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Abstract

Abstract

In this thesis, we have examined the layered morphaddgeolite MFI and the
titanium substituion of zeolite LTA by using a combination of density functional
theory and interatomic potentinhsed calculationdayered MFlzeolite allows a
straightforward hierarchization of the pore system which accelerates mass transfer
and increases its lifetime as a catalyge have performed theoretical study of the
structural features of the pusdica and aluminiursubstituted MFhanosheets. We
have analysed the effects of aluminium substitution on the vibrational properties of
silanols as well as the features of protons as coimter The formation of the two
dimensional system did not lead to apprecial¢odions within theframework,
whilst dehydration of aluminiursubstituted silanols is both kinetic and
thermodynamically favoed In addition, we have analysed the strengtBr@insted

acid (BA) siteslocated at the internal and external surfaces of zeolite byFI
adsorbingtrimethylphosphine oxide (TMPQO) as a probe mole@urid correlating
structural information to experimenfdP NMR data We have been able to provide

a possible explanation to thariable strength of thBA sitesprobed by TMPCbhy

consideringhe basicity of the centres sharing the acid proton

In addition, we have examineaetpossiblerole of theLewis acid sites located at the
external surface of zeolite MRb catalyse the tautomerization phenolictype
compounds The tautomerizatiorhas been conceived as a thrstep process
involving two protons transfers between the molecule and the zeolite, and the
rotation of a dihedral angle. The energy bamiezach step ibbwerthan 55 kJ/mol,
suggesting that this transformation is easily asibés under standard reaction

conditions.



Abstract

Finally, we havestudiedthe structural, electronic and mechanical properties of the
puresilica zeolite LTA, as well as the single and double titarguhbstituted
material. The energetics of the titanium distribatwithin the zeolite framework
suggest thathe inclusion of a second titanium atom with configurationgSThp-Ti,
Ti-(Si)-Ti and T#(Si)-Ti is more favourable than the mosabstitution. The
energetics of the dissociation of water on these Lew sites indicate that this
process is only favoured when two titanium atoms form arhembered ring (2MR)
sharingboth hydroxy groups, F(OH)>-Ti, showing that the presence of water may

tune the distribution of titanium atoms within the framework ofizedlTA.
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Chapter 1  Introduction

1.1 Zeolitesi General Overview

1.1.1 Zeolite $ructure

Zeolites are aluminosilicate materials with defined crystalline structure and
micropore architectureTetrahedral T® sites (in short Tsites) are the primary
building unitsof zeolites(seeFigure 1-1a), which arelinked through the oxygen
atoms atheir cornes forming secondary building units (SBUJhe SBUsare non
chiral structures thatonsist of up to 16 -Bites. One SBlr a combination of SBUs
formsthe entire framework afnyzeolite Figure 1-1 shows the smallest and biggest
reported SBUs, which involve 3 ard 16 T-sites and are labelle8 and 8-8,
respectively For instance,ite SBJ 3 forms theJST framework type whilsMER
type is one of the few frameworks made &B SBUs (seesection 1.1.2for an

explanation regarding these thHlegteracronyms)1].
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MER framework

JST framework

Figure 1-1. (a) Tetrahedral site;hie red and orange balls represent oxygenTand
atoms, respectivelyb) Smallest secondary building unit (SBU), labele¢t) Unit

cell of JSTframeworktype (space group &) which is formed by the repetition of

SBU 3. (d) BiggestSBU, labelled8-8. (e) Unit cell ofMER frameworktype (space
group'@j & a &) which is formed by the repetition of $B3-8. From (b) to (e) the
oxygen atoms are not represented and the radius of the T atoms reduced for an
enhanced view.

1.1.2Framework Type Codes

At present the International Zeolite Association (IZA) recognizes 232 unique
frameworks, either from natural or synthetic origins, tmehch of thenis assigned
aframework type code (FTQ9r identification(seeFigure 1-2). The FTC is a three
letter acronym that identifies each distinctive zeolite framework and is derived from
thename of thenaterialused to determinghestructure. For instance, AR@&fersto
themineralAfghanite[2] and MTN designates the synthetic zeolite Z38{Zeolite
SoconyMobil i Thirty Nine) [3]. The last and 232tRTC to be approved by the
Structure Commission of the 1Zi8 denoted by ETLand corresponds the material

H-EU-12[4].
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Figure 1-2. Approved Framework Type Codes (FTC) by the Structure Commission
of the International Zeolite Association (IZA) (Reproduced from IZA official
webpagehttp://america.izastructure.org/IZASC/ft.php.

1.1.3Zeolite Synthesis andComposition

Zeolites are commonlgynthesized from an aqueousolutioncontainingthe source
of framework atomsa mineralizing agent and sructure directing agent (SDA)
Hydroxyl or fluoride anions are usually usedtlasmineralizing agents, whilst the
SDA can be an inorganalkaline cationor a chargearganic moleculesuch asa
guaternary ammoniuation.During thereaction thesolutiontransforms into a gel
like system under temperatures that range frontd@00°C [51 7]. Thezeolitepore
systemis generatedfter removinghe organc SDAs from the framework usually

by calcination or chemical transformatiaonserving the crystalline structure of the
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material The first reportregardingthe use of organic SDAs &ynthesize zeolites

was presented by Barrer and Denny, venaployed tetaalkylamonium cations to
prepare faujasisg(FAU) and sodalite(SOD)[8]. Since thena wide range of novel
SDAs has beedevel@edto finely tunethe zeolitetopology and pore architecture

[9]. There exist effective experimental and computational techniques that allow to
monitor andanalyse the formation and growth of zeolite crystals, such as atomic
force microscopy (AFM), highesolution scanning electron microscopy (HRSEM)

and MonteCarlo simulation$10i 12].

The main components of zeolites are oxygen and silicon atoms, though other
elements carpartially replace the silicon at the centre of the tetrahedihas
substitutionenhancegitherthe structurestablity or thechemicalproperties of the
zeolite for a specific applicatio®luminium is the most common substituent in
zeolites(seeFigure 1-3a andb), with Si/Al ratios that can bas low as 113]. The
oxygen and silicon atoms have a formal charge @n? 4+ respectively, thusice
aluminium or any other element with formal charge rgplaces the silicqna
negative charge isreated witin the structureTogether with the pore system of
zeolites,the presence dhis negative charge provides remarkaigb@ortunitiesto
usezeolites as solid acids, i@xchange matrices and redox catalysts.example,
zeolites behave &rensted acidif a proton H* is thecounterion (seeFigure 1-3c).
Alternatively, aluminiumsubstituted zeolites shoviiewis acidity and redox
propertiesif a metal cation is chosen instetwl balance the electric char@see

Figure 1-3d ande) [14,15]
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o H" a b
o @ (b)
O si*
O A

o M-
o M

Figure 1-3. Representation of the substitution of silicon by aluminium atoms in (a)
one and (b) two -Bitesof a zeolite Counterions that balance the spare negative
charge after the substitution: (c) proton, (d) metal catidhavid (e) metal cation
M2+,

Aluminium is not the onlyelementthat replacesilicon in zeolites.For instance,ti
has been reportetie substitution of silicon by Ba, In, Sc, FeZr, Ti, Ge and Sn
[16i 24]. The substitution of silicon by other 4harged atondirectly provides
Lewis acid character to the zeohkt&hout the need of extrilameworkcations For
example it has been reported thdie Lewis acid sites of tisubstituted zeolites

catalyse the isomerization of cellulosic suda#s25]

The proportionof T3 elementsoccupying framework positionisi relation to the
total amount of silicorcan be controlled bthe typeof SDA. For example, high
silica zeolites are obtained whanorganic SDAIs used, as opposedaninorganic
SDA, which generates structures with low Si/fatios[26,27] However, the seof
seeds inthe synthesis process known to favourhigh-silica zeolitesevenin the

presence ohorganic SDA49].
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1.1.4 Micropore System of 2olites
Thenotableapplications of zeolites as molecular sieves, adsorbents and tataéys
based on their micropore syster{f83,29] The micropores of each type of

framework are characterized their diameter, shape ammthanneldimensions.

The minimum number of interlinked-dites that surround the popeovides an
indication of the micropore diametefhe micropore is referred then as @an
membered ringnMR), wheren is thenumber of Fsitesformingthe pore The most
frequent dtameters are 8MR, 10MR and 12MRsi®wn inFigure 1-4. The diameter

of the pores representedrigure 1-4, measured as thistance betweetheoxygen
atoms diametrically opposed, are 7.00, 9.23 and ®18MR, 10MR and 12MR,
respectively.However,these values can change from one framework to another
depending on structural distortions. Otlhess commorpore diameters are 7MR
(MEI), 9MR (CHI), 11MR (JSR), 14MR (AET), 15MR (IRY), 16MR (IFO), 18MR
(ETR), 20MR (CLO) and 21MR (EWT). The micropore caso be straight, as

shown inFigure 1-4d, or sinusoidalasobserved in zeolitesf lower symmetry.

B&,_,\r

.I S - sfréight pore (EON)

Figure 1-4. Repesentation of the most frequeilitepore diametex (a) 8MR, (b)
10MR and (c) 12MR(d) Representation of the straight pore of H@N type.
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The pore system of zeolites is also characterized byntimber of Cartesian
directions or dimensiorthat a nolecule carspan within the channelBor instance,
amolecule may be only able ttiffusealong a poreiinableto move to another pore

at an intersection In this case, the pore system of the zeolitdeBned asone
dimensional(see Figure 1-5a). Some examples of framework types with -one
dimensional channels are AWW and ABW. The next level in this classification
comprisesn thetwo-dimensionapore system. Here, the molecual@mowe in the
two-dimensional planéormedby a network of intefinked pores as represented in
Figure 1-5b. TheUEI and ZONframeworktypes are examples of zeolites with two
dimensional channels. Finally, in ttleeedimensionaporesystema moleculecan
cover the entire volume of the crystal by moving through the pores, as shown in
Figure 1-5c. The MFI and LTA framework types, which have been extensively

studied in the presetttesis contain threelimensional channels.

(a) A ) (b) (c)

clnlcinieinle ofdle ,,‘1/ o C
%
(] ) ) ( ( »
DRI 2IN/AIN78
one-dimensional two-dimensional three-dimensional
pore system pore system pore system

Figure 1-5. Schematic representation of (a) ahmensional, (b) twalimensional
and (c) threalimensionakeolitepore systems

1.1.5Applications
Zeolites are widely recognised for their extraordinanyperties as solid acig30i
32], sizeselective molecular sievd28,33], and iorexchange matricef34i1 36].

Thus these materialbave importantpractical applicationsranging from water
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treatmen{37] and membranes for gas permeaf@8] to fuel and solar cell materials
[39,40] Specifically, zeolites find their largest relevance as-begk catalys,
being usedor more than 4% of the catalysed industrial proces$£s], with the

environmental and petrochemical sectors among the main[29¢rs

1.2 Zeolite MFI

Zeolite SoconyMobil five or ZSM-5 (MFI framework typ¢ is a synthetic zeokt

firstly reported byFlanigen and collaboratgr&hich was classifieddsh y dr ophobi ¢
and or g athmabfipsheilleicctoi vel y adid ersb so voMRlg awnaitce ri
These authors observed that ZSMcan adsorb and remove small organic
compounds, such as methanol, phenol and hexane, from water. Thegnadsked

the higher thermal stability of this new material compared to catizsed
adsorbents, anldrgerresistage againsacid and oxidative regeneratipd2]. The

applicatiors of zeoliteZSM-5 haveexpandedeyond water purification to become

one of the most used zeolites in the indystppdamentally in the petrochemical

sector where its acid properties are verfficient to catalyse alkylation
isomerization, aminationhydrocracking, aromatization and disproportionation
processe$41,43] In addition, if the counteion is a transition metal instead of a

proton, zeolite ZSWb can be used ascaatalystfor redox reactions, such as the

nitrous oxide decomposition, or as a support of metal nanoparticles with

photochemical propertig85,44]

The puresilica zeoliteMFI (Si/Al = D) exhibits a monoclinic symmeti?2:/n) at
temperatures below the ran&7-325 K However, & higher temperatures, the

material experiences a phase transition, which increases the symmetry of the
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structure from monoclinic torthorhombic Pnmg. The increase of the aluminium

contentwithin the framework decreasteetemperaturef the phase transitidd5].

Figure 1-6. (a) SBU of theMFI framework labelled5-1. (b) Pentasil unit. (c) Chain
of pentasil units along thedirection, a single pentasil unit is highlighted in blue.
(d) Pentasil lagr formed by replication of the chain on theplane. (e) Pentasil
layer formed by replication of the chain on the plane. The pentasil chain is
enclosed by red boxes. (f) Representation oMRéframework on th@bplane, the
ac andbc pentasil layes are enclosed by blue boxes.

The unit cell of zeolite MFI contains 96-sites of which the number ofon
equivalentpositions are 24n the monoclinic structure and 12 the orthorhombic
structureThe SBJ of theMFI frameworkconsistf 6 T-sites(labelled5-1), which
forms pentasil units (seé&igure 1-6). These units repeat along tkeor [001]

direction forming a chain, which is remated along thea and b directions
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