FRCPath,2 Gloria A. Limb, PhD,6 Martin P. Snead, MD, FRCOphth1,3

Purpose: Despite posterior vitreous detachment being a common ocular event affecting most individuals in an aging population, there is little consensus regarding its precise anatomic definition. We investigated the morphologic appearance and molecular composition of the posterior hyaloid membrane to determine whether the structure clinically observed enveloping the posterior vitreous surface after posterior vitreous detachment is a true basement membrane and to postulate its origin. Understanding the relationship between the vitreous (in both its attached and detached state) and the internal limiting membrane of the retina is essential to understanding the cause of rhegmatogenous retinal detachment and vitreoretinal interface disorders, as well as potential future prophylactic and treatment strategies.

Design: Clinicohistologic correlation study.

Participants: Thirty-six human donor globes.

Methods: Vitreous bodies identified to have posterior vitreous detachment were examined with phase-contrast microscopy and confocal microscopy after immunohistochemically staining for collagen IV basement membrane markers, in addition to extracellular proteins that characterize the vitreoretinal junction (fibronectin, laminin) and vitreous gel (optin) markers. The posterior retina similarly was stained to evaluate the internal limiting membrane. Findings were correlated to the clinical appearance of the posterior hyaloid membrane observed during slit-lamp biomicroscopy after posterior vitreous detachment and compared with previously published studies.

Main Outcome Measures: Morphologic appearance and molecular composition of the posterior hyaloid membrane.

Results: Phase-contrast microscopy consistently identified a creased and distinct glassy membranous sheet enveloping the posterior vitreous surface, correlating closely with the posterior hyaloid membrane observed during slit-lamp biomicroscopy in patients with posterior vitreous detachment. Immunofluorescent confocal micrographs demonstrated the enveloping membranous structure identified on phase-contrast microscopy to show positive stain results for type IV collagen. Immunofluorescence of the residual intact internal limiting membrane on the retinal surface also showed positive stain results for type IV collagen.

Conclusions: The results of this study provide immunohistochemical evidence that the posterior hyaloid membrane is a true basement membrane enveloping the posterior hyaloid surface. Because this membranous structure is observed only after posterior vitreous detachment, the results of this study indicate that it forms part of the internal limiting membrane when the vitreous is in its attached state. Ophthalmology 2018;125:227-236 © 2017 by the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.aaojournal.org.

The vitreous humor is the largest anatomic structure in the human eye; it is a specialized transparent connective tissue that fills the posterior segment of the eye, occupying more than three quarters of the total ocular volume. In common with all connective tissues, which are separated from their adjacent epithelium, mesothelium, or endothelium by true basement membranes composed of type IV collagen,\(^1\) the vitreous is separated from its adjacent neuroepithelium (retina) by the internal limiting membrane composed of type IV collagen.\(^2\)

Uniquely in humans, the vitreous undergoes a progressive morphologic remodelling with an increase in fluid-filled lacunae (synchysis)\(^3\) and an increase in collagenous condensations (syneresis)\(^4\) as part of the aging process. In youth, collagen fibrils of the posterior vitreous cortex are firmly adherent to the internal limiting membrane of the retina by proteoglycans, including laminin and fibronectin.\(^5–8\) Both vitreous syneresis and posterior vitreous detachment are thought to be influenced by age and refractive error, but are separate pathologic entities and frequently occur independently of the other.\(^5,9,10\) Posterior vitreous detachment may be an asymptomatic finding in many patients; however, in those patients who are symptomatic, separation of the vitreous from the retina is
associated with an acute onset of flashes and floaters. Flashes refer to the pathognomonic features of temporal photopsia, described as a momentary arc of white or golden light in the lateral field of vision, whereas floaters refer to the subjective perception of the shadows cast onto the retina by vitreal opacities.11,12 Despite being a common ocular event affecting most individuals in an aging population,13–15 there is still recognized difficulty in making an accurate diagnosis in all cases and little agreement regarding the precise anatomic definition of posterior vitreous detachment.

Imaging-based diagnosis of posterior vitreous detachment traditionally has relied on dynamic B-scan ultrasonography; with an experienced operator, it reliably correlates to clinical biomicroscopy and intraoperative evidence of posterior vitreous detachment.16 More recently, OCT has been introduced in an attempt to objectify and standardize the diagnosis of posterior vitreous detachment. Although initial correlations to clinical and intraoperative posterior vitreous detachment have been limited,16,17 developments in increased-resolution spectral-domain OCT, wide-field scanning patterns, dynamic examination protocols, and combination imaging with scanning laser ophthalmoscopy promise to improve the potential of this imaging method to diagnose posterior vitreous detachment reliably in the future.18,19

The generally accepted consensus regarding the definition and diagnosis of posterior vitreous detachment is that there is a separation of the condensed outer layers of type II collagen fibrils of the vitreous, known as the posterior vitreous cortex, from the internal limiting membrane of the retina.20–24 The term posterior hyaloid face is used commonly to describe the outermost cortical layer of the vitreous. Clinical diagnosis of a suspected posterior vitreous detachment is based on the clinical history of new-onset flashes and floaters, with or without the identification of epipapillary glial tissue torn from the optic nerve head (Weiss ring) noted in the posterior vitreous cortex on slit-lamp biomicroscopy.25–27

An alternative, more stringent clinical interpretation defines posterior vitreous detachment as the separation of the vitreous and its enveloping posterior hyaloid membrane from the surface of the retina.12,28,29 Proponents of this concept advocate the term posterior hyaloid membrane to describe the membranous structure visualized on slit-lamp biomicroscopy encasing the detached vitreous. Clinical diagnosis of a suspected posterior vitreous detachment is based on clinical history, in addition to the identification of a continuous, discrete, highly creased, and refractile membranous sheet observed by slit-lamp dynamic vitreous biomicroscopy with a wide illumination observation angle (Fig 1; Video 1, available at www.aaojournal.org). It follows that notwithstanding any associated syneresis within the gel itself, this structure must form part of the vitreoretinal interface and internal limiting membrane immediately before vitreous detachment.

Previous studies examining patients with and without posterior vitreous detachment antemortem and correlating the findings with the postmortem histologic investigation of the vitreous in the same patients demonstrated that cadaveric posterior vitreous detachment is consistent with, and a true representation of, antemortem posterior vitreous detachment.14,30 This study compared the histopathologic and immunohistochemical profiles of the posterior hyaloid membrane in donated human globes with posterior vitreous detachment.

Methods

Study Design

The posterior surface of the vitreous body in donated human globes identified to have posterior vitreous detachment was interrogated with phase-contrast microscopy and subsequently histochemically stained for basement membrane (collagen IV), vitreoretinal junction (fibronectin, laminin), and vitreous gel (optcin) markers to facilitate immunofluorescent confocal microscopy analysis. The posterior retina similarly was stained with collagen IV immunofluorescence to evaluate the status of the remaining internal limiting membrane. The resultant micrographs were compared with the clinical appearance of the posterior hyaloid membrane observed during slit-lamp biomicroscopy examination of patients with posterior vitreous detachment.

Materials

Under a material transfer agreement, the Corneal Transplant Service Eye Bank, University of Bristol, supplied human globe tissue after harvesting an anterior segment 18-mm corneoscleral button for corneal transplantation surgery. The globe tissue, which comprised all ocular structures internal to and including the scleral coat posteriorly and the iris anteriorly, was fixed in 4% paraformaldehyde at 4°C and transported by cold chain courier. Upon receipt, the globe tissue was rinsed repeatedly in cold phosphate-buffered saline, cryoprotected in a 30% sucrose and phosphate-buffered saline solution, frozen in acetone chilled in liquid nitrogen, and stored at −80°C before being thawed on ice for dissection at room temperature.

Dissection Protocol

To evaluate posterior vitreous detachment status, a modification to the suspended-in-air examination, originally described by Foos,31 was used. A circumferential full-thickness scleral coat incision into the suprachoroidal space was placed around the optic nerve stalk posteriorly. Anteriorly, the iris was removed circumferentially at its root. Radial full-thickness scleral incisions (connecting the anterior scleral edge to the posterior peripapillary incision) facilitated removal of the scleral coat from the remaining eviscerated vitreous body, covered by retina and choroid, and attached posteriorly to the optic nerve stalk and surrounding rim of scleral tissue.

The modification of Foos’ air suspension technique assessed the posterior vitreous detachment status before and after removal of the choroid. Upon removal of the choroid, the retina of specimens with a posterior vitreous detachment would tear at their firm anterior attachment to the vitreous base under the weight of the vitreous body, leaving the denuded posterior surface of the vitreous body exposed. In distinct contrast, those globes without posterior vitreous detachment were found to have retina adherent to the entire posterior vitreous surface that was possible to remove only with piecemeal dissection.

Posterior-to-anterior 18-mm trephination through the vitreous body in specimens with posterior vitreous detachment allowed removal of the anterior annulus of retinal tissue attached to the vitreous base and peripheral anterior vitreous gel. This yielded a
Figure 1. Dynamic off-axis illumination slit-lamp biomicroscopy images demonstrating the clinical appearance of the posterior hyaloid membrane in a patient with posterior vitreous detachment. Note the classic creased and crinkled topographic appearance (A–I), in addition to the vitreous fibrils anterior to the membrane in (J–L). See Video 1 (available at www.aaojournal.org).
core of clear vitreous gel with its associated posterior hyaloid membrane lining the posterior vitreous surface, which then was examined by phase-contrast microscopy and immunohistochemical staining for collagen IV. Posterior pole retinal tissue from specimens with identified posterior vitreous detachment was collected for immunohistochemical staining of the internal limiting membrane.

Phase-Contrast Microscopy
The posterior surface of the trephined gel core was examined using a Zeiss Primo Vert phase-contrast light microscope (Zeiss, Germany) to identify the posterior hyaloid membrane.

Immunohistochemistry Analysis
Examined tissue was blocked and permeabilized overnight at 4°C in phosphate-buffered saline with 1.20 donkey serum, 0.5% bovine serum albumin, and 0.1% TritonX-100; this also was used for all subsequent washes and to dilute antibodies. Primary and secondary antibodies were incubated sequentially over consecutive nights at 4°C; 3 blocking solution washes were performed before and after secondary antibody incubation. Tissues then were flat mounted in a prepared water-based mounting medium (6 g glycerol, 2.4 g Moviol 4-88 (Hoechst, Germany), 6 ml nuclease-free water, and 12 ml tris(hydroxymethyl)aminomethane buffer) and covered with Leica Surgipath coverslips for confocal microscopy (Leica, Germany). Primary and secondary antibody concentrations were based on the recommended dilutions reported in similar immunofluorescent applications and optimized further using serial dilutions. Details of primary and secondary antibody sources and dilutions used are shown in Table 1.

Confocal Microscopy
Digital confocal micrograph images were acquired on a Zeiss Observer Z1 inverted LSM 700 Confocal Laser Scanning Microscope (Zeiss, Germany). Separation of fluorescence signals by sequential laser frequency excitation at 400, 440, 470, and 535 nm prevented multichannel crosstalk. Generated.lsm data files were processed with Carl Zeiss ZEN 2012 SP1 (black edition) software. Scanning protocols included phase and confocal low-magnification (EC Plan-Neofluar 10×0.30 Ph1 M27 Objective [Zeiss, Germany]) composite tile scans to ascertain global topography of posterior hyaloid membrane specimens, in addition to phase and confocal high-magnification (EC Plan-Apochromat 63×1.40 Oil Ph3 M27 Objective) z-stack imaging.

Table 1. Primary and Secondary Antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Manufacturer</th>
<th>Catalog No.</th>
<th>Species</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anticollagen IV*</td>
<td>Abcam</td>
<td>ab6586</td>
<td>Rabbit polyclonal</td>
<td>1:100</td>
</tr>
<tr>
<td>Antilaminin</td>
<td>Abcam</td>
<td>ab26245</td>
<td>Mouse monoclonal (A17)</td>
<td>1:100</td>
</tr>
<tr>
<td>Anti-α2 integrin</td>
<td>Abcam</td>
<td>ab11575</td>
<td>Rabbit polyclonal</td>
<td>1:200</td>
</tr>
<tr>
<td>Anti-α3 integrin</td>
<td>Abcam</td>
<td>ab170886</td>
<td>Rabbit monoclonal (EPR11980[B])</td>
<td>1:250</td>
</tr>
<tr>
<td>Secondary antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexa Fluor 488</td>
<td>Life Technologies</td>
<td>A21202</td>
<td>Donkey antinmouse</td>
<td>1:500</td>
</tr>
<tr>
<td>Alexa Fluor 568</td>
<td>Life Technologies</td>
<td>A10042</td>
<td>Donkey antirabbit</td>
<td>1:500</td>
</tr>
</tbody>
</table>

*Basement membrane marker.
†Vitreoretinal junction marker.
‡Vitreous gel marker.

Control Tissue
Positive and negative control experiments were conducted for all tissues. Basement membrane control tissue was obtained from human kidney (under a material transfer agreement with the Arden Tissue Bank, University Hospital Coventry) and intracellular crystalline lens capsule (isolated from donated specimen without posterior vitreous detachment). Vitreous gel, vitreoretinal junction, and retinal control tissue were obtained similarly from randomly selected human globe tissue without posterior vitreous detachment.

Ethical Approval
This project was conducted after National Research Ethics Service approval (identifier 05/Q2802/77), and all investigations were conducted in accordance with the tenets of the Declaration of Helsinki with regard to research on human tissue.

Results
Globe Tissue
Fifty-eight donated globes (average age, 67.4 years; range, 41–79 years) were dissected. Thirty-six globes (62.1%; average age, 70.1 years; range, 41–96 years) were identified to have sustained a posterior vitreous detachment and were selected for phase-contrast microscopy and immunofluorescence study. Twenty-two globes (37.9%; average age, 63.1 years; range, 49–79 years) were identified to have an attached vitreous and were selected randomly for control studies. The age of donor globes and incidence of posterior vitreous detachment in the current study are similar to those reported in previous studies.

Phase-Contrast Microscopy
Isolated posterior hyaloid membranes consistently were identified as distinct, creased, and crinkled glassy sheets on phase-contrast microscopy (Fig 2A). Residual attached vitreous gel demonstrated a rucked and undulating appearance (Fig 2B and C), but was readily distinguishable from the adjacent posterior hyaloid membrane, which was phase dense with definitive, sharply cut edges (Fig 2D). Physically manipulating samples during visualization under direct phase-contrast microscopy further demonstrated differences between the posterior hyaloid membrane and the cortical vitreous gel. The membrane component was relatively inflexible and reluctant to unfold, remaining in a crumpled orientation, reflecting and reminiscent.
of its characteristics observed during pars plana vitrectomy surgery. In contrast, the body of the vitreous gel had a pliable and elastic nature, returning to its original orientation after being handled.

Basement Membrane Immunohistochemistry Analysis

Posterior hyaloid membranes, isolated from globes that had undergone posterior vitreous detachment, consistently demonstrated positive immunofluorescence results with collagen IV antibodies, indicating they were true basement membranes. Confocal immunofluorescent images characterized membranous sheets with definitive, sharply cut edges (Fig 3A and B). Surface topography micrographs revealed these membranes to have a highly creased and crinkled appearance (Fig 3C), correlating with the membranous structure identified on phase-contrast microscopy. Z-stack cross section confocal analysis (Fig 3D) and 3-dimensional image reconstructions demonstrated a smooth configuration to the vitreal aspect (Fig 3E) and an irregular coarse configuration to the retinal aspect (Fig 3F) of the posterior hyaloid membrane.

Internal Limiting Membrane Immunohistochemistry

The posterior pole retina consistently demonstrated positive immunofluorescence with collagen IV antibodies, indicating an intact internal limiting membrane in globes that had undergone posterior vitreous detachment (Fig 4A and B). Immunofluorescent images of the retinal surface demonstrated a complete and continuous internal limiting membrane that was associated integrally with the anticipated vascular branching pattern of superficial retinal blood vessels, delineated by their endothelial basement membranes (Fig 4C and D).

Vitreoretinal Junction and Vitreous Gel Immunohistochemistry Analysis

Confocal microscopy of specimens stained with fibronectin and laminin antibody markers demonstrated these vitreoretinal junctions
proteins to be distributed densely on the vitreal aspect of the detached posterior hyaloid membrane, as anticipated. Furthermore, the vitreous gel consistently demonstrated positive immunofluorescence with opticin antibodies. Staining delineated individual vitreous gel fibrils, with a distinct condensation of vitreal fibers observed at the gel—membrane interface.

Comparison of Findings with Clinically Observed Posterior Hyaloid Membranes

Distinct, highly creased and crinkled posterior hyaloid membrane phase-contrast (Fig 2) and immunofluorescent (Fig 3) micrographs consistently were similar in appearance to the posterior hyaloid membrane.
membranes observed clinically in patients with posterior vitreous detachment (Fig 1). Furthermore, manipulation of the membranes under phase-contrast microscopy produced movement patterns reminiscent of those witnessed with clinical off-axis illumination slit-lamp microscopy (Video 1, available at www.aaojournal.org).

Discussion

In addition to its anatomic location between the connective tissue of the vitreous body and the neuroepithelial retina, molecular interrogation of the internal limiting membrane has demonstrated it to be a true basement membrane composed of collagen IV,2 laminin, fibronectin,3 and carbohydrate residues.3 The ultrastructure of the internal limiting membrane has been well characterized by electron microscopy. The original descriptions by Fine34 and Fine and Tousimis35 have been confirmed and reiterated in several subsequent studies36–40 and have been expanded further by Foos.31 Foos described variations of the internal limiting membrane in 3 distinct topographic zones within the eye; in the basal zone, the internal limiting membrane was uniformly thin, but it was reported to be progressively and irregularly thickened in the equatorial and posterior zones, in addition to showing loss of the anteriorly observed Müller vitreal surface attachment plaques in the posterior zone. Transmission electron micrographs demonstrated an enormous 37-fold increase in thickness of the posterior zone of the internal limiting membrane compared with the basal zone, with a characteristically smooth vitreal aspect and irregular retinal aspect following the contour of underlying Müller glia.

Seeking to investigate whether the internal limiting membrane thickened with age in a fashion consistent with other ocular basement membranes,42,43 Heegaard44 reported a series of adult eyes from the third to tenth decades of life and compared them with fetal eyes. The internal limiting

Figure 4. Internal limiting membrane confocal micrography series stained with antibodies to collagen IV (Alexa Fluor 568), demonstrating (A) 3×3 tile scan of the retinal posterior pole flat mount after posterior vitreous detachment (note greater internal limiting membrane immunofluorescence in the upper right corner compared with the bottom left, resulting from retinal undulation altering the focal plane; original magnification, ×5); (B) magnified view of artifactual retinal break in (A), demonstrating internal limiting membrane edge (original magnification, ×12.5); and (C, D) 3-dimensional reconstructions of the z-stack illustrating the relationship of the internal limiting membrane to the retinal microvascular network (retinal and vitreal aspects, respectively).

Fincham et al • PVD and the Posterior Hyaloid Membrane
membrane of fetal eyes was found to be uniformly thin in all regions and followed the surface contour of Müller glia compared with the internal limiting membrane of adult eyes that reiterated similar topographically variant findings of progressive thickening and irregularity posteriorly (with a characteristic smooth inner vitreal surface and undulating outer cellular surface), as described by Foos.41 Although the internal limiting membrane was found to be markedly thicker in adult eyes than in fetal eyes at 24 weeks’ gestation, there was no reported statistical correlation of increasing thickness with increasing age; the author attributed the lack of trend to small study numbers (1 pair of eyes from 2 adults from each of the third through to the tenth decades, except for the sixth decade, where only 1 pair of eyes was obtained), in addition to technical issues of averaging median thickness values of a structure with complex external folds and using different examination techniques.

Reappraising Heegaard’s original data, it is apparent that the maximum thickness of the internal limiting membrane at the posterior pole seemed to peak at between 30 and 50 years of age (median thickness, 3230 nm) examined by transmission electron microscopy and between 60 and 80 years of age (median thickness, 1336 nm) for specimens examined by scanning electron microscopy. A conceivable explanation may be that the thickness of the internal limiting membrane peaked between 40 to 70 years of age and declined thereafter as a result of partial spontaneous separation (posterior vitreous detachment). This is plausible because no reference was made to posterior vitreous detachment status in the examined eyes, which would confound any attempts to correlate increasing thickness with increasing age, and also in the same study the intriguing observation of substantial (6-fold) variation in internal limiting membrane thickness between eyes from the same elderly patient.

Snead et al15 immunohistochemically examined surgical specimens from 4 clinically distinct vitreomaculaopathy subgroups; internal limiting membrane samples from patients in these subgroups (who had undergone no previous intraocular surgery or retinopexy) were compared with those of postmortem eyes (with and without uncomplicated posterior vitreous detachment). Basement membrane from the surgical internal limiting membrane specimens was the principal component identified in all 4 subgroups, with prominent hyperconvolution and reduplication of the internal limiting membrane apparent in the macular pucker and cellophane maculopathy subgroups. Although not discussed in this study, control light micrographs of postmortem eyes with uncomplicated senile posterior vitreous detachment seemed to show similar but less extensive duplication, thickening, contracture, and even schisis of the posterior hyaloid membrane. This is perhaps not surprising because systemic reduplication or lamellation of basement membranes frequently is found around capillaries in patients with diabetic microangiopathy,46,47 and increasing basement membrane production is a well-characterized cellular response to aging and sublethal injury.48

Electron microscopy investigations of the posterior hyaloid membrane from donors with antemortem clinical confirmation of posterior vitreous detachment demonstrated a separately distinct membranous structure encasing the detached vitreous.93 Low-magnification scanning electron micrography of the posterior aspect of a detached Weiss ring noted the irregular coarse appearance of the retinal aspect of the posterior hyaloid membrane and a smooth vitreal aspect adjacent to areas of fibrillar cortical gel, comparable with the cross-sectional and 3-dimensional reconstructions reported in the current study. High-magnification transmission electron micrographs depicted cross sections through extensively convoluted posterior hyaloid membranes with collagen fibrils inserting onto the vitreal aspect, in addition to scattered hemidesmosome attachment plaques.

Existing anatomic, molecular, and ultrastructural knowledge of the internal limiting membrane and its documented age-related changes, in addition to the limited investigations of the posterior hyaloid membrane, lend support to the findings we report herein. This demonstrates that the posterior hyaloid membrane is not simply a condensation of posterior vitreous cortex commonly referred to as the posterior hyaloid face, but rather a separately distinct true basement membrane structure that encases the extracellular matrix of the vitreous body. This basal lamina must originate from the surface of the retina during the process of posterior vitreous detachment and forms as a result of an anterior dehiscence of the retinal internal limiting membrane, which is known to peak in thickness in the age group when posterior vitreous detachment is most prevalent.

References

Imaging of Neovascular Membrane Over a Choroidal Osteoma by OCT Angiography

A 26-year-old man presented with a 5-month history of blurry vision, photopsia, and metamorphopsia of the right eye. Retinal examination showed a geographic orange-yellow calcified macular lesion, with retinal pigment epithelium (RPE) mottling and subtle hemorrhage (Fig 1A), suggesting a choroidal neovascular membrane (CNVM). An OCT angiography (OCTA) showed an increased capillary density (Fig 1B and C, white arrows), identifying a juxtafoveal CNVM along the edge of the tumor, at the level of the choroid capillary plexus (Fig 1B) and the external plexiform layer (Fig 1C). Although CNVM diagnosis may be hindered by inherent hyperfluorescence seen on fluoroangiography, OCTA might accurately and noninvasively detect CNVM. (Magnified version of Fig 1A-C is available online at www.aaojournal.org.)

ANA BEATRIZ D. GRISOLIA, MD
MAIRA DE FRANÇA MARTINS, MD
HAKAN DEMIRCI, MD

Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan

Pictures & Perspectives