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Abstract 

In this thesis, we have examined the layered morphology of zeolite MFI and the 

titanium substitution of zeolite LTA by using a combination of density functional 

theory and interatomic potential-based calculations. Layered MFI zeolite allows a 

straightforward hierarchization of the pore system which accelerates mass transfer 

and increases its lifetime as a catalyst. We have performed a theoretical study of the 

structural features of the pure-silica and aluminium-substituted MFI nanosheets. We 

have analysed the effects of aluminium substitution on the vibrational properties of 

silanols as well as the features of protons as counter-ions. The formation of the two-

dimensional system did not lead to appreciable distortions within the framework, 

whilst dehydration of aluminium-substituted silanols is both kinetic and 

thermodynamically favoured. In addition, we have analysed the strength of Brønsted 

acid (BA) sites located at the internal and external surfaces of zeolite MFI by 

adsorbing trimethylphosphine oxide (TMPO) as a probe molecule and correlating 

structural information to experimental 31P NMR data. We have been able to provide 

a possible explanation to the variable strength of the BA sites probed by TMPO by 

considering the basicity of the centres sharing the acid proton. 

In addition, we have examined the possible role of the Lewis acid sites located at the 

external surface of zeolite MFI to catalyse the tautomerization of phenolic-type 

compounds. The tautomerization has been conceived as a three-step process 

involving two protons transfers between the molecule and the zeolite, and the 

rotation of a dihedral angle. The energy barrier of each step is lower than 55 kJ/mol, 

suggesting that this transformation is easily accessible under standard reaction 

conditions. 
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Finally, we have studied the structural, electronic and mechanical properties of the 

pure-silica zeolite LTA, as well as the single and double titanium-substituted 

material. The energetics of the titanium distribution within the zeolite framework 

suggest that the inclusion of a second titanium atom with configurations Ti-(Si)0-Ti, 

Ti-(Si)1-Ti and Ti-(Si)2-Ti is more favourable than the mono-substitution. The 

energetics of the dissociation of water on these Lewis acid sites indicate that this 

process is only favoured when two titanium atoms form a two-membered ring (2MR) 

sharing both hydroxy groups, Ti-(OH)2-Ti, showing that the presence of water may 

tune the distribution of titanium atoms within the framework of zeolite LTA. 
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Chapter 1  Introduction  

 

1.1 Zeolites ī General Overview 

1.1.1 Zeolite Structure  

Zeolites are aluminosilicate materials with defined crystalline structure and 

micropore architecture. Tetrahedral TO4 sites (in short T-sites) are the primary 

building units of zeolites (see Figure 1-1a), which are linked through the oxygen 

atoms at their corners forming secondary building units (SBU). The SBUs are non-

chiral structures that consist of up to 16 T-sites. One SBU or a combination of SBUs 

forms the entire framework of any zeolite. Figure 1-1 shows the smallest and biggest 

reported SBUs, which involve 3 and 16 T-sites and are labelled 3 and 8-8, 

respectively. For instance, the SBU 3 forms the JST framework type whilst MER 

type is one of the few frameworks made of 8-8 SBUs (see section 1.1.2 for an 

explanation regarding these three-letter acronyms) [1]. 

 

 

 



Chapter 1. Introduction 

29 

 

 

Figure 1-1. (a) Tetrahedral site; the red and orange balls represent oxygen and T 

atoms, respectively. (b) Smallest secondary building unit (SBU), labelled 3. (c) Unit 

cell of JST framework type (space group ὖὥσ) which is formed by the repetition of 

SBU 3. (d) Biggest SBU, labelled 8-8. (e) Unit cell of MER framework type (space 

group Ὅτάάάϳ ) which is formed by the repetition of SBU 8-8. From (b) to (e) the 

oxygen atoms are not represented and the radius of the T atoms reduced for an 

enhanced view. 

 

1.1.2 Framework Type Codes 

At present, the International Zeolite Association (IZA) recognizes 232 unique 

frameworks, either from natural or synthetic origins, and to each of them is assigned 

a framework type code (FTC) for identification (see Figure 1-2). The FTC is a three-

letter acronym that identifies each distinctive zeolite framework and is derived from 

the name of the material used to determine the structure. For instance, AFG refers to 

the mineral Afghanite [2] and MTN designates the synthetic zeolite ZSM-39 (Zeolite 

Socony Mobil ï Thirty Nine) [3]. The last and 232th FTC to be approved by the 

Structure Commission of the IZA is denoted by ETL, and corresponds to the material 

H-EU-12 [4]. 
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Figure 1-2. Approved Framework Type Codes (FTC) by the Structure Commission 

of the International Zeolite Association (IZA) (Reproduced from IZA official 

webpage, http://america.iza-structure.org/IZA-SC/ft.php). 

 

1.1.3 Zeolite Synthesis and Composition 

Zeolites are commonly synthesized from an aqueous solution containing the source 

of framework atoms, a mineralizing agent and a structure directing agent (SDA). 

Hydroxyl or fluoride anions are usually used as the mineralizing agents, whilst the 

SDA can be an inorganic alkaline cation or a charged organic molecule such as a 

quaternary ammonium cation. During the reaction, the solution transforms into a gel-

like system under temperatures that range from 100 to 200 °C [5ï7]. The zeolite pore 

system is generated after removing the organic SDAs from the framework usually 

by calcination or chemical transformation, conserving the crystalline structure of the 
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material. The first report regarding the use of organic SDAs to synthesize zeolites 

was presented by Barrer and Denny, who employed tetraalkylamonium cations to 

prepare faujasites (FAU) and sodalites (SOD) [8]. Since then, a wide range of novel 

SDAs has been developed to finely tune the zeolite topology and pore architecture 

[9]. There exist effective experimental and computational techniques that allow to 

monitor and analyse the formation and growth of zeolite crystals, such as atomic 

force microscopy (AFM), high-resolution scanning electron microscopy (HRSEM) 

and Monte-Carlo simulations [10ï12]. 

The main components of zeolites are oxygen and silicon atoms, though other 

elements can partially replace the silicon at the centre of the tetrahedra. This 

substitution enhances either the structure stability  or the chemical properties of the 

zeolite for a specific application. Aluminium is the most common substituent in 

zeolites (see Figure 1-3a and b), with Si/Al ratios that can be as low as 1 [13]. The 

oxygen and silicon atoms have a formal charge of 2- and 4+ respectively, thus once 

aluminium or any other element with formal charge 3+ replaces the silicon, a 

negative charge is created within the structure. Together with the pore system of 

zeolites, the presence of this negative charge provides remarkable opportunities to 

use zeolites as solid acids, ion-exchange matrices and redox catalysts. For example, 

zeolites behave as Brønsted acids if a proton H1+ is the counter-ion (see Figure 1-3c). 

Alternatively, aluminium-substituted zeolites show Lewis acidity and redox 

properties if a metal cation is chosen instead to balance the electric charge (see 

Figure 1-3d and e) [14,15]. 
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Figure 1-3. Representation of the substitution of silicon by aluminium atoms in (a) 

one and (b) two T-sites of a zeolite. Counter-ions that balance the spare negative 

charge after the substitution: (c) proton, (d) metal cation M1+ and (e) metal cation 

M2+. 

 

Aluminium is not the only element that replaces silicon in zeolites. For instance, it 

has been reported the substitution of silicon by B, Ga, In, Sc, Fe, Zr, Ti, Ge and Sn 

[16ï24]. The substitution of silicon by other 4+ charged atom directly provides 

Lewis acid character to the zeolite without the need of extra-framework cations. For 

example, it has been reported that the Lewis acid sites of tin-substituted zeolites 

catalyse the isomerization of cellulosic sugars [24,25]. 

The proportion of T3+ elements occupying framework positions in relation to the 

total amount of silicon can be controlled by the type of SDA. For example, high-

silica zeolites are obtained when an organic SDA is used, as opposed to an inorganic 

SDA, which generates structures with low Si/T3+ ratios [26,27]. However, the use of 

seeds in the synthesis process is known to favour high-silica zeolites even in the 

presence of inorganic SDAs [9]. 
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1.1.4 Micropore System of Zeolites 

The notable applications of zeolites as molecular sieves, adsorbents and catalysts are 

based on their micropore systems [28,29]. The micropores of each type of 

framework are characterized by their diameter, shape and channel dimensions. 

The minimum number of interlinked T-sites that surround the pore provides an 

indication of the micropore diameter. The micropore is referred then as an n-

membered ring (nMR), where n is the number of T-sites forming the pore. The most 

frequent diameters are 8MR, 10MR and 12MR as shown in Figure 1-4. The diameter 

of the pores represented in Figure 1-4, measured as the distance between the oxygen 

atoms diametrically opposed, are 7.00, 9.23 and 10.21 Å for 8MR, 10MR and 12MR, 

respectively. However, these values can change from one framework to another 

depending on structural distortions. Other less common pore diameters are 7MR 

(MEI), 9MR (CHI), 11MR (JSR), 14MR (AET), 15MR (IRY), 16MR (IFO), 18MR 

(ETR), 20MR (CLO) and 21MR (EWT). The micropore can also be straight, as 

shown in Figure 1-4d, or sinusoidal as observed in zeolites of lower symmetry. 

 

Figure 1-4. Representation of the most frequent zeolite pore diameters: (a) 8MR, (b) 

10MR and (c) 12MR. (d) Representation of the straight pore of the EON type. 
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The pore system of zeolites is also characterized by the number of Cartesian 

directions or dimensions that a molecule can span within the channels. For instance, 

a molecule may be only able to diffuse along a pore, unable to move to another pore 

at an intersection. In this case, the pore system of the zeolite is defined as one-

dimensional (see Figure 1-5a). Some examples of framework types with one-

dimensional channels are AWW and ABW. The next level in this classification 

comprises in the two-dimensional pore system. Here, the molecule can move in the 

two-dimensional plane formed by a network of inter-linked pores as represented in 

Figure 1-5b. The UEI and ZON framework types are examples of zeolites with two-

dimensional channels. Finally, in the three-dimensional pore system a molecule can 

cover the entire volume of the crystal by moving through the pores, as shown in 

Figure 1-5c. The MFI and LTA framework types, which have been extensively 

studied in the present thesis, contain three-dimensional channels. 

 

Figure 1-5. Schematic representation of (a) one-dimensional, (b) two-dimensional 

and (c) three-dimensional zeolite pore systems. 

 

1.1.5 Applications 

Zeolites are widely recognised for their extraordinary properties as solid acids [30ï

32], size-selective molecular sieves [28,33], and ion-exchange matrices [34ï36]. 

Thus, these materials have important practical applications, ranging from water 
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treatment [37] and membranes for gas permeation [38] to fuel and solar cell materials 

[39,40]. Specifically, zeolites find their largest relevance as acid-base catalysts, 

being used for more than 40% of the catalysed industrial processes [41], with the 

environmental and petrochemical sectors among the main users [29]. 

 

1.2 Zeolite MFI  

Zeolite Socony Mobil five or ZSM-5 (MFI framework type) is a synthetic zeolite 

firstly reported by Flanigen and collaborators, which was classified as ñhydrophobic 

and organophilicò that ñselectively adsorbs organic molecules over waterò [42]. 

These authors observed that ZSM-5 can adsorb and remove small organic 

compounds, such as methanol, phenol and hexane, from water. They also remarked 

the higher thermal stability of this new material compared to carbon-based 

adsorbents, and larger resistance against acid and oxidative regeneration [42]. The 

applications of zeolite ZSM-5 have expanded beyond water purification to become 

one of the most used zeolites in the industry, fundamentally in the petrochemical 

sector, where its acid properties are very efficient to catalyse alkylation, 

isomerization, amination, hydrocracking, aromatization and disproportionation 

processes [41,43]. In addition, if the counter-ion is a transition metal instead of a 

proton, zeolite ZSM-5 can be used as a catalyst for redox reactions, such as the 

nitrous oxide decomposition, or as a support of metal nanoparticles with 

photochemical properties [35,44]. 

The pure-silica zeolite MFI (Si/Al = Ð) exhibits a monoclinic symmetry (P21/n) at 

temperatures below the range 317-325 K. However, at higher temperatures, the 

material experiences a phase transition, which increases the symmetry of the 
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structure from monoclinic to orthorhombic (Pnma). The increase of the aluminium 

content within the framework decreases the temperature of the phase transition [45]. 

 

Figure 1-6. (a) SBU of the MFI framework, labelled 5-1. (b) Pentasil unit. (c) Chain 

of pentasil units along the c direction, a single pentasil unit is highlighted in blue. 

(d) Pentasil layer formed by replication of the chain on the ac plane. (e) Pentasil 

layer formed by replication of the chain on the bc plane. The pentasil chain is 

enclosed by red boxes. (f) Representation of the MFI framework on the ab plane, the 

ac and bc pentasil layers are enclosed by blue boxes. 

 

The unit cell of zeolite MFI contains 96 T-sites, of which the number of non-

equivalent positions are 24 in the monoclinic structure and 12 in the orthorhombic 

structure. The SBU of the MFI framework consists of 6 T-sites (labelled 5-1), which 

forms pentasil units (see Figure 1-6). These units repeat along the c or [001] 

direction forming a chain, which is replicated along the a and b directions 




























































































































































































































































































































































