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An Optimized Framework for Quantitative Magnetization
Transfer Imaging of the Cervical Spinal Cord In Vivo
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Purpose: To develop a framework to fully characterize quanti-

tative magnetization transfer indices in the human cervical

cord in vivo within a clinically feasible time.

Methods: A dedicated spinal cord imaging protocol for quanti-

tative magnetization transfer was developed using a reduced

field-of-view approach with echo planar imaging (EPI) readout.

Sequence parameters were optimized based in the Cramer-

Rao-lower bound. Quantitative model parameters (i.e., bound

pool fraction, free and bound pool transverse relaxation times

[TF
2, TB

2 ], and forward exchange rate [kFB]) were estimated

implementing a numerical model capable of dealing with the

novelties of the sequence adopted. The framework was tested

on five healthy subjects.

Results: Cramer-Rao-lower bound minimization produces opti-

mal sampling schemes without requiring the establishment of a

steady-state MTeffect. The proposed framework allows quantita-

tive voxel-wise estimation of model parameters at the resolution

typically used for spinal cord imaging (i.e. 0.75�0.75�5 mm3),

with a protocol duration of �35 min. Quantitative magnetization

transfer parametric maps agree with literature values. Whole-cord
mean values are: bound pool fraction¼0.11(60.01), TF

2 ¼
46.5(61.6) ms, TB

2 ¼11.0(60.2) ms, and kFB¼1.95(60.06) Hz.

Protocol optimization has a beneficial effect on reproducibility,
especially for TB

2 and kFB.

Conclusion: The framework developed enables robust char-
acterization of spinal cord microstructure in vivo using qMT.
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INTRODUCTION

Magnetization transfer (MT) refers to the process through
which pools of hydrogen nuclei characterized by differ-
ent molecular environments exchange magnetization.
Since its discovery (1), the MT effect has been exploited
in MRI as an indirect method for investigating the mac-
romolecular component of biological tissues (e.g., myelin
in the central nervous system [CNS]).

Protons attached to macromolecules cannot be probed
using conventional MRI because of their ultrashort trans-
verse relaxation time (on the order of microseconds). On
the other hand, these protons are sensitive to off-resonance
irradiation because of their broad range of resonance fre-
quencies. Selective saturation of such protons (with off-
resonance pulses) will produce the so-called MT effect, the
transfer of saturation via chemical exchange, and dipole–
dipole interactions between the bulk of MR visible free
water protons and macromolecular protons, resulting in a
signal intensity attenuation in the acquired images.

Typically, the MT effect is measured by the magneti-
zation transfer ratio (MTR), obtained by intensity
normalization of an MT-weighted image with a non-
saturated one (2). Quantitative magnetization transfer
(qMT) imaging approaches have been also developed
to take into account experimental and biological
parameters involved in the MT effect through explicit
mathematical modelling (3).
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qMT relies on fitting an appropriate model of the

acquired signal to a series of MT-weighted images, to

obtain a set of indices related to specific biological

features. Various models of the MT-weighted signal have

been proposed over the years (4–6). While they make

use of different approximations to derive analytical

expressions and perform differently in relation to noise

level and acquisition protocol (7), they can be presented

under a unified view by recalling the tissue model they

are based on and the spectrum of information they

provide.
Most qMT models are based on a two-pool description

of biological tissues consisting of a pool of mobile water

protons (i.e., free pool F) and a pool of protons that are

bound to macromolecules (i.e., bound pool B). Both

pools are characterized by their own relaxation times T1

and T2 and are thought to exchange magnetization. qMT

techniques require the knowledge of the observed longi-

tudinal relaxation time, Tobs
1 , to estimate properties of

the two pools. These include each pool’s transverse

relaxation time (TF;B
2 ), the rate of magnetization exchange

from F to B (kFB), and the relative size of the bound pool

or bound pool fraction (BPF). These parameters have

proven valuable in assessing myelin integrity in the

central nervous system, enabling sensitive examination

of macromolecular tissue content without confounds,

such as non-physiological parameters and sequence

design specifications, compared to the MTR (8–11).
The spinal cord is a primary location of demyelination

and axonal loss in a variety of diseases, such as multiple

sclerosis (12–14), amyotrophic lateral sclerosis (15), spinal

cord injury (16), and neuromyelitis optica (17). Post

mortem studies have demonstrated focal and diffuse

abnormalities in cord white matter and grey matter in

these conditions (12,14,18–20). The development of MRI

methods to sensitively look at myelin changes in the spinal

cord is therefore an urgent need to provide better explana-

tion of clinical symptoms, to improve the accuracy of cur-

rent prognosis, and to enable the assessment of emerging

neuroprotective or reparative treatments. Hence, qMT

methods are of particular interest for spinal cord imaging,

although so far the technique has mainly been applied in

the brain (21–25).
The translation to the spinal cord has proven challeng-

ing for several reasons: the demands of high-resolution

(to depict spinal cord structure) and, at the same time,

adequate signal-to-noise ratio (SNR) images to robustly

carry out quantitative model fitting result in prohibitive

qMT protocol lengths, unfeasible in clinical practice.

Furthermore, quantitative MRI of the spinal cord is hin-

dered by high susceptibility to motion artefacts and

physiological noise (26,27).
There are only a few studies that have carried out

qMT examinations in the spinal cord in vivo (28–31),

where different solutions (e.g., inversion recovery based

qMT or single-point qMT) have been considered in the

attempt to translate qMT methods from the brain to the

spinal cord. These approaches are very diverse in nature,

rely on several assumptions, or have as yet only been

conducted in form of preliminary feasibility studies. As

a result, qMT model parameter characterization in the

spinal cord is fragmentary, and the agreement between

results in literature is only partial.
In this work, we propose a novel framework to foster the

implementation of qMT in the spinal cord in vivo, tackling

the whole chain, from pulse sequence design to signal

modelling and optimization of the sampling scheme, to

enable robust assessment of qMT model parameters in

acceptable scan times. In particular, an MT-weighted

reduced field of view (rFOV) echo-planar imaging (EPI)

sequence is combined with a dedicated model for unbiased

parameter estimation. The sampling scheme is optimized

via Cramer-Rao-lower-bounds (CRLBs) minimization, and

the reproducibility of qMT metrics is demonstrated in a

cohort of healthy volunteers at the cervical level. This

framework will easily adapt to other situations where

rFOV may be beneficial for assessing indices sensitive to

macromolecular components of tissues.

METHODS

The novel framework, consisting of sequence and signal

model developments and protocol optimization, is

described below and tested through simulations and in

vivo experiments.

Sequence Design

MT-weighted images were acquired using an MT-prepared

zonally magnified oblique multi-slice EPI (ZOOM-EPI)

sequence (32), implemented without using outer volume

suppression pulses (33).
ZOOM-EPI (34,35) allows multi-slice imaging of small

structures using a single-shot EPI readout. Slices are

acquired in an interleaved order, allowing a time inter-

val between contiguous slice acquisition (TR) long

enough for longitudinal magnetization to recover fol-

lowing each non-collinear excitation/refocusing spin-

echo pulse pair. If Ns is the total number of prescribed

slices, this results in Np groups (i.e., packages) of Nspp¼
Ns/Np maximally spaced out slices acquired every TR

(Figs. 1a,b).
MT sensitization is achieved via a train of off-resonance

radiofrequency (RF) pulses preceding each package acqui-

sition. In this configuration, Nspp slices experience the

same MT pulse train as they are acquired sequentially fol-

lowing a single train (Fig. 1c). As a consequence, the delay

td between the end of the off-resonance saturation and

each slice excitation is dependent on the slice order of the

package. To homogenize MT-weighting across slices, the

acquisition is repeated Nspp times, reshuffling the slice

order within each package and averaging the slice signal

obtained from each sequence repetition (Fig. 1c). By doing

so, slices are reconstructed with homogeneous MT-

weighting and benefit from increased SNR following sig-

nal averaging. The same shuffling mechanism is used for

the acquisition of the non-MT-weighted image used for

signal normalization before model fitting, therefore com-

pensating for any potential slice-dependent off-resonance

effect induced by the excitation/refocusing of neighboring

slices. Acquisition parameters are given in the “In Vivo

Imaging” section.
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Signal Model

Traditional MT acquisitions in the steady-state regime
would require the use of long trains of MT pulses (>2 s)
(3–6). To exploit the separation of MT preparation from
image acquisition for time-efficient protocols, trains of
pulses have to be shortened. As a consequence, a steady-
state MT saturation cannot be established.

The numerical model based on the coupled Bloch equa-
tions (36) can be adapted to predict the signal acquired with
the sequence described above and estimate fundamental
model parameters, accounting for the non-steady-state
condition.

The model integrates the two-pool Bloch equations

describing the evolution of the three components (x, y, and

z) of the magnetization of both pools undergoing exchange

and saturation. Given the extremely short TB
2 , transverse

components of bound pool magnetization can be discarded.

Using the same formalism adopted in (37), two-pool Bloch

equations can be given in the form of homogeneous differ-

ential equations, with the following matrix representation:

dMðtÞ
dt

¼ LðtÞMðtÞ; [1]

where M(t)¼ ½1=2;MA
x ;M

A
y ;M

A
z ;M

B
z �

T, and

FIG. 1. Portion of spinal cord
imaged in the sagittal view (a), with
details of the prescribed slices with

ZOOM-EPI (b). Outlined in bold (1,
4, 7, 10) are slices belonging to the

same package, that are acquired
within the same TR. Slice order
within a package is shuffled over

different sequence repetitions (c),
resulting in different delays td
between train of pulses and slice
excitation. If a number of sequence
repetitions that is a multiple of Nspp

(Nspp¼Ns/Np, Ns¼number of sli-
ces, Np¼number of packages) is

prescribed, images can be recon-
structed from the average of all
slice order configurations, resulting

in a homogeneous weighting
among different slices. Sequence
parameters (N, B1, t, Dt, td, and off-

set frequency D) are accounted for
in a quantitative setting by an ade-

quate modelling procedure that
iteratively solves the two-pool
model Bloch equation (Eq. [2])

through the exponential matrix for-
malism, using a constant piecewise

approximation (discretization step
h¼100ms) for the time-dependent
function v1(t) describing the off-

resonance saturation (d).
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Above, D is the frequency offset of the MT pulse (in

Hz), v1(t)¼ gB1(t) the time-dependent amplitude of the

MT pulse expressed (in rad s�1), characterized by peak

amplitude B1 (in T) and shape function s(t) (i.e.,

B1(t)¼B1s(t)), RF
1 and RB

1 the longitudinal relaxation rates

of the two pools, TF
2 the transverse relaxation time of F,

RB
RF the rate of saturation of B (proportional to the super-

Lorentzian absorption line shape (38), dependent on TB
2 ),

kFB the forward exchange rate, and BPF is:

BPF ¼ MB
0

MF
0 þMB

0

; [3]

where MF
0 and MB

0 are the equilibrium magnetizations of

the two pools.
The model assumes full relaxation between shots of

MT-prepared ZOOM-EPI. Within each package, magneti-

zation evolution is predicted by iteratively solving Eq.

[2] after replacing the time continuous function v1(t)

with an appropriate piecewise approximation, containing

the discretized version of the train of MT pulses used

(discretization step h¼100ms) and free precession peri-

ods (i.e., when v1(t)¼0) of length td according to the

position in the package of the slice currently being

acquired, as outlined in Figure 1d.
In addition to the frequency offset D, the model explic-

itly accounts for pulse duration t, pulse peak amplitude

B1 (instead of coupling them into the effective flip angle

u), inter-pulse gap Dt, and number of pulses in the train

N, which define v1(t) over the time period considered in

the numerical integration. It also accounts for different

delays td resulting from signal averaging while shuffling

slices over sequence repetitions.
The model can be fitted to a set of MT-weighted

images to estimate BPF, TF
2, TB

2 , and kFB, in combination

with a separate measurement of the longitudinal relaxa-

tion time Tobs
1 .

CRLB Optimization

The CRLB theory (39) is applied to derive combinations

of sequence parameters ps¼ [B1, D, t, Dt, N] that maxi-

mize the precision of estimated model parameters

pm¼ [BPF, TF
2, TB

2 , kFB]. The optimized sampling scheme

is defined as the set of combinations of ps that mini-

mizes the mean weighted sum of pm CRLBs, for a total of

K measurements and is obtained via minimization of the

function:

Vðps;1; . . . ;ps;K ;pmÞ ¼
XM
i¼1

wi
½F�1�ii
ðpiÞ2

¼ w1
½F�1�11

ðBPFÞ2

þw2
½F�1�22

ðTF
2 Þ

2 þw3
½F�1�33

ðTB
2 Þ

2 þw4
½F�1�44

ðkFBÞ2;
[4]

where [F�1]ii represents the i-th diagonal element of the

inverse of the Fisher matrix F, pi is the i-th element of

the vector pm, and M the total number of model parame-

ters. The wi are weights are used to select which model

parameter to include in V, and therefore assume values

wi¼ [0,1].
Knowledge of pm is needed in Eq. [4] to solve for optimal

ps. To account for heterogeneity in biological tissue, in

practice V in Eq. [4] is averaged over NT¼ 6 different plau-

sible tissue configurations pm,n (with N¼ 1,. . .,NT), taken

from previous published works (22,37,40,41).
Optimal sequence parameters are obtained via minimi-

zation of the quantity Vðps;1; . . . ;ps;K ;pm;1; . . . ;pm;NT
Þ, car-

ried out using a self-organizing migratory algorithm

(SOMA) (42), as in Alexander (43).
To reduce the risk of incurring local minima, TF

2 is

excluded from Eq. [4], by setting w¼ [1 0 1 1]. Previous

studies have shown that this parameter is characterized by

larger variability compared to other qMT parameters (7,36).

However, it does not directly reflect properties of the mac-

romolecular pool and it can be estimated separately with

approaches other than qMT, therefore it can be regarded as

of minor importance compared to BPF, TB
2 , and kFB.

Simultaneous optimization of all ps could be impaired

by the presence of local minima, given the model used

(that requires numerical computation). We opted for

optimizing only for (D, B1) pairs, similar to other studies

(44–46). The remaining sequence parameters (t, Dt, N)

are selected with a heuristic approach by comparing a

posteriori values of V for optimizations at several combi-

nations of (t, Dt, N). We adopted the following approach:

(1) the effect of train length is investigated optimizing

for (D, B1) at different N¼ 10, 20, 30, 40, 50, 60 with

fixed tnDt¼ 20 msn20 ms; and (2) once an optimal train

length Nopt is determined, the effects of t and Dt are sep-

arately tested by running optimization of (D, B1) at differ-

ent values of t, with fixed Dt¼20 ms, and vice versa (fix

t¼20 ms), to select topt and Dtopt. The following values

were tested: t¼ 10, 15, 20, 30, 40 ms, Dt¼ 1, 10, 20, 40,

100 ms and (3) final optimization of (D, B1) is carried out

with (t, Dt, N)¼ (topt, Dtopt, Nopt).
All optimizations were carried out with K¼ 14 sam-

pling points, to produce a protocol consisting of 15
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image acquisitions (including one non-MT-weighted
image), similar to protocols used in the brain. However,
the approach can be generalized to a smaller/larger value
of K to allow for shorter/longer scan times. During opti-
mization, B1 was constrained to be below the maximum
peak amplitude achievable (13 mT) and simultaneously to
avoid SAR deposition above 75% of the maximum
allowed value. Frequency offset (D) was instead allowed
to vary between 1 kHz and 100 kHz. All optimizations
were carried out assuming SNR¼ 25 in the non-MT-
weighted image, which is plausible for the echo time
and resolution used here, given previously reported SNR
values with the same readout and instrumentation (47).

To provide a comparison, a non-optimized protocol,
referred to throughout this manuscript as the “uniform
protocol,” was also devised. The uniform protocol is
designed to resemble standard qMT protocols (21,40).
MT-weighted data points (a total of K as for the opti-
mized protocol) are equally split in two different RF
power levels (identified with two distinct B1) defined as
80% and 30% of the maximum SAR level allowed in the
optimization. At each B1 level, D are logarithmically
spaced between 400 Hz and 20 kHz (21). The same (topt,
Dtopt) pair was used for the uniform protocol, whereas to
approach the steady-state condition, which is met in
standard qMT experiments, a train of N¼ 50 pulses was
chosen, as the maximum length available for the B1,max,
t, and Dt selected. Details of the uniform and optimized
protocols are given in Table 1.

Simulations

The efficacy of optimization was tested using Monte
Carlo simulations. Synthetic qMT data sets were com-
puted using the optimized and uniform schemes of Table
1. NMC¼ 1000 realizations were generated by adding
Rician-distributed noise at different SNR levels (100, 50,
25, 18, 12).

For each signal realization, one of the NT tissue param-
eter configurations was randomly chosen and perturbed
(perturbations were sampled from normal distributions
with standard deviation of 0.02, 0.01 ms, 1ms, and 0.4 Hz
for BPF, TF

2, TB
2 , and kFB, respectively).

Simulated signals were fitted with the model
described in the “signal model” section and percentage
errors on model parameters calculated. All model param-
eters were fitted, and the same Tobs

1 used for generating
the signal was used in the fitting.

Additional simulations were carried out to investigate
the effect of errors in pulse amplitude B1 and frequency
offsets D (i.e., B0) on parameter estimates for both the
optimized and uniform protocols.

In Vivo Imaging

Five healthy volunteers (3M/2F, 27- to 40-year-old) were
scanned. One volunteer underwent repeated scans (three
times) in separate sessions, within 5 days. All volunteers
gave informed consent and the study was approved by
the local research ethics committee.

Imaging was carried out on a 3T Philips Achieva sys-
tem (Philips Healthcare, Best, the Netherlands). The full
protocol consists of both optimized and uniform qMT

acquisitions and an inversion-recovery (IR) acquisition
for Tobs

1 estimation, shared between qMT protocols.
MT data acquisition was carried out with the MT-

ZOOM-EPI sequence (see “sequence design”) with:
FOV¼ 48� 39 mm2; in-plane resolution 0.75�0.75 mm2;
Ns¼ 12 axial 5-mm thick slices centered at the C2/3 disk
level; echo time¼28 ms; partial Fourier imaging
factor¼0.6. Nspp¼ 4 slices were acquired after every off-
resonance pulse train (td¼18, 112, 206, 300 ms) result-
ing in a TR of 7786 ms and 7037 ms, and a total duration
of 23:44 min and 21:27 min for the uniform and opti-
mized protocols, respectively.

T1 estimation was carried out using an IR sequence
making use of the same ZOOM-EPI readout (and there-
fore sharing the same geometry as the MT data), as
described in (48). Magnetization recovery was sampled
at eight inversion times (TImin/Dt¼100 ms/350 ms),
same FOV, echo time, and signal averages of the MT-
weighted acquisition, TR¼ 10550 ms, for a total duration
of 15:06 min.

Before fitting, motion within modalities was corrected
slice-wise using FLIRT from FSL (49), and the spinal
cord was straightened (50), to co-register the IR and qMT
data sets to each other.

To evaluate protocol optimization in vivo, pooled his-
tograms of model parameters were created for uniform
and optimized protocols and inter-subject CVs calcu-
lated. Additionally from the repeated data set, a repro-
ducibility figure for each parameter was calculated voxel
wise. The reproducibility index of a model parameter pi,
I(pi), was defined as (51):

IðpiÞ ¼ 1� 1

2

maxðpiÞ �minðpiÞ
meanðpiÞ

� �
; [5]

where max, min, and mean are evaluated over the three
experiment repetitions. I(pi) spans from 0 to 1, where 1

Table 1
MT-Weighted Sampling Points for the Uniform and Optimal

Protocols.

Uniform Optimal

Flip Angle (�) Offset (Hz) Flip Angle (�) Offset (Hz)

601 400 378 1018
601 768 383 1031

601 1474 385 1029
601 2828 393 1311

601 5429 426 1706
601 10,420 456 2102
601 20,000 1427 13,710

1100 400 1464 1000
1100 768 1466 3250
1100 1474 1467 3517

1100 2828 1470 3348
1100 5429 1471 3283

1100 10,420 1471 3420
1100 20,000 1471 13,985

MT-weighted data points are given as effective flip angle and off-
set frequency pairs. Pulse duration and pulse gap are the same
for the two protocols (15 ms/15 ms), whereas pulse train lengths

are different (N¼50 for the uniform protocol to achieve steady-
state conditions as in previous qMT studies, N¼25 for the optimal

protocol). The MT pulse shape is sinc-Gaussian with no lobes.

In Vivo qMT of the Cervical Spinal Cord 5



indicates ideal reproducibility. Differences between opti-

mized and uniform samplings were explored using a

Kolmogorov-Smirnov (K-S) test for differences between

distributions of I(pi) over the whole cord (significance

level P< 0.05).

RESULTS

The optimization framework enables the use of non-

steady-state sequences for accurate fitting of qMT model

parameters, as shown in Figure 2. For a given configura-

tion (t, Dt), errors on fitted parameters can be made almost

independent of the length of MT saturation pulse train

(Fig. 2b) through adequate selection of sampling points,

achieved via CRLB optimization. The example given in

Figure 2b shows that a train at N¼ 20 (producing a satura-
tion of 800 ms duration) is comparable in terms of estima-
tion errors to a train at N¼60 (of 2400 ms duration). This
is in contrast to uniform sampling (Fig. 2a), showing,
instead, a strong dependency on N. As expected, errors on
fitted parameters are reduced in the optimized protocol
compared to the uniform protocol.

The length N¼ 25 was identified as the threshold at
which parameter errors cease to display dependency on
pulse train duration for the given configuration (t, Dt)
and was therefore used as the optimal length Nopt in the
subsequent experiments.

Results of the heuristic search for optimal parameters
topt and Dtopt are shown in Figures 3a,b, respectively. Indi-
vidual parameter contributions and the total cost function

FIG. 2. Percentage errors on fitted parameters obtained from Monte Carlo simulations (NMC¼1000 repetitions) for uniform sampling

(left) and optimal sampling (right) for a varying number of pulses N and fixed tnDt¼20 msn20 ms combination. Dashed lines represent
the median of error distributions, shaded areas span from the 25th to the 75th percentiles of the distributions. Model parameters consid-

ered in the optimization are shown: BPF (blue), TB
2 (orange) and kFB (green). Optimal selection of (D, B1) pairs reduces parameter errors

compared to uniform sampling and greatly mitigates the dependency of the error on the length of the train N, allowing the use of
shorter, more time-efficient saturation schemes.

FIG. 3. Heuristic search for optimal pulse duration (t) and pulse gap (Dt), at optimal train length Nopt¼25. Optimal cost function V values
for different t at fixed Dt¼20 ms, and different Dt at fixed t 5 20 ms are shown in (a) and (b), respectively. Spline interpolation between
tested configuration is added to the graph (dashed lines), to guide the choice of topt and Dtopt. The individual contribution of each

parameter to the cost function, given by the square of the theoretical CV (obtained from CRLB), is also shown for BPF (blue), TB
2

(orange), and kFB (green). Arrows indicate approximate location of minimal value of V as function of the inspected parameters.
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V show similar trends in both tests (varying t at fixed Dt,
and varying Dt at fixed t). Evidence from the combinations
tested (t, Dt) shows that optimal values for both t and Dt at
Nopt¼25 are between 15 ms and 20 ms. We therefore chose
(topt, Dtopt)¼ (15 ms, 15 ms) as it produces a train of pulses
of shorter duration.

Table 1 reports the K¼14 optimized pairs (D, B1)
selected by CRLB minimization with topt, Dtopt, Nopt¼15
ms, 15 ms, 25 together with those defined through uniform
sampling with tuni, Dtuni, Nuni¼ 15 ms, 15 ms, 50. Opti-
mized sampling included points at high B1 values, close to
the maximum allowed (�12mT producing an effective flip
angle umax¼ 1480 �), and low B1 values. Various frequency

offsets are selected, between 1 kHz and �2 kHz, as well as
at higher values (i.e., 13–14 kHz).

Results from Monte Carlo simulations are shown in Fig-
ure 4 for optimized and uniform protocols. CRLB minimi-
zation is reflected by a reduction in the variance of
parameter errors in simulations, which is consistent at dif-
ferent SNR levels, and becomes more pronounced at lower
SNR. Simulations show that improvements are expected
for all the model parameters included in the optimization
(BPF, TB

2 , and kFB), with a stronger effect on the exchange
rate kFB. TF

2 is found more precisely estimated in the
uniform protocol than the optimized protocols. However,
its inclusion in a further optimization does not improve

FIG. 4. Percentage errors on fitted parameters obtained from Monte Carlo simulations for uniform (unfilled boxplots) and optimal (filled
boxplots) protocols at different SNR levels. The optimal protocol produces unbiased and more precise estimates for all the parameters
considered: BPF (blue), TB

2 (orange), and kFB (green). Improvements are consistent at every SNR level, including realistic scenarios for

spinal cord imaging (SNR<25). Estimation of TF
2 is on the other hand more precise for the uniform protocol.

FIG. 5. Spinal cord quantitative maps in

an example slice. qMT parameter maps
are shown in (a) both for uniform (top
row) and optimized (bottom row) proto-

cols, together with the shared T1 maps
estimated from the Inversion Recovery

protocol. For the same slice, reproduc-
ibility indices I of model parameters are
shown in (b). Reproducibility index I for

a given parameter p is calculated from
the three repeated acquisition using Eq.

[5] and ranges between [0,1] (the
higher, the more reproducible the met-
ric is). More examples of qMT parame-

ter maps and reproducibility indices I
are given in Supporting Figures S5 and
S6.
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estimation of the remaining model parameters when com-
pared with the optimized protocol proposed here (Sup-
porting Fig. S4).

Optimized and uniform protocols show a similar
dependency on B1 errors. On the other hand, the opti-
mized protocol appears more robust to B0 errors com-
pared to the uniform one, with distributions of
parameters errors within the range (�10%,þ 10%) for
BPF, TB

2 , and kFB, for B0 variations up to 6 50 Hz (Sup-
porting Fig. S3).

Figure 5a shows parametric maps for both the uniform
and optimized protocols for all model parameters from
an example slice (more example maps for different

subjects are shown in Supporting Fig. S5). Improved spa-
tial homogeneity is visible in kFB and TB

2 maps estimated
from the optimized protocol. On the contrary, TF

2 appears
smoother when estimated from uniform sampling. Fur-
thermore, systematic differences can be noticed between
uniform and optimized protocol maps. TB

2 seems to be
underestimated in the uniform protocol, confirming the
trend seen in simulations shown in Figure 4 at decreas-
ing SNR.

Table 2 shows mean and standard deviation for qMT
model parameters and Tobs

1 for each subject, the inter-
subject CV of means, and reproducibility indices calcu-
lated voxel wise for the repeated scan over the whole

Table 2
qMT Model Parameters Estimated in the Cohort of Five Subjects for Uniform and Optimized Protocols

Subject Protocol

Parameters

BPF (n.u.) TF
2 (ms) TB

2 (ms) kFB (s�1) Tobs
1 (s)

1 unif 0.12 (0.04) 38.7 (26.9) 11.5 (3.0) 2.71 (1.54) 1.11 (0.10)
opt 0.12 (0.04) 45.1 (27.0) 11.1 (1.6) 1.88 (0.48)

Iuniform 0.74 (0.17) 0.66 (0.23)a 0.83 (0.11) 0.57 (0.27) 0.94 (0.05)

Ioptimized 0.74 (0.16) 0.62 (0.23) 0.87 (0.13)a 0.81 (0.20)a

2 unif 0.11 (0.03) 38.3 (22.0) 10.7 (2.5) 2.41 (1.25) 1.13 (0.12)

opt 0.11 (0.04) 46.7 (21.3) 11.3 (1.9) 1.95 (0.66)
3 unif 0.13 (0.05) 36.7 (21.0) 11.1 (2.5) 2.20 (1.30) 1.15 (0.10)

opt 0.12 (0.05) 44.6 (27.2) 10.6 (1.4) 2.04 (0.75)

4 unif 0.10 (0.03) 46.6 (26.0) 9.9 (2.3) 2.50 (1.17) 1.14 (0.10)
opt 0.10 (0.03) 49.1 (21.9) 11.0 (1.0) 1.90 (0.52)

5 unif 0.12 (0.04) 43.0 (28.8) 10.4 (2.6) 2.56 (1.38) 1.14 (0.16)

opt 0.11 (0.03) 46.9 (25.9) 11.1 (1.7) 1.99 (0.53)

Mean (SD) unif 0.12 (0.01) 40.7 (3.6) 10.7 (0.6) 2.47 (0.17) 1.13 (0.01)

opt 0.11 (0.01) 46.5 (1.6) 11.0 (0.2) 1.95 (0.06)
CVintersubj (%) unif 7.37 8.93 5.27 6.78 1.03

opt 7.31 3.36 2.14 2.87

Whole cord mean and standard deviation (in parenthesis) are reported. Means and standard deviations of the reproducibility index, calculated
using Eq. [5], are also shown for Subject 1.
aRefers to significantly improved reproducibility as measured by the Kolmogorov-Smirnov test (P-value<0.05) on distributions of I over
the whole cord for either the uniform or optimal protocol when compared to one another. Inter-subject mean and CV are given at the

bottom.

FIG. 6. Pooled histograms of model
parameters over the cohort of five sub-

jects for uniform (red distributions) and
optimal (black distributions). Protocol
optimization produces narrower distribu-

tions for TB
2 and kFB, confirming evidence

from the single subject reproducibility

study.
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upper cord (levels C1–C4). The effect of the protocol

optimization procedure can be straightforwardly appreci-
ated by comparing the standard deviation over the whole

cord of parameter estimates, which are substantially

reduced for TB
2 and kFB in each subject, as shown by

Table 2. Reproducibility indices are shown as parametric

maps in Figure 5b, for the same example slice as the
model parameter maps in Figure 5a (reproducibility indi-

ces over the whole cervical cord are shown in Supporting

Fig. S6). The Kolmogorov-Smirnov test confirmed that TB
2

and kFB were significantly more reproducible for the opti-

mized protocol compared to the uniform protocol
(P<<0.05). No difference was detected for BPF reproduc-

ibility. TF
2, although not included in the optimization,

showed a statistically significant higher reproducibility

(P<<0.05) when using uniform sampling. Figure 6

shows distributions of model parameters for uniform and

optimized protocols, pooled among subjects, confirming
findings provided by the single-subject reproducibility

test.

DISCUSSION

We have developed a framework for qMT experiments in
vivo in the cervical spinal cord that minimizes the num-

ber of assumptions in the analysis. The major challenges

limiting spinal cord qMT applications to date include

the need for high-resolution data to depict spinal cord in

detail, the acquisition of enough data points to accu-

rately and reproducibly estimate all the model parame-
ters (BPF, TF

2, TB
2 , and kFB) and Tobs

1 , and the need to

keep the overall protocol duration within clinically

acceptable limits. The framework we propose allows

these challenges to be tackled with higher flexibility

than solutions that have been investigated so far.
Spinal cord coverage and in-plane resolution needs are

addressed by the use of the ZOOM-EPI readout, which

has previously been successfully applied for spinal cord

(34,52), also in combination with advanced models

(47,53). Time-efficient generation of MT-weighting is

achieved by adding a train of off-resonance pulses before
the acquisition of a package, exploiting the intrinsic con-

straints TR >>T1 of the ZOOM-EPI sequence. Such a

scheme allows the acquisition of a single MT-weighted
data point in �20 s, for the typical cervical cord coverage
and resolution used in this study (without signal
averaging).

Two main features, specific to this approach, are intro-
duced regarding the MT-weighting: (1) a time depen-
dency (i.e., the length of the off-resonance saturation),
and (2) a spatial dependency (i.e., the slice position
within a package).

With this configuration, steady-state acquisitions (i.e.,
with the use of trains of pulses of the order of seconds)
would compromise the claimed time efficiency of the
sequence. CRLB optimizations, though, clearly demon-
strate that even if MT-weighting depends on pulse train
length, the effect the latter has on model parameter esti-
mates is greatly reduced when MT-weighted sampling
points are optimized, resulting in similar performances
between trains of different N.

In the proposed sequence, MT-weighting varies among
slices within the same package, as these are collected
sequentially following the same preparation train (i.e., an
increasing effect of T1 relaxation is expected to reduce
MT-weighting for slices acquired later on), which will
introduce bias in the analysis if not properly addressed.
However, the slice order can be shuffled in each sequence
repetition to homogenize MT-weighting across different
data points (54,55). Shuffling can also be carried out
within signal averaging repetitions, provided that the
number of averages is a multiple of Nspp, resulting in
homogenous MT-weighting across slices for each MT-
weighted data point. We chose this latter solution when
designing the qMT protocol for spinal cord imaging.

The additional degrees of freedom in the acquisition
(N and td) are accounted for by implementing an appro-
priate model, first described by Portnoy and Stanisz (36)
and further developed for in vivo qMT in the brain (37).
This model was essential to achieve unbiased parameter
estimates for images acquired before steady-state is
established (short train of pulses) and during transient
evolution of the magnetization (different td), as shown
in Figure 4 where width of error distributions is minimal
at high SNR independently from the type of protocol
used.

Table 3
qMT Parameters Estimates in the Spinal Cord Obtained from the Current Study Using the Optimized Framework and from Previous

Studies (Single Values Refer to Whole Cord Instead of WM and GM ROIs)

BPF (n.u.) TF
2 (ms) TB

2 (ms) kFB (s�1)

WM GM WM GM WM GM WM GM

1.5T
Smith et al. (28) 0.12 0.07 NE NE 9 9 7.84 5.36

3T
Dortch et al. (30) 0.18 0.9 24 35.4a 11 Fixed 1.71 1.1

Smith et al. (29) 0.16 0.14 29.9 32.6b 10.8 10.8 1.7 1.46
Smith et al. (29) 0.16 0.13 NE NE NE NE NE NE
Current study 0.11 46.5 11.0 1.95

7T
Dortch et al. (31) 0.12 0.11 NE NE 10 Fixed 2.59 1.85

GM, grey matter; NE, not estimated; WM, white matter.
aEstimated from constraint TF

2 RF
1 ¼0.024, where RF

1 is fixed to 1 s�1 and 0.7 s�1 for WM and GM, respectively (from literature).
bEstimated from constraint TF

2 RF
1 ¼0.0232, where RF

1 is derived from measured Robs
1 equal to 0.806 s�1 and 0.752 s�1 in WM and GM,

respectively.
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Furthermore, normalizing the MT-weighted signal by a
reference image obtained with the same slice-shuffling
mechanism provides an inherent correction for the addi-
tional MT-weighting arising from the multi-slice acquisi-
tion module used after the MT preparation, which could
be up to 8% of the full signal for the particular sequence
used in this study (see Supporting Fig. S1). The differ-
ence between model predictions and the simulated sig-
nal when accounting for such an effect was always
below 0.8% over a wide range of sampling points and
tissue parameter configurations (see Supporting Fig. S2).

The framework is integrated with a separate T1 mea-
surement obtained from an IR sequence adopting the
same ZOOM-EPI readout used for MT-weighted acquisi-
tion. In such a way, the co-registration step is greatly
improved, given similarities between the two data sets
(also in terms of EPI-like distortions). This is essential to
minimize error propagation into qMT parameters caused
by potential registration errors with estimated T1 maps.
Similarly, the choice of ZOOM-EPI to carry out qMT
examination enables images with additional contrast,
such as diffusion-weighted images, to be acquired in the
spinal cord in the same fashion for further multi-
parametric analysis. Furthermore, the development of
qMT with a rFOV approach could prove beneficial in
other challenging imaging environments, such as cardiac,
prostate, optic nerve, and musculoskeletal imaging.

The numerical model used here, although introducing
a considerable computational burden, gives full control
on sequence parameters, which we try to exploit through
protocol optimization techniques. qMT protocol optimi-
zation has already been investigated in previous studies
(44–46,56), where sampling schemes were optimized by
selecting D and u using standard analytical models. Here,
we considered a more general MT model and used CRLB
theory to optimize D and B1, while remaining sequence
parameters (N, topt, Dtopt) were selected by searching for
their best combinations. We cannot disregard the possi-
bility that the heuristic approach followed to determine
(topt, Dtopt, Nopt), could lead to suboptimal protocols. Ide-
ally, a simultaneous optimization of all sequence param-
eters would be preferable, but this would require
substantial modifications to the SOMA algorithm to
account for the interdependencies between different
sequence parameters to be optimized.

An intermediate approach between the heuristic
search implemented here and a full optimization of ps

would be to optimize sampling points split among more
configurations of (t, Dt, N). As shown in Figures 3a,b,
expected CVs for individual parameters follow different
trends at varying t and Dt: optimization of BPF tends to
favor slightly longer t and Dt, while kFB benefits from
shorter pulse repetition time (Dtþ t). Similarly, from Fig-
ure 1, BPF errors seem to stabilize at higher N compared
to kFB. The single configuration for (topt, Dtopt, Nopt) cho-
sen in this study, based on the trend of the overall cost
function value, could have contributed to the lack of
clear improvement that we observed on BPF in vivo.
Alternatively, protocol optimization could be used to tar-
get only a specific parameter (45) by nulling other entries
in the weight vector w. This could allow the definition
of reduced protocols to robustly estimate BPF, while still

performing a full qMT model fitting, without introducing

any limiting assumptions on other model parameters.
The pattern of optimized sampling points reported in

Table 1 shows interesting similarities with previous qMT

protocol optimizations using CRLB with analytical mod-

els (44,45). Common features are the presence of

repeated points (we counted eight approximately unique

points), the sampling at very high D (that are likely to

produce very little MT saturation), as well as points at

the lowest offset allowed (D¼ 1 kHz). The presence of

nearly repeated sampling points could be an indicator of

the possibility of reducing K, and hence the scan time,

without sensibly affecting parameter estimates.
The definition of an optimal protocol requires the use

of a specific choice of pm to compute V, suggesting a

dependence of the optimal sampling scheme on the set

of pm. We cannot exclude such a dependency in the pro-

posed optimized protocol, however, results from Monte

Carlo simulations in Figures 2 and 3 shows that optimi-

zation is robust to perturbations on the combinations

used in the optimization, as the optimized protocol con-

sistently outperforms the uniform protocol in terms of

parameter errors.
Protocol optimization was validated in vivo by com-

puting an index of reproducibility (I). This index can be

used as a metric to compare optimized and uniform sam-

pling and gain insight into the intrinsic reliability of

parameter estimates using the numerical model. The uni-

form sampling can be taken as an example of a standard

qMT protocol, adapted for the sequence developed in

this study. Reproducibility indices of qMT model param-

eters confirm considerations originally shown by Portnoy

and Stanisz (36): TB
2 is the best constrained parameter in

the two-pool model, followed by BPF, TF
2 and kFB. Diffi-

culties in estimating the latter two parameters have

already been reported (44).
The protocol optimization procedure implemented in

this study shows beneficial effects on TB
2 and kFB calcu-

lated from in vivo data. Estimation of the latter parame-

ter is particularly improved (I increases from 0.57 to

0.81) and its reproducibility is comparable to TB
2 and

higher than BPF. Although the biological meaning of

such parameter is not yet fully known, kFB has recently

received more attention following findings that relate it

to inflammation (57) and metabolism (25). Surprisingly,

BPF was found to be insensitive to protocol optimization

in the in vivo experiment (I(BPF)¼ 0.74 for both uniform

and optimized sampling), in contrast to the other model

parameters whose reproducibility was significantly

affected (I is increased for TB
2 and kFB or decreased for

TF
2). As it can be qualitatively appreciated in Figure 5a,

and more quantitatively in Figure 6, the optimization

procedure also produced systematic differences in

parameter estimates, especially in TB
2 and TF

2. This has

already been observed in a previous study on optimiza-

tion of qMT parameters (44) and is predicted by simula-

tions reported in Figure 4 that shows an improvement in

the accuracy of parameter (included in the optimization)

at low SNR. This underlines the importance of imple-

menting protocol optimization techniques when operat-

ing at low SNR levels (e.g., for spinal cord imaging).
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The reduced reproducibility of TF
2 in the optimized pro-

tocol is a direct consequence of its exclusion from the opti-
mization. However, estimates of BPF, TB

2 and kFB are not
affected by a less effective estimation of TF

2 as shown via
simulations in Figure 4 and do not improve when the
parameter is included in the protocol optimization (as
reported in Supporting Fig. S4). Although estimates of TF

2

should be considered with caution, especially at low SNR,
this approach appears more robust than fixing TF

2 via con-
straints, as carried out instead in some previous studies
(29,58).

When compared with previous findings in the spinal
cord, summarized in Table 3, qMT parameter estimates
lie within the range expected for healthy subjects, with a
slightly lower BPF range and slightly higher TF

2 than
previous reported values.

The spinal cord BPF maps produced here do not provide
the typical white matter/grey matter contrast found in the
brain (see Supporting Fig. S7). The exacerbated physiolog-
ical noise characterizing the spinal cord environment, the
achievable spatial resolution, which is quite coarse con-
sidering the much smaller, detailed anatomy of the spinal
cord (with grey matter extending for only a limited number
of voxels), as well as potential spatial inaccuracies arising
from B0 and B1 errors surely play a major role in blurring
BPF contrast. Aside from technical considerations, assum-
ing that the BPF is mainly associated with myelin, such
differences may also be inherently less pronounced com-
pared to the brain, as shown by histological studies
(59,60), where rather uniform intensity maps were
observed following staining for myelin.

Through CRLB optimization, we aimed to provide a
guide in the definition of sequence parameters for the
proposed framework, where additional degrees of free-
dom in the sampling scheme are available. More work is
needed to refine the definition of the acquisition proto-
col, both to achieve substantial improvement in the esti-
mation of BPF and to reduce the number of the data
points K without degrading precision of estimates.

Finally, we remark that we did not address in vivo
issues related to field inhomogeneities (B0 and B1).
Although these inhomogeneities translate into discrepan-
cies between nominal and actual B1 and D, and hence inac-
curacies in model parameters, especially BPF, TF

2, and, to a
lesser extent, kFB (see Supporting Fig. S2), precise charac-
terization of these variations is not straightforward in the
spinal cord, and previous studies have reported difficul-
ties in mapping them accurately at the spinal level (61).
Additionally, these factors are known to vary smoothly in
space and therefore are usually acquired with sequences at
coarser resolution (�3� 3 mm2 in the axial plane) result-
ing in a limited number of pixels available for their charac-
terization within the cord. These variations are expected
to be of a similar size in both optimal and uniform proto-
cols, because both protocols were acquired within the
same scanning session. Different sampling patterns can
result in different sensitivities of qMT parameters esti-
mates to such errors. The optimized protocol was in fact
found to be more robust to errors in D than the uniform
protocol, most likely caused by the non-systematic sam-
pling of the offset frequencies. However, improvements in
the acquisition strategy to minimize (e.g., via dynamic

shimming or slice-wise shimming) or robustly map these

field inhomogeneities are warranted toward an absolute

quantification of qMT model parameter in the spinal cord.

Similarly, the adaption of the quantitative framework

developed here to a cardiac-gated acquisition should be

investigated to minimize artefact from physiological noise

that can potentially propagate to parameter estimates.

CONCLUSIONS

The framework proposed allows robust assessment of qMT

model parameters in the cervical spinal cord. The frame-

work includes a dedicated sequence to measure longitudi-

nal relaxation time, is suitable for multi-modal studies to

fully characterize spinal cord microstructure (47), and is

applicable to other anatomical environments where rFOV

imaging is advantageous. For the first time, parametric

maps of qMT model parameters have been shown in vivo

in the spinal cord and their reproducibility assessed. Pro-

tocol optimization techniques have been used to guide the

definition of sampling schemes with the aim of reducing

protocol length while improving parameter precisions.

Future work will focus on the addition of adequate B0 and

B1 mapping techniques and the possibility to further

reduce scan time through more rigorous protocol optimiza-

tion procedures, as well as combination with further imag-

ing acceleration, such as simultaneous multi-slice imaging

(62).
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Fig. S1. Simulations of the effect of off-resonance saturation caused by a
train of on-resonance spin-echo in a multi-slice acquisition, simulated
within a package of ZOOM-EPI. Signal intensity for each slice in the pack-
age (numbers 1, 4, 7, 10) is plotted along the rows, whereas each column
represents a different sequence repetition, where the slice order is shuffled.
The actual slice acquisition order of each repetition is reported at the bot-
tom of each column. Excitation and refocusing pulse shapes, pulse dura-
tions, pulse amplitudes and interval between pulses were reproduced in
the simulations. The MT effect was simulated using the two-pool model
and results were averaged over 100 combinations of model parameters
(randomly sampled from distributions of BPF �N [0.13%, 0.02%], TF

2 �N
[46.5 ms, 5 ms], TB

2 �N [11 ms, 1 ms], kFB �N [1.95, 0.2], and T1 �N [1.1 s,
0.1 s]). The effect of other slices in the package being off-resonance during
on-resonance spin-echo can be visualized for the sequence used in this
study. However, given the limited number of slices per package (Nspp 5 4),
and the relatively long interval between on-resonance excitations (Dts 5 91
ms), this additional saturation was found not to exceed 8% of the unsatu-
rated signal.
Fig. S2. Simulations of the effect of off-resonance saturation caused by
on-resonance spin-echo multi-slice acquisition on quantitative modelling.
MT-weighting produced by a train of N 5 25 pulses at five different flip
angles (370 �, 650 �, 930 �, 1205 �, 1485 �) for 30 offset frequencies, logarith-
mically spaced between 500 Hz and 20 kHz, is shown in red. The acquired

signal, however, undergoes longitudinal relaxation because of the varying
distance between the end of the pulse train and on-resonance excitation,
averaged among different delays td and concomitant off-resonance satura-
tion because of on-resonance spin echo (both are dependent on the cur-
rent slice position within the package). The full MT signal is shown in blue.
Before model fitting, MT-weighted images are normalized to a reference
image, M0, acquired with the same shuffling strategy. Normalized MT-
weighted signal is shown in black. For quantitative parameters, estimation
on resonance-induced saturation is neglected, and only the effect of aver-
aging between different td is taken in to account. Model predictions are
shown by the black dots. It can be appreciated how the normalization with
an averaged M0 provides a correction for the interslice MT effect (that is
inherently present in the normalization term), resulting in only minor dis-
crepancies between the acquired signal and model predictions (average
errors over all data points and 100 different tissue configurations is below
0.8%). The normalization corrects for most of the difference between model
predictions (no on-resonance effects) and MT signal (blue line) as shown by
the greatly reduced average errors (from �4% to � 0.7%). All slices in a
ZOOM-EPI package are shown in different panels.
Fig. S3. Effect on qMT model parameters estimates of simulated errors on
MT pulse offset frequency (D) in (a) and MT pulse amplitude (B1) in (b) for
both optimized and uniform protocols (filled and unfilled boxplots, respec-
tively). Errors were introduced by adding a shift in the offset frequency
(DB0 5 2200, 2100, 250, 220, 210, 10, 20, 50, 100, and 200 Hz) or a
scaling factor (DB1 5 0.8, 0.85, 0.9, 0.95, 1.05, 1.1, 1.15, and 1.2), to the
pulse amplitude, respectively, while generating synthetic signals (at
SNR 5 100). Nominal values for D and B1 were instead used in the fitting.
The optimized protocol appears more robust than the uniform protocol to
B0 errors, with BPF, TB

2 , and kFB error distributions within the 210% to 10%
error range for the B0 variations expected in the spinal cord (up to 70 Hz).
Both protocols appear to be similarly affected by B1 errors, with trends rep-
licating previous findings on effect of B1 error on qMT model parameters
(Boudreau M, Stikov N, and Pike GB. “B1-sensitivity analysis of quantitative
magnetization transfer imaging.” Magnetic Resonance in Medicine [2017];
DOI: 10.1002/jmri.25692).
Fig. S4. Percentage errors on fitted parameters obtained from Monte Carlo
simulations for optimized protocol without including TF

2 (filled boxplots) and
full optimized protocol including TF

2 (unfilled boxplots) at different SNR lev-
els. The effect of a noisier estimation of TF

2 does not affect other parameter
estimates when sampling schemes are optimized, even at low SNR. Vari-
ance of errors on the remaining model parameters is in fact comparable in
the two cases, with precision of kFB being more effectively improved when
optimization does not include TF

2.
Fig. S5. Spinal cord T1 (black), BPF (blue box), TF

2 (yellow box), TB
2 (orange

box), and kFB (green box) maps in two example slices from different sub-
jects. For qMT parameters, maps obtained from both uniform and optimal
protocol are shown. Greater spatial homogeneity is appreciable in kFB

maps obtained from the optimal protocol.
Fig. S6. Reproducibility index maps for T1 (black), BPF (blue box), TF

2 (yellow
box), TB

2 (red box), and kFB (green box) in all the slices acquired (from C1 at
the top to C4 at the bottom) for uniform and optimal protocols. Reproducibil-
ity index I for a given parameter p is calculated from the three repeated
acquisition using Eq. [5] and ranges between (0, 1) (the higher, the more
reproducible the metric is). Improved reproducibility of parameters with the
optimal scheme are found for TB

2 and kFB. No differences are detected for
BPF, whereas TF

2 shows higher reproducibility in the uniform protocol. Note
also the exquisite reproducibility of the T1 estimates obtained with the
matched readout inversion recovery sequence used in this study.
Fig. S7. Reduced FOV image of the brain displaying WM/GM interfaces, T1

maps from inversion recovery, and qMT parameter maps. The identical
optimized protocol as that developed for the spinal cord was applied on a
localized region of the brain, showing the ability of the framework to differ-
entiate tissue types producing the expected contrast for brain qMT param-
eters. Specifically, clear contrast in the BPF map between GM and WM
can be observed.
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