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Abstract

In this thesis I study the geometry and topology of coisotropic submanifolds of sym-
plectic manifolds. In particular of stable and of fibred coisotropic submanifolds. I
prove that the symplectic quotient B of a stable, fibred coisotropic submanifold C
is geometrically uniruled if one imposes natural geometric assumptions on C. The
proof has four main steps. I first assign a Lagrangian graph L¢ and a stable hyper-
surface H¢ to C, which both capture aspects of the geometry and topology of C'.
Second, I adapt and apply Floer theoretic methods to L¢ to establish existence of
holomorphic discs with boundary on L. I then stretch the neck around H¢ and ap-
ply techniques from symplectic field theory to obtain more information about these
holomorphic discs. Finally, I derive that this implies existence of a non-constant
holomorphic sphere through any given point in B by glueing a holomorphic to an

antiholomorphic disc along their common boundary and a simple argument.
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Chapter1

Introduction

In this thesis I study the geometry and topology of coisotropic submanifolds of sym-

plectic manifolds. In this introduction I present in
Section1.1 Abriefintroduction to, and examples of, coisotropic submanifolds.
Section 1.2 The main results of this thesis and a summary of the proofs.

Section 1.3 An overview of previous research and results on coisotropic submani-

folds.

Section1.4 An outline of the thesis.

1.1 Coisotropic submanifolds

A symplectic structure on a smooth manifold W is a closed, non-degenerate 2-form
w € Q%(W), where Q' (W) denotes the space of smooth sections of the [-th exte-
rior power of the cotangent bundle of W for a non-negative integer [. A symplectic
manifold of dimension 2 is a pair (W, w) consisting of a smooth 2n-dimensional
manifold W and a symplectic structure w. The symplectic complement of a submani-

fold N of (W, w) atapointx € N is defined by

T.N® ={veT,W | wv,w)=0 forall we T, N},



where T, N denotes the tangent space of N at z. A submanifold C of (W, w) is
coisotropic if

T.C¥ CT,C forallzinC.

Bythe non-degeneracy of the 2-formw, the dimension of 7;, C’ agrees with the codi-

mension of 7,,C in T, W and is thus an integer k£ between 0 and n.

It follows from Lemma 5.4.1 in [MS17] that a coisotropic submanifold C' is a foli-
ated manifold (C, F). I explain in Section 2.1, that coisotropic submanifolds form
the naturally interesting foliated spaces in symplectic manifolds. The foliation F is
called the characteristic foliation of C'. Given a point  in a codimension k coisotropic
submanifold C, F,the leaf through z, is tangent to 7,,C* and thus k-dimensional.

I prove thisin Lemma 2.1.

Coisotropics formabroad class of submanifolds of symplectic manifolds. The man-
ifold W itself is coisotropic since 1, W* is trivial at every point ¢ € W by the non-
degeneracy of w. Thus the leaves of the foliation are the points of W. Again by the
non-degeneracy of w, every hypersurface H in a symplectic manifold is coisotropic.
Hence the characteristic foliation of a hypersurface is one dimensional. By defi-
nition, Lagrangian submanifolds L are coisotropic submanifolds of maximal codi-
mension n,i.e. T, L% = T, L. A Lagrangian L is foliated by a single leaf, namely L

itself.

Conisder a coisotropic (C, F) as a foliated manifold. At each point z € C one
can form the quotient 7,,C /T, C*. This 2n — 2k dimensional quotient of vector
spaces naturally inherits a symplectic structure, since the restriction of w to C at
each z in C vanishes along the symplectic complement, which agrees with the tan-
gent space to the leaf F, at x. One is tempted to form the quotient C'/ F by identify-
ing all points on the same leaf on all of C. However, the quotient C'/ F will often fail
to be Hausdorff (see Example 2.6). If the quotient is a smooth Hausdorff manifold,

write B = C'/F and call B the symplectic quotient of C'.

The notation, which I use for the symplectic quotient originates in the case where

theleaves F of the characteristic foliation F fit together to form a smooth fibre bun-
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dle ' — C — Bwith C as the total space of the fibre bundle. In this case the base
B of the fibre bundle carries a smooth symplectic structure wp which is induced by
w. For a proof of this fact see Proposition 5.4.5. in [MS17]. A famous instance where

this structure arises is the following

Example 1.1 (The generalised Hopf fibration).
Consider R?" with its standard symplectic structure wg and its standard complex

structure Jy. The generalised Hopf fibration
St — 57t - cprt

isafibre bundle with the 2n—1 dimensional unit sphere S?"~! asitstotal space. The
symplectic quotient of the coisotropic $2"~! C (R?", wy) is the complex projective

space CP" ! of real dimension 2n — 2.

By considering the cartesian product of k£ copies of the Hopf fibration one obtains
a fibre bundle with total space the coisotropic C = S2"~1 x ... x §2n=1 of
codimension k in R?" x ... x R?® = R2*7  The fibres are k-dimensional tori
T* = S x - - x S' and the symplectic quotient B,a product of k projective spaces

CP" ! x --- x CP""! has dimension 2k(n — 1).

The process by which one obtains the symplectic quotient is often called symplec-
tic reduction. This terminology has its origin in the context of Hamiltonian group
actions, which were presented by Marsden and Weinstein as “a unified framework
for the construction of symplectic manifolds from systems with symmetries“ in
[MW?74]. More precisely Marsden and Weinstein consider a free and proper Hamil-
tonian group action GG on symplectic manifold WW. By Theorem 1 of [MW74], areg-
ular level set of the associated moment map is a coisotropic submanifold C' of W,
the leaf F); is the orbit of x € C'under the action of GG, and the quotient B, usually

denoted by W' // G in this context, is a smooth symplectic manifold. In tribute to the
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authors of [MW74] the symplectic quotient W // G is called the Marsden-Weinstein

quotient. Here is a well-known example of symplectic reduction:

Example 1.2 (The complex Grassmanian).

Consider, for k < n, the space hom(C¥, C™) of homomorphisms of C* into C™.
Identify this space with the space of n by k complex matrices C"** and equip it with
the Hermitian inner product tr(A* B), where tr(-) denotes the trace operator, A*
denotes the conjugate transpose of the matrix A € C"**and B € C"*¥. Thena

symplectic form on C"** is given by
wi (A, B) = Im(tr(A*B)),

where Im(-) denotes the imaginary part of a complex number. It is a standard fact
(see for example Exercise 5.43 of [MS17]) that the action of the unitary group U (k)
on C™** by right multiplication is Hamiltonian with moment map
(4) = La*a
HE) = o2 4

Thelevel set ;1! (3; 1) isa coisotropic submanifold of (C"**, wy,) by the theorem of
Marsden-Weinstein above. The coisotropic submanifold C'is diffeomorphic to the
space of unitary k-frames, also called the Stiefel manifold, S (k, n, C). The Marsden-
Weinstein quotient

B = (1) JUGK)

of C'is diffeomorphic to the complex Grassmannian, G(k, n, C).

We have just seen in Example 1.2 above how coisotropic submanifolds arise natu-
rally in symplectic topology as the level sets of moment maps. In algebraic geom-
etry, coisotropic submanifolds arise naturally in the context of normal crossing di-

visors. For concreteness I base the following exposition on [Ruao2], where Ruan
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considers the following situation:

Let D = U}, D; be a normal crossing divisor, where each D; is a smooth divisor
in a 2n-dimensional Kéhler manifold (X, wg ), and w, denotes the Kéhler form. For

eachindexset I € Z,where Z denotes the collection of index setsof {1, ..., n},set
Dr = Nier D,

when the intersection is non-empty. Then Dy is a Kdhler submanifold of X of real

dimension 2n — 2|I|. Denoting by U; a tubular neighbourhood of D,
Uy = 0?21 U;

defines a tubular neighbourhood of Dj.

By Lemma 7.2 of [Ruao2] for each z in Dy there exist holomorphic coordinates
(wl, 21 in a neighourhood of =, such that, near x one has D; = {zL = 0} and
w? are holomorphic coordinates on D;. These coordinates vary smoothly with z.
In Proposition 7.1 of [Ruao2] Ruan shows that these charts give rise to fibrations
w1« Ur — Dy with holomorphic fibres for each index set I, which vary smoothly
with z € Dy and which are compatible with the obvious stratification of D. The
holomorphic coordinates on eachfibre 7, L(z)aregiven bythe 2. These determine

arank || real torus T!/! action on each fibre, which varies smoothly with z and thus

gives rise to a smooth, real T!| action on U7.

By Theorem 7.2 of [Ruao2] the Kihler form w, can be perturbed such that all differ-
ent components of D intersect orthogonally with respect to wgy. Ruan calls such a
metric a global toroidal metric for (X, D). Moreover, Theorem 7.2 asserts that wy
can be made flat on each fibre of 7; : Ur — Dy for every index set I and that, by
possibly shrinking the collection {U; }, the projections {7 } can be made compati-

ble with the stratification of D in the sense of Proposition 7.1 of [Ruao2].

Call such a system of neighbourhoods {7, Ur, } 77 with holomorphic coordinates

(wl, 2I) which are compatible with the stratification of D and equipped with a a

T Tr
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global toroidal metric wgat, which is flat on each fibre, a global toroidal structure T

for (X, D, wy).

To see how coisotropic submanifolds come into play in this context fix a normal

crossing divisor D in a Kdhler manifold (X, w,) and a global toroidal structure 7

forit. Set
1 ..
il 2 = Lot
forthe norm | - | induced by the Hermitian inner product || - || on each fibre. This de-

fines an |I|-tuple of Hamiltonians on U; for a smooth TH|-action on Ur determined
by the z1. Choose level sets Ct == (H})~1(r!)forr! € R\ {0}andi € I. Then
for each set 1, the submanifold C; = (), C} is coisotropicin (U, wgat) andisthe

total space of the fibre bundle
TII‘ — Cr — Dj.

Since D is Kahler and therefore symplectic , and T!!(z) is Lagrangian in ;! (z),
the total space C7 of the torus bundle is coisotropic and of real codimension |I|.
Thus one may view Dy as the symplectic quotient of C'7. The process of symplectic
reduction corresponds to collapsing the torus fibres. Notice that Ruan’s construc-
tion provides averyrich family of examples of coisotropics. For every normal cross-
ingdivisor D inaKéhler manifold (X, w,) asabove there exists a family of coisotrop-
ics {C1}rez. Foragivenindex set I, the real codimension of a coisotropic subman-
ifold Cy is ||, and thus for each integer | I| between 0 and n there exist n choose ||
coisotropic submanifolds. Below is an illustration of Ruan’s construction in a very

simple, yet illuminating case:

Example 1.3 (Complete intersections in CP?).

Consider the toric manifold CPP? with the Fubini study form wpg. Recall that the
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action of the complex torus (C*)? on CP? is given by

(C*)? x CP? — CP?

()\1, )\2,)\3) — [Zo : )\121 : )\222 : )\323]
Define divisors Dy and Dg as follows:

Dy ={[z0: 21 : 22 : 23] € CP? | zp = 0} = CP?

D3 ={[z0: 21 :22: 23] € CP® | z3 = 0} = CP2
Then D = Dy U D3 isanormal crossing divisor, and
Dyosy ={l20:21:22: 23] € CP? | 2z = z3 = 0} = CP*
is Kdhler. Choose the chart
Vi={lz0:21: 20 23] € CP? | 25 # 0}.

The holomorphic toroidal coordinates on a neighbourhood of apoint x = [1 : 27 :

0 : 0] in Dy 3 canin this case be constructed explicitly by defining

o : (CS — U{273}

(wl,wg,wg) — [1 Wyt wy w3].

Notice that Uy 3y N D2 = {[1 : 21 : 0 : 23] gives a holomorphic coordinate chart
for aneighbourhood of Dy in its normal bundle. Similarly Uyp 3y N D3 = {[1 : 21 :
23 : 0] and thus the neighbourhood Uy 3y is compatible with the stratification of D.
In polar coordinates one has (wg, w3) = (r2€2, r3€%) for ro, 73 € Rand 5 and

05 € [0, 27]. Define Hamiltonians

2

1 1
m:jwﬁzyzmm:za
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Then for some fixed r,7" € R\ {0} a coisotropic Cfy 31 = Cra33(r,7") C

(Uga 3}, wrs, is givenby

Cra3y = [L:wy ret%2 : p'ets],
Thus CY; 3) is a fibre product S 3 X pt S? of two Hopf fibrations and in particular
a codimension 2 coisotropic in CP3, Its preimage in S7  C* is a five dimensional

coisotropic and the symplectic quotient, Dy, 33 of C3 3} isa copy of CP*.

Example 1.3 above can be generalised in various ways. For instance to

Example 1.4 (Divisors in CP").

Again, consider CP" with the Fubini-study form wrg and a complete intersection
Dy, defined by k homogenous equations of degrees dy, . . . , dj, such that Dy, isanor-
mal crossing divisor. Then by Ruan’s construction one obtains a coisotropic Cj,
which is a real torus bundle over Dy. If d; + --- + di < n, V isa Fano variety,

by the following equality for first Chern class ¢; (Dy,):

(11) c1(Dg) = ((n+1) = (d1 + -+ +di)) [wrs]-

Note that if one choose d; = 1,then C}, C C"~! and is therefore displaceable.

Notice that Examples 1.1,1.2,1.3 and 1.4 all share a common characteristic: the sym-

plectic quotients CP", G(k, n, C) ora Fano variety are uniruled.

In the Fano case this follows from Mori’s bend and break agruments, see [Mor79].
The precise definition of “uniruledness” depends on the setting. Roughly speaking
a space is uniruled if, given a point constraint, there exists a non-constant sphere

meeting this point constraint. For a precise definition in the symplectic setting see
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[Voio8],and inthe algebraic geometry setting see Chapter 4 of [Debo1]. For the pur-

poses of this thesis I introduce the notion of geometrical uniruledness below.

Definition 1.5 (geometrically uniruled).
The symplectic quotient (B, wp) of a fibred coisotropic submanifolds C'is geomet-

rically uniruled if B has the following property:

Given any point b € B, for every wp- compatible almost complex structure Jp on

B, there exists a non-constant .Jg-holomorphic sphere

v: (CU{oo},i) = (B, Jg)

passing through b.

Also notice that the leaves of the characteristic foliation F of C' are tori in Example
1.1, 1.3 and 1.4 but not in Example 1.2. With these examples in mind, the following

question seems natural:

Question 1.

If one imposes natural geometric assumptions (like displaceability) on a coisotropic sub-
manifold C of a symplectic manifold (W, w), what are the consequences for the symplectic
quotient B of C'?

The main result of this thesis is a first answer to this question. I state it, explain how
itisrelated to the above examples and present an outline of its proof in the next sec-

tion.
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1.2 Statementofthe mainresultand summary of the proof

Theorem 1.6.
Let C'bea closed, codimension k, coisotropic submanifold of a symplectic manifold (W, w).

If C'is fibred and stable, then C is the total space of a torus fibre bundle
™ C— B

overits symplectic quotient ( B, wg). Assume that C'is monotone and has minimal Maslov
number at least three. If C'is displaceable, then the symplectic quotient ( B, wp) is geomet-

rically uniruled.

Some remarks on assumptions and assertions of the theorem are in order:

By the nature of Question 1 some assumptions on the coisotropic are indispensable
even to make sense of the question. Recall from Section 1.1 that the symplectic quo-
tient B is not necessarily Hausdorff. Therefore, unless one develops a theory for
non-Hausdorff symplectic manifolds, one needs to make an assumption that en-
sures the B is smooth symplectic manifold. I now briefly explain the assumptions

of Theorem 1.6 above.

Fibredness: A coisotropic submanifold C' is called fibred if the leaves of the
isotropic foliation F are closed submanifolds of C and the holonomy of each leach
is trivial. (See Definition 2.7). Iintroduce fibred coisotropic submanifolds in Sec-
tion 2.2. In particular, I show in Proposition 2.8 that a fibred coisotropic submani-
fold C'is the total space of a fibre bundle /' — C' — B over its symplectic quotient
(B,wp) asitis the case in Examples 1.1, 1.2, 1.3 and 1.4 above. Thus the leaves of the
characteristic foliation JF of a fibreed coisotropic are the fibres of the fibration and
thus all diffeomorphic. In particular, their geometry cannot change drastically un-

der arbitrarily small perturbations (see again Example 2.6).

The notions of monotonicity, the minimal Maslov number and displaceability of a

18



coisotropic submanifold are introduced and explained in detail in Section 3.1.1. I

give a quick explanation of these assumptions below.

Monotonicity: I define monotonicity of C' in Definition 3.4 as monotonicity of a La-
grangian submanifold which is called the Lagrangian graph L¢. This Lagrangian is
the fibre product C' x g C' in the symplectic manifold (W x W, —w X w). For the
definition of L¢ as a set see Equation 1.2 below. I introduce L in detail in Section
3.1. A Lagrangian submanifold is monotone if the symplectic energy of a holomorphic
disc with boundary on the Lagrangian is positively proportional to the Maslov index

of the disc by a fixed constant independent of the disc.

Note that monotonicity of L asaLagrangian, despite implyingmonotonicity of W/,
is not the same as monotonicity of the symplectic quotient B. Nonetheless, Exam-
ple 1.4 aims to give some intuition why the monotonicity assumption is necessary.
Ifthe complete intersection is Fano and therefore monotone it isuniruled by Mori’s
bend and break arguments [Mor79]. However, it is not difficult to construct a non-
uniruled complete intersection Dy: choose k equations such that the sum of the de-
greesd;+- - -+dyisatleastn+-1. ByEquation (1.1), Dy, isnow either Calabi-Yau or of
general type and therefore not necessarily uniruled. Since Dy, is a normal crossing
divisor the coisotropic C}, can still be constructed using Ruan’s method described
above. Thus C}, is a torus bundle over a symplectic quotient Dy, which is not neces-

sarily uniruled.

On the technical side of things, the monotonicity assumption makes the pearl com-
plex machinery of Biran-Cornea (see [BCo7]) available, which is the formulation of

Floer theory used in the proof of Theorem 1.6.

Minimal Maslov number: The minimal Maslov number of a coisotropic submani-
fold is defined as the minimal Maslov number of the associated Lagrangian graph
L¢ (see Definition 3.5). I recall the definition of the minimal Maslov number of a La-
grangian in Equation 3.3 and compute it for the Lagrangian graph of the generalised
Hopf fibration, Example 1.1 above, in Example 3.6. Roughly speaking the Maslov in-

dexofadisc withboundary ona Lagrangian measures the rotation of the Lagrangian
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tangent planes around the boundary of the disc. The minimal Maslov number of a
monotone Lagrangian L is then the minimal Maslov index of all discs with bound-

aryon L. Itis positive if such a disc exists and set to “co” otherwise.

The assumption on the minimal Maslov number is necessary. To see this, assume
the theorem holds and that the codimension of C'is n, so that C' is a Lagrangian
torus T". Now there certainly cannot exists any non-constant holomorphic sphere
in the symplectic quotient B, which is a point. By definition, L is diffeomorphic to
T?",and therefore cannot be amonotone, displaceable Lagrangian torus of minimal
Maslovnumber atleastthree. Thus, assuming L ismonotone and displaceable, the
assumptionthat [V, isatleast three mustfail. If L is orientable, it follows that the
minimal Maslov number N7, is equal to two, since it is strictly positive by the dis-
placeability assumption. This is in accordance with the Audin conjecture for mono-
tone tori being true, see for example [Dami2]. In fact, the assumption that Nz, is
at least three is crucial in the proof of Theorem 1.7 below. I would like to point out
thatIdiscovered that part of the proof of Theorem 1.7is similar to Buhovsky’s proof

of the Audin conjecture for monotone tori in [Buh1o] after proving the theorem.

It is worth pointing out that Ziltener defines a Maslov index for coisotropic sub-
manifolds in [Zilog], which agrees with the definition put forward in [Gin11]. Oh
also defines a coisotropic Maslov index in [Oho3]. It would have been also possi-
ble to phrase our assumption as a requirement on the coisotropic Maslovindex and
it would be interesting to relate the Maslov index of L to the coisotropic Maslov

index.

Displaceability: A submanifold N is Hamiltonian displaceable if there exists a
Hamiltonian symplectomorphism ¢ such that¢)(N) N N = (). Irecall the notion of
(Hamiltonian) displaceability in Definition 3.7 and begin to explore the relation of
displaceability of C'and of L in Section 3.1.2. The proof presented in this thesis re-
lies on the property of L tobound non-trivialholomorphic discs. Assuming the ex-
istence of such discs is, despite being sufficient, somewhat artificial. Amore natural
geometric condition which implies the existence of many non-constant holomor-

phic discs with boundary on L is displaceability of C'. Notice that it would also be

20



sufficient to assume displaceability of the Lagrangian L, which is implied by dis-
placeability of C' (see Lemma 3.11). For the proof, the most important consequence
of displaceability of C' is the vanishing of Floer homology of L¢, which I prove in
Lemma 4.23. Notice that the coisotropic submanifolds in Examples 1.1, 1.2 the sub-
example of Example 1.4 obtained by choosing d; = 1, are submanifolds of C",C*"
and C"~! respectively, where every submanifold is displaceable. Generally speak-
ing, if one considers coisotropics in W = R?" for some N one can drop the dis-

placeability assumption.

Stability: I examine the stability condition on the coisotropic C', which was intro-
duced by Bollein [Bolg8],in detail in Section 2.3. A stable coisotropic submanifold C'
(see Definitions 2.11and 2.13) is the straightforward generalisation of a stable hyper-
surface (see Lemma2.1in [CV10] for the definition) to higher codimension. A stable
coisotropic submanifold of codimension 1 is a stable hypersurface. Roughly speak-
ing stability means in this context that the characteristic foliation F of C' remains

unchanged under small perturbations in the normal directions of the coisotropic.

Imposing the stability condition on C has several important consequences. First,
it implies that C' has a trivial normal bundle and second that there exists a model
neighbourhood U of C', which is symplectomorphic to Bfo x C,where Bfo denotes
the ball of radius ¢g in R¥, and k is the codimension of C'in . The coisotropic sub-
manifold C'is embedded as {0} x C'in this neighbourhood and the symplectic form
is given explicitly by 2.6. Moreover the characteristic foliation 7, of {p} x C'is
conjugate via a family of diffeomorphisms smoothly depending on the coordinate
pin B to the foliation F of {0} x C. I prove existence of such a neighbourhood
in Lemma 2.18 and call it a Bolle neighbourhood in tribute to Bolle who established
its existence in Section 5 of [Bol98]. By the Arnold-Liouville Theorem (see Section
10 of [Arn89)), a stable Lagrangian is necessarily a torus. As a straightforward ap-
plication of this theorem, I prove in Proposition 2.22 that the closed leaves of a sta-
ble coisotropic are k-dimensional tori. In particular, the assertion of the theorem
thatfibred, stable coisotropics are the total spaces of torus bundles follows from this

proposition.

21



As one might expect, Examples 1.1, 1.3 and 1.4 are stable coisotropic submanifolds.
I explain this in more detail in Section 2.3. Example 1.2 illustrates that the stabil-
ity condition is not necessary, since U (k) is not a torus, but the symplectic quotient
G(k,n,C)isuniruled. If one chooses amaximal torusin U (k) and considers the ac-
tion of this maximal torus, one obtains the partial flag variety as the symplectic quo-
tient, which is also uniruled. I spell this out in Example 2.25in Section 2.3. Theorem
7.5 of Usher’s paper [Ushi1] also suggests that one could hope to relax the stabil-
ity assumption on C, to the assumption that the there exists a Riemannian metric
which renders the leaves totally geodesic. The proof presented in this thesis how-

ever relies heavily on the stability assumption.

Before giving the summary of the proof of Theorem 1.6, I would like to remark that
the assertion of the theorem is different from other results on uniruling in the fol-
lowing sense: Being symplectically uniruled means that there exists a non-vanishing
Gromov-Witten invariant. Proving this for B would imply the geometric statement
about the existence of non-trivial holomorphic spheres through any given point in
Bfromtheassertion of Theorem1.6. In this thesis, I derive the geometric statement
directly, hence the term geometrically uniruled. It would be very interesting to com-
pute the Gromov-Witten invariants of B and to relate them to the Fukaya-Floer ale-

bgra of the Lagrangian L¢.

1.3 Summary of the proof of the main theorem

The main obstruction to answering questions like Question 1 is the lack of mathe-
matical machinery which is tailored to study coisotropic submanifolds. I therefore

chose the strategy below for the proof:

(I) Assign a Lagrangian submanifold L and a hypersurface H¢ to C. Both L¢
and H¢ capture some relevant parts of the geometry and topology of C' but
both have the advantage of belonging to classes of submanifolds of symplec-

tic manifolds for which more mathematical machinery is available.
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(IT) Adapt existing theories for Lagrangians and hypersurfaces to L¢ and He in
order to make the theories incorporate the structures of C' which are cap-

turedin Lo and He.

(1IT) Apply standard techniques to L¢ and H¢ and thereby extract information

about C.

More concretely, Chapter 3 is dedicated to accomplishing (I): I show in Section
3.1 how to assign a Lagrangian graph L¢ to a given fibred coisotropic submani-
fold C' C W. The Lagrangian graph is defined as a subset of the twisted product,
(W x W, = x w), of (W, w) by

(1.2) Lo ={(z,y) e C x C | mp(x) = 7p(y)}.

I prove in Lemma 3.2 that L is a Lagrangian submanifold of (W x W, —w X w).
In anutshell this follows from the fact that w vanishes along the leaves and that one
uses opposite signs in both factors. More abstractly, L can be described as a fibre
product C' x g C of C'withitself over B (see Definition 3.1). Also observe that Lo isa
special case of a Lagrangian correspondence. The mostimportant feature of this as-
signment is that L¢ inherits a fibre bundle structure from the fibred coisotropic C.
I demonstrate this in Lemma 3.2. Moreover, I explain in Section 3.1.2 how the self
intersection theory of L¢ as a monotone Lagrangian, which can be studied via La-
grangian Floer theory, is related to the self intersection theory of C'. Thus, asa con-
sequence of assigning L to C, Lagrangian Floer theoryand its algebraic machinery

become available to study fibred coisotropic submanifolds C'.

In Section 3.2 Iassign a stable hypersurface H¢ to C'. More precisely, I show that for

every e < € the hypersurface
Hec, = Sf_l x C

contained in the Bolle neighbourhood of a stable coisotropic submanifold C'is a sta-

ble hypersurface. The mostimportant feature of this assignmentis that the Reeb dy-
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namics of H¢ correspond to the generalised Reeb dynamics on the (isotropic) leaves
F of the coisotropic submanifold C' in an appropriate sense (see Definition 3.16 for
details). The Reeb dynamics on stable hypersurfaces are intimately related to the
asymptotics of holomorphic curves in the symplectisations of stable hypersurfaces
(see for example [Hof93] or [Abbi4]). Roughly speaking, by studying C' through
H, one extends this relation to stable coisotropic submanifolds. Thus assigning
H to a stable coisotropic C' makes techniques from symplectic field theory (see
[EGHoo0)),and in particular neck stretching available to study stable coisotropic sub-

manifolds.

With these assignments in place, Theorem 1.6 is proved in three main steps. The
first two steps are proving Theorem 1.7, stated below, in Chapter 4and Theorem 1.8,
stated further below, in Chapter 5. The proofs of these theorems are subdivided into
adapting theories to L¢ and H¢ respectively, i.e. (II) and then applying standard
techniques, i.e. (III). The last step in the proof of Theorem 1.6 is a simple argument

which I present in Chapter 6.

Theorem1.7.

Let C' be a fibred, stable coisotropic submanifold of a symplectic manifold (W, w). Assume
that the Lagrangian graph L¢ in the product (W x W, —w X w) is monotone and has
minimal Maslov number N, ., at least three. Let b be any point in the symplectic quotient

BofC.
If L is displaceable, then there exist:

(M) Analmost fibved Morse function f on L¢ such that the unique global minimum x of
fon L iscontainedin f5*(0) and projectsto (b, b) € ADB thediagonalin B x B.

(E) Aconstant Eg > 0, such that for all w-compatible almost complex structures J on

W, there exists at least one pearly trajectory P of energy at most Ey and with the

Sfollowing property:

(P) Thepearly trajectory P connects a critical pointy of f containedin f5"([1,00)) to

the minimum x of f.
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An almost fibred Morse function f isaMorse function, whichis constructed byliftinga
Morse function fp from B to L¢ and perturbing it by a small Morse function fr on
atypical fibre (see Definition 4.6 for details). I recall the definition of a pearly trajec-
toryin Definitions 4.12 and 4.14 respectively. Roughly speaking, a pearly trajectory is
aconfiguration of holomorphic discs which are arranged along gradient flowlines of
Morse functions on L¢. Pearly trajectories play a key role in defining the algebraic
structures on the pearl complex in [BCo7], where this complex is used to define the
Lagrangian quantum cohomology ring of a monotone Lagrangian L. This cohomol-
ogy theory is isomorphic to the self-Floer cohomology of L via the PSS map. The
energy of a pearly trajectory is the symplectic area associated to the homology class of

the pearly trajectory (see Definition 4.16) and A B denotes the diagonalin B x B.

To prove Theorem 1.7 above I first I adapt the construction of the pearl complex to
make it incorporate the fibre bundle structure of L (and thus of C') in Sections 4.2
and 4.3. As a result of the adapation, the algebraic structures defined on the pearl
complex “see” information contained in the fibred coisotropic C'. Then, in Section
4.4,Iapplythealgebraic structures defined on this almost fibred pearl complex to carry

out the proof of Theorem 1.7, which I now describe briefly.

The displaceability of L implies the existence of at least one pearly trajectory P
ending in the unique minimum « of an almost fibred Morse function f on L¢. I
prove this in Lemma 4.23. By the assumption that C'is fibred, L¢ is a torus fibra-
tion (see Proposition 3.2). In particular the fibre over the minimum z is a 2k dimen-
sional torus T2* = f B 1(0). The set of critical points of f generates the pear] com-
plex. It can be partitioned into the set of critical points contained in f; 1(0) and in

f5*([1,00)) by an appropriate choice of f5.

To prove Theorem 1.7 one needs to eliminate the possibility that all pearly trajec-
tories P ending in the minimum z are contained entirely in the torus fibre, T2,
over the minimum. First of all notice that if the minimal Maslov number is at least
2k + 2, this is impossible as the pearly differential then counts pearly trajectories
which connect critical points of index difference atleast 2k + 1. Thus no pearly tra-

jectoryendingin the minimum can emanate from a critical point in the fibre T2* and
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the theorem follows.

To achieve the improvement that the assumption of Minimal Maslov number at
least three suffices one argues as follows: If there exists a pearly trajectory, begin-
ningin f ([1, 00)), the Theorem follows. Ifnot, all pearly trajectories ending in the
minimum emanate from critical points y of f whichare containedin T2 = f;*(0).
Everysuch critical point y canbe generated as sums of linear combinations of Morse
cup products 1 % - - - 0 2 of index 1 critical points 1, . . . , ¢ in the fibre T2
(see Definition 4.22)). One then analyses pearly trajectories arising from linear com-
binations of quantum deformations x1 « - - - x z of the Morse cup products of the
x4, which were used to generate y. The assumption that the minimal Maslov num-
berisatleast three then implies that there exists a pearly trajectorywhich emanates
froma critical point 3/’ containedin f 11, 00) and satisfies the properties stated in
the assertion of Theorem 1.7 (see Porposition 4.24). A more detailed outline of the

proofis given at the beginning of Chapter 4.

Observe that Theorem 1.7 asserts nothing about the the holomorphic discs u

(D,0D) — (W, L¢) which contribute to the pearly trajectory P. For example,
the interior of these holomorphic discs is not necessarily contained in L¢ or even
inaneighbourhood of L and therefore, a priori, cannot be projected to B. In order
to obtain more information about the holomorphic discs contributing to P, I adapt
andapplytechniques from symplecticfield theory. More precisely, I prove Theorem

1.8 below.

Theorem1.8.

Let C'be a fibred, stable coisotropic submanifold of a symplectic manifold (W, w). Assume
that the Lagrangian graph L in the product (W x W, —w X w) is monotone and has
minimal Maslov number N, at least three. Let b be any point in the symplectic quotient

BofC.
If L is displaceable, then there exist:
(M) Analmost fibved Morse function f on L¢ such that the unique global minimum x of
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f on L¢ is contained in f7*(0) and projectsto (b, b) € AB.
B broj

(E) Aconstant Ey > 0, such that for all w g-compatible almost complex structures Jp
on B, there exists at least one punctured pearly trajectory pP of energy at most Eyq

and with the following properties:

(pP1) The punctured pearly trajectory pP connects a critical point y of f contained in

f5t([1, 00) to the minimum x of f.

(pP2) The punctured pearly trajectory pP contains at least one punctured, non-trivial

holomorphic curve
i: (S,08,j) = (We x We, L, —Je x Jeo)

with the following properties:

(S1) Theintersectionii(9S)N f5"(0) andtheintersection@(dS)N f5*((0,00))

are both non-empty.

(S2) Ifuisunbounded nearaninterior puncture, then  is asymptotic to a cylinder

over a generalised Reeb orbit on C' when approaching the puncture.
(S3) Allother boundary and interior punctures of i ave removable.

Here (S, 0S) denotes a nodal, stable connected Riemann surface with nonempty

boundary of genus zero.

A punctured pearly trajectory is a pearly trajectory in which the domains of the con-
tributing holomorphic discs are allowed to degenerate to nodal, connected, stable,
genus zero Riemann surfaces (see Definitions 5.10, 5.11 and 5.12) with nonempty
boundary. The manifold W is the symplectic cobordism (see Definition 5.4) obtained
as the symplectic completion of the Bolle neighbourhood of C' and diffeomorphic to
R* x C. The almost complex structure Jc is the limit of a sequence (Jg),>o of al-
most complex structures used in a neck-stretching procedure on We. These almost

complex structures J§ are adjusted to the stable coisotropic (C, S)(see Definition
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5.5). In particular, they render the projections to B, and the symplectic quotient of
H¢ holomorphic and are radially invariant in R (see Sections 5.3 and 5.5.3 for de-

tails).

Roughly speaking the proof of Theorem 5.1 is a translation of the ideas of the com-

pactness proof in symplectic field theory from [Bou+03] to the present setting.

Recall that, as a consequence of the stability requirement on C, there exists a Bolle
neighbourhood U of C symplectomorphic via a map % to Bfo x C. The symplectic
form on U is given explicitly by Equation 2.6. By looking at C' from a Hamiltonian
group action perspective, the boundary of U can be identified with the stable hyper-
surface H¢ (see Section 3.2.2). By construction, there is a one to one correspon-
dence of the set of generalised Reeb trajectories G on C and the set of Reeb trajecto-
ries R on H¢ (see Proposition 3.25). The coisotropic submanifold C' gets embedded
into U as {0} x C. Thus one can interpret H¢ as a stable hypersurface separating

W into symplectic cobordisms (see Definition 5.4).

Itis a common technique in symplectic and contact topology to “stretch the neck”
around a stable hypersurface H in order to obtain information about holomorphic
curvesinthe manifold W (seefor example [EGHoo], [Bou+03],[CMos5]and theref-
erences therein). “The neck” refers to a neighbourhood diffeomorphic to (—e¢, €) x
H, which gets “stretched” to R x H. Stretching the neck is also called “splitting”
as it results in disjoint, non-compact symplectic cobordisms. In the present case
these disjoint components are We = RF x C,the symplectic completion of the Bolle
neighbourhood U, Wy = R x Hg, called the symplectization of Hc and W, the
symplectic completion of W \ U. As a result of splitting, a .J-holomorphic curve
w : S — W with domain a Riemann surface S which satisfies certain assumptions,
defines (see again [Bou+03]), a punctured Jo -holomorphic curve ¢ in We, where

the domain of % is a nodal Riemann surface.

As alluded to above, the almost complex structure .Js is a limit of a sequence of al-
most complex structures Jg for 7 > 0 € R which are translationally invariant on

the longer and longer necks (—7, 7) x H. These specific families of almost com-
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plexstructures playakeyrolein obtaining more information about the holomorphic

curves via splitting the manifold.

I show in Section 5.3 how to construct such a family of almost complex structures
Js. The correspondence of the generalised Reeb trajectories G on C' and the Reeb
trajectories R on H¢, now implies that if the Rk component of ¢ is unbounded
near a puncture, u¢ is asymptotic to a cylinder over a generalised Reeb orbit on C'.
I explain this in Proposition 5.14. The main assumptions on the holomorphic curve
u which are needed to ensure this behaviour are finiteness of energy (see Section
5.5.2),and that, if the domain of w has non-emptyboundary 9.5, uw maps the boundary

toa Lagrangian submanifold L of Wi.e. u(9S) C L.

Set

W= x Wt =W xW,—wxw,—JxJ).

To prove Theorem 5.1 one uses this apparatus as follows: Theorem 1.7 implies that
there exists a pearly trajectory which, by definition of a pearly trajectory, contains

atleast one non-trivial (—J x J)-holomorphic disc
uw=(u",u"):(D,0D) — (W~ x WT L¢)

The component u~ mapping to the first factor of W x W satisfiesu™(9D) C C.
If the codimension of C'is not n, C is not Lagrangian, and thus the results from
[Bou+03] donotapply directly to ™ and likewise do not apply directly tou™. How-
ever,u = (u~,u") does satisfy a Lagrangian boundary condition in the product
manifold W x W. Since L is a subset of C' x C'it is embedded as a subset of
({0} x C x {0} x C) C U x Uin W x W. Then “splitting” W~ x W™ along
He x He by splitting both factors W~ and W along H using family of almost
complex structures (—J§ x JZ), gives rise to a sequence (P;)r>0 of pearly trajec-
tories. This sequence has uniformly bounded energy by construction. To prove the
theorem it remains to show that there exists a subsequence of this sequence which
converges to a punctured pearly trajectory p P with the properties (pP1) and (pP2)

stated in the assertion of Theorem 5.1.
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In a nutshell, the sequence of pearly trajectories (Pr),>o converges to a punctured
pearly trajectory pP because the splitting is happening “far away” from L. This
allows to view each non-trivial holomormpic map u;, fori, € {1,..., K,} with
K,, € Zx>; contributing to the sequence of pearly trajectories as either a single
(—J¢ x Jg)-holomorphic map, satisfying Lagrangian boundary condition in the
compact parts of W and asapair (u ™, ut) ofa (—.J2)-and a J&-holomorphic map
in the non-compact part of W¢. The existence of a punctured pearly trajectory with
the properties (pP1) and (pP2) then basically follows from applying Gromov’s com-
pactness Theorem in the compact parts (see for example [Frao8]) and by applying
the compactness results from [Bou+03] in the non-compact parts. As a result, the
limit object p P contains a holomorphic curve with domain S’ a nodal Riemann sur-
face. The properties (S1)-(S3) of the holomorphic curve @ follow from the fibre bun-
dle structure of L¢ bya straightforward argument, which I give at the very end of the
proof of Theorem 1.8. A more detailed outline of the proofis given in Section 5.1 of

Chapter 5 where I present the proof of the theorem.

Most of the effort of proving Theorem 1.8 lies in adapting the setup of symplectic
field theory to the present setting. A priori performing the k-dimensional analogue
of aneck-stretch around a codimension k-coisotropic could lead to different results
than neck stretching around the associated stable hypersurface H¢. It turns out
that the two approaches yield the same result (see Remark 5.9).Thus the machin-
ery developed here allows to use neck stretching techniques for stable coisotropics

C'vianeck stretching around the stable hypersurface Hc

Given these two results, the final step of proving Theorem 1.6 is the following argu-
ment: Theorem 1.8 provides, by projection to the first and second factor of the tar-
get —We x W, apair (@, 4) ofa punctured anti-holomorphic and a punctured
holomorphic disc which have well defined projections to C' and B. All punctures of
(u~,u") are either removable by (S3) or approach a pair of generalised Reeb orbits
contained in a pair of leaves of the characteristic foliation F x F. Since C'is fibred,
the leaves of the characteristic foliation coincide the fibres of the fibre bundle, and

thus generalised Reeb orbits project to points in the symplectic quotient B. Thus
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after projection to the compact space B x B, the pair (rg ot~ ,mgou") definesa
pair of an honest (i.e. without punctures) antiholomorphic u; and an honest holo-
morphic disc u 5, by the removal of singularities theorem. By the definition of L¢
as a fibre product over B (recall Equation 1.2 above) and the Lagrangian boundary
condition on u, the discs u 5 and ug agree along their boundaries in A B. Thus one
may glue them to an (7, Jp)-holomorphic sphere v : C U {oco} — B, which passes

trough agiven pointb € B.

1.4 Previousand related research on coisotropic subman-

ifolds

Coisotropics encompass classes of submanifolds which have been studied exten-
sively in symplectic topology: Lagrangians, hypersurfaces and of course symplectic
manifolds themselves. Floer’s proof of the Arnold conjecture by developing an in-
tersection theory for Lagrangian submanifolds, see for example [Hof+95], inspired
an abundance of research in symplectic topology. Likewise, Viterbo’s [Vit87] and
Hofer’s [Hof93] proofs of the Weinstein conjecture have inspired plenty of research
on the dynamics of contact and stable hypersurfaces. Consequently, many ques-
tions about coisotropics which have been addressed in the past have their origins
either in questions about symplectic manifolds, Lagrangians or hypersurfaces. Put
differently, coisotropic submanifolds provide a general framework for addressing
many interesting questions in symplectic topology. Consider for example the fol-

lowing:

Question 2.
Given a symplectomorphism 1 of a symplectic manifold W and a coisotropic submanifold

C, do there exist leaf~wise fixed points of 1) on C'?
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Recall the definition of a leaf-wise fixed point. A point z in a coisotropic subman-
ifold C'is a leaf~wise fixed point of a (Hamiltonian) symplectomorphism v of W' if
1 (x) lies in the leaf F, through z, i.e. )(x) € F;. Inthe case where C is the en-
tire symplectic manifold I, a leaf-wise fixed point is a fixed point of 7). Thus in the
case C' = W, Question 2 above is about fixed points of symplectomorphisms and
thus related to the Arnold conjecture. If C'is a Lagrangian L a leaf-wise fixed point
is an intersection point of L and ¢( L) and in this case Question 2 is about the self-
intersection properties of L. A more detailed exposition of these correspondences

isgiven in Lemma 3.9 and Remark 3.10.

Already in 1978 Moser proved the following result in [Mos78]: given an embedding
1 of a compact coisotropic submanifold C into a simply connected, exact symplec-
tic manifold W. If the composition of a differentiable, exact symplectic mapping ¢
with i is sufficiently C! close to 4, then ¢ o i has at least two leaf-wise fixed points on
C'. Theseexistenceresults were then extended by Banyaga in [Ban80] tonon-simply
connected symplectic manifolds even before Gromov’s “founding” paper [Gro8s]

and the advent of modern symplectic geometry.

Dragnev, Ziltener, Kang and Giirel independently proved the existence of leaf-wise
fixed points in more general settings using Floer theoretic methods in [Drao8],
[Zil10], [Zil14], [Kan13] [Glirio] respectively. The mainassumption on the symplec-
tomorphism 1 is that the Hofer norm of ) does not exceed a symplectic capacity
associated to C. Ziltener explains in footnote 2 of [Zili4] how the Hofer norm can
be compared to the C''-norm. The assumptions on C' and W vary. For example Zil-
tener assumes in [Zilio] that W is geometrically bounded and that C'is closed and
fibred. In [Kan13], Kang assumes W to be convex at infinity and C' to be closed and
of restricted contact type. To illustrate the kind of results that were proved, I state
Dragnev’s result from [Drao8]: A symplectomorphisms 1) of R" with its standard
symplectic structure, has a leaf-wise fixed point on a compact, contact coisotropic
(see Definition 2.14), provided the Hofer norm of ¢ is smaller than the Floer-Hofer

capacity of C.

Recently, Ziltener proved in [Zil14], that, if the inclusion of a closed coisotropic
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C'into (W, w) is not necessarily contact, then a Hamiltonian symplectomorphism,
which is close to the inclusion in an appropriate sense in the C’-norm, has at least
one leaf-wise fixed point it . Ginzburg and Giirel show in [GG15] that it is not suf-
ficient to assume closeness to the identity in the Hofer norm if one drops the con-
tact condition on C. It seems that either closeness in an appropriate C” norm or the
contact condition on C are indispensable assumptions for the existence of leaf-wise
fixed points. Albers and Frauenfelder have also studied Question 2 in the context of
stable and contact hypersurfaces using Rabinowitz Floer theory. See for example

[AF12].

A simpler, yet closely related question, originating in the rigidity results for La-

grangian intersections obtained by Chekanov in [Che98], is the following:

Question 3.

Is the displacement energy of a coisotropic submanifold strictly positive?

The displacement energy of a submanifold of a symplectic manifold is, roughly
speaking, the infimum over the Hofer norms of all Hamiltonian symplectomor-
phism displacing the submanifold. For a precise definition see for example page
3 of [Kero8]. Ginzburg in his paper [Gino7], which also provides an overview on
the theory of coisotropic intersections, Ziltener [SZ12] and Kerman in [Kero8] ob-
tained affirmative answers to Question 3. Again their assumptions vary. For exam-
ple Ginzburg assumes that IV is either symplectically aspherical and closed or wide
and geometricallybounded, and that C'is closed and stable. The most general result
inthisdirectionis Theorem 1.6 of Usher’s paper [Ushi1], which implies in particular
(Corollary 1.7 of [Ushi11]) that any closed stable coisotropic submanifold of a Stein

manifold has positive displacement energy.

Questions 2 above has its origin in studying symplectic manifolds, or through
Floer’s work, in studying Lagrangians. Question 3 originates in the study of La-

grangian submanifolds. A question originating in the interest on the dynamics of
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hypersurfaces, which can in fact be seen as a generalisation of the Weinstein con-

jecture to higher codimension & > 1is the following:

Question 4.
Do there exist loops, which are non-contractible in the leaves of the characteristic foliation

of a coisotropic (and which bound positive symplectic energy)?

Recall that Bolle, in his 1997 paper [Bol98], introduced the contact and stability con-
dition on coisotropic submanifolds. Using symplectic capacities, he gave a positive
answer to Question 4 for contact coisotropics in R?”. The Floer theoretic methods
developed in [Gino7], [Kan13], [Ushi1], and used to answer Questions 3 and 2 are
also applicable to adress Question 4. The most general result for stable coisotrop-
ics follows from Theorem 7.5 of [Ush11]: if a closed, stable coisotropic submanifold
C of a closed symplectic (or Stein) manifold W is displaceable, then there exists a
loop in a leaf F" which is a non-contractible in F', bounds positive symplectic area
and is contractible in W. Notice the converse implication of this result: If there are
no non-contractible loops tangent to the foliation F of C, bounding positive sym-

plectic area and contractible in W, then C'is non-displaceable.

Another interesting direction of research on the rigidity properties of coisotropic
submanifolds has been introduced by Humiliere, Leclercq and Seyfaddini. In
[HLS15] they prove that previously observed C*-rigidityresults for Lagrangians and
hypersurfaces are manifestations of the C-ridigity of coisotropic submanifolds:
the image of a coisotropic submanifold C' under a symplectic homeomorphisms ¢
is a coisotropic #(C'), given the image of C' under  is smooth. If this is the case, also

the image of the characteristic foliation F of C'is smooth under 6.

The phenomena described above can be seen a generalisation of the rigidity of La-
grangian intersections and the fact that a Lagrangian which is displaceable bounds
anon-trivial holomorphic disc. In the codimension 7 case the fact that Lagrangians

have non-zero displacement energy was proved by Chekanov in [Cheo8]. A dis-
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placeable Lagrangian bounds a non-trivial holomorphic disc by Lemma 4.23. For a
displaceable coisotropic, the leaves of the characteristic foliation, play the role of
the Lagrangian. The rigidity of Lagrangian intersections can be interpreted as one
of the underlying reasons why Floer could prove the Arnold conjecture by looking
at the self intersection properties of Lagrangians. That coisotropics exhibit similar
rigidity properties gives hope that an appropriate “coisotropic Arnold conjecture”
could be formulated. In fact, Ziltener formulates a coisotropic Arnol’d-Givental
conjecture and proves a version of it for fibred coisotropic submanifolds in [Zil10].
Moreover this hope is supported by the Work of Oh, Ginzburg and Ziltener who de-
fine coisotropic Maslov indices in [Oho3], [Gini1] and [Zilog]. Ginzburg in [Bat13]
and Batoréo [Bat13] show that the coisotropic Maslovindex satisfies similar rigidity

properties as the Lagrangian Maslov index.

Interestingly this phenomenon can also be seen as a generalisation of the non-
triviality of the displacement energy of stable hypersurfaces. In the hypersurface
case, the non-triviality of the displacement energy follows from the non-degeneracy
of the Hofer norm as observed by Ginzburg in [Gino7] (page 2). The observation
that there exists a non-trivial loop bounding positive symplectic energy in the char-
acteristic foliation of a displaceable coisotropic has interesting implications. In the
case where C'is a contact hypersurface, displaceability of C' thus implies the Wein-
stein conjecture for C'. This gives hope that an appropriate “coisotropic Weinstein

conjecture” could be formulated.

The generality of coisotropics now allows to link the two conjectures! Hence, one
could try to prove a coisotropic Arnold conjecture using methods which were ap-
plied to prove the Weinstein conjecture, and one could try to prove the coisotropic
Weinstein conjecture using Floer-theoretic methods which were originally devel-

oped to prove the Arnold conjecture.

Ultimately one could therefore be tempted to formulate the following (very specu-
lative!) conjecture which would subsume the Arnold, the Arnold-Givental and the

Weinstein conjecture in some cases.
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Conjecture (very speculative).
Given a Hamiltonian symplectomorphism 1) and a closed and stable coisotropic submani-

fold C of a symplectic manifold (W, w).

(A-W) Either 1) has a number of leaf-wise fixed points which is bounded below by a num-
ber depending only on the topology of C' or, if not, there exists a non-trivial loop in

the characteristic foliation F of C which bounds non-trivial symplectic energy.

Notice that the statment about the existence of leaf-wise fixed points is the Arnold
conjecture if C = W and the Arnold-Givental conjecture if C' = L, by taking
the sum of the Betti numbers as a lower bounds. Also notice that the statement
about the existence of a non-trivial loop, coincides with the Weinstein conjecture
ifthe W = R?" and the codimension of C'is one. In the codimension n case, this
statement follows from the Arnold-Liouville theorem, since stable codimension n-
coisotropic are necessarily Lagrangian tori. In the codimension 0 case the leaves
are the points of W, and thus the question about the existence of non-contractible

loops does not make sense.

Besides providing a general framework to investigating these conjectures,
coisotropics are also conjectured to play a role in homological mirror symme-
try. More precisely, in [KOo3], Kapustin and Orlov postulated the integration of
objects associated to coisotropics into the Fukaya category as a necessary condition
to establish homological mirror symmetry in the context of certain Hyperkéhler
four-manifolds. They indicate that for these manifolds the K-theory of the Fukaya
category is smaller (in an appropriate sense) than the K-theory of the derived
category of the mirror and therefore the Fukaya category must be enlarged in
some way. They suggest using D-branes associated to coisotropics. Following this
paper, in an attempt to understand the space of endomorphisms of coisotropic
submanifolds, viewed as objects of a, yet to define, enlarged Fukaya category, the

following question has been investigated:
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Questions.

What is the structure of the space of deformations of coisotropics?

Infact, thefirstresult which canbe seen asaddressing this question, was obtained by
Gotayin [Got82] as early as 1982 and thus around thirty years before [KOo03]. Gotay
proved thatall coisotropic embeddings of pre-symplectic manifolds into symplectic

manifolds are equivalent up to symplectomorphism.

Recall that the space of infinitesimal deformations of a Lagrangian L. modulo Hamil-
tonian equivalence is diffeomorphic to a neighbourhood of 0 in H!(L, R). In sharp
contrast, Oh and Park explain in [OPo5] that for general coisotropics the space of
deformations is “non-commutative and fully non-linear”, has the structure of an
L algebraand is, in general, obstructed. Ruan demonstrates in [Ruaos] that if the
coisotropic is fibred, its space of deformations modulo Hamiltonian equivalence
is unobstructed and a smooth finite dimensional manifold, which is in accordance

with the fact that it is possible to assign the Lagrangian graph L to C'in this case.

Beyond this conjectured role coisotropic submanifolds play in mirror symmetry,
coisotropics occur in related fields of (Quantum-)Physics: Dirac in [Dir67] refers
to coisotropics as the configuration space of “the general Hamiltonian theory” of
quantum mechanics. To go into more detail about the more recent physics publica-
tions on coisotropic submanifolds of Poisson manifolds is beyond the scope of this

introduction.

To conclude this introductory chapter, I give a brief outline of the thesis below.

1.5 Outline of the thesis

In Chapter 2, I introduce coisotropic submanifolds in detail . I give the defini-
tions of fibred and stable coisotropic submanifolds and derive some first conse-

quences of these assumptions. Iillustrate some important phenomena, which arise
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for coisotropic submanifolds by examples and expand on the examples given in the
introduction. The thesis is then structured according to the goal of accomplishing
steps (I), (II) and (III) stated at the beginning of Section 1.3 subsequently which

serve to prove Theorem 1.6.

Iassignthe Lagrangian L and the hypersurface H¢ to C'in Chapter 3. In Section 3.1
Iintroducethe Lagrangiangraph L of afibred Coisotropic C'indetail. In particular,
Iexplainhowthe intersection theoryof C'isrelated to the intersection theoryof L¢.
In Section 3.2 I construct the stable hypersurface H¢ for a given stable coisotropic
C. Moreover I show that the generalised Reeb dynamics on C' correspond to to the
Reeb dynamics on H¢. Thus, in Chapter 3, I assign to a stable, fibred coisotropic a
Lagrangian submanifold L and a hypersurface H¢ which both capture some rele-
vant parts of the geometry of C'. The advantage of L and H is that they belong to

classes of submanifolds, for which more mathematical machinery is available.

Chapter 4is devoted to proving theorem 1.7. This is done by first adapting the pearl
complexmachinery developed by Biran and Cornea, in order to make use of the fibre
bundle structure on C'and L and then applying the machinery, i.e. deriving results

about C by utilising the algebraic structures at hand.

Chapter 5 is dedicated to the proof of Theorem 1.8. Most of the effort in proving the
theorem lies in adapting ideas from symplectic field theory to the present setting.
The application of the tools I develop is then a straightforward adaptation of the
bubbling-off analysis carried out in proof of the compactness theorem in [Bou+03]
to the present setting. I also briefly outline how the machinery developed could be

used to formulate and prove a coisotropic SFT compactness theorem.

Finally, in Chapter 6, I explain the small final step of the proof of Theorem 1.6 in de-

tail.
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Chapter 2

Introduction to coisotropic

submanifolds

2.1

2.2

2.3

2.4

Standing assumptions and conventions: I work in the category of smooth
manifolds unless stated otherwise. The main object of study of this thesis are
coisotropic submanifolds C' of symplectic manifolds (W, w). I will often abbrevi-
ate the term “coisotropic submanifold(s) of the symplectic manifold (W, w)” tojust
“coisotropic(s)”, mimicking the common practice of referring to a “Lagrangian” in-
stead of referring to a “Lagrangian submanifoldf of (W, w)”. I will assume through-
out that the symplectic manifold (W, w) is real 2n-dimensional, and that coisotrop-
ics C have codimension k € {0, ...,n} and are thus of dimension 2n — k. More-

over assume that all coisotropics are embedded, connected and closed (compact

Coisotropicsubmanifolds . . .. ............... 40
Fibredness of coisotropic submanifolds . . . ........ 46
Stability of coisotropic submanifolds . . . .. ... ..... 49

Dynamics on coisotropics submanifolds and Hamiltonian

groupactions . . .. ... ...ttt 56

and without boundary), unless stated otherwise.
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Inthis section, I introduce coisotropic submanifolds of symplectic manifolds in de-
tail. First, in Section 2.1, I give an overview of the general theory of coisotropic sub-
manifolds and provide some elementary examples. Then, I recall the definition of
fibred coisotropic submanifolds and explain how one forms the symplectic quotient
of a coisotropicin Section 2.2. Following this, in Section 2.3, I investigate the notion
of stability of a coisotropic submanifold. I establish the existence of standard model
for a neighbourhood of a stable coisotropic in Proposition 2.18. In Section 2.4, I ex-
plore the stability requirement with respect to the dynamics on the coisotropic. It
turns out that stable coisotropics fit into the context of Hamiltonian group actions
and can be seen as “locally Hamiltonian group actions”. Finally, in Proposition 2.22, I

state and prove the coisotropic version of the Arnold-Liouville theorem.

2.1 Coisotropic submanifolds

Recall that a symplectic structure on a smooth manifold W is a closed, non-

degenerate 2-formw € Q%(W). A diffeomorphism
P (Ww) — (W W),

which preserves this structure, i.e. *w’ = w, is called a symplectomorphism. Given

a symplectic manifold (W, w), the map

(2.1) L TW = T*W

X = 1(X)w=w(X,")

defines a canonical isomorphism of the tangent bundle 7'W and the cotangent bun-
dle T*W of a symplectic manifold (W, w). It identifies the sections of these bun-
dles, namely vector fields I'(W, TW) with 1-forms Q! (W). Every function H :
(W, w) — R defines a Hamiltonian vector field by

(Xg)w=dH.
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Let N beasubmanifoldandiy : N — W thenaturalinclusion. The tangentbundle
T'N is a subbundle of the pullback bundle ¢, 7W . The symplectic complement T N
of T'N in i3 T'W is given by

(2.2) TNY ={veinyTW | w(w,v) =0 forall w € TN},

and is also a subbundle of i3, 7'W. Unlike for the orthogonal complement in Rie-
mannian geometry, it is not necessarily true that i3, T'W splitsas TN @ T'N“. In-
terestingand natural classes of submanifolds of symplectic manifolds are defined by
looking at the relation of 7'V and T'N“. A submanifold /V of a symplectic manifold
(W, w) is called:

e coisotropicif TN* C T'N.

e Lagrangianif TN“ = TN.

e isotropicif TN“ D T'N.

o symplecticift TN N TN = {0}.

The following Lemma illustrates the foliation theory of the submanifolds listed

above.

Lemma 2.1.
Let N beasubmanifold of (W, w) such that the bundle T N T N'“ is of constant dimension
along N. Then N is foliated by leaves F' tangentto TN N T'N“.

Proof. This proofis exactly as the proof of Lemma 5.33 in [MS17]. By the Frobenius
theorem, afoliation of N tangenttoT'N NT'N® existsif and onlyif this distribution
is closed under the Lie bracket [-,]. Let¢ € N and X and Y be vector fields in a
neighbourhood of N with valuesin T'N N T'N®. Let Z be any vector field on TV
defined inaneighourhood of N. Since (TN“NTN) C T'N and N isasubmanifold,
it follows that [X, Y] € T'N. Itremains to show that [X, Y] € TN“. By Cartan’s
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identity:

0= dw(X,Y,2)
= Lx(Ww(Y,2)) + Lz(w(X,Y)) + Ly (w(Z, X))
+w([X,Y],Z2)+w([X,Z],Y) +w([Y, Z], X)

=w([X,Y],2)

The three terms in the second line vanish, since the functions
w(Y, Z)(q),w(X,Y)(q) and w(Z, X)(q) all vanish identically along N by def-
inition of the w-complement. The two last terms in the third line vanish since

[X, Z]and [Y, Z] are contained in T'N. O

Observe that the proof of Lemma 2.1above uses both the closedness of w and the iso-
morphism ¢ induced by w. In particular every submanifold /N which is coisotropic,
isotropic, Lagrangian or symplecticis foliated. For symplectic submanifolds, the fo-
liation consists of 0-dimensional leaves, so each leaf is just a point in the subman-
ifold. Isotropic submanifolds are foliated by just one k-dimensional leaf, namely
themselves since here TN N T'N¥ = T'N. The same holds for Lagrangians,
with the addition that these submanifolds are the maximal isotropic (or minimal

coisotropic) submanifolds, and k£ = n.

Coisotropics are the most interesting submanifolds in view of foliation theory:
Lemma 2.1 implies that every coisotropic submanifold C' is foliated by k dimen-
sional isotropic leaves F', tangent to T'C**. Recall from the introduction that this
foliation F of C'is called the characteristic foliation of C. Before embarking on fur-
ther on the studies of coisotropics I give some elementary examples of coisotropics
below. The reader is also invited to revisit Examples 1.1, 1.2, 1.3 and 1.4 from the in-

troduction.

Example 2.2 (Hypersurfaces).

Every hypersurface H in a symplectic manifold (W, w) is coisotropic. H is foliated
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by one dimensional leaves.

Example 2.3 (Lagrangians).

Every Lagrangian is a coisotropic, foliated by one n-dimensional leaf, namely itself.

Example 2.4 (Poisson-commuting Hamiltonians).
Assume there exist k Poisson-commuting Hamiltonians H;, . . . , H} onasymplec-
tic manifoldi.e. w(Xj, X;) = 0. If0is a common regular value of all Hamiltonians

H,;,then the intersection of level sets,

isa codimension-k coisotropic.

Example 2.5 (Linear coisotropics).
Consider R?" with coordinates (q1, . . . ¢u, P1, - - - , Pn) and its standard symplectic
structure

wo =dpy Adqy + -+ + dpp, A dgp.

Forl < k <[ <n andk + [ > n,define the linear subspace C of R?" by

C’lin = (q17"'7QZ707"'707p17'"apk707"'707pl+17'"7pn)-

Then, C'is a k 4 [ dimensional coisotropic submanifold. More concretely consider

the following subspace of R:

Ciin = (q1,42,0,p1,0,p3).

Then, T'C, = (g2,p3), TCin/TCy, = (q1,p1) = R?and R \ TChin = (g3, p2).
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Returningtothe general theory,denoteby 7'W /T'C' the normal bundle of C' defined
as the quotient of the bundles if,7'WW and T'C and likewise for T'C'/T'C*. Consider
the isomorphism ¢ introduced in Equation (2.12) and denote by £° the annihalator

of asub-bundle £ of T'W. Along C' the isomorphism ¢ has the following properties:

(TC)TC¥) = (TC¥ & TW/TC))® = (TC/TC¥)*
(TC¥ ® TW /TC) = (TC/TC*)°
(23)
UTC¥) = (TW/TC)*
(TW)TC) = (TC¥)".
This induces in particular the following splittings of the tangent bundle ¢, T'W
along C.
(2.4) icTW =TC/TCY @TCY @ TW TC

~ TC/TC* & TC* & (TC¥)*

~ TC/TC® & (TW /TC)* & TW /TC

These splittings depend on a choice of complement of 7’C* in T'C, since T'C' /T C*
isnotnaturally a sub-bundle of 7'C' and a choice of complement of 7'C'in T'W. Such
a choice can be made by choosing an identification of T'W with T'W*, for example
by choosing an w-compatible almost complex structure J. Recall that an almost
complex structure is an endomorphism of 7'W which squares to —¢d. J is called
w-compatible if w(Jv,v) > Oforallv € TWandw(Jv, Jw) = w(v,w) for all
v,weTW.

Gotay explains in [Got82] how the splitting 2.4 can be used to show that all em-
beddings of neighbourhoods of coisotropic submanifolds are symplectomorphic.

These splittings of the tangent bundle along C' will become important later.

In the case where C'is a Lagrangian L, the space T'L /T L* is a point and the main

result from [Got82] recovers the fact that every Lagrangian L has a neighbourhood
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symplectomorphic to its cotangent bundle 7™ L. For a hypersurface H, T"H* and
TW /T H are one dimensional, and the space TH /T H* is 2n — 2 dimensional. A

famous examples of this is the Hopf fibration S* — $3 — S2 (Example1.1.)

In view of the splittings above one is tempted to consider the quotient space C'/ F.
However this space is not necessarily a manifold as quotienting out by the leaves of
J which are tangent to 7'C* may yield non-Hausdorff spaces. A simple, yet very
instructive, illustration of this property of foliations (not necessarily foliations of

coisotropics) is the following:

Example 2.6 (Torus foliations).
Consider the two-torus T? = R?/Z? with the topology induced from R?. Let A €
R\ {0}. The torus admits a vector field

X(z,y) = (%7)\%)-

Givena point (zg, o) € T? the integral curves

fL:R—T?

x = (xo+ z, A\x + yo).

of X foliate the torus. If \is a rational number \ = % for p, g coprime in Z with q #

0, then each leaf F’» through a given point (zg, yo) is compact. If A is an irrational
q

number A € R \ Q, then each leaf of the foliation F) of T? is everywhere dense in

T2

In Example 2.6 above, assume that A is irrational. Since each leaf F)) is dense in T2,
the quotient 72 / F), is not a Hausdorff space. The topology of F), as a leaf of the fo-
liation F, does not agree with the topology of F), as a submanifold of T?. If \ is ra-

tional, the quotient T? / F» is diffeomorphic to a circle. In particular, an arbitrarily
q
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small perturbation of the angle defining the foliation drastically changes the prop-

erties of the quotient T? / F.

2.2 Fibredness of coisotropic submanifolds

In this section I introduce the notion of a fibred coisotropic. This condition ensures
that characteristic foliation of C' does not change drastically under small perturba-
tions within B. Moreover I will show that if C is fibred, then the quotient C'/ F is a

smooth symplectic manifold.

Definition 2.7 (Fibredness of coisotropic submanifolds).
A coisotropic C'is called fibred if the isotropic leaves F' of the characteristic foliation
F of C, which are connected by definition, are closed submanifolds of C' and the

holonomy of each leaf, as defined in Section 2.1, of [MMo3] is trivial.

An important consequence of this requirement is the following Lemma:

Lemma 2.8.

Let C be a fibred coisotropic. Then C'is the total space of a smooth fibre bundle
(2.5) F—-C5 B.

The base B is called the symplectic quotient of C' and carries a natural symplectic structure

WRB = Tyipw.

Proof. Theholonomy ofallleavesis trivial byassumption. Thusit follows from The-
orem 2.15 of [MMo3] that the quotient C'/F carries a canonical, smooth, second

countable, Hausdorff manifold structure. The projection 7 is induced by the quo-
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tient map, which identifies points on the same leaf.

To show that wp iswell-defined and non-degenerate I argue as follows: assume that
x,y € C'liein the same leaf, say F;.. Choose a finite collection of foliation charts

U=U,U---UU,suchthatx,y € U. Chooseacurve
v:[0,1] — U

such that y(0) = z,v(1) = yand§(t) € T, ) C* foralltin [0, 1]. Define a vector
field X on U with valuesin 7'C* such that

X (1)) = (1) € T

Then the Lie derivative £ x of ij,w in the direction of X is well defined in U. Calcu-
lateattp € [0, 1]
o7 () igw = Lx () icw(y(1)))

= d(u(X (v(t0)))icw(v(to)))

=0.

Hence ifw(y) = ifw(x) and wp is well defined. By definition
ker(igpw)(x) = kerdn(z) = T,C*.

Consequently wp is non degenerate on B and varies smoothly with b € B. By the
closedness ofw,onehas d(if-w) = 0. Nowan elementary computation inafoliation

chart shows that this implies that wp is closed on B . O

Remark 2.9.
Itis also possible to assume the existence of local slices and impose the Hausdorff condition

on the quotient in ovder to prove Lemma 2.8. This is the approach taken in [MS17] Section
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5.4. For a detailed proof of Lemma 2.8 under these assumptions see Proposition §.4.5 of the

former reference.

The assumption that the holonomy of each leafis trivial isnecessary evenif all leaves
are closed submanifolds of C'. Otherwise the quotient C'/F can be an orbifold.
Many thanks to Dominic Joyce for pointing this mistake out to me! Iillustrate this

in the example below:

Example 2.10 (Foliation of the M&ebius strip).

View the MGbius strip M astherectangle [0, 1] x [—1, 1]with {0} x[—1, 1] identified
with {1} x [—1, 1] viathe map ¢(y) = —y,fory € {0} x [—1, 1]. If y is non-zero,
theleaf F, := [0, 1] x {y} hastrivial holonomy. Thus there exists a neighbourhood
of y such that quotient, M /F,, where F, is the foliation by parallel leaves, in this

neighbourhood, is diffeomorphic to an open interval.

Theleaf Fy = [0, 1] x {0} has Zy-holonomy and the quotient M / F can be identi-
fied with the orbifold [0, 1] /Z,.

Note that the leaves I’ of the foliation F are now the fibres of a fibre bundle and
hence nearby leaves are diffeomorphic. Thus the foliation does not change drasit-
cally under small perturbations in the symplectic quotient B. Fibredness is quite a
restrictive assumption. Nonetheless all the interesting Examples 1.1,1.2,1.3and 1.4

from the introduction are fibred coisotropics.

With this property of the characteristic foliation established, in the next section
I consider a condition which ensures that the characteristic foliation remains un-

changed under small pertubations in the normal directions of C'.
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2.3 Stability of coisotropic submanifolds

In this section I explore the notion of stability for coisotropics. It is a straightfor-
ward generalisation of the concept of a stable hypersurface to higher codimension
1 < k < n.Ifk = 1thenotion of a stable codimension 1 coisotropic and a stable

hypersurface coincide. The stability condition was introduced by Bolle in [Bol98]

Definition 2.11 (Stability (Bolle)).
A codimension k, coisotropic submanifold C of a symplectic manifold (W, w) is sta-

bleif there exist k one-forms a1, . . . a, defined on C, which satisfy:
(S1) kerifw C kerda;foralll <i <k,

(S2)) ForallzinC,aq A--- Aoy A (w)"*(x) # 0.

Remark 2.12.
Condition (S2°) in Definition 2.11 above is equivalent to the linear independence of the cv;
onkerisw = TC®. Alsonotice that by applying the isomorphism ¢ from Equation to the

one-forms avy, . . . , o, tmplies that C' has trivial normal bundle.

Iwould like to advocate an alternative, but equivalent definition which Ithink better
illustrates the fact that stability is a condition on how the coisotropic is embedded
into the surrounding manifold. In particular one immediately sees from Definition
2.13 below that stability implies that C' has trivial normal bundle. I will prove that
the two definitions are equivalent in Lemma 2.16 below. Denote by i - the inclusion

ofaleaf F'into C.

Definition 2.13 (Stability of coisotropic submanifolds).
A codimension k, coisotropic submanifold C of a symplectic manifold (W, w) is sta-

bilizable if there exist vector fields Y7, . .. Y}, on a neighbourhood U of C such that
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their pullbacks to i, T'W satisfy
(S1) i3 Ly,w = 15 (d(u(Ys)w) = 0.
(S2) Yi,...,Yarelinearlyindependent onif,(T'W /T'C') and transverse to C.

Icallthevectorfields Y7, . . ., Yy stabilising vector fields. Icall 1 (Y7 )w, . . . , (Y )w sta-
bilising one forms, the (k + 1)-tuple S = (w, Y1,...,Y})) astablestructureon C'and a

pair (C, S) astable coisotropic.

This terminology is inspired by [CV15], which deals with stable hypersurfaces. The
notions put forward here coincide with the corresponding definitions in [CV15] in
the codimension one case. From a dynamical systems point of view Condition (S1)
means precisely that the characteristic foliation F is stable under small perturba-

tions of the coisotropic in the normal directions.

Definition 2.14 (Contact coisotropic).
A contact structure on a coisotropic C'is a stable structure A = (w, Y7, ..., Y%) such

that
(C1) Ly,w =d((Y;)w) =ifwforalll <i <k,
(C2) Yi,...,Y)arelinearlyindependent on i, (T'W /T'C) and transverse to C.,

The pair (C, A) is called a contact coisotropic submanifold.

A codimension one contact coisotropic is thus a contact hypersurface. In this case

the vector field Y is usually called Liouville vector field.

Remark 2.15.
The product (C x C',8 x &) C (W x W' w x ') of two stable coisotropics
(C,S) C (W,w)and (C',S") C (W',') is again a stable coisotropic. This does not
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necessarily hold for contact coisotropic submanifolds. Bolle shows in Remark 3 of [Bolo8]

that a contact coisotropic (C, A) of codimension k has to satisfy
dim(H'(C)) > k — 1.

Notice that this provides a large class of examples of submanifolds which are stable-but-
not-contact coisotropics. For example, consider the cartesian product of spheres S>™~1 x
S2n=1 < R2™ x R2"™ with the standard symplectic structure wg X wo. Then S?™~1 x
%=1 cannot be contact ifm,n > 1. However S?™~1 x S27=L s a stable codimension
2 coisotropic. Move generally, the product of any two contact hypersurfaces, which have

trivial fundamental groups, is a stable-but-not-contact coisotropic of codimension 2.

Lemma 2.16.

Defintion 2.11 and Definition 2.13 are equivalent.

Proof. Condition (S2') in Definition 2.11 is equivalent to the existence of a triviali-
sation of (T'C"™)* given by the «;. Choosing a1, . . ., aj, corresponds to choosing a
trivialisation

*
7 (TC¥) - RF x C
in the same way as choosing Y7, . .., Y}, linearly independent and transverse to C'
corresponds to choosing a trivialisation

7:TW/TC — RF x C.

Recall from (2.3) that «(TW /T'C) = (T'C¥)*. In particular given Y7, ..., Y} we
may choose o, . .., oy such that ¢(Y;)w = «; and vice versa. Thus Conditions

(52')and (S52) are equivalent.

By definition, ker(if.w) = T'C* = TF. As described above, one may always ar-

range d(¢(Y;)w) = da;. Thus condition (S1’) is equivalent to condition (S1). O
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From now on, I will work with Definition 2.13.

Definition 2.17 (Generalised Reeb vector fields).

Given a stable coisotropic C, because Y7, ..., Y} are defined at every point of C,
there exist k vector fields X1, ..., X; on C'withvaluesin € T'C“ which are w-dual
toYq,..., Y, thatis:

w(Yi, Xj) = ai(X;) = dy5.

The vector fields X1, . . ., X, are called generalised Reeb vector fields. Denote by ¢; :

R x €' — C'theflow of X; defined by the equation

wherex € C'andt € R. For k = 1 this definition coincides with the usual defini-

tion of the Reeb vector field on a hypersurface.

The most important consequence of the stability requirement is the following
neighbourhood theorem due to and originally proved by Bolle in [Bol98]. I present
a proof it of using Definition 2.13. Denote by Bfo the standard ball of radius ¢y > 0

in Rk,

Proposition 2.18 (Bolle neighbourhood theorem).
Assume (C, S) is stable. Then there exists a neighbourhood U of C, an ¢y > 0 and a dif-
feomorphism ) : Bfo x C' — U which satisfies:

k
(2.6) Prw = ws = Prigw + Z d(pic;).
i=1
where a; = V* (L(Y;)w) and py, . . ., pi arethe coordinates on Bfo.

Moreover, throughout Bfo thefoliations F,, of Cp, := {p} x C areconjugatetothefoliation

Fof C = {0} x Cviaafamily of diffeomorphisms depending smoothly on p. I will refer
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to such a neighbourhood U as a Bolle neighbourhood.

Proof. By condition (S2) in Definition 2.13 choose a smooth trivialisation
7:TW/TC — R* x C,

given by vector fields Y7, . . . Y/ of the normal bundle of C. By the inverse function
theorem there existsan ¢ > 0 and a smooth map 1 : Bf, x C'— U which satisfies
Y oic = idand

Y] = dp;,

where I denote by Op; the canonical vector field of unit length associated to the co-
ordinate p; using the identification of R¥ with its dual space provided by the stan-
dard inner product on R¥. Choose k Reeb vector fields X1, . . . , X} as in Definition
2.17. OnT'(By x C) view the X as (0, X;). Now perform a symplectic version of

Gram-Schmidt to construct vector fields Y7, ... Y} on C such that w(Y;,Y;) = 0.

GivenYy,..., Y] set
Y=Y,
m—1
Yoo = Y5 = Y w(¥y, Vo) - X, for 2<m <k
n=1

Thenw(Y;,Y;) = Oforalll < 4,j < k. First notice thatw(Y;, X;) = w(Y/, X;)
since w(X;, X;) = 0. Next, notice that the one-forms dH; = 1)..dp; are exact for
each j and satisfy dH,(Y;) = w(Y;, X;) = 6;; on TW /TC. By choosing appropri-
ate constants, assume that the H; are defined on U, satisty H; (1 (p;, c)) = pj and

give
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Define k one-forms on 7'C* by setting &; = ¢(Y;)w. Then
(27) w(Yi, X;j) = dH;(Yi) = ai(X;) = 6ij.

Define a symplectic form &, on i, T'W at each point x in C by

k

Gula) = ifw(e) + 3 d(Hi(x) - o(Y)w(a))

i=1

Then @, is closed and agrees with i/.w along C' by construction. Thus apply Lemma
3.14 from [MS17] (the Weinstein extension theorem) to extend v to a symplecto-
morphism from a possibly smaller ball Bfo x C' — U. By construction w; has the

required form:

k
we = Y0, = Prigw + Y vrd(Hj(x) - (Y))w)
j=1

k
= ¢rigw+ Y d(T (Hj(x)) - u(Y))w)

j=1

k
=ytigw+ Y d(pjti(Vi)w)

J=1

k
= Yripw + Z d(pjo;j)
j=1
Observe that condition (51) has not been used so far. The one forms a;; on T'(B% x
() are of the form (0, ;). Recall that (S1) implies that do; vanishes on 7'C* and

thus in particular on the X;. Calculate

k
»Cﬁpjws =d (L(apj) (Wl*cw + Z d(}%m)))

=1

k k
= d (L(apj) (Z dpiozi + Zpidai>>
=1 i=1
k
=d <Z dm(apj)ai(-))

=1

(2.8)

= daj = d((¢"Y;)w)

54



Thus it follows from Calculation 2.8 above that w; gets scaled by Z§=1 pjdo; as
flowing outwards from the origin {0} x C' towards the boundary of Bfo x C'via

the flow of (%’ e %). Condition (S1) in Definition 2.13 precisely means that

k
it | Y de@ Yw) | =0
j=1

so that the characteristic foliation F of C' remains “unchanged” throughout

k
BE. O

The following proposition summarises the relations between Definition 2.11, Defi-
nition 2.13 and Proposition 2.18. It is the “stable coisotropics” version of Lemma 2.1

in [CV15].

Proposition 2.19.

Let C be a coisotropic . Then the following are equivalent
(i) C'isstable according to Definition 2.11.
(i) C'isstabilizable according to Definition 2.13.

(it)) There exists a Bolle neighbourhood of C.

Proof. The equivalence of (i) and (ii) was proved in Lemma 2.16. That (i7) implies
(7i7) is the content of the proof of Proposition 2.18. It remains to show that the exis-

tence of a Bolle neighbourhood implies that C'is stable according to Definition 2.13.

Given a Bolle neighbourhood BY x C,setY; = dp;jonT, .(B¥ x C) = R* x C.
These vector fields are linearlyindependent on R and transverse to C by construc-
tion. The assertion that F, are all conjugate to . via a family of diffeomorphisms

depending smoothly on p implies that

ipLop;ws = ip(d(t(dp;)(ws)) = 0
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so that condition (S1) in Definition 2.13 is also satisfied for Op;. O

2.4 Dynamics on coisotropics submanifolds and Hamilto-

nian group actions

In this section I begin to study the k-dimensional dynamics on stable coisotropics.
In particular I establish that all compact leaves are tori. I then explain how one can
interpret stable coisotropics as “locally Hamiltonian group actions”. This section
has its roots in chapter 5 of [MS17] where Hamiltonian group actions are treated in

detail.

Assume throughout this subsection that C is stable. One question that arises im-
mediatelyin codimension k > 1is whether the flows of the Reeb vector fields com-

mute. The following Lemma answers this question in the affirmative.

Lemma 2.20.
On a stable codimension-k coisotropic the flows ¢1,. .., ¢r of the Reeb vector fields

X1, ..., Xy (see Definition 2.17) commute and preserve the symplectic form ws

Proof. Recall from the proof of Proposition 2.18 that there exist k¥ Hamiltonians

Hy, ..., H,onthe Bolle neighbourhood of C'. These satisfy:

Thus X7, ..., X} are Hamiltonian vector fields on U. Denote by { -, - } the Poisson-

bracket. Observe that
—dHZ(X]) = —W(Xi,Xj) = —{HZ',H]'} = O,

because the vector fields X; and X ; have valuesin T'C*. Therefore the Lie brackets
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[X, Xj] vanishforall 1 <4, j < kand the flows ¢; and ¢; commute. Moreover

k
Lx,ws =d(u(X;)igw + (X dejoz]
7=1
k
=d [ (dp;(-) = dpj(Xi)a; () + pjdo; (Xi, )
7j=1
— ddp; = 0

and thus for each fixedt € R and each i, the flow for time ¢, ¢§, is a Hamiltonian

symplectomorphism of the Bolle neighbourhood. O

Iwould like to remark that this does not automatically follow from the integrability
of TC* but is a consequence of the stability condition. While the integrability of
TC%implies [X;, X ;] € TC¥, stability forces [X;, X ;] = 0forall generalised Reeb
vector fields X;, X.

Definition 2.21 (Generalised Reed flow).
Letq = (q1,...,qx) € RFandz € C. The generalised Reeb flow on a stable

coisotropic C'is

FxC—=C
(¢, 2) = @(x) = (¢ 0+~ 0 ') ().

(2.9)

Thus for each fixed ¢ this is a well defined symplectomorphism by Lemma 2.20

above.

I define below a Hamiltonian group action on the Bolle neighbourhood U. Thisis a
“locally Hamiltonian group action” in the sense that it is not defined on W' \ U but
onlyon U. More precisely the generalised Reeb flow as defined in 2.21 above, can be
interpreted as an action of the non-compact Lie group R¥ on the Bolle neighbour-

hood U = Bfo x Casfollows: define a group action ® on the Bolle neighbourhood
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by

d:RfxBfxC— BfFxC

(2.10)

(q7p) LL’) = (p7 (pq(l.))
Denotebye, . . ., e, the standard basis of R, viewed as the (trivial) Lie algebra of
the Lie group R¥. Denote by €3, ..., e} the standard basis of (R¥)* viewed as the

dual of this (trivial) Lie algebra. Denote the canonical pairing of (R*)* and R* by
((,-)) and by (-, -) the standard inner product on R*. I claim that the moment map

of this action is given by:

pe : B x ¢ — (RF)*
(2.11)
(p,z) — (p1€1,- -, PreEL)-

Consider a vector ¢ in the Lie algebra of R¥:

Hy(p,z) = ({u(p;2), q))

(2“12‘> = <<(plef,~~-7pk62)a(Q1617~--,Qk€kz>>
=(p,q)-
This implies
_dH Z depz
Recall that

k
—dH(-) = wo(aiXi,-) = > (dp;()ey (@ Xs) — dpj(aiXi)ay () + pjday(:Xi, )

]:

[y

Thus ¢ is indeed the moment map of this R¥ action.
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By definition, the stabiliser of (p, #) € B¥ x C'under the R* action & is given by
stabgk (p,2) = {¢ € R* | ®%(x) = z}.

Itisadiscrete subgroup of R¥ and thus, bya standard result (see for example Section

49 of [Arn89]
(2.13) stabp (z) = Al =2 Z! ¢ R”

for alattice A’ isomorphic to Z! for k > .

Proposition 2.22 (Arnold-Liouville).
Let C' be a stable, fibved coisotropic of codimension k. Then each fibve F' of the fibre bundle

(2.5) is diffeomorphic to a torus T so that C'is the total space of a smooth fibre bundle
(214) ™ C5 B

over a symplectic base (B, wp).

Proof. Since C'isfibred we may apply Lemma 2.8. It remains to show that the fibres
are diffeomorphic to tori of dimension k. Let x € C'. The coisotropic is stable, thus
work in a Bolle neighbourhood and consider C'as the zero level set of the group ac-
tion (2.10). The group R” acts transitively on F, the leaf trough x. By equation (2.13)
chooseanisomorphism from the stabiliser subgroup stabgs () to Z! for k > 1. With
respect to the group action (2.10) the leaf F}; is ahomogenous space. Thus there ex-

istsa &’ suchthat k = k¥’ + [ and a diffeomorphism
o :R¥ xRY/Z! — F,.

By assumption F, is compact. Therefore k' = 0 and F}, is diffeomorphic to a torus

of dimension k = . O
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Corollary 2.23.
If C'is stable and not necessarily fibred, each leaf F' of the characteristic foliation is diffeo-
morphicto R¥ x T! for k = k' + 1. In particular each closed leaf is diffeomorphic to a

torus T

Remark 2.24.

Lemma 2.22 is an adaptation of the so-called Arnold-Liouville theorem to the present set-
ting. The original result, which is proved in [Arn89], is the special case where k = n and
where the action (2.10) is globally defined on the symplectic manifold W . Such an action
is called a completely integrable system and was the starting point of what is called KAM

theory. See again [Arn89].

Below I quickly revisit Example 1.2 from the introduction. Since the fibres F' of the
coisotropic are the orbits of the U (k) action, the coisotropic cannot be stable. I ex-
plain below how a stable coisotropic arises in this context. Generally speaking, sim-
ilar constructions work for all (compact) Lie-groups, which contain an appropriate

(maximal) torus.

Example 2.25 (The partial flag variety).
Consider for k < n the space hom(C*,C™). Identify this space with the space
of n by k complex matrices C"** and equip it with the Hermitian inner product

tr(A* B),where A* denotes the conjugate transpose of the matrix A € C™**, Then
wir(A, B) == Im(tr(A*B))

is a symplectic form on C"*¥, It is a standard fact (see for example Exercise 5.43 of
[MS17]) that the action of U (k) on C™*¥ by right multiplication is Hamiltonian with
moment map

1

p(A) = S A"A.
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The level set ;1! (3; 1) is a coisotropic submanifold of (C"**, wy).

Think of C"**asaproduct C" x - - -x C" (k-times). Choosingthelevel set 1 ~* (1)
corresponds to restricting to k tuples of vectors V' = (v, ..., vy) in C", such that
(vi,vj) = 6;; for the Hermitian inner product (-,-) on C". This means that V,

viewed as a matrix, is a unitary k-frame.

Under the U (k) action however the isotropic leaves in 11! (3;1) are the orbits of

the U (k) action and thus, unless k is equal to 1, not diffeomorphic to T*. Therefore
,u_l(%]l) under this action cannot be stable by Lemma 2.22. Hence consider the

diagonal action of the maximal torus

T=U(l) x---xU(1)

in U(k). Under this action the level set 1! (1) is a stable coisotropic C. Geomet-
rically the action by elements of 7" is given by subsequently rotating each of the £
vectors in C" around a Hopf fibre while leaving the vectors previously rotated un-
touched. This is different to the U (k) action where each vector in the & by & matrix
associated to an element of U (k) acts on each vector in C" x - -- x C". It follows

that the symplectic quotient of B of C'is diffeomorphic to the partial flag variety
P(k,n,C) = U(n)/(U(1) x --- x UL) x U(n — k)),

where the diffeomorphism comes from viewing the space of unitary k-frames as the

homogenous space U (n) under the same U (k) action.
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Chapter 3

Constructions with coisotropics

submanifolds

3.1 The Lagrangian graph of a fibred coisotropic submanifold . 65

3.1.1  Montonicity and the minimal Maslov number of

coisotropic submanifolds . . . . ... ... ... .. .. 68
3.1.2  Displaceability and leaf-wise fixed pointsof Cand Lo . 72

3.2 The stable hypersurface H and generalised Reeb dynam-

icsonC . . o i e e e e e e e e e e e 74
3.2.1  Generalised Reeb dynamics on stable coisotropics . . . 75
3.2.2  Construction of the stable hypersurface Ho . . . . . . . 79

3.2.3  Relation of generalised Reeb dynamics on C and Reeb

dynamicsonHe . . . . . . oo oo oo 84

Coisotropics encompass two extensively studied classes of submanifolds of sym-
plectic manifolds. Every Lagrangian is a coisotropic and so is every hypersurface. In
thischapter, I explain thatitisalso possible to assign Lagrangians and hypersurfaces
to certain coisotropics. More precisely, I assign a Lagrangian L to a given fibred
coisotropic F' — C' — B, and construct astable hypersurface H fromagiven sta-

ble coisotropic (C, S).The goal of this chapter is to introduce the Lagrangian graph
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Lc and the stable hypersurface Hc and to explain how these submanifolds capture

aspects of the geometry and topology of the coisotropic C.

Concretely, L¢ inherits a fibre bundle structure from C. The proof of Theorem 1.7
in Chapter 4 builds on adapting and applying methods from Lagrangian Floer the-
ory to Lc. The Reeb dynamics on the stable hypersurface H¢ are in equivalent to
the generalised Reeb dynamics of the coisotropic C' in an appropriate sense. The
proof of Theorem 1.8 in Chapter 5 relies on adapting and applying techniques from

symplectic field theory to Hc¢.

Iintroduce the Lagrangian graph L of C'in Section 3.1and explain how L inherits
its fibre bundle structure from a fibred C'. I define the notions of monotonicity of
C and of the minimal Maslov number of C by defining them as notions for L¢ (see
Definitions 3.4 and 3.5) in Section 3.1.1. I then compute the minimal Maslov number
of L¢ in a simple case (see Example 3.6). In Section 3.1.2 I explore the relation of
displaceability of C' and L and explain how leaf-wise fixed points of C' correspond

to the self-intersection theory of the Lagrangian L.

I have already derived some elementary facts about the k-dimensional dynamics of
stable coisotropics in Section 2.4. Recall in particular that stable coisotropics can
be seen as level sets of moment maps of a Hamiltonian group action on the Bolle
neighbourhood. Before turning to the construction of H¢ , I study a subset of the
one dimensional dynamics on C which I call the generalised Reeb dynamics on C' in
Section 3.2.1. This subset of the dynamics was first studied by Bolle in [Bol98]. The
generalised Reeb dynamics play an important role in the proof of Theorem 1.8 and
Theorem 1.6. I construct H¢ as a level set of a moment map of an R-action which
has the generalised Reeb dynamics as orbits and prove that H is stable in Section
3.2.2. I then explain how the Reeb dynamics of the hypersurface H¢ are related to

the generalised Reeb dynamics on the stable coisotropic C'in Section 3.2.3.

64



3.1 The Lagrangian graph of a fibred coisotropic subman-

ifold

Given a symplectic manifold (¥, w) one can consider its twisted product (W x

W, —w x w). For the sake of brevitiy I set
W™ x W= (W xW,—wxw).

Throughout I denote by p_ the projection onto the first factor W~ = (W, —w) and
by p. the projection onto the second factor W+ (W, w). Assume throughout this
section that C'is fibred, so that Lemma 2.8 applies. I continue to denote the projec-

tion onto the symplectic quotient B of C' by 7.

Definition 3.1 (Lagrangian graph of a fibred coisotropic submanifold).

The Lagrangian graph of C, is defined as the fibre product C' x g C of the diagram:

Asaset, L¢ isgiven by:

3.1) Lo=CxpC={(z,y) e CxC | rmp(x)=np(y)}
={(z,y) eCxC | ye€F,}.

Note that this is a special case of a Lagrangian correspondence which were intro-

duced by Weinstein as canonical relations in [Wei77].

65



Lemma 3.2.
IfC'isfibred, L is a Lagrangian submanifold of (W x W, —w X w). Moreover L¢ isthe

total space of the smooth fibre bundle
3.2) FxF— Lo— AB,

where A B denotes the diagonalin B x B.

Proof. Notethat Lo C C x C.Forv,w € T(x,y)LC write

v = (vg,vy) € T,C x T,C

w = (wg,wy) € T,C x T,,C.

Let

V(1) = (12(8), 7, (1) and (1) = (7, (), 7, (1))

be curvesin L such that

22(0) = (,y) and &

i V() = (vas vy),

t=0

72 (0) = (2, ) and 2

Sl ) = ().

t=0

Thus by differentiating Equation (3.1) defining L along these curves one obtains

drp(x)v, = drp(y)vy

drp(z)w, = drp(y)wy

Since L¢ isasubsetof C' x C)and C'is fibred the kernel of the restriction of w to C

agrees with the kernel of the linearised projection dm p:

kerigw(z) = T,C% = T, F = kerdm(x).
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Calculate

(—w X w)(v,w) = —w(Vg, W) + w(vy, wy)
= —wp(Vz, Wz) + wp(vy, wy)
= —wp(Ve, W) + wB(Va; W)

=0
Therefore i}, (—w x w) = Oand Lc is Lagrangian.
To see how L¢ inherits a fibre bundle structure from C, consider F' x F and the

maps

i_=ipop_:FxF—>C

iy =ipopy: FxF —C.

By the universal property of the fibre product, there existsamap ipxp : F' X F —
L¢, such that the diagram below commutes. Notice that both, rows and columns,

are exact.

|

X

"
ik

|
&

"

R

|

/

/

/@
S
V. X
b
PR
.

o

-

T

B
5
h
Q
i)
+
Q

.
IS
T
%
3
oo}

F_r o _TB

Sy

That L¢ is the total space of the fibre bundle (3.2) now follows from equation (3.1)

above. O

Lemma 3.2 shows that one may associate to every fibred coisotropic C' a Lagrangian
L¢ which inherits a fibre bundle structure from C. By the universal property of
the product, this assignment is unique. Notice also that the embedding of L. into

W~ x W isuniquely determined by the embedding of C'into (W, w).

67



3.1.1 Montonicity and the minimal Maslov number of coisotropic sub-

manifolds

Inowrecall two important definitions for Lagrangian submanifolds L of a symplec-

tic manifold (W, w). Givenadisc
u: (D,0D) — (W, L),

we denote by E,, (u) the symplectic energy and by z4(u) the Maslov index of u. Both
maps descend to homomorphisms on HY (M, L) C Hs(M, L), the image of the
Hurewicz homomorphism A : mo(M, L) — Ho(M, L).

Definition 3.3 (Monotone Lagrangian).
A Lagrangian L in a symplectic manifold (W, w) is monotone if there exists a posi-

tive real number 7 > O such that

E,(A) =n-u(A) forall Ae HP(M, L).

Denote by

. Ny = min A) >0
(3.3) L AEHQD(M,L)M( )

the minimal Maslov number of a monotone Lagrangian L.

Definition 3.4 (Monotone coisotropic).
Afibred coisotropic C of a symplectic manifold (W, w) is monotoneif L is a mono-

tone Lagrangian submanifold of the twisted product W~ x W+.

Definition 3.5 (Minimal Maslov number of a coisotropic).
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The minimal Maslov number N¢ of a fibred, monotone coisotropic C'is the minimal

Maslovnumber Ny, of the associated Lagrangian graph L¢.

To gain some intuition about these definitions consider the following simple ,yet

illuminating example below. This example can be generalised in various directions:

Example 3.6 (Minimal Maslov number of the generalised Hopf fibration).
Consider R?" = (q1,...,Gn,P1,-- -, Pn) and its standard symplectic structure wy.

Then the standard almost complex structure Jy given by

0 -1
1 0

Jo =

is wo-compatible, i.e. for v, w € R?"
wo(v, w) = (Jov, w).

The standard unit sphere $?"~! is a stable coisotropic with respect to wy. Recall
that

Tys?nfl — UJ_

the orthogonal complement of v. The isotropic distribution at v is given by:
(1,87 1™ = {w e R?"|(Jov',w) = 0 Vo' € UL} = span{Jov}
Ateachpointv € §2"~! define the 1-form o on T, 5%"~! by
ay(w) = tywo(w) = (Jov, w)

Then
ay(Jov) = (Jov, Jov) = 1
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and

da(v,w) = d(t,wo(w)) = (v, Jow) = wp(v, w)

Thus $?"~! is a contact coisotropic and particular stable. View S**~! as the total

space of the generalised Hopf fibration
St — gt cprl
The Lagrangian L g2n—1 is thus the total space of the fibre bundle
(3.4) St x S — Lgan-1 — ACP™ L.
Asasetitis given by
Lgon1 = {(v,w) € §" 1 x §" Hmepn-1(v) = mepn-1(w)},

Denote by S%. the image of the projection p+(S' x S') to each factor of R*"* x R*",
To compute the minimal Maslov number of Lg2n.—1 consider the long exact se-

quence of the fibre bundle (3.4) .

mo(ACP 1) —A% 5 11(S x §1) — s 1y (Lgen1) —2s m(ACP™ )

L I - J

mo(CPPY) —2 s 7y (SY) x my(SL) —2 my(Lgzn1) ———— 0
From the long exact sequence of the generalised Hopf fibration
§t— s>t s cprt

it follows that o (CP"~!) = 71(S') = Z, where the generator of Z corresponds
to the loop generating the Hopf fibre. One can identify AC P"~! with CP" ! either
viap_ orviap, . If one identifies the diagonal ACP™ ! withp_ (CP"~! x CP" 1),

the image of 6, is 71 (S7) or the (1, 0)-loop in T*2. Since i, is surjective it follows in
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this case that

7T1(S_1,_) = Wl(LSanl) =7,

where the generator of Z is the (0,1) loop in 71(7T?). Thus the generator of
71 (L g2n—1) corresponds to the loop around the Hopf fibre in the second factor. In
the case where one identifies the diagonal ACP™~! with p, (CP" ! x CP" 1) the
generator of 1 (Lg2n—1) correspondsto (1, 0) loop around the Hopffibre in the first
factor. Notice also that the generator 7o (ACP" 1) corresponds under the map Ai*

tothe (1, 1) loop around both Hopf fibres in T?which is not a minimal loop.

Next, examine long exact sequence of relative homotopy groups

e — ﬂ'i(LS2n71) — Wi(RQn X RQn) — Wi(R%L X Rgn,Lsznfl) — ...

Since R?" x R2" is contractible it follows that m;11(R?*® x R?" Lgon-1) =
7;(Lg2n—1) and in particular mo(R?® x R?" Lgon-1) = m1(Lgen-1) = Zis gen-

erated by the loop around either the Hopf fibre in the first or the second factor.

I now compute the Maslov number of L g2»—1. In complex coordinates

Lgzn-1 = {(21,. .., 2Zn, w1, ... wy) € 82771 x §271 |y = % for 6 € [0,2n]}

Consider the loop

v st Lgan—1

0 i6
0 (€Y21,...,%2n, 21, ..., 2n).

with base point 79 = (e?,0,...,0,1,0,...,0), which generates 71 (Lg2n-1). A
loop A, of unitary frames of the tangent spaces T’ ) L g2n-1 along this loop is given

by

0, 6 0,
A, = (ie"v1, €02, ..., €70y, 101,02 . .., Up),
forabasis {v1, ..., v, } of Ty, Lg2n—1. Thus the Maslovindex of thisloops is 2n since
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itrotates each of the first n coordinates once around the origin. Thisimplies that the

minimal Maslov number satisfies

NL = 2n.

s2n—1

Moreover, an elementary computation shows that L g2»-1 is monotone.

3.1.2 Displaceability and leaf-wise fixed points of C'and L

Itis awell known fact that a diffeomorphism ) : W — W isa symplectomorphism

ifand onlyif the graph of ¢, given as a set by

graph(v) = {(¢,%(q)) € W™ x W' | ¢ € W}

is a Lagrangian submanifold of W~ x W™ (see Proposition 3.27in [MS17]).

Definition 3.7 (Displaceability).
Asubmanifold N C W is Hamiltonian displaceableif there exists a Hamiltonian sym-

plectomorphism ) : W — W suchthat p(N) N N = ().

Definition 3.8 (Leaf-wise fixed point).
Letvy : W — W be a symplectomorphism and C a coisotropic. Apointx € C'isa

leaf-wise fixed point if ¢ (x) lies in the leaf F, through .

Lemma 3.9.
Given a fibred coisotropic C' and a symplectomorphism 1) there is a one to one correspon-

dence between the set of leafwise fixed points

Fiz(,F)={x € C | ¥(x) € F,}
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and the intersection of the graph(v(L¢) ) with L.

Proof.

graph(¢) N Lo = {(z,¢(x)) e W x W | z e Wi N {(z,y) € C x C | mp(x) = 75(y)}
={(z,¥(x)) € O x C | 7p(x) = mp(¢(x))}
= {(z,9(x)) € Cx C | P(2) € Fr}
= Fix(¢, F).

Remark 3.10.

Ifthe coisotropic C' C W is fibred, the notion of leafwise fixed points is a generalisation of
two well known notions: If C' is the entire symplectic manifold W, leafwise fixed points are
fixed points of the symplectomorphism 1. If the coisotropic is Lagrangiani.e. C' = L, the
leafwise fixed points are intersections (L) N L.

k=0: {¢(q) = q} <> {graph(v) N AW}
l<k<n: Fizx(y,F) & {graph(v)) N L¢'}

k=n: {zeL|¥x) el <ES (Y(IL)nL)

Lemma 3.11.

If C'is displaceable, sois Lc.

Proof. Thisfollowsimmediatelyfromthe factthat L C C'x C,since p(C)NC = ()
implies ¢(C) x ¢(C)NC x C = 0. O
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Remark 3.12.
A natural question to ask is whether displaceability of L¢ implies displaceability of C or if
not, where exaclty the differences of these notions lie. This would be interesting to investi-

gatein the future.

3.2 The stable hypersurface /1 and generalised Reeb dy-

namics on ('

Assume throughout this section that C'is stable. As pointed out at the beginning of
Section 1.4 the Reeb dynamics on stable and contact hypersurfaces have been stud-
ied extensively. In particular, the Weinstein conjecture has inspired important de-
velopments in symplectic geometry and has been proved in some cases. See [Pas12]
for a survey and the references therein. In higher codimension £ > 1, several new
questions about the dynamics on C arise. If a leaf of a stable coistropic (C,S) is
closed, itis a k-dimensional torus by Corollary 2.23. However as one sees already in
Example 2.6 or, inadifferent context, by considering the Reeb foliation of $3, nearby
leaves of foliated manifolds are not necessarily diffeomorphic. For a stable-but-not-
fibred coisotropic this implies that the symplectic quotient is not necessarily Haus-
dorft. One possible starting point to study the dynamics of leaves is to consider the
one dimensional sub dynamics of the leaves. An obvious question is whether the
Weinstein conjecture holds for (stable) coisotropics (see also the Conjecture 1.4 in

the Introduction):

Conjecture (Weinstein conjecture for stable Coisotropics).
Do there exist (maybe under appropriate additional assumptions) non-contractible loops

within the leaves of stable coisotropics?

First of all notice that a closed characteristic on a hypersurface within a leaf of
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the characteristic foliation is necessarily non contractible. For a loop within a k-
dimensional leaf, this is not necessarily true. One therefore has to distinguish be-
tween contractible and non-contractible loops within a leaf. Bolle proved the ex-
istence of a non-contractible loop on contact coisotropics in R?™ in [Bolg8]. As
pointed out already at the beginning of this chapter, I will describe in this section
how one can translate questions about the generalised Reeb dynamics on the leaves
of a stable coisotropic to questions about the Reeb dynamics of the stable hypersur-

face Hc.

3.2.1 Generalised Reeb dynamics on stable coisotropics

Throughout this section I will identify S! with R/Z, so thataloop~y : S — W has
the basepoint v(0) = y(1).

Definition 3.13 (Action vector).

Let C'bestableandletz € C.Lety : S' — F,bea loop on F;. The actionvector Ay,

of v is the vector
Ak(v) = (Alv s Ak‘)7
where
A,L' = ’)/*Oéi.
S1
Lemma 3.14.

LetzinC. Aloopy : S* — Fy suchthaty(0) = x is non-contractible in F, ifand only

if Ag () is non-trivial.

Proof. By the stability assumption on C'and Stokes’ theorem, the action vector de-
pends only on the homotopy class of y in F),. Thus contractible loops ¢ have trivial

action vector Ak (q) = 0.
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Now assume thaty : S — Cis non-contractible. By Corollary 2.23, F, is diffeo-
morphic to R x T'fork = k' + I. Ifl = 0, allloops in F}, are contractible, thus
assume/ > 1. Since +y is non-contractible in F}, its homotopy class [y] in T’ is non-
trivial, thus there existsan 1 < ¢ < [ suchthat A;(y) # 0). Thus Ax(y) = Oifand

onlyif~yis contractible in F. O

Remark 3.15.

Aloop vy in aleaf F, ) satisfies the equation:

k

() =Y @) Xi(y (1)

i=1

Aswe have seen above the action vector depends only on its homotopy class. Since R is con-
tractible every loop +y as above is homotopic to aloop B : St — F. (o) which is a solution

to

k

(3.5) Bt) =D aiXi(B(t)).

i=1

Bolle proved the Weinstein conjecture for contact coisotropics in R?" by showing
that there exists aloop of positive action which satisfies Equation 3.5 by considering
symplectic capacities. In tribute to him, this equation is usually referred to as Bolle’s

equation.

I now present a point of view on the one dimensional dynamics on C which links
them to the action of the generalised Reeb flow and the associated moment map
considered in Section 2.4. Observe that contractible loops correspond to trivial so-
lutions of Bolle’s equation 3.2.1. Hence, the loop 7y is non-contractible if and only if,
thevector ¢ = (qu, - . ., qx) is non-trivial. Given any non-trivial vector g of the eu-

clidean vector space R¥, set § = ﬁ and g; = %" where | - | is the standard euclidean
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norm. For non-contractible loops one can rewrite Bolle’s equation as:

k
Bt) =Y TaXi(B(t)),
i=1
forT = |q| € Rx.Icall suchaloop f3 asolution to Bolle’s equation of period 7'.

Recall that the generalised Reeb flow is given by the R¥-action from Definition 2.21.

Consider the span of g over R
(@) ={t-q|teR}

as a one parameter subgroup of the group R”. Denote by (¢)* the span of the or-
thogonal complement of g with respect to the standard inner product on R¥, In par-

ticular, ¢ induces a decomposition of R¥ into the direct sum

(3.6) RY = (q) @ (q)".

of vector spaces and of normal subgroups. Therefore there is a well defined action

of these subgroupson C.

Definition 3.16 (Generalised Reeb trajectories and orbits).

For a stable coisotropic C' and a point z € C' a generalised Reeb trajectory (v, q)
through x is an orbit of a subgroup (g) of the action described in Definition 2.21
which passes through z. A generalised Reeb trajectory is non-trivial if and only if
the vectorq is. A non-trivial generalised Reeb trajectory through a pointz € C'is

closed if there existsa T' € R~ such that ®74(x) = z.

A generalised Reeb orbit through x is a closed, non-trivial generalised Reeb trajectory
through z. I denote generalised Reeb orbits through a point z as triples (v, ¢, T')
consisting of aloopy : S' — F,g)which satisfies 7(0) = (1) = x and Bolle’s
equation 3.5 for a vector § in the unit sphere S¥~! and a positive real number 7T,

which is the period of the orbit.
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The following Lemma follows immediately from this definition by :

Lemma 3.17.
The set of non-contractible loops ~y, with basepoint y(0) = x, which are solutions to Bolle’s
equation 3.5 for the vector q and have period T' = |q|, is in one to one correspondence with

the set of generalised Reeb orbits through x of period T' = |q|.

Remark 3.18.

The set of nontrivial, generalised Reeb trajectories through a given point x € C'is nothing
but theset of orbits of subgroups of R¥ of the form (p) and thus the set of orbits is isomorphic
to the space of lines through the origin in R¥, and thus to either S* ! or the real Grassma-
nian G(1, k), depending one the whether one wants to consider the loops associated to q
and —q as equivalent or not. In the case k = 1 the set of generalised Reeb trajectories (or-
bits) isthe set of Reeb trajectories (orbits) on the hypersurface. Heve the quotient map from

S0 to RPY corresponds to choosing an orientation on R.

Assume the period of a generalised Reeb orbit through x is T'. Then the stabiliser of

x under the action of (g), is the discrete subgroup
staby(z) = {T'G € (¢), T e R | ®T'U(2) =2} = {kT -G € (q) | k € Z}.

and thus isomorphic toa copyof Z C (q) bysending 7" to 1.

Example 3.19 (Generalised Reeb orbits on T?).
As an example consider a Lagrangian torus T? C (R*, wp). Then the generalised

Reeb orbits are integral curves of rational slope % asin Example 2.6. The period is %.

Example 3.20 (Generalised Reeb orbits on stable codimension 2 coisotropic sub-
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manifolds).
Consider a stable coisotropic of codimension 2. Assume there exists a closed leaf
F = T? of the characteristic foliation . Then the generalised Reeb orbits of C' in

theleaf I are again the integral curves of rational slope g as in Example 2.6.

By Lemma 3.17 above non-trivial solutions to Bolle’s equation 3.5 of period 1" are in
one to one correspondence with nontrivial generalised Reeb orbits of period 7" as in
Definition 3.16. I will explain below how one can study the one dimensional dynam-
ics on C'byviewing them as the Reeb dynamics of a stable hypersurface, which Inow
construct. This hypersurface is the hypersurface H¢ alluded to in the introduction

and at the beginning of this chapter.

3.2.2 Construction of the stable hypersurface H¢

Recall that a stable coisotropic is contained ina Bolle neighbourhood U = BE x C.
The moral of being stable is that the dynamics of the foliation F of C are the conju-
gate throughout U. Put differently, ata given point within the Bolle neighbourhood,
oneisunable to specify one’s position within U if the onlyinformation one hasis the
dynamics on the foliation. With this in mind it is not entirely surprising that & — 1
dimensional spheres S*~! fore < €gin Bfo give rise to a stable hypersurfaces, with
Reeb dynamics which are in one to one correspondence with the generalised Reeb

dynamics on C. Thus, given a stable coisotropic C for each € < ¢y define:
37) Hee= S xC.

Note that in case where C'is a Lagrangian L, H7, is symplectomorphic to the unit
cotangent bundle U* L and in particular a contact hypersurface of the cotangent

bundle 7 L. If C'is a hypersurface H, then H y consists of two copies of H.

Proposition 3.21.
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Consider a stable coisotropic C in its Bolle neighbourhood B fo x C. Denoteavectorin B fo
byp = (p1,- - -, pk). Then, foreveryfixed0 < e < e, the hypersurface Hc . is the level

set pigt (%) of the moment map

k

1
ps(p,x) = 3 z;p?
associated to the R-action
k k
(3.8) R x (B \ {0}) x C — (B \ {0}) x C

(t.p. ) = (p, @7 (2)).

Proof. Firstofall observe ug(p,z) = 3 S p? = %implies |p|? = €2. Thus

62

M§1(§) =5t %

At an element ¢ in the trivial Lie Algebra R of the trivial Lie group R, the time de-

pendent Hamiltonian Hy, is given by.

Hy, (p, ) = (u(p, ), t00k)

This implies

k
1
(3.9) dH, (p, c) = tod (2 21%2)
k

=to szdpz Zws tOpz iy
=1

Since E?Zl top; X ; generates the flow of ®°? it follows that pg is indeed the mo-
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ment map of the R-action 3.8 above. O

Lemma 3.22.
For each x in C there is a one-to-one correspondence of the sets of non-trivial, generalised
Reeb trajectories G on C through x and the set of orbits of the action defined by Equation

3.8 which pass through .

Proof. Fix a point z on C. The set of non-trivial generalised Reeb trajectories
through x is the set of orbits of subgroups (¢) C R¥ of the action described in Defi-
nition 2.21 which pass through x. As described in Remark 3.18 thereisan S¥~! worth

of these orbits.

An orbit through the point (p, x) € H, of the action defined in Equation 3.8 is given
asasetby

{(p,@"(2)) € ST' x C | t € R},

and thus is a pair consisting of avector p € S¥~! and an orbit of the subgroup (p) C
R* under the action 3.8, whose C' component coincides with the C' component of
the action described in Definition 2.21 for a fixed vector p. Since for each z, there is
an S*~1 worth of vectors p to define the subgroup (p), the two sets are isomorphic

by sending p — I%\' O

Level sets of moment maps are not neccessarily stable. See Example 1.2. I show be-
low that the level sets of 115 are both stable and separating. Moreover, the Reeb dy-
namics on H¢ . are independent of the choice of € up to reparametrisation. Pre-
empting this fact, from now on I assume that an appropriate € has been chosen and
abuse notation by setting

Ho = Hepe

whenever the radius of S¥~1 is either clear from context or irrelevant.
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Proposition 3.23.

Given a stable coisotropic (C, S), consider H¢ . Denote the stabilising one forms on C
by a1, . .., ag. Denote the stabilising vector fields by Y1, . . ., Y. Denote by p a vector in
Sk=1 Then the following holds

(1) Hc isastable and separating hypersurfacein (BE x C, w;).

(i) The Reebvector field at a point (p, x) on H¢ is given by

k
=1

(1ii) The stabilising one form o for Hc is given by

k
a(p,z) = Z]ﬁla,(x)
i=1

(iv) The stable vector field Y at (p,x) € SF~1 x C is given by the radial vector field
9y € T(SF=1 T Sk=1) which satisfies at 9, = p € (p) at eachpointp € SF1.

Thus ), satisfies

L(Op)ws = a and in particular ws(Y, X) = 1.

Proof. Recall that by the Bolle neighbourhood theorem 2.18 there exists an ey > 0,
aneighbourhood U of C in W and a symplectomorphism v : C' X Bfo — U such

that
(3.11) ws = ¢'w =icw +d(prar) + - - + d(proy)

where the p; denote the coordinates on the k-dimensional ball of radius ¢y in R*. Re-
callfrom Section 2.3 thata 1-form cvonahypersurface H is stabilising if v isnonzero
onker(ij;w) and ker(ij;w) C ker do. Denoteby X1, . . ., X}, the Reeb vector fields

associated to the stable 1-forms a, . . ., & on C. The tangent space of H¢ splits as
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follows:
(3.12) TpoHe =TS8 x T.C = p* x T.C.

Here, p denotes the orthogonal complement of the vector p with respect to the
standard inner product (-, -) on R¥. To prove assertion (44), I first show that X, de-
fined in Euqation 3.10, lies in the one dimensional kernel of the restriction of w; to

He.LetZ = (q, Z¢) € Ty 0 Ho = p* x T,C and consider:

k
we(X,Z) =itw(X, Z) + ) d(pici)(X, Z)
=1
k k k
=igw | Y _piX; Z |+ pidai | > 5 X;,Z
j=1 i=1 j=1

k k
+Y dpihai | Y 5 X Z
i=1 =1

k k
=0+0+> dpines [ > 9 X;, 2
j=1

=1

k k k
= dpi | Y 5iX; | - ailZo) —dpila) - i | D 9iX;
i=1 j=1 J=1

k
= (0-Zc—qi-pj- i)
ig=1

=0

The two terms in the second line of the calculation vanish since X; € ker(ifw) C
kerdo; foralll < 4,5 < k by the stability assumption on C. The last equality fol-
lows from the definition of the tangent space of H¢. Thus X is contained in the one

dimensional kernel of the restriction of ws to Hc. To prove (ii) it remains to show
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that «(X) = 1. Compute:

k k
(3.13) a(X)(p,z) = Zﬁiai Zﬁij Z Pibjoij = Z
i—1 j=1

3,j=1

Thus o does not vanish on the one dimensional kernel of w on H and is normalised

correctly. Observe that
k k
da = dei A o + Zpidai.
i=1 i=1

But we have just seen above that do vanishes along the one dimensional kernel of

i77.ws. Thus o is a stablizing one form for Hc and (44i) is proved.

To prove (iv), calculate:

, Ws = d(1(0p)w

=d <’LC(/J p, + del Ao’ p, + szdaz Ds ))
. =1

X (Zﬁ )
=1

Thus i}, Ls,ws = ij,da = 0, which proves assertion (iv).

By Proposition 2.19 (H¢, ws, 0p) is a stable hypersurface. To see that H¢ is separat-
ing consider the open and disjoint sets Uc := ¢(C x BF)and Ug := W \ 4 (BF).

Assertion () follows. O

3.2.3 Relation of generalised Reeb dynamics on C' and Reeb dynamics

on Hq

I now prove a key Lemma for the proof of the main results of this thesis.
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Lemma 3.24.
Let C' be a stable coisotropic submanifold of codimension k. Fix € < €. Thereis a one to
one corrvespondence of the set G of non-trivial generalised Reeb trajectories on C and the set

'R of non-trivial Reeb trajectories on Hc:

(3-14) G &L R,

Inparticular for every generalised Reeb orbit (v, p, T') on C'thereexists a unique Reeb orbit

(p,y(tT)) on He-

Proof. By choosingty = % in Equation 3.9 it follows that the Hamiltonian vector
field Xy, associated to the moment map p5 agrees with the Reeb vector field X

given by Equation 3.10 on H¢. The assertion now follows from Lemma 3.22. Ul

I summarise the relation of the generalised Reeb dynamics on C and the Reeb dy-

namics on H¢ in the following proposition:

Proposition 3.25.

Givenapointx € C, consideraloopy : S* — F. Thefollowing are equivalent:
(1) v has a non-trivial action vector Ay (7).
(i) ~yisnon-contractiblein Fy.
(iif) ~y is homotopic to a non-trivial solution (3 of Bolle’s equation for some g € RE.
() (B, q,T)is ageneralised Reeb orbit which is homotopic to .
) (B,4q,T)isaclosed, non-trivial orbit of the action 3.8 and (3 is homotopic to .

(vi) For 3 homotopic to -y, there exists a unique, closed, non-trivial Reeb orbit Bon He.

Proof. The assertion that (7) is equivalent to (ii) follows from Lemma 3.14. That

(i) is equivalent to (7i7) from Remark 3.15. Statement (47i) is equivalent to state-
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ment (iv) by Lemma3.17. Lemma3.22 shows that (iv) is equivalent to (v) and finally

Lemma 3.24 proves (v) is equivalent to (vi). O

When studying the Reeb dynamics on stable hypersurface one usually assumes that
the dynamics associated to the stable one form avare either of Morse type or of Morse-
Bott type. These conditions ensure that the moduli space of closed Reeb orbits is
either discrete up to reparametrisation (Morse type) or has a manifold structure
(Morse-Bott type). By Proposition 3.24 the generalised Reeb flow ona coisotropic C'
coincides with the Reeb flow on the associated stable hypersurface H . I extend the
notion of Morse-Bott type in a straightforward way to stable coisotropics in Defini-
tion3.26 below. Unless one makesvery stringent assumptions, the generalised Reeb
flowon C'is of Morse-Bott type. The keyresult of this subsection is Proposition 3.27:
The generalised Reeb flow on C'is of Morse-Bott type if and only if the Reeb flow on

H is of Morse-Bott type.

Definition 3.26 (Morse-Bottness of stable coisotropic submanifolds).
A closed, nontrivial, generalised Reeb orbit (v, ¢, T') is of Morse-Bott type if the set
Gr(q) of generalised Reeb orbits of period T in direction § € S¥~!isa smooth sub-

manifold of C' such that

(i) Ateachpointxin Gy (§) the tangent space T,,Gr(q) satisfies

T.G7(G) = ker(d®T? — id)(z).

(i) Therankofig_ @)W is constant on each connected component of G (§).

Astable coisotropic (C, S) is of Morse-Bott typeif all generalised Reeb orbits (v, ¢, T')

are of Morse-Bott type.

This definition coincides with the definition given in [Bou+03] in the case where C

is a hypersurface, since, up to sign, there is only one direction ¢ € R and the gener-
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alised Reeb flow on a hypersurface is the Reeb flow on the hypersurface. Recall that
every generalised Reeb orbit defines aloop y contained in a torus T for I < k. This
torus is invariant under the action described in Definition 2.21. Thus there isa T~
family of orbits +, given by translations of  in T'. Thus, if nonempty, the set Gr(§)
contains an [-dimensional torus ’]I‘ZV for each orbit (v, ¢, T'). Therefore, unless | = 1
forallsuchtori le ,the space G (§) cannotbe one dimensional and thus C cannotbe
of Morse type. If C'is a hypersurface, necessarily /| < k£ = 1and thus the Reeb flow
onahypersurface hasachance tobe generically of "Morse type”. See again [Bou+03]

for reference.

Proposition 3.27.
A stable coisotropic (C,S) is of Morse Bott type if and only if the Reeb flow on Hc is of

Morse-Bott type.

Proof. Examine the Reeb flow on H¢. It coincides with the orbits of the action 3.8.
Foreacht € Ritisasymplectomorphism of the Bolle neighbourhood with restric-

tionto H¢ given by

IR N G N a6

(p,x) — (P, @tﬁ(az)).

Recall the action R¥-action from Definition 2.21 on C. Given any vector  one can

view thisaction as the composition of the actions ®” of the 1-dimensional subgroup

(p) and the action ®7" of the (k — 1) dimensional subgroup (p)*:

RfEx 0= C
py® (p)txC—=C

(p,q) — @7 0 ()
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Examine the linearisation of the Reeb flow on H:

(3.15) do'(p,z) =

Observe that the differential of ® with respect to p in direction of a vector

q € (p)t= 1,8 k=1 is given by the infinitesimal action of p*- in direction ¢:

;;@t(p,x)é = ®"(p, z).

Thus d% ®*(p, ) corresponds to the inclusion of the Lie algebra of (p)~ into T,.C.. I

will denote this inclusion by i(q). Consider

) , id 0 id 0
(3.16) ker (d®(p,z) — id(p,x)) = ker ) -
ot Lpt(p, z) 0 id
0 0

= ker
i(q) 40 (p,x) —id

d
= ker(%ét (p,x) —id)

By Proposition 3.25 for each generalised Reeb orbit (v, ¢,T") on C there exists a
unique Reeb orbit (3,p,T) on Heo. By Equation 3.16 above, the tangent space

TG (p)isisomorphicto the tangent space 7| ,yR. The proposition follows.  [J

Lemma 3.28.

If (C, S) is a stable, fibred, codimension k coisotropic, then (C, S) is of Morse-Bott type.

Proof. By Lemma 2.8, C is the total space of the fibre bundle T* — C' — B.
Thus for every generalised Reeb orbit (v, ¢, T), the set 7,,Gr () contains the fibre

F.

So) = T,’j. In a local chart around 7(0), the generalised Reeb flow is given by

(b, f) — (b, ®¥(b, f)) and thus leaves the base directions invariant. It follows that
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4 oTP(z) = id(z) and thus that T,Gr(q) = T,.C. O

Combining the two previous results one obtains immediately:

Corollary 3.29.
For a stable, fibred coisotropic submanifold C, the Reeb flow on H ¢ is of Morse-Bott type.
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Chapter 4

Existence of pearly trajectories

4.1 OutlineofChapter4 . ... ........c.vv.... 92
4.2 The Morse complex of an almost fibred Morse function .. 95
421 TheMorsecomplex . . . . .. ... ... ... ... 95
4.2.2  Almost fibred Morse functions . . . ... ... ... .. 99
4.3 The pearl complex of an almost fibred Morse function . . . 102

4.4 ProofofTheorem4.1 ... ... .. ... ..o iiueeeon. 112

The goal of this chapter is to prove Theorem 1.7 which I state again below as Theo-

rem 4.1.

Theorem 4.1.
Let C' be a fibred, stable coisotropic submanifold of a symplectic manifold (W, w). Assume
that the Lagrangian graph L¢ in the product W~ x W is monotone and has minimal

Maslov number N1, at least three. Let b be any point in the symplectic quotient B of C.
If L is displaceable, then there exist:

(M) An almost fibred Morse function f on Lc such that the unique global minimum x

of f on Lc is contained in f5'(0) and projects to (b,b) € AB the diagonal in
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B~ x Bt.

(E) Aconstant Ey > 0, such that for all w-compatible almost complex structures J on
W, there exists at least one pearly trajectory P of energy at most Ey and with the

Sfollowing property:

(P) Thepearly trajectory P connects a critical point y of f containedin f 5" ([1,00)) to

the minimum x of f.

The Lagrangian graph L ¢ was introduced in Section 3.1. The notions of monotonic-
ity and the minimal Maslov number of the Lagrangian L were introduced and Sec-
tion 3.1.1 as the as notions for the coisotropic C'. I recall these in Definition 4.9 and
in Equation 4.11 respectively and define the energy of a pearly trajectory in Defini-
tion4.16 below. Analmost fibred Morse functionisa Morse function onafibre bundle
which takes this structure intoaccount, see Section 4.2. A pearly trajectory is, roughly
speaking, a configuration of holomorphic discs which lives in moduli spaces which
are used to define the the algebraic structures on the pearl complex. The cohomol-
ogy of the pearl complex is a model of the self-Floer cohomology of a Lagrangian. I
explain this construction in Section 4.3 where I also recall the definition of a pearly

trajectory (see Definition 4.12 and 4.14).

4.1 Outline of Chapter 4

Given afibred coisotropic C asin Theorem 4.1, assign the Lagrangian graph Lo to C
as described in Section 3.1. Recall from Lemma 3.2 that L inherits the fibre bundle
structure

T?* 5 Lo — AB

from the fibred coisotropic C.

Byassigning L¢ to C the apparatus of Lagrangian Floer theorybecomes available to

study C'. Lagrangian Floer theory can be regarded as a quantum deformation of the
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classical Morse theory of a Lagrangian. The Lagrangian quantum homology theory
defined by Biran and Corneain [BCo7], makes thisidea explicit: the vector space un-
derlying the pearl complex is still generated by the critical points of a Morse function
on the Lagrangian. The differential and the product structure on the pearl complex
canbe decomposed intoa Morse (the classical) partand a Floer (the quantum) part.
The quantum part of the differential counts configurations of pseudoholomorphic
discs, which are arranged along Morse flow lines like pearls along a string (see Defi-
nition 4.12). These are called the pearly differential trajectories. The quantum product
counts configurations of pseudoholomorphicdiscs arrangedlike pearls on theletter
‘Y’ (see Defintion 4.14). These are called pearly product trajectories. I call the collec-
tion of pearly product trajectories and pearly differential trajectories, pearly trajec-

tories. See [BCog] for an overview of the theory developed by Biran and Cornea.

In oder to prove Theorem 4.1, I adapt the construction of the pearl complex to make
it incorporate the fibre bundle structure of L. To achieve this I construct in Sub-
section 4.2.2 a natural class of Morse functions f and almost gradient vector fields
Z defined on L in the following way: define a Morse function fp on B and lift it
to a Morse function f on L¢ by using perturbations of a small Morse function fr
on the typical fibre F'. By allowing almost gradient vector fields one can ensure that
Morse flow-lines of f project to Morse flow lines of fg. I call such pairs almost fibred
pairs (see Definition 4.6). With these choices, the critical points z of f are filtered
according to the Morse index |75 ()| of their projection to the symplectic quotient
B. Assume for simplicity fp(mp(z)) = i for all critical points = such |rp(z)| = 1,
i.e. fpisselfindexing. Then L¢ can be partitioned into super- and sublevel sets of

afixed value of fp

Lo ={z € Le|fp(rp(z)) <1} U{z € Le|fp(rp(z)) = 1}

I learned about the construction of almost fibred Morse functions from Alex
Oancea’s thesis [OANo03], where this filtration is used to define the Leray-Serre

spectral sequence in a Morse theoretic setting.
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Next, I quicklyrecall the definition of the pearl complex and the algebraic structures
defined on it in Section 4.3. I then define the almost fibred pearl complex as the pearl
complex associated to an almost fibred Morse complex in Section 4.3 (see Defintion
4.18). I then explain how the almost fibred pearl complex incorporates some of the
fibre bundle structure of L¢ in Notation 4.19, Lemma 4.20 and Definition 4.22. This

concludes the adaptation of the pearl complex to the fibre bundle structure on L¢.

To prove the existence of a pearly trajectory P with the Property (P) from the as-
sertion of Theorem 4.1 one now uses the algebraic structures on the pearl complex.
More precisely one proceeds as follows: choose an almost fibred pair (f, Z) such
that the unique minimum « projects to b. The pearl complex is generated as a vec-
tor space by Morse critical points, thus the existence of a pearly trajectory ending in
the minimum x follows almost immediately from the displaceability of L¢. I prove
this in Lemma 4.23 below. To prove Theorem 4.1 one needs to exclude the possibil-
ity that all pearly trajectories emanate from critical points y in the fibre above the

minimum and are entirely contained in the fibre over the minimum.

Observe that the fibre over the minimum is a 2k-dimensional torus, T2¥, by Propo-
sition 2.22. Thus if the Floer part of the differential on the pearl complex decreases
the Morse degree of a critical point by at least 2k + 2, there cannot exist any pearly
trajectory ending in the minimum z and emanating from a critical point y in the fi-
bre T2 for degree reasons. Thus if one makes this high minimal Maslovassumption

Theorem 4.1is not that hard to prove.

However, the assumption of the Theorem, Nz, > 3,is independent of the codi-
mension of the coisotropic. One achieves this improvement by the following ob-
servation: If there exists a pearly trajectory emanating from a critical point which is
not contained in the fibre over the minimum, the theorem follows. If not, all pearly
trajectories ending in the minimum emanate from critical points y which are con-
tained in the fibre T2* over the minimum x. Every critical point y of Morse index at
least one in the cochain complex of the torus T2* can be generated as sums of Morse
cup products of finite linear combinations of critical points x1, . . . , x which are

all of degree one for some K € Zx(. One then considers the quantum deforma-
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tion of this Morse cup product. This quantum productof 1, . . . x i resultsinacol-
lection 3/ of critical points in the fibre T2* above the minimum and a collection of
critical points y” which all satisfy |[75(y”)| > 1. The quantum deformation of the
Morse cup product satisfies a Leibnitz rule with respect to the full quantum differ-
ential on the almost fibred pearl complex. The critical points x1, . . . x which were
used to generate y have Morse index one, and thus, by applying the Leibnitz rule,
the assumption Nz, > 3 is now sufficient to eliminate contributions to the Floer
differential coming from the collection of points 3 above the minimum. By a priori
choosing a perfect Morse function on the torus fibre one can then show that the re-
maining terms y” € f5'([1,dim L]) in the quantum product of z1, . . . 7 ¢ give rise
to a pearly product trajectory with the property (P) from the assertion of Theorem

4.1.

The chapter is structured as follows. In Section 4.2 I explain the construction of an
almost fibred Morse complex associated to a of a fibre bundle via almost fibred pairs of
Morse functions and almost gradient vector fields. In Section 4.3 I quickly review the
construction of the pearl complex and explain its adaptation to almost fibred Morse
complexes resulting in the construction of an almost fibred pearl complex. With this in

place I carry out the proof of Theorem 4.1in Section 4.4.

4.2 The Morse complex of an almost fibred Morse func-

tion
4.2.1 The Morse complex

To achieve transversality of the moduli spaces involved in the construction of the
Morse cohomology ring on needs to allow for certain perturbation data. I will work
with a single Morse function and allow for varying almost gradient vector fields.
This approach has two main advantages for the proof of Theorem 4.1. The algebraic
structures on the pearl complex are defined as counts of elements in moduli spaces

associated to pearly trajectories (see Definition 4.13 and 4.15 below or Section 3 of
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[BCo7] for details). The regularity of these moduli spaces relies on the perturba-
tion data for the Morse complex. If one uses a single Morse function and allows
for varying almost gradient vector fields, the critical points of the Morse function f,
which generate the pearl complexes associated to sets of perturbation data, remain
unchanged under these perturbations. This makes the main argument in the proof
of Theorem 4.1 easier to phrase and prove. The second advantage is that one avoids
having to to deal with derivatives of cut-off functions in the construction of an al-
most fibred Morse complex using almost fibred Morse pairs, which also simplifies

this argument.

Many thanks to Paul Biran for pointing out the advantages of using almost gradient
vector fields in this context to me, an insight that was presented to him by Octav

Cornea. See [BK13].

Definition 4.2 (Almost gradient vector field).

Given a Morse function f onamanifold L, avector field Z on L is almost gradient for

fif

1. Lz(f) = u(Z)df > 0throughout the complement of the set of critical points
of f.

2. For every critical point x of f there exists a Riemannian metric p and a neigh-

bourhood U, suchthat Z = +V , f throughout U.

Idenote a Morse function f and an almost gradient vector field Z for f by (f, Z) and

call this an almost gradient pair.

Without loss of generality, assume from now on that all the almost gradient pairs

(f, Z) used in the constructions satisfy the Morse-Smale condition.

Denote by ¢, the flow of Z. For critical point z of f define the forward (or positive or
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stable) manifold:
< — ; ( —
41 W=(z) = {q € L| lim ¢7(q) =z}
and the backward (or negative or unstable) manifold of the positive gradient flow as
W2(2) = {g € L] lim_¢y(q) = 2},

The reason forusing “ <” and “ >" in this notation will become clear in Remark 4.7.
Moreover this notation behaves intuitively when converting from positive almost
gradient flows to negative almost gradient flows or passing from (Morse) cohomol-

ogy to homology:

(4-2) W= () = W=(x)
W2 (x) = W=(z),

where W= (z) and W= () denote the forward and backward manifolds of x with
respect to the negative almost gradient flow respectively. The Morse index |z| of a

critical point z satisfies
|| == indmorse(f, Z, L; ) = dim W= (x),

where dim W= () denotes the dimension of W= (z) as a manifold.

For the purposes of this thesis it will be sufficient to work with Z, coefficients.

Therefore set
K = Z>.
Define
(43) Ct (L) = P K)
zECritf
|z|=p

as the free K-module generated by the finite set of critical points Crit,, ( f) of critical
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points (f, Z) on L of Morse index p. Since K is a field, this is nothing but a finite
dimensional vector space with basis Crit,( f) over Zy. Viewing C* as a module will

be relevant for the definition of the pearl complex.

In abuse of notation, I drop L from the notation and abbreviate C’? 4(L)to 0]1? 71

nowrecall the definitions of the algebraic structures on the Morse cochain complex.

Definition 4.3 (Morse differential).
Foreveryp € Zx>o. The Morse differential d s counts almost gradient flow lines be-

tween critical points of index difference one:

dy : CF , — CFY

f£.Z
(4-4) du(y)= > m(y,x)(z),
z€eCritf
|z|=]y|+1=p
where

m(y, x) = #{W=(y) "W=(2)}.

isthe count in K of points in the intersection of the backward manifold of y with the

forward manifold of x.

Definition 4.4 (Morse product).
For every pair (p,q) € {0,...dim(L)} x {0,...dim(L)}. The Morse cup (or star)

product % is a binary operation:
+
i CP, @0, O,

where one needs to work with at least two different almost gradient vector fields
to ensure transversality of the relevant moduli spaces. It is the Morse theoretic in-
terpretation of the cup product. One may as well work with three different almost
gradient vector fields as in [BCo9] or with three different Morse functions and their

gradients asin [Fuk93]. The notation o, which I use here originates in denoting the
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quantum product on the pearl complex by “+”. See Equation 4.17 below.

Let|z1| = pand |z2| = ¢. Then the xo-product is defined as:

(4-5) Ty xo T2 = w1 Ux2 = Z n(z1, x2,2)(2),
z€Critf
|z|=p+q

where

n(zy, T, 2) = #{W=(x1) N W=(22) N WS(2)}.

is the count in K of points in the triple intersection of the backward manifold of

and y respectively with the forward manifold of z.

Assume from now on that L is compact and connected. Choose a Morse function
with an unique minimum zpi,. It is almost immediate from the definition of the

product that xmi, represents the identity with respect to the product .

Definition 4.5 (Morse complex and Morse cohomology).
Denote by

x _ ~0 du 1 dnr dim L
Crz2=Crz ——Ciz... — Ciz

the Morse cochain complex of an almost gradient pair ( f, Z) on L. The Morse coho-
mology ring H M ™ (L) is the cohomology of the cochain complex (C7 ;, dar) with

the xo-product.

4.2.2 Almost fibred Morse functions

Assume that the manifold L has a fibre bundle structure ' — L — B with closed
base B and closed fibre F'. Note that this is different from the assumption of L to be
fibred as a coisotropic. In the application which leads to the proof of Theorem 4.1 L

willbe L¢.
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Inow construct an almost gradient pair ( f, Z) on L for which the Morse differential
preserves the filtration underlying the Leray-Serre spectral sequence. For more de-
tails on this construction see [OAN03]. Recall that I assume that choices of almost

gradient pairs satisfy the Morse-Smale condition.

Definition 4.6 (Almost fibred pair).

An almost fibred pair (f, Z) is the result of the following construction:

Choose an almost gradient pair (fp, Zp) on B. The Morse function fp o 7p is
Morse-Botton L. Label the critical pointsof fg on Bbyb; for: = 0, ..., M. Choose
mutually disjoint neighbourhoods U; of b; containing smaller neighbourhoods V;
such that the closure V; of V; is a proper subset of U;. Next choose smooth cut-off
functions ¢; which are identically 1 near b; and identicallyO on U; \ V;. Choose anal-
most fibred pair (fr, Zr) on the typical fibre F'. Without loss of generality assume

that fr is self-indexing. Denote the local trivialisations of the fibre bundle by
v, : 71'1;1((]@-) —U; x F

andbymr : U; x ' — F the obvious projection. Denote a point on L by g and

extend Z to avector field Z; on 7, (U;) by:
Zi(q) = Zp omp o V;(q).

We denote the zeros of Z; by ¢;j for j = 0, ..., N. Now define the almost fibred pair
(f,Z)on Lby

f=Trs+Ir,
N
Z(q) = Zpomp(q) + €y _ 6:Zi(q),
=0

for a choice of e small enough to guarantee that no new zeros are introduced.
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Set
(4.6) xij = (bi, cij) forallpairs (4,j) € {0,...,M} x{0,...N}.

Then z;; are critical points of (f, Z) on L¢. It follows from Propositions 3.3.3 and
3.3.4in [OANo3] that ( f, Z) construced as above is Morse-Smale on L if the almost
gradientpairs (fp, Zp)inthebaseand (fr, ZF) inthe fibre satisfy the Morse-Smale

condition. Moreover notice that by construction
(4.7) drpo Z(x) = Zp(z).

This implies that trajectories of the flow of Z project to trajectories of the flow of

ZB.

Withoutloss of generality choose fp(mp(x)) = iforallsuch |mp(x)| = i (i.e. fpis

selfindexing). Define for every s > 0 the following sets

S* ={z € Lo|fp(mp(2)) = s}
5§<* ={z € Lolfp(rp(z)) < s}

§° ={z € Le|fp(rp(2)) > s}.

One can then for example partition L into super-and sub-level sets of fp asfollows:

L=5%uUs=*
(4-8) = {2 € Lolfp(mp(2)) < s} ULz € Lol fp(np(w)) 2 s}

= f5'([0,5)) U f5" ([s, dim(L))).

Remark 4.7.

Observe the following consequences of Equation 4.7 and the partition from Equation 4.8: If
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a critical point x of f on L liesin S, then its backward manifold W = (), is contained in

S=% and its forward manifold W= (), is contained in S=" i.e.

(4-9) W=(x) C 5%

(4.10) W=(z) C =

Definition 4.8 (Almost fibred Morse complex).
Assume that L has a fibre bundle structure /' — L — B. The Morse cochain com-
plex as describe in Defintion 4.5 of an an almost fibred pair (f, Z) as constructed in

Defintion 4.6 is called an almost fibred Morse cochain complex.

4.3 The pearl complex of an almost fibred Morse function

I now briefly recall the construction of the pearl complex. Consider a closed, con-
nected Lagrangian submanifold L of a symplectic manifold (W, w). As pointed out
above, I follow the ideas of Biran and Cornea presented in [BCo9]. My conventions
differ slightly from theirs, since I want to formulate the results purely in terms of

cohomology, for a “how to convert between conventions“ see Equation 4.2.

Denote by (D, 0D) the closed unit disc in C. Given a map
u:(D,0D) — (W, L),

denote by E,, (u) the symplectic energy of u and by 1+(u) the Maslovindex of u. Both
maps descend to homomorphisms on HY (W, L) C Hy(W, L), the image of the
Hurewicz homomorphism h : wo(W, L) — Hay(W, L).

Definition 4.9 (Monotone Lagrangian).
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A Lagrangian L is monotone if there exists a positive real number 1 > 0

Eu(A) =n-p(A) VA€ Hy(W,L).

Definition 4.10 (Minimal Maslov number of a montone Lagrangian).

Denote by

(4.11) Np= min  pu(A)>0
AeHP(M,L)

the minimal Maslov number of a monotone Lagrangian L.

Assume from now on that Ny, > 2. Denote by
A =K[T,T7]

the ring of Laurent polynomials in the formal variable 7". Set the degree of 7" to
“+Np”. Consider the Morse cochain complex C , of L introduced in Defintion

4.5. The module underlying the pearl complex is given by
(4.12) C* =C% 7 @k A

Here C™ is defined as the tensor product over K of the K-cochain module C% , with
the ring A viewed as a module over K. This is done by including K as K - 7" into A.

For each fixed p € Z this means:

(4.13) cr =Py e T,
kEZ

where T* denotes monomials of degree k € Z in the formal variable T'. Since K isa
field C* is noting but the tensor product of the finitely dimensional Z,-algebra C; ,,

with the Zy-algebra Zs [T, T~ 1].
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The grading of C* is defined to be the sum of the gradings on C'; and on A. By denot-
ing this differential graded algebra simply by C*, I am again abusing notation for the

sake of brevity and readability.

Notice that for each fixed p € Z, the sum in Equation 4.13 is finite, since

P

Ny’

p—dim L
N,

P—FKmin N, —1 __ o
C'fvzm‘“ =2 =0 for kmin =

O N = 0 for ke =

If one fixes k € Z one obtains C;}kN L @ T* and thus a copy of the Morse cochain

complex C% .

Example 4.11 (Pearl complex in four dimensions with Nz, = 2).
Assume L is 4 dimensional and Nj, = 2. I denote below some non-zero parts of the

complex C*.

CP=CiaT'eCiaT’ e C}aT!
C'=CieT'eCiaT’
C'=CieT?aCieT 'aC)eT’
Cl=C}oT?eCiaT

CP?=CieTaCieT e CieT !

Similarly to the construction of the algebraic structures for the Morse differen-
tial graded algebra a generic choice of perturbation data is necessary to guarantee
transversality of moduli spaces used to define the algebraic structures on the (al-
most fibred) pearl complex. Recall that an almost complex structure on a symplec-
tic manifold (W, w) is an endomorphism J of the tangent bundle such that J? =
—1d. To define the pearl complex, choose a generic w-compatible almost complex

structure J on W. I continue to work with a single Morse function f and allow vary-
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ing almost gradient vector fields Z, which all satisfy the Morse-Smale condition as
auxiliary data. The reference for this approach is [BK13]. I remark that for the def-
inition of the quantum product it is sufficient to work with a fixed Morse function
f and two different gradient like vector fields Z # Z’ at the respective entry flow
lines of the core disc. This is explained in the proof of Lemma 5.2.2 in [BCo7]. For
the purposes of this thesis one may as well work with three distinct almost gradient

vector fields.

I now recall the definition of moduli spaces used to define the algebraic structures
on the pearl complex. The differential d of the pearl complex is a quantisation of
the Morse differential. Its classical part agrees with the Morse differential dyy, its

quantum (or Floer) part d r counts the pearly configurations described below:

Definition 4.12 (Pearly differential trajectory).
Giveny,z € Land0 # A € HP(M,L). Let] > 1 € Z. Consider a sequence
(ui, ..., up). Apearly differential trajectory of length [ fromy to x is the following con-

figuration:

(PD1) Foreachi € {1,...,1}the J-holomorphicdiscu; : (D,0D) — (W, L)is

non-constant.
(PD2) [u1] + -+ [w] = A.
(PD3) Thereexistsat™ € [—oo,0) suchthat ¢, (u1(—1)) = y.

(PD4) Foreveryl < i < | — 1thereexistsat’ € (0,00) such that qﬁtZZ(ul(l)) =
’UJZ'Jrl(*l).

(PD5) Thereexistsat™ € (0, +o0] such that <;5'5Z+ (u(1)) = .

Denote by
Pprl = Pprl(y7 x; A; fa Zv J)

the moduli space of all possible configurations of all possible lengths [ > 1 de-

105



scribed in Definition 4.12. If A = 0 define the space
Pprl(y’ x; 0; f7 Z7 ‘])

to be the space of unparametrized flowlines of the flow ¢/, of the almost gradient

vector field Z from y to x.

If A # 0and y and z are critical points of f, then conditions (PD 3) and (PD 5) be-
come uj(—1) € W=(y)and u;(1) € W=(z) respectively. In this case the moduli
space Ppri(y, z; A; f, Z, J) canbe used to define the pearly differential in the follow-

ing way:

Definition 4.13 (Differential of the pearl complex).

d:C* —
(414) w(A)
d(y) =Y _#x(Pp(y, v A; £, 2, 7)) (z) @ T e
z,A

where the sum runs over all combinations of x and A such that the moduli space

Ppri(y, x; A; f, Z, J)iszerodimensional. See Section 5.1 0f [BCo7] for more details.

The terms in the pearly differential d : C* — C**! can be grouped as:

d=0y®T°+dr where &y = dp; and

(4.15) . (dimL+1) -
dp =" T+ +0,QT"+ ... + Omr+y @-T N
Np,
Here
(416) Om : Cj 5 — CF VM

is the m-th quantum correction term of d.
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To define the x product on the pearl complex we consider the following configura-

tions:

Definition 4.14 (Pearly product trajectory).
Givenx1, r9,y € Critfand0 # A € HP (M, L). Consideratuple (@, @', ", v). A

pearly product trajectory from x1 and 2 to y is the following configuration:

(PP1) v : (D,0D) — (W, L)isa J-holomorphic disc, which is allowed to be con-

stant.

—271

(PP2) Setz; = wv(e s ),z2 = v(e%)andz;g = wv(1l). Let By, By,B3 €
HP(W,L).
@ € Ppri(x1, 215 B1; f, Z1, J)

' € Ppri(wa, 225 Ba; f, Z2,J)

" € Pyri(z3,y; B3; f, Z3, J)

(PP3) By + By + B3 + [U] = A.

Again for generic choices of auxiliary data the moduli space
Pprad = 7Dp’r‘od(ﬂgh x2,Y; Aa f) Zl) ZQ) Z37 J)

of all configurations described in Definition 4.14 above can be used to define the x

product:

Definition 4.15 (Product on the pearl complex).

The x-product on C'is the binary operation

*x:C'@ I — O

(4.17) u(A) |
X1 * T2 == Z#K(Pprod(ﬂjhfz% Y; Aa f) Zl) ZQ) Z37 J))<y> & TN

y,A
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where the sum runs over all y and A such that P4 is zero dimensional.

Like the pearly differential the x-productis a quantisation of the Morse cup product.

Forn > 0its quantisation is given by:

*:*0®T0+*F

(4.18) . 2dim(L)
*p =% QT +“'+*n®‘Tn+"‘+*2dim(L)®'T NL
Np,

Here the n-th quantum correction term is given by:
i+j—nNL

(419) *p - 0}7 7 ® 0;7 20— Can

The zeroth term *( of the x-product coincides with the Morse cup product.

Akey fact which we will use is that x satisfies a Leibnitz rule with respect to d:
(4.20) d(x *y) =dxr*y+ xxdy.

This is proved in Proposition 5.2.1 of [BCo7]. Care has to be taken since this identity

does in general not hold for individual terms if m and n are not both zero:

Om (T %, Y) # Om@ % Y + T *p O .

Definition 4.16 (Energy of a pearly trajectory).
Given a pearly differential or a pearly product trajectory P of homology class A (see
condition (PD2) of Definition 4.12 or condition (PP3) of 4.14 respectively), the en-

ergy of P is defined as the symplectic energy

Ey(u) = /D W
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ofadiscu : (D,d) — (W, L) suchthat [u] = A € H%(W, L). Equivalently,

l
E,(u) = ;/Dufu}

fordiscsu; : (D,0) — (W, L) suchthat [u1] + - - - + [u;] = [A].

Definition 4.17 (Pearl complex and quantum cohomology).

The pearl complex of (f, Z) on L is the cochain complex (C*, d), where C* =
C; » @k A and d is as in Defintion 4.13. The x-product give C* the structure of a
(generally) non-commutative, non-associative algebra. The Lagrangian Quantum

cohomology QQ H* (L) is the cohomology of (C*, d).

Notice also that I have dropped the almost complex structure J from the nota-
tion although the algebraic structures defined on C* depend on it. The Lagrangian
Quantum cohomology is independent of the choices of (f, Z) and J, by assertion
(7) of Theorem 2.1.1 in [BCo7]. By assertion (v) of the same Theorem the La-
grangian Quantum cohomology Q) H*(L) is isomorphic to the self-Floer cohomol-

ogy HF*(L, L), viathe PSS map.

Definition 4.18 (Almost fibred pearl complex).
Assume L has afibre bundle structure ' — L — B. The almost fibred pearl complex

C* of Lis the pearl complex C} , ®k A, d of an almost fibred pair (f, Z) on L.

Recall that A = K[T, T~ !]. A cochain c of an almost fibred pearl complex C* is a
A-linear combination ¢ = ), Az, where the x;, are Morse cochains of C; »and
A are Laurent polynomials in the formal variable 7". Notice that cis not necessarily
apure tensor. Since the proof of Theorem 4.1 relies on the partition of L into super-

and sub-level sets of fp as described in Equation 4.8 introduce the following nota-
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tions:

Notation 4.19.

Foracochain

K
(4-21) c= Z Az € C*
k=1

e Write c € S<!ifall critical points z contributing nontrivially to the cochain

care containedin S<‘i.e. {x1,...,zx} C S\

e Write c € S=%ifall critical points z, contributing nontrivially to the cochain

care containedin S=%i.e. {x1,...,xx} C SZ°

e Write ¢ € S*ifall critical points z;, contributing nontrivially to the cochain ¢

are contained in S'i.e. {x1,...,rx} C S

The following Lemma will be important in the proof of Proposition 4.24.

Lemma 4.20.
Assume that the pearl complex C* is almost fibred. Let cand c1, . . ., ci, be cochains con-

tained in S°. Then
(D) d(c) = e + €/, whereeisacochainin S<* and 2’ is a cochain in S=+1,

(S) c1%---xcp = e+ e/, whereeisacochainin S and €’ is a cochain in =1,

Proof. Thisimmediately follows from the fact that S<¢ U S=*! isa partition of the
set of critical points of the almost fibrered Morse function f on L (see Equation 4.8).

O]
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Remark 4.21.
There exists a decreasing filtration on the almost fibred Morse complex C'; . For each i

andp € Z> the i-th filtration of C}e’ 5 Isgiven by
(4.22) ]-'i(C}’Z’Z) ={zeCi,lxe 5=,

This filtration is preserved by both the differential d s and the xo-product by the same rea-
soning as in the proof of Lemma 4.20 above. It can be used to define the Leray-Serre spec-
tral sequence. Notice however that the Floer part of the differential d and the Floer part
of the product = do not preserve this filtration. One can define a filtration on an almost
fibred pearl complex, which takes the fibve bundle structure into account and is preserved
by the Floer differential and product. The idea is to filter by distance to a fibve. Given a
cochain c € S°, Ay (c) is contained in S=1="NLFL N S+ gnd similarly for the prod-
uct. Despite being interesting, I do not pursue this idea in this thesis, since the application,
computing () H* via a spectral sequence, is irvelevant for the proof of Theorem 1.6. Very
recently, Schultz defined a spectral sequence in a similar context in [Schi7]. It would be
very interesting to further investigate the relation of these spectral sequences and to com-

pute QH*(L¢, L) via a spectral sequence.

Given the Lemma above it makes sense to make the following definition

Definition 4.22 (fibrewise generation).

Assume that the pear]l complex C* is almost fibred.

e Given a cochain ¢ € S say that e is fibrewise generated by a set of

critical points G C S’ via the xg-product if there exist critical points

1 1 K K *
Tiyeo XL ey X ey T, € Cf’ZsuChthat

K

k,.k k .k _ /
g A{Ty *o -+ *0 AL, XL, =c+¢
k=1
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fork,l,K,Li,...Lx,> 1€ Z,\f € Aandacochainc’ € S=¢*1.

CAE €A

This means that there exists Laurent polynomials A{ L
AN st K

'7lk:’ :

and critical points 1, . . . ,xl]}({ € C; zsuchthat

k k k /
)\1 lk(xl*O"'*Oxlk):C+C.

geeey

gl

This concludes the adaptation of the pearl complex to the present situation. In the

following section I apply this algebraic machinery to prove Theorem 4.1.

S St S2

TQk

B

Figure 4.1: A picture of parts of the almost fibred pearl complex of L for a fibred,
stable coisotropic C'

4.4 Proofof Theorem 4.1

To prove the theorem I first prove Lemma 4.23 below, then Proposition 4.24 and fi-

nally the theorem by applying Lemma 4.23 and Proposition 4.24.

Assume from now on that L is a closed, connected, monotone Lagrangian submani-
fold of a symplectic manifold (W, w), equipped with a generic w-compatible almost

complex structure J. From now on also assume that L is the total space of a fibre
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bundle ' — L — B. Recall the decomposition of L into sub- and superlevel sets
of fp descibed in Equation 4.8. In particular the unique minimum i, of a Morse

function gives rise to a cochain
o A
(4-23) Tmin = Tmin &

in the almost fibred pearl complex which is contained in S°. It will be convenient in

the proof to introduce the following projection:

(4.24) pro: C* = CY , & T°.

The Lemma below also holds in the case where L is not fibred.

Lemma 4.23.
Let L be a closed, connected, monotone Lagrangian submanifold. Denote by T, the
uniqueminimumof f on L. Then QH* (L) = Oifand onlyifthereexistsacochainc € C*

such that dp(c) = Tmin-

Proof. The cochain 2y, is a Floer cocycle. To see this note that dps (2min) = 0.
By Equation 4.15, higher differentials 01 lower the Morse index of z i, by at least
N1, —1 > 1bythe assumption that the minimal Maslov number is at least two. But

Zmin has minimal Morse index among all critical points so d(zmin) = 0.

Assume that QH*(L) = 0. Thus every cocycle of C* is a coboundary. Thus there
existsa primitive cin C* such that d(c) = xm;iy. Since there are no non-trivial Morse

flow lines ending in the minimum, it follows that ¢ satisfies d(¢) = Tmin.

Conversely, the cohomology class [Zmin] of the cochain xp;y is the identity in the
Quantum cohomology ring QH*(L). If zmiy is a coboundary, this implies that

[*min] = 1 = 0inthe quantum cohomology ring Q@ H*(L). Thus QH*(L) = 0. O
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Proposition 4.24.

Assume that L is a compact, connected Lagrangian which is the total space of a fibre bun-
dle ' — L — B. Assume that L is monotone with Ny, > 2. Assume also that fp
is self-indexing and that fr is perfect, where fp and fr are the Morse functions from the
construction oofthealmost fibved pair ( f, Z), which is used to define the almost fibred pearl

complex C*.
If L is displaceable and all cochains c such that
pro(d(c)) = Kxmin for k#0€cK
satisfy:
(F1) The cochain cis contained in S°.

(F2) The cochain cis fibrewise generated by a set G of critical points as in Definition 4.22
such thatall critical points x € {xf,...,xp ,..., 21, ..., &} }areofthesame

Morse index g and satisfy:

g= |xﬂ < Np—1 ,forall k,lI.

Then there exists a pearly product trajectory P containing a critical point y in S=* and

ending in the minimum xm;, of f.
Proof. Byassumption L isdisplaceable, so Lemma 4.23 and assertion (D) of Lemma
4.20 imply that there exists a cochain ¢ € C* such that

d(c) = xmin + e,

where e is a cochain in SZ!. Since pro(d(c)) = Zmin, it follows from Assumption

(F1) of the proposition that ¢ is contained in S°. In particular, by the definition of
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the differential d, there exist critical points y € S° such that

pro (d()‘yy)) = KZmin,

for\, € A,k # 0 € K. Amongall cochains ¢ € S which satisfy pro(d(c)) =
K xmin for some k' # 0 € K, choose a critical point ymin of minimal Morse index

amongst thesei.e.

pro (d(Aminymin)) = R1%min-

forAmin € Aandk; #0 € K.

By assumption (F2) and Definition 4.22 there exist critical points

x%, e 73711:17 e ,x{(, .. .xf—fK € G c S° which are all of the same Morse
index g such that
K
k k k /
Z Al,---,lk (2] %0 -+~ %0 CElk) = AminYmin + €
k=1

where A} 1, are Laurentpolynomialsand ¢’ isacochainin S 21, Consider the quan-
tum deformation of the xp-product. Since the x-product is not commutative, the
product will depend on the chosen order of the critical points in GG. By assertion (S)

of Lemma 4.20 one may write

K K K
(4-25) chf*---*ci:chf*o...*ocfk_f_ZCIf*F...*FC;Ck
k=1 k=1 k=1
(4.26) = ()\minymin + C/) + (C” + CW),

where ¢ € S=!asaboveand ¢’ € S%and ¢” € SZ!. Note that the Morse index
of every critical point contributing nontrivally to ¢’ € S is strictly smaller than
the Morse index of ymin by Equation 4.19 and therefore ¢’ cannot sum to zero with

)\min Ymin-

115



Next apply the differential d to this equation:

K
(4-27) Z xex Clk = d(AminYmin + ¢ + "+ ")
k=1

(4.28) = d(/\minymin) + d( ) + d(C + C/”)

I claim that d(AminYmin) is the only non-trivial contribution to C’]Q 7 ® T9. To see

this consider

(Z d TxC )) :pr0(d()\minymin) + d(CII) + d(Cl + C”/))

= K1Zmin + pro(d(c”)) + pro(d(c + "))

= K1%min-

""" are contained in

The last equality follows from the fact that the cochains ¢’ and ¢
S=!andtherefore cannot contribute non-trivially to C% ,®Tbyassumptionof the
proposition. The Morse index of every critical point contributing nontrivally to ¢’ €
SY is strictly smaller than the Morse index of i, by Equation 4.19 and therefore

cannot contribute non-trivally to C% 7 ® T by the minimality of Ymin.

Next apply the Leibnitz rule:

K
Zd(clf *clk Zch )*---*cfk.

k=1 k=1 j=1

Byassumption (F2) of this proposition the Morse indices of all critical points z in G
satisfy g = |z| < N — 1. Thusall quantum correction terms of the differential d

satisfy |0 z| < 0form > 1byEquation 4.16. Hence

K
(4-29) Zd(c]f *clk Zch ok dp( k)*-n*cfk,

k=1 k=1 j=1
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and

K K I

k ky | k k k

Pro Zd(cl*---*clk) —chl*"'*dM(Cj)*"'*Czk
k=1 k=1 j=1
= K2%min

for some ko # 0. Thus thereexists 1 < kg < Kand1 < jy < [, suchthat
k k k
Pro (010 *oeeekdp(CG)) xoee ek clk?) = K3Tmin

for some k3 # 0. Hence d M(cfg) # 0 € C*. Bythe assumption that f is perfect,

thisimplies that d s (cf(?) is contained in S=!. Set

_ ko
Cmin = C;
_ ko ko
a=c{’x-xcp
ko ko

b:chH*---*cl

ko

With this notation

Pro (c’fo e *dM(ch) ke *kao> = pro ((a * drr(cmin)) * b)

= K3Zmin-

While the cochains a, bare not necessarily contained in S=! the cochain d s (¢min ) is
contained in SZ!. This implies that there exists a pair of pearly product trajectories

consisting of

e Apearlyproduct trajectory emanatingfromacritical pointa; € S contribut-
ing to the cochain a and a critical point y; € S=! contributing to the cochain

d s (emin) ending in a (not necessarily critical) point a, on L.

e A pearly trajectory emanating from a and a critical point b; contributing to
the cochain b which ends in 2y, since the backward manifold W< (zmin)

consists only of T, itself.
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This pearly trajectory P thus connects a critical pointy = y; contained in S=! to

the minimum Zn;,. The proposition follows. ]

S| §>0 |5

Lmin

Figure 4.2: Apearlytrajectory of the form (ax0pcmin ) *basin the proof of Proposition
4.24

I now prove Theorem 4.1.

Proof of Theorem 4.1. Recall the definition 3.1 of the Lagrangian graph L¢ from Sec-
tion 3.1. By Lemma 3.2 L is a Lagrangian submanifold of W~ x W™ and inheritsa
fibre bundle structure

T? — Lo =25 Ap
from C'. Here 7 p denotes the projection to AB.

Choose an almost fibred pair (f, Z) on L¢ as described in Definition 4.6. With-
out loss of generality assume that fp is self indexing. Choose the fibre component
(frer, Zpor ) used to define ( f, Z) to be the standard, perfect Morse function on the

torus. Moreover since L is closed and connected assume f has a unique global
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minimum Tmin. Given b € B one may choose f such that ma , (zmin) = (b,b). The

decomposition of L¢ described in equation (4.8) gives

={z € Lolfp(mas(z)) <1} U{z € Lelfp(rag () > 1}

Notice that all critical points of f in S<! are contained in S. Choose a sequence
of generic (J,, )nen approaching an arbitrary, but fixed almost complex structure .J.
Use (f, Z) and J to define the pearl complex C*(L¢). By assumption of the theo-
rem, L¢ is displaceable. Consequently QH* (L) vanishes. By Lemma 4.23 there
existsa cochain ¢ € C* suchthat d(c) = xmin. Thus there exists at least one pearly
trajectory containing a positive, finite number, say K, of non-trivial J-holomorphic
discs u1, ... ug. Recall the observation that W= (Zmin) = Zmin. Thus the bound-
aryofthe K -th, non-trivial .J-holomorphic disc contributing to the pearly trajectory

passes through Z ;.

If there exists a cochain ¢ € S=! such that pro(d(¢’)) = Kamin for k # 0 € K, this
implies that there exists a pearly product trajectory which emanates from a critical
pointy’ € S=!and ends in zyin. By definition of a pearly differential trajectory
/

thereareisa positive number, say K’ of non-trivial J-holomorphicdiscuy, . .., ux

contributing to this pearly trajectory. The minimum 'y, is contained in u g (0D).

The energy of the pearly differential trajectory is bounded above by n(dim(L) +
1) Np. This follows from the differential degree formula (4.15) and the monotonic-

ity of L. The Theorem follows in this case.

If there does not exit a cochain ¢’ € S=! such that pro(d(c’)) = kaminfork # 0 €

K, one is in the situation of Proposition 4.24.

I now verify the remaining conditions of Propsition 4.24. The fibre over the mini-
mum is a 2k dimensional torus. Recall that I use the standard, perfect Morse func-
tion and positive gradient flow to define the almost fibred Morse complex and -

product on the fibre. Recall also that every closed form of Morse degree at least one
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on the torus is generated by sums and products of degree one forms on the torus.
Thus every cochain ¢ € S° = T2* such that all critical points contributing non-
trivially to ¢ have Morse index at least 1 is fibrewise generated by a set of critical
points G as in Definition 4.22. All critical points in G can be chosen to have Morse

index g = 1. The last condition one needs to check is:

g=1=|zF| <Ny —1 forall kI
This holds because in the statement of the theorem one assumed Ny, > 3.

Thus all assumptions of Proposition 4.24 are verified. The proposition now implies
the existence of a pearly trajectory P with the desired properties. The energy of

this pearly product trajectories is bounded from above by 27 dim (L) Nz, by formula
(4.18).

Thisimplies the theorem in this case and thus the proof of Theorem 4.1is complete.

O]

Remark 4.25.

The proof of Theorem 4.1 becomes significantly easier if one assumes Ny, > 2k + 2:

Consider again the decomposition of L into S<' and S=1. Ifall holomorphic discs ending
in the minimum were entirely contained in S<*, there would have to be a critical point of
Morseindexatleast N1, — 1 inthetorus fibre above the minimum. However, the chain com-
plex of the 2k-dimensional torus fibve above the minimum is concentrated in degrees 0 to
2k thus N1, > 2k + 2 implies that no such point exists. Thus by the vanishing of Quantum

cohomology there must exist a pearly differential trajectory with the desired properties.

Example 4.26.
Consider the product C' = §?7~1 x §2m=1 ¢ R2" x R?™ equipped with the stan-
dard almost complex structure Jy and the standard symplectic structure wy. I have

shown that the minimal Maslov number of L g2»-1 is 2n in Example 3.6. Thus the
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minimal Maslov number Ny, is equal to the least common multiple of

s2n—1yg2m—1

2mand 2n. Settingm = n = 2 one sees that

Ny, =lem(4,4) =4

S3x53

Thus the assumption Ny, , , > 3isverified but one cannot apply the easier proof

from Remark 4.25 since k = 2implies 2k + 2 = 6 > 4.
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Theorem 4.1 establishes the existence of a pearly trajectory P emanating froma crit-
ical pointy € fz'([1,00)) and ending in the minimum 2 € f5'(0) of an almost
fibred Morse function f on L. The main ideas of the proof of Theorem 4.1 were
to associate a Lagrangian L¢ to C' and to then adapt and use techniques from La-
grangian Floer theory. However, Theorem 4.1 asserts nothing about the holomor-
phic discs contributing to the pearly trajectory P. For example, the interior of these
holomorphic discs is not necessarily contained in L¢ or even in a neighbourhood
of L¢. In order to obtain more information about the holomorphic discs contribut-
ingto P,Tadapt and apply techniques from symplectic field theory. More precisely,
the goal of this chapter is to prove Theorem 1.8 from the Introduction, which I state

again below as Theorem 5.1.

Theorem 5.1.

Let C' be a fibred, stable coisotropic submanifold of a symplectic manifold (W, w). Assume
that the Lagrangian graph L¢ in the product (W x W, —w X w) is monotone and has
minimal Maslov number N, at least three. Let b be any point in the symplectic quotient

BofC.
If L¢ is displaceable, then theve exist:

(M) Analmost fibred Morse function f on L¢ such that the unique global minimum x of

f on L¢ is contained in f 5 (0) and projectsto (b, b) € AB.

(E) Aconstant Eg > 0, such that for all w g-compatible almost complex structures Jpg
on B, there exists at least one punctured pearly trajectory pP of energy at most Ey

and with the following properties:

(pP1) The punctured pearly trajectory pP connects a critical point y of f contained in

f§1([1, o0) to the minimum x of f.

(pP2) The punctured pearly trajectory pP contains at least one punctured, non-trivial
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holomorphic curve
@: (8,08,j) = (We x We, Le, —Je x Je)

with the following properties:

(S1) Theintersectioni(9S)N f5"(0) andtheintersection@(dS)N f5*((0,00))

is non-empty.

(S2) Ifuisunbounded near aninterior puncture, then uis asymptotic to a cylinder

over a generalised Reeb orbit on C when approaching the puncture.
(S3) Allother boundary and interior punctures of i are removable.

Here (S,0S) is a nodal, stable, connected Riemann surface of genus zero with

nonempty boundary .

A punctured pearly trajectory is a pearly trajectory in which the domains of the con-
tributing holomorphic discs are allowed to degenerate to nodal, connected, stable,
genus zero Riemann surfaces with nonempty boundary (see Definitions 5.10, 5.11
and 5.12) . The manifold Wi is the symplectic cobordism (see Definition 5.4) obtained
as the symplectic completion of the Bolle neighbourhood of C' and diffeomorphic to
R¥ x C. The almost complex structure J¢ on W is the limit of a sequence (JG)r>0
of almost complex structures which is used in a neck-stretching procedure. These al-
most complex structures J3 are adjusted to the stable coisotropic (C, S) and the

neck stretching procedure (see Definition 5.5, Section 5.3 and Section 5.5.3).

5.1 Outline of Chapter 5

Roughly speaking, the proof of Theorem 5.1 is a translation of the ideas of the proof

of compactness in symplectic field theory from [Bou+03] to the present setting.
Recall the construction of the stable hypersurface in Section 3.2.2. The most impor-
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tant feature of this construction is that there is a one to one correspondence of the
set of generalised Reeb trajectories G on C' and the set of Reeb trajectories R on H¢
(see Proposition 3.25). Moreover one may view H ¢ as the boundary of a Bolle neigh-
bourhoodU = B fo x C'where the symplectic formw, is given explicitly by Equation
2.6. The coisotropic submanifold C gets embedded into U as {0} x C. Thus one can

interpret H¢ as a stable hypersurface which separates W into symplectic cobordisms

(see Definition 5.4).

Itis a common technique in symplectic and contact topology to “stretch the neck”
around a stable hypersurface H in order to obtain information about holomorphic
curvesinthe manifold W (seefor example [EGHoo], [Bou+03],[CMos] and the ref-
erences therein). “The neck” refers to a neighbourhood diffeomorphic to (—¢, €) x
H,which gets “stretched” to R x H. Stretching the neck is also called “splitting”
as it results in disjoint, non-compact, symplectic cobordisms. In the present case
these disjoint components are We = RF x C,the symplectic completion of the Bolle
neighbourhood U, WH = R x Hg, called the symplectization of Hc and WR, the
symplectic completion of W \ U. As a result of splitting, a .J-holomorphic curve
u : S — W with domain a Riemann surface Swhich satisfies certain assumptions,
defines (see again [Bou+03]), a punctured ./s-holomorphic curve iic : S' — W,

with domain S/, which is a nodal Riemann surface.

As alluded to above, the almost complex structure Js is a limit of a sequence of
almost complex structures JS for 7 > 0 € R on the longer and longer necks
(=7, 7) x H. This specific family of almost complex structures plays akeyrole in ob-
taining more information about the holomorphic curves via splitting the manifold
W. 1show in Section 5.3 how to construct such a family of almost complex struc-
tures Js which are adjusted to the stable coisotropic (C, S) and the neck stretch-
ing procedure. In particular the (C, S)-adjusted almost complex structures Js are
translationally invariant in the normal direction of H¢ and render projection to B
holomorphic. The correspondence of the generalised Reeb trajectories G on C' and
the Reeb trajectories R on H¢, now implies that if the R* component of ¢ is un-

bounded near a puncture, then ¢ is asymptotic to a cylinder over a generalised
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Reeb orbit on C'. I explain this in Proposition 5.14 below. The main assumptions on
the holomorphic curve u which are needed to ensure this behaviour are finiteness of
energy (see Section 5.5.2), and that, if the domain of  has non-empty boundary 0.5,

u maps the boundary to a Lagrangian submanifold L of Wi.e. u(9S) C L.

To prove Theorem 5.1 one uses this apparatus as follows: Theorem 4.1 implies that
there exists a pearly trajectory, which, by definition of a pearly trajectory, contains

atleast one non-trivial (—.J x J)-holomorphic disc
u=(u",ut):(D,0D) — (W~ x WT, Lg).

The component v~ mapping to the first factor of W~ x W satisfiesu™ (D) C C.
If the codimension of C'is not n, C is not Lagrangian, and thus the results from
[Bou+03] donotapply directly to ™ and likewise do not apply directly tou™. How-
ever,u = (u~,u") does satisfy a Lagrangian boundary condition in the product
manifold W~ x W, Since L is a subset of C' x C it is embedded as a subset of
of ({0} x C x {0} x C)in W x W. Hence a product neighbourhood of L¢ in
W= x WtisgivenbyU x U. Then “splitting” W~ x W along Hc x H¢ by split-
ting both factors W along H¢ using family of almost complex structures —Jg x Jg,
gives rise to a sequence (P, ), >0 of pearly trajectories. The goal is now to show that
there exists a subsequence of this sequence which converges to a punctured pearly

trajectory pP with the desired properties.

In a nutshell, the pearly trajectory P from Theorem 4.1 converges to a punctured
pearly trajectory pP as described above, because the splitting is happening “far
away” from L. This allows us to view each non-trivial holomormpic map u;,, for
i € {1,..., Ly} contributing to the sequence of pearly trajectory as either a sin-
gle (—J x J)-holomorphic map, satisfying Lagrangian boundary condition in the
compact parts of W or as a pair (u™, ut) ofa (—J)-and a J-holomorphic map in
the non-compact part of We. Roughly speaking the existence of a punctured pearly
trajectorywith the properties (pP1) and (pP2) then follows from applying Gromov’s

compactness Theoremin the compact parts (see for example [Frao8]) and by apply-

127



ing the compactness results from [Bou+03] in the non-compact part. As a result of
stretching the neck the domains of the pearly trajectories degenerate to connected,
noded, stable Riemann surfaces S” with non-empty boundary . The limit object pP
containes a holomorphic curve with domain S’, which contains a disc component.
The properties (S1)-(S3) of the holomorphic curve @ follow from the fibre bundle
structure of L¢ by a straightforward argument, which I give at the very end of the

proof of Theorem 5.1

Adetailed outline of the individual steps of the proofis given at the beginning of Sec-

tion 5.6, where I present the proof of the theorem.

I'have structured this chapter as follows: Sections 5.2 - 5.5 are dedicated to the setup
of the machinery for the proof. In Section 5.2 Irecall the notion of symplectic cobor-
disms and explain how W can be separated along H ¢ into three symplectic cobor-
disms. In section 5.3 I construct the class of (C, S)-adjusted almost complex struc-
turesdescribed above. I describe the neck stretching procedurein Section 5.4. Ithen
recall the relevant notions for Riemann surfaces with boundary and holomorphic
curves in Section 5.5 in order to introduce punctured pearly trajectories and define
anotion of energy for these objects. The last section of the chapter contains a very
rough outline of how to use the machinery developed in this chapter to define the
analogues of holomorphic buildings for stable coisotropics. I call these holomorphic

chessboards.

Most of the effort of proving Theorem 5.1 lies in adapting the setup of symplectic
field theory to the present setting. The actual proofis a simple adaptation of the ar-

guments and ideas in [Bou+o03].

Remark 5.2.

The standard approach when considering discs with boundary on a Lagrangian is to neck-
stretch around the unit cotangent bundle U™ L, which is a contact hypersurface. As a result
of neck stretching around U™ L one obtains that the holomorphic discs with boundary on

L converge to holomorphic buildings in a split manifold and are asymptotic at their non
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removable punctures to cylinders over Reeb orbits of U™ L. In the present situation this ap-
proach does not lead to the desirved outcomes. Recall that the goal is to produce holomorphic
spheresin B. In order to produce a holomorphic building which has a disc component with
boundary on L¢, which projects holomorphically to B x B and has only removable punc-
tures oneneeds that the projection to both factors of B x B is holomorphic and that the Reeb
orbitsof U* Lo are contained in thefibres F'. The Reeb orbitsof U™ L are howevernot nec-
essarily contained in the fibres F' of the characteristic foliation. To see this, recall that L
is a fibre product over A B. Thus the normal directions of L in its cotangent disc bundle
D* Linvolve divectionsin a (chosen) orthogonal complement of the diagonal ABin B x B
with respect to a chosen Riemannian metric g g« p on B x B. Thus, after the stretching the
neck in these directions, the projections to each factor are not necessarily holomorphic and
the rest of the argument would not work. Moreover there is, to my knowledge, no obvious
Sfamily of almost complex structures on B x B which is translation invariant in these “off-
diagonal” directions and leads to the asymptotic behaviour of holomorphic curves which is

desirable in order to prove Theorem 1.6.

5.2 Symplectic cobordisms

To explain how C' and H fitinto the symplectic cobordism setting, I would like to
expand on how H is embedded into the Bolle neighbourhood U of C'. Recall that
by Proposition 2.18 there existsan ¢y > 0 anda symplecmorphism ¢ : Bfo xC —
U of C such that o5 .w = w,. By Proposition 3.23 H¢ . is a stable hypersurface for
every e < €g. Applying the Bolle neighbourhood theorem to Hgo . C Bfo x C'one
concludes that there existsan €’ < min{e, ¢y — €},aneighbourhood Uy C Bfo xC

of Hc ¢ and a symplectomorphism

¢ :(e—€,e+€é)x Ho— Uy
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such that the symplectic form w, pulls back under ¢ to
wi = Ppws = iyws + d(ra)

On the other hand, a neighbourhood Uy of H¢ ¢ in the symplectic manifold U is
given by a family

Us= |J Hee= |J SI'xc,
re(e—e+) re(e—,et)
where 0 < e_ < € < €4 < €p. The Lemma below shows that these two neighbour-

hoods are symplectomorphic.

Lemmas.3.
Let C bea stable coisotropic and Hc . the associated stable hypersurface. Then there exists
symplectomorphism g : ((e — €', e +€) X He o,wn) — (Us,ws), for (Us, ws) as

above. Themap g is given by the restrictionto (e — €', e + €') x C of:

Y :(0,00) x SELx ¢ — RF\ {0} x C

51)
(T7p7.'1:) '_> <Tp17"'7rpk7x>
€ €

Proof. Write
7/)(7"7]?@) = (wla ERRR) wka id)(r,p,x),

where

D
wi(rvpvx) ==

The symplectic form on R¥\ {0} x C'is given by ws. The symplectic formon (0, 00) x
Sk=1 x Cisgivenby

wy = i}ch,ews + d(ra),

where

o= (]51051 + ﬁkak) and p= (ﬁl,... ,ﬁk) S Sf_l.
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To see that 1) is a symplectomorphism compute

qzz);kws = d(¢z(rv b, CL‘)O&Z)

()

Thus

77/}*(.05 = (¢17 s ﬂﬁk, Z.d)*wS

k
= ipws + Z d(r(%)ai)
i=1
pi
€

= igws + i, d(—a;) + d(r(pici))

= wpy.

Note that given €y and € one may choose e, e suchthate — ¢ = e_ande+ ¢ =
€+. Assume from now on that such a choice has been made. Thus one may iden-
tify the neighbourhood U, of H¢ . in the Bolle neighbourhood of C' via 1) ywith
the neighbourhood Uy of H¢ . which is symplectomorphic to the standard model
(e — €,e + €) x H, ¢ of the neighbourhood of a stable hypersurface. Pictorially
speaking, 1) converts a neighbourhood consisting of concentric spheres S¥~! intoa
cylinder of spheres S¥~! of constant radius €. This compatibility of neighbourhoods
is relevant for the construction of almost complex structures which are adapted to
the stable structure S on C' and the neck-stretching procedure on which the proof

of Theorem 5.1 relies.

Definition 5.4 (Symplectic cobordism).
A symplectic cobordism is a compact, symplectic manifold (W, w) with stable bound-
ary OW = V = V' UV, where one or both components of the boundary are

allowed to be empty. For simplicity, I also assume that W is connected.
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A connected component of V' belongs to V if it has a collar neighbourhood sym-

plectomorphic to

(5.2) (—e+ R, R x Vi, d(ra) + iy, w)
and to V_ if it has a collar neighbourhood symplectomorphic to
(5-3) [R,R+¢€) x V_,d(ra)+ iy w)

forasome R € R>q. Since all boundary components are stable it is posible to ex-
tend the symplectic form d(ra) + iy, w from collar neighbourhoods of V. to bicol-
lar neighbourhoods (—e + R, R + €) x V. ) and likewise for V_. Then identifying
[R, R+ ¢)withR>¢and (—e + R, R] with R<( one obtains a symplectic cobordism
W, which is diffeomorphic to W and has a positive end V. x R> and negative end

V_ x R¢g attached.

W = RSO xV_Uy W Uy, R20V+.

Inthe case where either V. or V_ are the empty set such that 9T consists of a single
component W = W Uy R>o x V is called the symplectic completion of W. In the case
where W = I x V,forananinterval I € R,the manifold W 2 R x V iscalled the

symplectization of V.

Given a stable coisotropic submanifold C, the hypersurface H¢ is separating by
Proposition 3.23. One may thus write the surrounding symplectic manifold W as
a union of three symplectic cobordisms. To obtain this decomposition first cut W
open along the boundary of the neighbourhood Uy as above, i.e. form W \ Us. Since

this neighbourhood is symplectomorphic to Uy by Lemma 5.3 above one may write:

(5.4) W =We U Wr U W,
Hee ={e-}xHc,e Hoex{er}=Ho,e
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where

We = (B]i x C, HC7€7,ws)

(5:5) Wi = ((e — €, e+é)x He,wh)

Wr= (W\ Bf  He, ,w)

€4

5.3 Almost complex structures adjusted to stable

coisotropic submanifolds

In this section I explain how one can equip the symplectic cobordisms introduced
in Equation 5.5 above with almost complex structures which make projection to B

holomorphic and are natural with respect to a given stable structure S on C'.

Let C'beacoisotropic submanifold of (W, w). Recall thatw induces anisomorphism

v TW — T*W which gives a splitting
icTW =TC/TCY @ (TCY @ TW TC)

of the bundle i, TW into symplectic vector bundles {¢ = T'C'/T'C* and £¢ =
TCY @ TW /TC over C. This splitting depends on a choice of complement of
TC*®inT'C and a choice of complement of T'C'in T'W. Such a choice can be made
by choosing a complex structure .J; on the bundle 7°C'/T'C* which is compatible
with the induced symplectic form on the quotient bundle 7’C'/T'C* and a choice of
a complex structure J5 on the bundle 7’C* & TW /T'C which is compatible with
the induced symplectic structure on on this bundle. Note that a choice of an almost
complex structure J on W does not necessarily induces complex structure of the

type J1 @ J2 asabove.

From now on assume that (C, S) is a stable coisotropic submanifold of (W, w). In
now construct a natural class of almost complex structures which are adjusted to C
and tothe stable structure S. Recall from Section 2.3 that the stabilising vector fields

Yi, ..., Y} define stabilising one-forms a1, ..., ay. Define corresponding gener-
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alised Reeb vector fields X1, ..., X} by:

ai(X;) = dH; (Vi) = w(Y3, X;) = 0y5.

Given a stable structure S, the sub-bundle
fo = NF ker oy
of TC'isisomorphic to T'C'/T'C* and a complement of TC* in T'C'. The splitting
(5.6) TC = ﬂle kera; & TCY
depends onlyon S and X7, . .. Xj. Likewise the splitting
(57) ETW =@ =NMF 1kera) (X1 @ 0 X, @Y1 @ ©Y)

depends only on § and X7, ... X}. Denote the symplectic forms arising as the re-

strictions of w to {¢ by we,, and the restrictionof wto {Z by wx y.

Definition 5.5 ((C, S)-adjusted almost complex structures).
Let (C,S) be a stable coisotropic in a symplectic manifold (W,w). A (C,S)-
adjusted almost complex structure J¢ on a Bolle neighbourhood U of C'in (W, w)

is constructed as follows:

chooseapair (J¢, , Jew ), where J¢, isany we . -compatible complex structure on the
bundle éo = ﬂ§:1 ker a;. Define Jx y on{c* by

(5.8) IxyX; =Y;

)

JxyYi=—-X;.

)

Then J¢, and Jow fit together to define an complex structure J¢ on i T'W, which

by construction preserves the splitting (5.7).
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Recall from Proposition 2.18 that there exists a symplectomorphism ¢¢ : Bfo X

C — U.Givenq € U choose (p, x) such that ¢(p, ) = gand define
Jo(q) = Je(p,x) = Je(x).
Atapoint (p, x) € Bfo x C'one maywrite J¢ as amatrix

JX,Y (x) 0
0 Jeo (@)

where Jx y () : §¥ — £ denotes the 2k x 2k matrix satisfying Equation 5.8 and
Jeo (x) denotesa2(n — k) x 2(n — k) matrix representing the complex structure

Jeo onTEc.

When (C, S) is clear from the context, I will refer to a (C, S)-adjusted almost com-

plex structure J¢ by an adjusted Jc.

Remark 5.6.
If (C,S) is also fibred, an adjusted Jc can be constructed by first choosing an wp-

compatible almost complex structure Jp on the symplectic quotient B of C and then defin-

ing Jo by
JX7y (1’) 0
(S.lO) Jo (p7 .1‘) =
0 m5JB(7)
onallof U.

The symplectic cobordism W inherits an adjusted (C, S)-compatible almost com-
plexstructure J¢ from C by definition. To equip Wy with analmost complex struc-

ture, first pull back J¢ via 1y to Hc .. More precisely set

(S'll) JHc(pa l’) = w;IJC(pa l’)
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Let (p,z) € S¥~1 x C. Denote by 9, the vector field spanning the tangent space of
(e — €, e+ €),by X the Reeb vector field of He .. Denote by 9), the vector field
which is the unit p vector in the direction of pat p € S*~1 and by 9,, a vector field
which is the unit vector §; in the direction ¢; of the tangent space to the sphere p*

for1 <4 < k. Asimple calculation in coordinates shows that

Jhe (p,2)0r = Jo(p,2)dy(p, ©)0; = Jo(p, 2)0p = pXu

Jig (p,2)Xn = Jo(p,2)dy(p, ) Xn = Jo(p,2)Xn = —0p
Jhe (P )0q, = Jo(p, x)dip(p, 2)0y, = Jo(p, )0, = 4: Xi

Jic (P, 2)4i X = Jo(p, x)dy(p, ©)§4i X = Jo(p, 2)4idX; = —0y,.

Hence Jy . is (Hc, (wh, 0p))-adjusted and moreover preserves the splitting

i, TW =&c @ En/éc @ Exr-

Atapoint (p, z) € Hc  one may write Jp,, asamatrix

(512)
JX,ap (p7 .Z') 0 0
JX,Bp (p7 .Z') 0
Juc (P, ) = 0 Js.r(p, x) 0 = 0 ;
O 0 ch (:(,') fH(pJI)

Here J¢, () denotesa2(n— k) by 2(n— k) matrixrepresenting the we . -compatible
complexstructure onthebundle £ asbefore. Jg r(p, x) denotesa2(k—1)by2(k—
1) matrix representing the almost complex structure pairing directions in 7.5*~1
and TC* \ TH*. Jx p,(p, x) denotes a 2 by 2 matrix pairing the Reeb vector field
Xy of Ho with the normal direction 0, of He. Finally J¢,, (p, x) denotesa2(n — 1)
by2(n — 1) matrixrepresenting the wy, _-compatible almost complex structure on

&, Thisis, by construction, the matrix

Js.r(p, ) 0

(513) JfHC (pa .’L') -
0 Jeo (z)
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Extend this almost complex structure on H¢ . to an almost complex structure on

Wy = (e —€,e+¢€) x S¥~1 x Cbysetting
Ju(r,p,x) = Jue (p, )

forallrin (e — €, e+¢€). By construction J¢ and Jp fit together smoothly to give an
almost complex structure on W U Wx by using the restriction to the boundaries
of the map v from Lemma 5.3 and possibly a perturbation as described in Section 3.1
of [Bou+03]. Extend this almost complex structure to anw-compatible almost com-
plexstructure Jr on W inthe same way to obtain an w-compatible almost complex

structure Js onallof W.

I'will call such an almost complex structure constructed as above a (C, S) -adjusted
alomst complex structure on W and denote it by Js. Ifitis clear from the context I
will just call Js adjusted. Slightly abusing notation I will denote the restriction of Js

to W¢ by Jc and likeswise for Wy and Whk.

5.4 Stretching the neck

In this section I briefly review the neck stretching or splitting construction from
symplectic field theory (see Section 3.4 of [Bou+03] or Section 2.7 of [CMo5] ), that
will be performed to obtain more informationabout the pearly trajectories provided

by Theorem 4.1.

Recall the separation of W into the three symplectic cobordims W¢, Wy and Wg
defined in Equation 5.5 above. Equip W with a (C, S)-adjusted almost complex

structure Js as describe in Section 5.3 above.

ForT > 0, theintervals (¢ — ¢/,¢ + ¢’) and (¢ — 7, € + 7) are diffeomorphic, for
example via the linear diffeomorphism ¢, : (e — 7,6 + 7) — (¢ — €/, e + €') given

by

(514) br(t) = — +e— —.



If one lets T grow to infinity, the “neck”

(5.15) Wi =(e—T1,e+7)x He

will expand to the symplectization R x Hc. If one now considers (W}, ¢5.Jp) one

obtains
0 - 0
$rJu=15 0 0
0 0 Je

Letting 7 grow to infinity, applying this almost complex structure “blows up” the
R-direction and degenerates the Reeb direction to zero. Any orientation preserving
sequence of diffeomorphisms { ¢ } .~ of theintervals (e—7, e+7)and (e—¢', e+¢)
mapping the ends to the ends has to exhibit this behaviour. To avoid this degenera-
tion and to be able to extract information about the asymptotic behaviour of holo-

morphic curves in W set:
(516) Wi Jh) = Wi, Jn)-

This neighbourhood of H is diffeomorphic to W but carries a translationally in-

variant almost complex structure which does not degenerate as 7 grows to infinity.

To fit this into the symplectic cobordism setting introduced above, set:

(5.17) W7 =W U W} U Wr
.[’10767={s‘5—7‘}><f[c76 Hc,€+={6+T}><Hc7E

This manifold is diffeomorphic to W. Define an almost complex structure on W by

JR on WR
(518) Js=<{Jg on(e—T,e+7)x Hg
Jo onWg
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Again letting 7 grow to infinity, one can write the resulting “split” manifold Wasa
theresult of attaching cylindrical ends to the three symplectic cobordisms W, Wy

and Wr and thus as the non compact symplectic cobordisms

We = We U R x He.

{Ef}XHC
(5.19) Wy =R x He.
WR = WR U R_ x Hc.
{e+}xHc
Set
(5.20) W = VNVCf U WH @] WR.

The almost complex structures .JJZ converge pointwise in an appropriate sense to
a (C, S)-adjusted almost complex structure .Js on W. See again Section 3.4 of
[Bou+03] for details. Denote the restriction of jg to WH by J 1 the restriction to

We by Joand by Jp for Wpg.

Remarks.7.

Notice that by the stability assumption on C, one has
L XWs = L X = 0.

The symplectic form wy is compatible with Jg as constructed. In the language of

[Bou+03], JS and Jare symmetric, cylindrical almost complex structures adjusted to w.

The symplectic forms w, and wy, will “blow up” as 7 goes to infinity. This problem
is overcome by adapting the notion of symplectic energy to a notion which takes the
rescalinginto account. I give the relevant definitions in Section 5.5.2.With the proof

of Theorem 5.1 in mind I summarise the relevant data from this section in the defi-
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nition below:

Definition 5.8 (neck stretching data).

Neck stretching data N := N (W, w, J, C') consist of the following:

(N1)

(N2)

(N3)

A sequence of symplectic manifolds (W™ x W", —w,, X w,) indexed by an
increasing sequence of non-negative integers n € Zx diverging to +oc. The

manifolds W' and its parts are defined by equation (5.17)

A sequence of (C, §)-adjusted almost complex structures .JJg on W" as con-
structed in Section 5.3. These define a sequence of almost complex manifolds
(W™ x W, —J¢ x J¢). Notice that this product can be separated into nine

parts:

WC X Wc,WE X Wc,WC X WFI,WR X Wc,Wﬁ X W}},
(5.21)
WC X WR,WR X W}},Wﬁ X WR,WR X WR

The limit object W x W which splits up into nine parts:

WC X Wc,WH X Wc,WC X WH, WR X Wc, WH X WH,
(5.22) ~ o o o

Wo x Wr, Wgr X Wiy, Wy x Wgr, Wg x Wk,
where eachfactorisasdefinedin (5.19) and (5.20). The productsare equipped
with the respective almost complex structure , (—Jo x Jo), (—Jo X
jH),(—jH X jC’),(—jH X jH),(—jR X jH),(—jH X jR),(—jR X jR)

and (—Js x Js) respectively.

Remark 5.9.

It is also possible to define a “k-dimensional neck stretch®, by cutting out B¥ x C from W

and then letting r grow to infinity. The resulting symplectic cobordisms will be diffeomor-

phic to the three completed symplectic cobordisms W¢, Wy and W g above and can also

be equipped with (C, S)-adjusted almost complex structures. In this sense one may view
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W as the k-dimensional symplectization of the coisotropic C. In this setting a notion of
k-dimensional Hofer energy can be developed, which is similar to the notion of energy put
forwardin Section 5.5.2. Thus the k-dimensional analogue of a neck-stretch around a codi-
mension k-coisotropic does not seem to lead to different results than neck stretching around
the associated stable hypersurface Hc. Since irrelevant for the proof of Theorem 5.1, I do

not investigate the relationship of these two neck-stretching operations here.

5.5 Holomorphic curves

5.5.1 Punctured pearly trajectories

I follow the notations and conventions used in [Abb14] and [Bou+03]. Many thanks

to Chris Wendl for explaining the “doubling operation” to me. See appendix B of

[Wenos].

Definition 5.10 (Riemann surface data).

Riemann surface data
(52‘3) S = (SvasajaMUMaaZOU Z@abUDa) = (S,@S,j,M, ZvD)

consist of

(RS1) ARiemannsurface S consisting of collection of disjoint connected Riemann

surfaces S1, . . ., Sy, with possibly nonempty boundaries 9.5;.
(RS2) An (almost) complex structure j onT'S.

(RS3) Thefinite set of interior marked points M c S,and the finite set of bound-

ary marked points My C 9S.Set M = M U M.

(RS 4) Thefinitesets Z c Sand Zy C S ofinteriorand boundary punctures. Set
7 = Zo UZy.
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(RS5) Thefinite set D c Sof pairs {d, d'} of interior marked points and the finite
set Dy C S of pairs {b, b’} of boundary marked points. Set D = D U
Dy. These points will be identified to form a nodal (or singular) Riemann

surface. So I will call them nodal pairs.

To S we can associate a nodal or singular surface S by identifying nodal pairs:

59 = §/{z; ~ 2} foreachpair {z;,2}} € D}.

Say that S is connected if S is connected.

For each Riemann surface (.5, 95, j) with non-empty boundary 95 # () there exists
a conjugate Riemann surface S¢ = (S, 95, —j) which can be glued to S along 9S to
form a surface

(8%, §%) = (S Uas S j U —j)

without boundary, a natural almost complex structure j¢, and a natural anti-
holomorphic involution o : S¢ — S%whose fixed point set is 9.5. If S has empty

boundary define the doubled Riemann surface data S¢ by
(5%, M, 2%, DY) = (8, M, Z, D).

If S has at least one boundary component, define the doubled Riemann surface data

S tobe

(84, M4, 74 DY = (8¢, j4 M UM U My, Z U Z°U Zy, DU DU Dy),

o

where M¢ = (M), Z¢ = 0(Z), D¢ = (D). The sets My, Zy, Dy are fixed by o.
Set §4 = §4\ (MU Z% U D9).

Connected Riemann surface data S with boundary are stable if:

X(8§) =2—2g; — |(M*UuZ*UDY) NS, <0
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holds for each S;. Here g; is the genus of Sj‘-l and | - | denotes the cardinalities of
the sets of M, Z and D. Say that Riemann surface data .S are stable if every con-
nected component of S%is stable. Forexampleadisc D = (D, 9D, {m}p, mc% ptE

0D, m3 € D) with one interior and two boundary marked points satisfies
1 2 dy|
2-2-0- |{m8D’ m8D7m37m3}| =-2<0,

and is thus stable.

If S is connected, its arithmetic genus ag is defined by:

c
ag(S) =|D|-C+) gj+1
i=1
Here g; is the genus of a connected component S; of S and C'is the number of con-

nected components of S. The signature sig of S'is given by

sig(S) = (ag(S), |M|,|Mal, |21, |Z)),

Thus the signature of S%is given by

sig(S?) = (ag(S%), | M9, |Z%))

For more details on Riemann surfaces with boundary the reader is referred to Sec-
tion 1.3.3 of [Abb14] and Appendix B of [Wenos] and the references therein. In par-
ticular one can prove a version of the Deligne-Mumford compactness theorem for
Riemann surfaces withboundary. The mainidea of the proofis to double the surface
with boundary as described above and then follow the strategy of proof for the case

without boundary.

Since Theorem 4.1 establishes the existence of a pearly trajectory with certain prop-
erties one will have to deal with the possible degenerations of pearly trajectories

in the neck stretching process. In order to absorb bubbling phenomena into alter-
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ations of the domains of the pearly trajectories one thus allows for slightly more gen-
eral pearly trajectories. I will describe this bubbling-off procedure in more detail in
Section 5.6.3.Throughout I will use the shorthand notation v : (S,05) — (7, L)

for aholomorphic curve
u(S,08,5,M,Z,D) — (T, L, J)

mapping to a symplectic manifold 7' = (W, w) equipped with an w-compatible al-
most complex structure .JJ and respecting the boundary condition «(0S) C L and
defined away from M U Z U D. The relevant definitions for pearly trajectories are
below. For simplicity I will restrict to the case where one can split the manifold T
into three symplectic cobordisms We, Wy and W defined in Equation 5.5. The
case in which a hypersurface is non-sperating is similar and for example dealt with

in [Abbi4].

Definition 5.11 (Punctured pearly differential trajectory).
A punctured pearly differential trajectory is a pearly differential trajectory as in Defini-

tion 4.12, where condition (PD1) is replaced by

(pPD1) At least one of the J-holomorphic curves u; : S — (T,L)fori €
{1,...,l}hasatleast one non-constant disc component (D, D). Here S
are Riemann surface data as in Definition 5.10 with the additional condi-
tions that S is connected and that ¢ = 0. Moreover thereisa set £; =
{Zin, zZour} C OS of entry and exit points of S which is disjoint from the

sets of marked points, double points and puncturesi.e.:

(MaUZ@UDa)ﬂEZ@.

Condition (PD2) is replaced by

(pPD2) The energy of the punctured pearly differential trajectory defined below in

Equation 5.37is bounded above by a constant £y > 0.
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Conditions (PD3)-(PDs) are replaced by
(pPD3) Thereexistsat™ € [—oco,0) suchthat ¢!, (u1(zin)) = y.

(pPD3) Foreveryl < i < [— 1thereexistsat’ € (0, o) such that ¢’;(ui(zout)) =

ui+1(zin)-

(pPD3) Thereexistsat™ € (0, +oo] such that cbt; (u(Zour)) = .

Denote by
PPaie = pPaie(y, v; A; f, Z,J)

the moduli space of all possible configurations of all possible lengths [ > 1 de-

scribed in definition 5.11

Definition 5.12 (Punctured pearly product trajectory).
A punctured pearly product trajectory is a pearly product trajectory as in Definition

4.14where conditions (PP1)-(PP3) are replaced by:

(pPP1) v : (S,,0S5,) — (T, L)isa J-holomorphic curve, which is allowed to be
constant. Here S are Riemann surface data as in definition 5.10 with the ad-
ditional conditions that .S}, is connected and that g = 0. Moreover there is

aset

_ P P D
E, = {Zin,17 Zin,2 Zout }

of entry and exit points of .S}, the central, product component of the pearly
trajectory which is disjoint from the sets of marked points, double points

and punctures of Sy, i.e.:

(MU Z5U DY) NE, =0.
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(pPP2) Setz; = v(ziln),zz = v(zizn) and 23 = v(2h,,).

u € pPaie(x1, 215 B1s f, Z1, J)
u' € pPae(x2, 225 Bos f, Z2, J)

u" € pPait(23,y; Bs; f, Z3, J)

Require again that the set of entryand exit points /U £, of discs contribut-
ingto the pearly trajectories is disjoint from the sets of marked points, dou-

ble points and punctures:

(Myp U ZyU Dy) N (EU E,) = 0.

(pPP3) The energy E as in definition below 5.37 of the punctured pearly product

trajectory is bounded above by a constant Ey > 0.

In abuse of notation denote a punctured pearly product or a punctured pearly dif-
ferential trajectoryas defined above by pP. Iwill call both kinds of punctured pearly

trajectories just punctured pearly trajectories.

5.5.2 Energy

Variations of Hofer’s energy as defined in [Hof93] are used throughout the litera-
ture. For example [Bou+03], [CMos] use slightly different conventions. The defi-
nitions in these references are equivalent in the sense that a uniform bound on one
implies a uniform bound on the other and vice versa. (see Lemma 4.1(b) in [CMo5]

and Lemma 9.2 in [Bou+03] respectively)

I now adapt the notion of energy put forward in [Bou+03] to the present setting.
One needs to adapt these notions since in the proof of Theorem 5.1 I will be deal-
ing with pearly trajectories converging to punctured pearly trajectories rather than

with holomorphic curves converging to holomorphic buildings. Moreover notice
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that the target of the pearly trajectories is a product of two symplectic manifolds. I

give the relevant definitions below. Recall that H is separating, thus
(5-24) WT =We UW§UWhg.

where W}, = (e — 7,6+ 7) x H¢. Set

(5.25) WT™ x WhT = (W™ x W7, —w x w, —J& x JZ),

and likewise for the products of the different parts of the symplectic cobordism.
Recall that W7 x W7 has nine different parts listed in Equation 5.21, which con-
verge to the parts listed in Equation 5.22. For each 7 > 0 a pearly trajectory P
in W™~ x W™ consists of a finite collection u1, . .., u;, of holomorphic maps
wi @ (S7,08) = (W™~ x W™t L¢). First define the w-energy of P; in the re-

spective parts of the product of the symplectic cobordisms W, W, and W:

E570<P7—) = / u; (—ws X wy)
1w xwi)
I
ES’H(PT) = / (uw; ,mH © u;r)*(—ws X Wi )
Eluws xwih
I
EFC(Pr) = / (mr 0wy, uf ) (—wh X ws)
=1
i71 wo— W+
(5.26) l T (W xWe)
ECR(P,) = / w (—ws X w)
Fhmws xwi)
I
EE’C(PT) = / u; (—w X ws)
=1

u Y (Wh x W)

lr
EE’H(PT) = Z / ((ﬂ'H X 7TH) o ui)*(—wH X WH)
i=1

ui_l(WE7XW;+)

147



EE’R(PT) = / TH O U; ,uj)*(—wH X w)
=1 wr +
u; Tt (W™ xWg
I
ERH(p) = / o oul ) (—w X wyy)
i xw )
Iy
ERR(P) = / —Ww X W)
=1, YWy xw+)

The total w-energy of P;, E,,(P;), is then defined as the sum of the w-energies in

different parts of the product of the symplectic cobordisms, i.e.

(5-27)
E,(P:) = ESY(P;) + ES™(P:) + EE Y (Pr) + ES®(P;) + ERC(P;)

+ EUIJ{’H(PT) + EE’R(PT) + EE’H(PT) + EE’R(PT)

Define the a-energy in the respective parts of the product by

(5.28)
Ir
BN —swpd [ (@emoul)wl) (@ na)
’ i:1u;1(WcXW;I’+)
I
ERC(p) = supz / (pomrou; )(u; ) (—drAa)
i lZIuZ_l(W;ﬁXWC)
[
ERH(p) = supz (pomrouw)(u) (dr A a)

uy N(WrxWi™T)

ELR(p, supz / (pomgou;)(u;) (—dr Aa)

’1(WI';_><WR)
ELH(p) = sup Z /((d) ,¢T) omr X TR 0 ws)ul (—dr Ao X dr A @)
¢7.0T) =1

uy YW xWET)

Hererng : (e — 7,6 + 7) X Ho — (e — T, € 4+ 7) denotes the obvious projection

and the supremum is taken over either functions ¢ : (¢ — 7,¢ + 7) — R, with
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f(e—7,e+7—) ¢(r)dr = 1,or functions ¢ : (e — T, e +7) = Ry
/ (@) (r)(dr = 1.
(e—T,e+7)

Note that one needs not to define the a-energyin We x We, Weo x Wgr, Wr x Wi
and Wr x W since no stretching is taking place in these parts of the product. The

total a-energy of P7, E, (P7),is defined by
Eo(PT) = EQM(PT) + EXC(PT) + ERY(PT) + EXR(PT) + EXY(PT)
Finally, the total energy of P, E(P;),is defined by

(5-29) E(PT) = Ew(PT) + Ea(PT)'

Asaresult of stretching the neck, IV splits into the three symplectic cobordisms de-
scribedin (5.19). Thus W x W splitsintonine pieces. For a punctured pearly trajec-
tory pP as in Definition 5.11 or 5.12 again first define the w-energy of p P, E,,(pP), in

the different parts of the product of the symplectic cocbordisms We, Wy and Wt

M-

s
I
—

Eg’c(pP) = / u; (—ws X ws)

ul‘_l(WaXWg)

~

+ / (u;  mrouf) (—ws x wir)
S (WS xRy X HE)
+ / (mar oy, ul)  (—wi X ws)
i:l i TRy xHg ><W+)
l
+Z / ((7TH X WH)oui)*(—wH wa)
=1, “1(Ry x H; xRy x HY)
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l

ESH(pP) =) / (u;, Ta 0w )* (—ws X wir)
Z:lufl(vvc—xtfvl‘;)
l
+Z / (mg ouy ,m oul ) (—wy X wy)

=1 ~
T Ry x HG X W)

o~

@
Il
—

EFC(ppP) = / (mH ou; ,ul ) (—wh X wg)
Wi x

ui_

o~

+ E / (T ou; ,mroul ) (—wy X wp)

=1 ~
! ui Y (W xRy xHE)
l

ECE(pp) = Z / u; (—ws X w)

—
Tt (WS x W)

£ [ o) (e xen)
El L (WE xR <)
(53D l

+ Z / (mr ouy,ui) (~wi X w)

1Ry xH; ><W )

o~

l
+ Z / ((mg X mrr) o ug)* (—wh X wir)

“L(RyxHG xR_xHJ)
!

ERC(pP) = Z / (—w X wy)

YWy ><W+)
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l
BRI =3 [ (G ¢ m) 0 wi)* (o x o)
i:1ui’1( Vg xWh)
l
EA (pP) = / (u; s ou )" (—w X wh)
=1 ~

_l_
—

(rgou; g ou ) (—w X wy)

u; "L (R-xHg, xWi)

Bl R(pP) = [ o iy (-on x )
1, xwi)
l
— =+ *
(5.32) + ‘ / (rrow; ,mgow, )" (—wH X whH)
Z:qul(WI; ><R_><HEC)
l
B (pP) = [ uitwxw
W xwi)
!
+ / (u;, 7 oul) (—w x wrr)
Z‘:1uf1(W}; xR_xHE)
l
+ / (o ouy ,ui ) (—wh X w)
i=1

wi " (ROXHG xWE)

l

—I—Z / ((7TH wa)oui)*(—wH XOJH)
i=1

T u Y (Rox HG xROXHEY)

The w energy is then defined as the sum over the w energies in the respective sym-

plectic cobordisms.

(5-33)
E,.(pP) = ES(pP) + ES* (pP) + EFC(pP) + ESH(pP) + EFC(pP)

+ E T (pP) + EIME(pP) + ERP (pP) + ER T (pP)

Similarily, the a-energy of pP, E, (pP) is first defined in the different parts of the
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product:
(534)
ECCpP) s>, [ (Gromoul)wl) (@ na)

bwpds [ @emouw)w) (@A)
+ sup Z /(((b ,¢') o R X TR 0w )uf (—dr Ao x dr A Q)

u; 'Ry x Hy xRy x HY)

ECH (p) _Supz / (¢ o g 0 1) (uf )" (dr A )

T (Wex )
+ sup Z /¢+, ) o TR X R 0 ui)u; (—dr Ao x dr A o)
(¢+¢ 1= 1
(]R+><H ><W )

ERC(pp) = supz / (pomrou;)(u;) (—dr Aa)

—1(W XWe)

+ sup Z /¢¢+ omR X TR 0 u;)uj (—dr Ao X dr A )

(6.94) N
(W xRy xHZ)

1
EMpP) =swd. [ Gomou)w) (@ Aa)

¢
! u ' (WrxWi™)
+ sup Z /qb @) o TR X TR 0 Ui )u; (—dr A a X dr A «)
(@-9)4 THR_x Hg x W)

EfR(pP) —supz / (¢ om0 up)(wy) (~dr Aa)
ui (WHXWR)

+ sup Z /¢¢ o R X MR © w;)u; (—dr A a x dr A a)

(@0-)i=1 u ' (W xRoxHE)

ELH(pP) = sup Z /((¢ ,¢T) o R X R 0 us)ul (—dr Ao X dr A @)

o~ ,0F) = -
( = u; N (W x W)
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(535)
ERR(pp) —supz [ @emoun) @ na)

- 1
= _1(W xR_ ><H+)

—l—SupZ / (pomroul)(u) (dr A )

+ sup Z /((qb,gb')omgxmgoul) S(—dr Na xdrAa)

($-85) 1=1 u; N(Rox H_ xR_ x HJ,)

ECE(pP) = Supz / (¢— omg 0w )(u) (dr A )

*1(WC xR_xHf)

tsup Y / (64 0 7m0 ) ) (—dr A )

o FhI R X HS W)
I
+ sup Y /((¢+7¢ ) o TR X TR 0 w;)u; (—dr A a X dr A «)
(¢+,¢-) i=1

u (R x HE xR_x HJ)

EFCGpP) —swpY [ (Gromou))(w) (dr )

—G—Supz (p—omrou; )(u; ) (—dr Aa)
= *1(R_xH5ch+)

+ sup Z /(((;5 ,¢T) omr X TR 0 wy)ul (—dr A a X dr A )
¢ ¢+ =1

u; '(RoxHE xRy xHY)

The total a-energy is then defined as the sum over the different parts, i.e.

Eo(pP) = ESC(pP) + ESM (pP) + EXC(pP) + EF (pP) + EI R (pP)

+ EXH(pP) + ESR(pP)EEC (pP) + ERE(pP)

The suprema for are taken over the sets of all C*°-functions ¢, T, ¢'FT : R — R
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and ¢+ : R+ — R4, suchthat

Foo
539 o= [ oz = [ orear= [ o a1
R

Notice that this definition of energy differs slightly from the definition given in
[Bou+o3] where the maximum is taken instead of summing over the different parts
of the av-energy. Again these two choices are equivalent in the sense that a uniform
bound on the maximum of the c-energiesimplies auniform bound on the sum of the
a-energies and vice versa. Finally the total energy of a punctured pearly trajectory

pPisgivenby:

(537) E(pP) = Ey(pP) + Eua(pP).

It follows from Lemma 9.1 in [Bou+03] that the energy of a sequence of pearly tra-
jectories (P)pen in (W™, J™) which converges to a punctured pearly trajectory p.P
in (W, J) satisfies

(5.38) lim E,((P)nen) = Eu(pP).

n—oo

By Lemma 9.2 of the same reference there exists a constant C' > 0 depending only

on W, J, C,and Ssuch that for every 7 > 0 every pearly trajectory P satisfies

(5.39) E(P) < CE,(P)

Remark 5.13.

I have modelled the definition of energy put forward in this section on the definition of
energy put forward in Section 9.2 of [Bou+03]. Thus, given a holomorphic curve u :

(S,5) — (T, J) with domain a Riemann surface S and target T = W, W7 or W~ x

as above, the energy of u is defined exactly in the same manner as I have defined the energy

of pearly and punctured pearly trajectories above. I will therefore, abusing notation, also
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refer to the energy of a (single) holomorphic curve by E(u).

5.5.3 Holomorphic projections and asymptotics

For the proof of Theorem 5.1 and later the proof of Theorem 1.6 the following con-
sequences of using S-adapted almost complex structures of the form of J¢ and Jg

are relevant:

For the obvious projections in the symplectic cobordisms W and Wy and W, de-
finedin Equation 5.5and their completions WC, Wy definedin Equations.19 above,
set

mny ou = uy forthemanifolds N = Hq,C, B.

Moreover denote the projection TH- — &g along the Reeb direction of H¢ by

Preg.-
Amapu : S — T withdomain a Riemann surface (S, j) and target
(T, J) € {(We, Je), We, Jo), (Wi, Tu)s Wi, I7), (Wi, Ju)}
isdefined bya (k + 1)-tuple of maps:
u=(ay,...,ap,uc): (S,5) = (T, J),

where, if necessary, the change of coordinates, is provided by the symplectomor-

phism ¢ of Lemma5.3.
The map uis (7, J) holomorphic if it satisfies the (k + 1) equations:

Jpodug =dupoj
(5.40)
uc*a; =dajoj fori=1,..., k.
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Amapu : S — T’ with domain a Riemann surface (S, j) and target
(T',.J") € {(Wa, Jur), W, Ju)}
isalso defined as a pair of maps

= (a,ug): (S,7) = (T',J).

The map v’ is (j, J') holomorphic if it satisfies the equations

Jey opre, odu' = pre, oduo j.
(541)
ug*a =daoj.
Thusfora(j, J')-holomorphic map u as above, there are two ways in which its holo-

morphicity can be expressed.

Moreover notice that
(5.42) uc = To O U.

= TC OTH O U.
(5-43) up =Tp o uc
(5.44) = TR O TC OU.

=TMTROMC O Ty OU.

An important ingredient of any compactness proof is the asymptotic behaviour of
holomorphic curves near punctures in the domain. This is described Theorem 9.6
[Wen16], which is the generalisation of Proposition 5.8 to the stable case. A more
detailed descriptionis given in Theorem 9.8 of [Wen16], which generalises Proposi-
tion 5.6, 5.7in [Bou+03] to the stable case. I present the main implications of Theo-

rem 9.8 in [Wen16] to the present situation below:

Denoteby D = D\ {0} the punctured unit disc and define two biholomorphic maps
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¢+ by

oy Zy =10,00) X St 5D (s,t) = o~ 2m(s+it)

2= (~00,0] x 8" 5 D: (s,) — 2O,

Proposition 5.14.
Let C'be a fibred, stable coisotropic submanifold of a symplectic manifold (W, w). Assume
We and Wy are equipped with S-adapted almost complex structures. If one of the follow-

ing conditions hold
() @: D — Weisa Jo-holomorphic curve of finite energy E (i) < oo.
(i) @ : D — Wy isa Jg-holomorphic curve of finite energy E (1) < co.

Then either the singularity at 0 € D is removable or 1 is a proper map. In the latter case

the map
u(a,...,ak,uc) =ao @y for(s,t) € Zy nearinfinity
satisfies

(5.45)  ai(s,”) —s(TpH;) = ¢ in C°(S') ass — +oo foralll <i<k

(5.46)  dc(s,)) = () i C®(SY,C) ass — +oo

for a constant ¢ € R and where the triple (v, p, T') is a generalised Reeb orbit, i.e.
p e SVLT € Rogandy : S* — Cisasolution to Bolle’s equation () =
Zle Tp; X;(y(t)) of period T'. The energy E () is bounded below by | T'|. Moreover the
J-holomorphic map g mapping to the symplectic reduction B of C approaches a point
be B.

Proof. By assumption C'is stable and fibred, thus by 3.23 H is stable and the Reeb
flow on H is of Morse-Bott type by Corollary 3.29. By Theorem 9.8 of [Wen16] the
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holomorphic curve (a, up) = @ o @4 satisfies

(5.47) a(s,-) — s(Tp) — ¢ in C°(S') ass — +oo

(5.48) ap(s,") = (p,y(T) € ¥ xC in C®(S', Hp) ass — +oo.

for a Reeb orbit (p, ) of period 7" on H¢. Recall that by Proposition 3.25 there is a
one to one correspondence of Reeb trajectories on H¢ and generalised Reeb trajec-
torieson C'. In particular, given (p, v, T') as a Reeb orbit of H( there exists a unique
generalised Reeb orbit (v, p, T') on C. Theresultnow follows by applying the change
of coordinates 7 from Lemma 5.3. By Equations 5.40 and 5.41 @¢ is holomorphic.
Since C'isfibred the leaf ’]I"fy (0) isthekernelof .. (7(0). Now Equation 5.42 implies

that 4 p approachesapointb € B. O

5.6 Proofof Theorem ;.1

Before embarking on the proof of Theorem 5.1 I give an outline of the structure of

the proof below.

5.6.1 Outline of the proof

Strategy of the proof

Given a coisotropic C satisfying the assumptions of Theorem 5.1 choose neck
stretching data AV as in Definition 5.8. Apply Theorem 4.1 to each manifold W™ x
W™ to obtain a sequence of pearly trajectories (P, ),cz>0 With the properties listed
in the assertion of Theorem 4.1. The strategy of the proofis to subsequently extract
subsequences of (P, ),ez>0 which eventually converge in an appropriate sense toa

punctured pearly trajectory which has the properties from the assertion of Theorem

5.1.

Byelliptic bootstrapping and the Arzela-Ascoli theorem, the only obstruction to the

existence of a converging subsequence is the lack of a uniform bound on the gradi-
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ent of the sequence of pearly trajectories (P, )nez>0 (see Section 2.2.3 of [Abbi4]
for details). To establish auniform gradientbound one repeatedly carries out abub-
bling off analysis, which “absorbs” gradient blow ups in the targets as alterations of
the domains by alocal, conformal rescaling procedure. I describe this procedure in

more detail in Section 5.6.3.

As a result of the analysis the local gradient blow up no longer occurs and the do-
main has a new part which serves as the domain of the “bubble”. Each such bubble
carriesapositiveamount of energyas defined in Section 5.5.2. Thusif one shows that
the energy of the sequence of pearly trajectories is bounded and diminishes in this
process, this algorithmic bubbling-off process terminates after finitely many repe-
titions and auniform gradient bound exists. By Arzela-Ascoli and elliptic bootstrap-

ping this implies the existence of a converging subsequence.

In this proof I follow the exposition given in [Abb14], which relies on the ideas pre-

sented in [Bou+o03].

The proof of the theorem is structured into four main parts, which I list and explain

briefly below
Section 5.6.2: Preliminaries

I show first how pearly trajectories fit into the framework of stable Riemann sur-
faces. Ithen explain how one can decompose domain and target of the pearly trajec-
tories into different parts which can be analysed separately. The domain consists
of athin and a thick part (see Equation 5.49). The target consists of the products of
symplectic cobordisms listed in Equation 5.21. A key point is that one may view the
holomorphic curves contributing to the pearly trajectories as either a single holo-
morphic curve satisfying a Lagrangian boundary condition or as a pair of holomor-
phic curves depending on which part of the target one considers. Moreover I show
that there exists a uniform bound on the energy of the sequence of pearly trajecto-

ries provided by Theorem 4.1.
Section 5.6.3: The bubbling Lemma
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I describe how gradient blow-ups of the pearly trajectories in the target can be “ab-

sorbed” by alterations of the domain: A conformal rescaling of a neighbourhood of

the blowupin the domain makes it possible tobound the gradient in that neighbour-

hood. A case by case analysis, depending on thelocal data of the Riemann surfacesin

the neighbourhood, shows that one can “absorb” the blow up by adding one or two

sphere or one or two disc components to the domains.

Section 5.6.4: Algorithmic removal of obstructions to compactness

It takes three main steps to establish uniform gradient bounds for the sequence of

pearly trajectories:

Step1

Step 2

Gradient bounds away from punctures:

One proceeds algorithmically in a case by case analysis to establish uniform
gradient bounds away from finitely many points in the domain. If thereisa
sequence of points along which the gradient of the pearly trajectory is un-
bounded one alters the domains according to the procedure described in
Section 5.6.3 on the bubbling Lemma. Each sphere or a disc bubble has pos-
itive energy, thus this bubbling-off process terminates after finitely many
steps. One can treat each of the parts of the target manifold, listed in Equa-
tion 5.21, separately. In each part one has to make the necessary case dis-
tinctions. In W x W one has to distinguish between a gradient blow up
occurring along a sequence of points converging to the boundary of the do-
main and a gradient blow up along a sequence of points remaining in the in-
terior. In the other eight parts, one has to analyse all possible cases that lead
to a gradient blow -up of P,. There are essentially two of these: The gradi-
ent of P™ blows up if either the gradient of projection to the first factor, P,
blows up while the gradient of P/, the projection to the second factor, re-
mains bounded, or both the gradients of F,,~ and P, blow up, possibly at

different speeds.
Convergence in the thick part:
One establishes convergence in the thick part of the Riemann surface by us-
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ing the uniform gradient bounds obtained above and the estimate for the in-
jectivity radius on the thick part. This part is not different from the standard

literature. I include it for the sake of completeness
Step3 Convergence in the thin part:

I establish convergence in the thin part of the Riemann surface. I use the de-
scription of the thin part from the preliminaries and a rescaling metric to ob-
tain uniform gradient bounds. Thus one has established convergence on the
entire Riemann surface, and thereby shown the existence of limit punctured
pearly trajectory pP. This part is also not much different from the standard
procedure described in Section 10.2.3 of [Bou+03]. Again I include it for the

sake of completeness.
Section 5.6.5: Properties of the limit punctured pearly trajectory

Finally I prove that the limit object p P satisfies the propertieslisted in the assertion

of Theorem 5.1.

5.6.2 Preliminaries

Given a coisotropic C satisfying the assumptions of Theorem 5.1, choose neck
stretching data \V as in Definition 5.8. Apply Theorem 4.1 to each manifold W™ x
W™ to obtain a sequence of pearly trajectories (P, ),ecz>0 with the properties listed

in the assertion of Theorem 4.1.

Since the domain of P,, is (D, dD) add the set My = {m1, ma, m3} of three bound-
ary marked points to (D, dD) (one could also add two marked points in the inte-
rior). Associate the (now stable) Riemann surface data S,, = (D, 90D, i, My) tothe
domains of the pearly trajectories as described in Section 5.5.1 and denote the pearly
trajectories by pP". Notice that the sets of D,, and Z,, of nodal pairs and punctures
are empty. The uniformisation theorem (Theorem 1.14 of [Abb14]) now guarantees
the existence of a unique complete hyperbolic metric h,, on S with constant cur-

vature — 1. Denote by p,, () the injectivity radius of h,,. Decompose S into a thick
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and a thin part given by

Thicke(Sy)= {z € (Sn \ M)|pn(2) > €}.
(5:49)

Thin(S,) = {z € (Sp \ M)|pn(z) < €}.
One may choose € universally in such a way that every thin component in the se-
quence S¢ is conformally equivalent to either a finite cylinder [~ R, R] x S' or to
[0,00) x S1. Another fact from hyperbolic geometry we will use is Bers’ theorem
stated at the beginning of Section 1.3 of [Abb14]. It asserts the existence of a pair
of pants decomposition of each SZ where the length of the boundaries of each pair
of pants is bounded above. By having added the marked points to the domains, one
may now view the sequence of pearly trajectories P, : S,, — W™ asasequence of

punctured pearly trajectories pF,.

In the proof one subsequently extracts subsequences (of subsequences) of punc-
tured pearly trajectories, such that a subsequence of (pP"),>o eventually con-
verges to a finite energy punctured pearly trajectory pP which satisfies the proper-
ties (pP1) and (pP2) stated in Theorem 5.1 above. In abuse of notation I will denote

all subsequence of (pP"),,>0 still by (pP™)pn>0-

Foralln > 0,Icontinue to denote the projection onto the first factor of the carte-
sian products W™~ x W™ and W~ x W by p_, and the projection onto the

second factor by p... It can be helpful to keep the diagrams below in mind.

W5 ——— W5 x Wi —2 s wi
lﬂ'c /[iLC lﬂ'c
{0} x C +—= Le = {0} x C

T,— p— T,— T,+ P+ T,+
WhT L wh x Wit s W

lﬂ'H //’// \\\\\ lﬂ'H

L <
He e

C TC A HC

The following seemingly trivial observation is important for the proof: By the defi-
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nition of the cartesian product and by our choice of product almost complex struc-
tures —Jg x Jgand —Js x Js the sequence of punctured pearly trajectories pP,

can be interpreted in two ways:

1. Asasequence offinite collections (u, . . . , U, )n>0 of (j°, —J& x Jg)-holo-
morphic maps
(5-50)
Uni : (SnyOSn,3™) — (W™ x W' T Lo, —J& x J2). fori=1,... k,

To simplify the notation I will continue to denote such a sequence of finite
collections ofholomorphic maps contributing to the pearly trajectoryby p P,.

. . . —_ —+
2. As a sequence of finite collections (u1, ..., Uk, )nez, Of pairs (u,, ;,u, ;)

consisting of:

finite collections of (j,, —J§)-holomorphic maps:

Up i ¢ (Sny OSn, jin) = (W™™,C7,=J8) fori=1,... kn,
(5-51)
and finite collections of (j,, Jg)-holomorphic maps:

uwl . (Spygn) = W™ ,CT Jsn) fori=1,... k.

n,i

Again simplifying notation I will denote these projections of sequences of fi-

nite collections by pP,, and pP,;" respectively.

The energy of a sequence of finite pearly trajectories was defined in Section 5.5.2. By
the definition of the algebraic structures on the pearl complex, see Equations 4.15
and 4.18 in Chapter 4, the Maslov index p(P,,) of each element of the sequence is
bounded abovebyeither2 dim L, ordim Lo +1dependingonwhetheritisapearly
product or a pearly differential trajectory ending in the minimum. By the mono-
tonicity assumption the energy of a pearly trajectory P, as defined in section 5.5.2
is positively proportional to the Maslovindex. Thus the constant £ from assertion
(E) of Theorem 4.1 can be chosen to serve as a uniform bound on the energy of the

sequence of pearly trajectories.
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5.6.3 Thebubbling Lemma

A key step in proving the existence of a convergent subsequence is to understand
how a concentration of energy leading to a gradient blow up of a sequence of pearly
trajectories in the target can be absorbed by an alteration of the domains of the se-
quence. This analysis is notlimited to the sequences of pearly trajectories, but valid
for all stable Riemann surfaces and standard. Despite the name of this Section, I do
not state the results of this section as a Lemma, since the formulation is very cum-
bersome. For a precise statement see for example Proposition 4.3 in [Bou+03] or
Section3.2in[Abb14]. Instead Iinclude a detailed description of the phenomena for
the sake of clarity of the exposition and in an attempt to increase the readability of
the manuscript. I suggest consulting the picutres, which illustrate the phenonema

in each of the possible cases, before reading the description of the respective case.

Given a sequence of stable Riemann surface data with S;, with fixed signature, then
Sy, converges to a stable, nodal Riemann surface S by the Deligne-Mumford com-
pactness theorem (see Section 1.3 of [Abb14] and the references therin). Now as-
sume that there exists a sequence of points z,, € 5, such that the gradient blows
up, i.e.

R, = ||dP,(2y)|| — oc.

By this I mean that there exists a sequence of holomorphic maps, denoted in abuse
of notation by u,, contributing to the pearly trajectory such that ||du,, (zy,)|| — oo.
I now describe how one can bound derivatives in a sequence of neighbourhoods in

the sequence of Riemann surfaces .S, by conformal rescaling .

First assume that the sequence z, stays away from the boundary of the Rie-
mann surface. Then there exists a sequence of holomorphic coordinate charts
Yn ¢ Be, R, (0) — Up,where U, isaneighbourhood of z,,. By Lemma 3.8 in [Abb14]

onehasforall z € U,

Capn(zn) ' (2)|
Ry

(5.52) dn(zna Z) < c < CQ,On(Zn)En.
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Choose €, — 0,while €, R,, — oc. By (5.49), the injectivity radius p,, is strictlyless
thanafixed eif Uy, is contained in the thin part of the Riemann surface for all n large
enough or greater than or equal to € if U,, is contained in the thick part of S, foralln
large enough. In essence, the idea is now to consider the boundary ¢, (0B, r,,) =
0U,, as a degenerating boundary component in the sequence of Riemann surfaces,
whichis the situation considered in the proof of the Deligne-Mumford compactness
theorem as given in Theorem 1.91 of [Abb14]. The keyidea here is to associate nodal
pairs to degenerating boundary components and vice versa. Notice that by this one
alters the pair of pants decomposition of the Riemann surface and therefore needs
tomake sure that the Riemann surface one creates by adding marked points remains
stable. Depending on the position of the marked points and nodal pairs in the pair
of pants decomposition of the sequence S, relative to U, there are three cases to

consider:

Bubbling, Case 1: U,, contains neither a marked nor a nodal point for all n large

enough.

Bubbling, Case 2: U,, contains a marked w,, point from M,, U D,, for all n large

enough.
Bubbling, Case 3: U, contains anodal pair {w,,, w/, } for all n large enough.

These are all the cases one has to consider since double and marked points are iso-

lated.

Bubbling, Case 1:

aUn d ~ d/

165



Oneneedstoadd twomarked pointsin theinterior of U,, order tostabilise U,,, which
one views as a disc. A natural choice for one of the two marked points is z,. De-
note the other marked point by w,,. Removing these two marked points and 0U,,
will make U, into a pair of pants. This is the situation described in the proof of the
Deligne-Mumford compactness theorem as presented in Section 1.3.2 of [Abbi4].
Remove OU,, from S,, and replace it with two boundary components (one in the pair
of pants obtained from U,,, one in S,, \ U, ). Treat these two boundary compo-
nentsas a pair of geodesics of the hyperbolic metric £,, degenerating tonodal points
{d,d'}. Thus S,, with the two added marked points z,, and w,, converges to a stable
nodal Riemann surface S = S Ugguay S 2 obtained by attaching a sphere with the

marked points z, w € S? corresponding to the limits of z,, and wy, at {d, d'} to S..

Bubbling, Case 2:

There are two subcases to consider. If the marked point w,, contained in U, does
not correspond to a boundary component that degenerates to a pointasn — oo,
one adds z,, and w,, as marked points to U,, and is back in the situation considered

in Bubbling, Case 1.

Otherwise the marked point w,, contained in Uy, corresponds to aboundary compo-
nent of a pair of pants composition that collapses faster to a point than 9U,,. Then
there exists asequence of annuli A,, which separate w,, from z,, in U,,. By this Imean
that one of the boundary components of A,, coincides with OU,, and that z,, is con-

tained in the interior of U, \ A,,. The inner boundary component of 4,, corresponds
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to the marked point wy,.

One now adds a marked point z/, to U} = U, \ A4,, and another marked point w/,to
A, tostabliseboth A,, and U},. Byassumption, the boundary of S, \ U, and the outer
boundary of the annulus A,, collapse to a pairs of nodal points {d,d'} asn — .
Moreover the inner boundary of A4,, and the boundary of U], collapses to a pair of
nodal points {e, '} asasn — oo. So, repeating the procedure describe in case 1, the
sequence S,, with the marked points z,, z;, and w/,, converges to a stable nodal Rie-
mann surface S” obtained from S by attaching one sphere containing w/, along the
nodal pair {d, d’} corresponding to the boundary of S,, \ U,, and OU,, and a sphere
containing z and 2/, the limits of z,, and z], attached along a pair of nodal points
{e, €} corresponding to the inner boundary component of A,, and the boundary of

U,.

Bubbling, Case 3:

Represent the pair of nodal points {w,, w],} as a pair of degenerating boundary
components. If there exists an annulus in A,, that separates one of the points in
{wy,, w),} and z,, from the other point in {w,,, w/, }, the situation is as the one con-

sidered in Bubbling, Case 2.

Otherwise U,, is contained in an annulus A,, whose degenerating boundary compo-
nents are represented by the pair {wy,, w,,} of nodal points. Add a marked point
2}, to U, to stabilise it. Now both boundary components of the annuli A4,, and

the boundary component of U,, collapse to pairs of nodal points {d,d'}, {e, e’}
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and { f/, f”}. Repeating the analysis from the previous cases, we see that .S,, with
marked points z,, z,, wy,, w, converges to a nodal Riemann surface S”. This sur-
face is obtained from S by attaching in a sphereS’ along the pairs of nodal points
{d,d'} and {e, ¢'}. The sphere S’ has another sphere S” attached to it along the
nodal pair { f, f’}. The pair of nodal points {d, d’'} corresponds to one boundary
component of A,, and the corresponding boundary componentin Sy, \ A,,. The pair
of nodal points {e, ¢’} corresponds to the other boundary component of 4,, and its
corresponding boundary component in S,, \ A;,. The pair {f’, f”'} corresponds to
the boundary 0U,, in U,, and the corresponding boundary component in A,, \ U,,.
The sphere S’ is stable since it contains {d’, ¢/, f'}. The sphere S” has z and 2’ the

limits of z,, and 2/, on itand is thus also stable since it is attached along { /', /"' }.

If the sequence of points converges to the boundary of the Riemann surfaces, one
uses rescaling coordinate charts described in the following Lemma, which is the

boundaryversion of Lemma 3.8 from [Abbi4]. Istateit for the sake of completeness:

Lemma 5.15 (boundary version of Lemma 3.8 in [Abb14]).
There are holomorphic charts Yy, : B;L -V, C (Sn, Jn) With wn(BE NR) C as,,
and 1, (0) = z, for z, € dS,, and positive constants C's, Cy such that forall z € D+

and all large n

(553) C3pn(zn) < [ldipn(2)|] < Capn(zn),

where Bj, = {z € C| ||z|| < R,Im(z) > 0} and V, is a neighbourhood of z.

The boundary of V,, degenerates to a point as n grows to infinity. Double the Rie-
mann surface as described in Section 5.5.1, so that V;, becomes a neighbourhood
without boundary like U,, with additional data remembering that U, sits at the
boundary of the original Riemann surface. Then carry out exactly the same bub-

bling off analysis as for interior points keeping track of the additional boundarydata.
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Having carried out the analysis described above, one can go back to the original Rie-
mann surface withboundary. It turns out that oneisattaching one or two discsalong
boundary nodal pairs instead of one or two spheres along interior nodal pairs. Thus
ifagradientblowup occursalongthe boundary, one can absorb this byattaching one
or two disc components to the original sequence of Riemann surfaces. For further

details see section 3.2 of [Abb14].

Summing up, if a gradient blow up occurs, one adds a set of marked points to the
original sequence .S,, of Riemann surfaces, forming a new sequence of stable Rie-
mann surfaces S,. This new sequence converges to a nodal Riemann surface S’
which differs from the limit S of the original sequence \5,, by one or two sphere or
disc components. These spheres or discs serve as the domains of the sphere or disc

bubble which now contributes to the new sequence of pearly trajectories p P, .

5.6.4 Algorithmicremoval of obstructions to compactness
Step 1: Gradient bounds

In this section I explain how to obtain gradient bounds for the sequence of pearly
trajectories (p Py, )n>0 away from finitely many points in the domain. I will use the
bubbling-off procedure described in the preceding section to jump back and forth
between the sequences of domains and the sequences of images of (pP,, ), >0 in an
algorithmic procedure. More precisely I prove the following proposition in this sec-

tion:

Proposition 5.16 (Prop 3.7 in [Abb14)).

There exists an integer K > 0 and a constant C' > 0which depend only on Eq and points

(5:54) Yo = {y0, /D,y Yy 8,0\ (M)
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such that

(555) [[dP.(2)]] < Vz € Sn =Sy \ (M, UYy).

C
pn(2)

Here py, denotes the injectivity vadius with respect to the Poincaré metric S \Yn o (Sn \
Yo, jn)- The gradient is computed with respect to hS2\Yn and the metric induced by the
respective compatible choices of w and Js in the corresponding parts of the target manifold

and for the corresponding holomorphic maps contributing to pP,.

Proof. The sets of double points and punctures are empty, i.e.D,, U Z, = (. In
Section 5.6.2 marked points were added to stabilise the Riemann surfaces S,, under-
lying the pearly trajectories. By the Deligne-Mumford compactness result for Rie-
mann surfaces with boundary one may assume that, after passing to a subsequence,
Sy, converges to anoded surface with boundary S. Note that S may have nonempty
sets D and Z. Recall that by elliptic bootstrapping, the only obstruction to applying
the Arzela-Ascoli theorem can come from the lack ofa C! bound of pP,,. Thus, if the

gradient of p P, is uniformly bounded on S,, \ M,,, Proposition 5.16 follows.

Otherwise there exists a sequence z,, € S, \ M, such that

(5.56) nlggo p(zn)||d Py (2n)|| = +oo.

Recall that this mean that there exists a sequence of holomorphic maps contribut-
ing to the pearly trajectory such that the gradient blows up. One may treat each such
sequence individually, one after the other since there are only finitely many holo-
morphic maps contributing to p P, and finitely many possibilities of configurations
ofholomorphicdiscs due to the uniform energybound. By the notation (5.56) Iwant
toindicate that one performs the relevant steps whenever necessary. There are two

main cases to consider:

Step1,Case1: pP,(z,) is contained in a compact subset of W x W¢ orof Wx x

W, for all n large enough.
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Step1, Case 2: pP,(z,) is contained in any other of the remaining seven parts of

W x W listed in Equation 5.22 for all  large enough.

In all cases, the procedure is similar: first choose an appropriate rescaling (either
Lemma 3.8 of [Abb14] or Lemma 5.15 above), which bounds the gradient on a neigh-
bourhood of a blow-up and extract a subsequence of holomorphic curves, with do-
main the rescaled neighbourhood, converging toa non constant holomorphic curve
(the bubble) . Second, use the appropriate quantisation of energy theorem (Propo-
sition 4.1.4 in [MS12], Proposition 2.59 in [Abb14] or Proposition 5.14) to show that
thelimitholomorphic curve has positivenergybounded awayfrom zero. Finallyadd
a set of marked points representing the domain of the limit holomorphic curve to
the domain of the original Riemann surfaces according to the procedure described
in Section 5.6.3. If there are still sequences along which the gradient blows up, re-
peat this series of steps. In order to avoid notation like g};’{ Iwill abuse notation and
always denote the marked points one adds by y,, and y/,. Likewise I will always de-
note the set containing y,,, y,, by Y,,. This process terminates, since the energy of the
sequence of pearly trajectories is finite. Each time one runs this “algorithm” con-

sumes a positive amount of energy. I now describe this procedure in more detail:
Stepi, Case1:

In this case view pP, as in equation (5.50), since one wants to use the Lagrangian
boundary condition for the analysis. Recall that the Lagrangian L is defined only

as a submanifold of the product We x Weandnotina single factor.
There are two subcases to analyse:
Step1,Case1.1: The sequence z,, stays away from 0.5, for all n large enough.

Step1, Case1.2: The sequence z, converges to the boundary 0.5, for all n large

enough.

Remark 5.17.

Notice that one needs to make another case distinction in Case 1.2. If the sequence zy, con-
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verges to the boundary at slower speed than the rescaling parameter I2,,, a spherical bubble

forms, thus one s back in Case1.1. This is explained in detail for example in [Frao8].

Step1, Case 1.1: First notice that this is always the case given the sequence staysina

compact subset of Wg x W for all n large enough. Define

(5:57) Qn = Pnoty : B g, — We x We

By the standard bubbling off analysis this sequence converges to a non constant
holomorphicsphere Q. : CU{co} — W Wi, This sphere bubble has positive en-
ergy by Proposition 4.1.4 in [MS12]. Add the set Y,, consisting of the marked points
yn and y, to the sequences S, according to the procedure described in Section 5.6.3.
Then S!, = (Sy, M,, UY,,), converges to a stable nodal Riemann surface S’, which
differsfrom S'by one or two spherical components, depending on the local Riemann

surface data as described in Section 5.6.3 above.

Step1, Case 1.2: Use Lemma 5.15 to define a sequence of holomorphic curves
(5'58) Qn = Pno"vbn : B;Rn — Unp.

The standard bubbling off analysis shows that the limit map is a non-constant holo-
morphic disc with boundary on L¢, because the puncture is always removable in
the present case, since the image of Q,, is contained in the compact part of W and
L¢ is compact by assumption. This disc has positive energy by Proposition 4.1.4 in
[MS12]. Again, add the set Y}, consisting of the marked points y,, and ¥/, to the se-
quences Sy, as describe in Section 5.6.3. Then S, = (S,, M,, U Y},), converges to
a stable nodal Riemann surface S’, which differs from .S by one or two disc compo-
nentsasdescribed in Section 5.6.3 above. This concludes the analysis for Step1, Case

1.

Stepi, Case 2:
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In this case view p P, as in equation (5.51). This is possible since in this case there
cannot be a sequence z, along which the gradient blows up and which converges to
the boundary of 05,, and thus as sequence p P, (z,) converging to L¢. To see this,
recallthat L¢isasubsetof o ({0} x C) x ¢ ({0} x C'), where ¢ is the symplecto-
morphism provided by the Bolle neighbourhood theorem, Proposition 2.18 and thus

increasingly far away as n grows to infinity. Note that

(5:59) AP (zn)ll = [1dPy (zn)l] + AP (2n)]].

Thus there are again two sub-cases to analyse:
Step1,Case2.1: dP; isbounded and dP;" is unbounded.
Step 1, Case 2.2: BothdP, and d P, are unbounded.
Firstanalyse Step 1, Case 2.1:

Without loss of generality assume
(5.60) 1dPy (zn)ll =00, |ldP) (2n)ll < C
Choose holomorphic rescaling charts

(5.61) Yn : Be, g, (0) = Up,

where R,, = ||dP, (zy,)|| and define:

(5-62) (@n, Q) = (P o thn, B 0 t)y).

Then it follows from the usual bubbling off analysis in each separate factor that ()
converges to a finite energy holomorphic plane Q- , while Q;' converges to a con-
stantmap on U),. If the R-component of P__ isunbounded, then by Propositions.14,
P isasymptotic to a cylinder over a generalised Reeb orbit and the energy of P is
bounded below by the period of the generalised Reeb orbit it converges to. Other-

wise apply the removal of singularities theorem(Theorem 2.68 in [Abb14]) to obtain
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anon-constantholomorphic sphere, which has positive energy again by Proposition
4.1.41in [MS12]. Add a set Y;, consisting of the marked points y,, and ¥/, to the se-
quence S,,. Then S!, = (S, M,, U Z,, UY,,), converges to a stable nodal Riemann
surface S’, which differs from S by one or two spherical components as described in

Section 5.6.3 above.
Stepi, Case 2.2

One cannot, without loss of generality, assume that there is any relation between

|ldP,; (zn)||and [[dP, (2n)]-

Choose holomorphic rescaling charts

(5-63) (L BEnRE (0) = Un,

where R,, = ||dP;, (zy)|| and define

(5.64) (@, Q%) = (By o tn, P oay).

Thenitfollows from the usual bubbling off analysis in each factor that (),, converges
toafinite energy holomorphic plane (). If the R-component of P__ isunbounded,
thenbyProposition 5.14 P__ isasymptotic toacylinder over ageneralised Reeb orbit
and the energy of P isbounded belowby the period of the generalised Reeb orbitit
converges to by Proposition 5.14. Otherwise apply the removal of singularities the-
orem and obtain a non-constant holomorphic sphere, which has again has positive
energy by Proposition 4.1.4 in [MS12]. Again add a set Y,, consisting of the marked
points y,, and y/, to the sequence S,,. Then S/, = (S,, M,, U Z,, UY,,), converges
to a stable nodal Riemann surface S’, which differs from S by one or two spherical

components as described in section 5.6.3 above.
Now there are two cases to consider

Step 1, Case 2.2.1: ), also converges to a finite energy holomorphic plane or to a

constant map.

174



Step 1, Case 2.2.2: (Q;" does not converge.

Step 1, Case 2.2.1:

If Q; converges to a constant map one is back in Case 2.1. Thus assume Q" is
non-constant. It follows from the usual bubbling off analysis in each factor that
both @;, and Q; converge to finite energy holomorphic planes Q. Notice that
in the present case, by the choice of R;,, 0 < [[dQ;|| < [|dQ;, || < C. IfIf
both R-components of QI are unbounded, the energy of QL is bounded below by
the smaller period of the pair of generalised Reeb orbits to which QI converge by
Proposition 5.14. If both Q1 are contained in some compact subset of the symplec-
tisations one may apply removal of singularities and obtain two non-constant holo-
morphic spheres of positive energy. Notice that all possible combinations may oc-
cur, for example 5, could asymptote to a generalised Reeb orbit while Qf hasare-
movable singularity or vice versa. In each case, the energy of the pair QT is strictly
positive and bounded away from zero. Thus add a set Y,, consisting of the marked
points y,, and y,, to the sequences S,,. Then S/, = (S, M,, U Z,, U'Y},), converges
to a stable nodal Riemann surface S’, which differs from .S by one or two spherical
components as described in section 5.6.3 above. These spherical components serve

as the domains of both maps QL.

Step 1, Case 2.2.2:

If Q" does not converge, one has not formed a bubble for P,/ although the gradi-
ent of P, explodes. Thus there could be a sequence 2], such that ||[dP; (2},)| —
oo on the sequence of Riemann surfaces S),. If along this sequence ||dP,, (z],)|| is
bounded, the analysis of the bubble arising from ||dP;} (z/,)|| — oo is now the same
as in Step 1, Case 2.1. If not, repeat the procedure of Stepi, Case 2.2 just described.
As soon as there do not exist any sequences zy, such that ||dP,, (zy)|| — oo, choose

holomorphic rescaling charts

(S6S> ¢n : Bean (O) — Un7
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where R,, = ||dP,f (z,)|| and define

(5-66) (@n,Qn) = (P o tn, P 0tf).

Then carry out the procedure described above with all minuses replaces by pluses
and vice versa. Since every sphere or a Reeb cylinder that bubbles off has positive
energy, this bubbling-off process terminates, possibly after jumping back and forth
between rescalings of ||dPy || and ||dP;;|| finitely many times, after a finite num-
ber of repetitions. Note that this process terminates independently of the order in
which the analysisis carried out. Thus regardless of the choice of rescaling, it is pos-

sible to bound the gradient in both factors of the target.

This finishes the proof of Proposition 5.16 and concludes Step 1in the proof. O

Step 2: Convergence in the thick part

This part of the proofis exaclty as in [Abb1i4]. Iinclude it for the sake of complete-

ness. By Proposition 5.16 one may assume that

1dP,(2)]] < Vz € Sn \ (MyUZy UYy).

C
pn(2)

Absorb the set Y,, into M,, U Z,, U D,, and denote this setby M U Z! U D,,. By

Deligne-Mumford compactness:
Sn = (Sn,asn,jn,Mé,D;,Z;,) TH_OO} (S - Sa 857j7 M7D7Z)

Abusing notation I will denote S,, \ M/ U Z! U Y/ still by S,, and likewise for S
and S. I now establish a uniform gradient bound in terms of the injectivity radius p
on the thick part of the nodal Riemann surface S. Recall that on the thick part one
has p(z) > ebyequation (5.49) for a fixed e. By the definition of convergence in the

Deligne-Mumford space there exist maps ¢ : S,, — S such that ¢* h,, — h. Thus
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assume for sufficiently large n

(5:67) sup{|pu(2) = p(2)l| = € Thick($)} < 7.

Thus py,(z) > 2e. Estimate:

||dPy 0 pn(2)]] < ’pn(z) p(2) I+ p(2)
‘pn(z) — p(z) ¢
<cC pn(2)p(2) " p(2)
.5 c
= 3ep(z)  p(2)
4 C
< gm

Hence, for every e > 0 one obtains a uniform gradient bound on Thick.. By elliptic
bootstrapping and repeated application of Arzela Ascoli, extract a subsequence of
loc

punctured pearly trajectories p P, which converges in C;° (UEThick6 (S )) . Denote

this limit by pP’. This establishes Step 2 of the proof.

Step 3: Convergence in the thin part

This part of the proof is also exactly as in [Abb14] or in [Bou+03]. I include a sum-
mary of the necessary analysis for the sake of completeness. Denote by (', . .. Cy,
the connected components of the Riemann surface S\ D obtained in Step 2. There
are two kinds of nodal pairs, interior nodal pairs {d, d'} C D and boundary nodal
pairs {b,b'} C Dg. First of all notice that if pP’ is bounded near a node, pP’ ex-
tends continuously over this boundary node by the removal of singularities theo-
rem. Since L¢ is compact this holds for all pairs in Dy. If pP’ is unbounded near a
node apply Proposition 5.14, to conclude that pP’ is asymptotic to a pair of gener-

alised Reeb orbit as it approaches the node.

The goal is now to establish a uniform gradient bound on all components of the thin
part of the Riemann surface in order to extract a subsequence of pF,, which con-

verges on all parts of the underlying Riemann surface. By the preliminary choices,
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each e-thin component 7, . of S,, which degenerates to a pair of nodal points is con-
formally equivalent to [~ R, ¢, Rn.c] x S'orto [0, R} ) x S.If Dy is nonempty,
double [0, R} .) x S'. Thus one has to consider thin components of the form
[—Rpe, Rne) X S* only. By using the flat metric on [—Rn.e, R ] % S the holo-

morphic parameterisations
. 1
¢n,e : An,e = [_RTL,€7 Rn,e] XS — Tn,s‘

satisfy

[[6n.e(2)]] < C'pn(dn.e(2).

Use the estimate from Proposition 5.16 to obtain

|dPn 0 pn(2) © dne(2)| < [|dPn 0 n(2)][[|¢n.e(2)]]

¢ /
< m -C Pn(¢n,e(z))

< C//

Thus again by Arzela Ascoli one may extract a subsequence of p P, which converges
also on the thin parts of S to a punctured pearly trajectory pP which is asymptotic
toapair of generalised Reeb orbits or has one or two removable singularities at each

nodal pair.

The asymptotic limits on the thin components are a priori not equal to the asymp-
toticlimits on the thick part. By carrying out yet another bubbling off analysis on the
thin part and by possibly adding components to the domains 5,, as described in sec-
tion 5.6.3, one can arrange that the limits within the thin part and on thin and thick
parts match up. In essence the origin of the bubbling lies in differences of the action
vectors of the generalised Reeb orbits on the different components C; and C; adja-
cent to the puncture. Since this more detailed analysis is not needed for the proof
of Theorem 1.6 I refer the reader to [Abb14] or [Bou+03] for details. This concludes

Step 3 in the proof.

So far I have shown that there exists a subsequence of p P, which converges on S to
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apunctured pearly trajectory pP. It remains to show that the assertions of Theorem

5.1hold and in particular that p P has the desired properties.

5.6.5 Properties

Byassertion (M) of Theorem 4.1 there exists aMorse function f, on L¢ ineachman-
ifold W,, x W), considered in the spitting process. Since one is not changing L¢ in
the neck stretching procedure one may choose f,, = f tobeidentical forall n. Thus

assertion (M) of the theorem follows.

The energy of pP is finite by Equation (5.38) and (5.39). Moreover since (C, S) is
also fibred by assumption of the theorem, the adjusted almost complex structure
Js may be constructed by first choosing any wp almost complex structure on the
symplectic reduction B of C, as explained in Remark 5.6. Thus assertion (E) of the
theorem follows if p P satisfies properties (pP1) and (pP2). Recall that each pearly
trajectory in the original sequence (P,,),>( connects a a critical point y,, of f con-
tained in f5*([1, 00)) to the minimum = of f contained in f5*(0). This is a closed
condition, therefore the limit p P has the same property which means nothing but

that it has property (pP1).

I now show that p P also satisfies assertions (S1)-(S3) and thus has property (pP2).
Recall that the genus of the Riemann surfaces S,, underlying the sequence (£, ), >0
is zero and that all S;, are connected by the definition of a punctured pearly trajec-
tory. Thus the Riemann surface S underlying pP is also connected and has (arith-
metic) genus zero. Consider only the component p P of pP contained in WexWe.
Recall that the backward manifold of the minimum W= () consists only of z alone
by Equation 4.1 and that a punctured pearly trajectory has at least one non-trivial

J-holomorphic discs component. Say there are [ > non-trivial components
Uly.e ..U (S, 85) — (WC X Wc, Lc)

of genus zero contributing to pP¢ (see Definitions 5.11 and 5.12). The exit point of
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the [-th non-trivial component contributing to the punctured pearly trajectory has
to be contained in W=(z) = z by the definition of a punctured pearly trajectory.

Thus p Pc contains a non-trivial holomorphic curve u such that z € ;(95).

Recall the notation SY and S>? for level- and super-level-sets of an almost fibred
pair (f, Z) introduced above Equation 4.8. To prove that p P contains a holomor-

phic curve @ which satisfies @(dg) N S® # Pand a(ds) N S~°, Largue as follows.

Ifthe entry point p of u; is contained in S>, then the claim follows. If not, the entry
point must be contained in S°. The exit point ¢ of the (I — 1)-th holomorphic curve
u;—1 flows to the entry point p of the [-th holomorphic curve under the positive gra-
dient flow of an almost fibred Morse function by the definition of a punctured pearly
trajectory. Recall that a trajectory of this flow cannot enter S~ and then return S°
by construction of an almost fibred Morse function. This implies that if p is con-
tained in S°, then so is ¢. Thus ifall | holomorphic curves contributing to the pearly
product trajectory were contained in S it would follow that the entry point 7 of the
first holomorphic curve uy, which is contained in the forward manifold W= (y), is
also contained in S. However y is contained in S=! by (pP1). Since these sets are
disjoint there exists /o such that 1 < [y < [and such that u;, (95) intersects both

S%and $>°. Thus 7y, has property (S1).

I have shown in Steps 1-3 of the proof of Theorem 5.1 that each boundary puncture
or boundarynodal pair is removable since it is contained in the compact Lagrangian
L¢. If pPc isunbounded near a node or puncture it is asymptotic to a pair of cylin-
ders over a generalised Reeb orbits on C' by Proposition 5.14. In particular, %, has

properties (S2) and (S3). Setting « = u;, completes the proof of Theorem 5.1.

5.7 Holomorphic chessboards

I conclude this chapter by briefly outlining how the machinery developed in this
chapter can be used to define holomorphic chessboards. Thisis the analogue of aholo-

morphic builidings, as defined in [Bou+03], for stable coisotropics.
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To define a holomorphic chessboard, instead of considering sequences of pearly
trajectories and punctured pearly trajectories one considers holomorphic curves u
with domain S a general Riemann surface as in Definition 5.10. For the purposes of
this exposition I will stick to the splitting scenario where the target I" consists of the
symplectic manifold W equipped with a (C, §) adjusted almost complex structure
Js and split along H¢ as in Equation 5.5. It is also possible to develop similar no-
tions for the symplectic completion W of astable coisotropic. In the splitting case
a (k, 1)-holomorphic chessboard, which I denote by U (k, ) consists of the following

data

e A holomorphic curve (1,1) = a¢ : S — We x We, with domain a
Riemann surface S¢. The curve 4 maps the boundary 05 to L¢ if 0S¢ #
(). Moreover u(1,1) is asymptotic at its non-removable punctures to gener-
alised Reeb orbits and such that the asymptotics match the asymptotics of the
adjacent fields of the chessboard, i.e. ofu(1, 2), @(2, 2) and (2, 1) described

below.

e Holomorphic curves
ﬂ(l,]) : Si,j — W}_[ X W[{(

Forl < ¢ < kand1 < j < [excluding the pairs (i,7) = (k,[)and
(¢,7) = (1,1). Each map 1, ; is asymptotic at its non-removable punctures
to generalised Reeb orbits which match the asymptotics of all adjacent fields
ofthechessboardi.e.ofu(i —1,j—1),a(i,5—1),a(i+1,5—1),a(i+1,j)
and (i + 1,5+ 1), a6, 5+ 1),a(i — 1,5 + 1), a(i — 1, ).

e Aholomorphic curve @i(k, 1) = ug : Sg — Wg x Wx. Which is asymptotic

at its non-removable punctures to generalised Reeb orbits and matches the

asymptotics of adjacent fields of the chessboard.

The analysis carried out in Section 5.6 goes through without any major changes. For
the matching of asymptotics one carries out Step 3 “Convergence in the thin part”

of the proof in detail. The assumption that C is either fibred, or that (C,S) is of
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Morse-Bott type, which both result in Morse-Bottnes of the Reeb flow on H is im-
portant to guarantee uniqueness in Proposition 5.14. Given this assumption, in or-
dertoderive the holomorphic chessboard structure one proceeds exactlyasinio.2.4
[Bou+03], where the level structure of a holomorphic building is derived. The only
"

difference being that one uses the order “ <" and the equivalence relation “ ~

from [Bou+03] in both factors of the cartesian product W x W.

To formulate a “stable coisotropic SFT compactness theorem” the notions of con-
vergence have to be adapted accordingly. The notion of energy developed for pearly

trajectories in Section 5.5.2 carries over in a straightforward way.

Sincenotrelevantfor proving the mainresult of thisthesis Idonot pursue this direc-
tion here. Given an interesting application, it would be very interesting to develop
this theory in the future. Below is a picture of holomorphic disc with boundary on

L and a possible limit holomorphic chessboard U (3, 3).

(W, w)

(W7 _w)

Qe

Figure 5.1: A picture disc of (looking like a genie) with boundary on L escaping the
product Bolle neighbourhood(red)
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We Wi Wr

Figures.2: A (3, 3) holomorphic chessboard whichisa possible limit of the genie disc
above.
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Chapter 6

Geometric uniruling of the

symplectic quotient

Inthis chapter I prove the main result of this thesis, Theorem 1.6, which I state again

below.

Theorem 6.1.
Let C bea closed, codimension k, coisotropic submanifold of a symplectic manifold (W, w).

If C'is fibred and stable, C'is the total space of a torus fibre bundle
™ - C— B

overits symplectic quotient (B, wp). Assume that C'is monotone and has minimal Maslov

number at least three. If C is displaceable, then the symplectic quotient (B, wp) has the

following property:

Givenanypointb € B, for every w - compatible almost complex structure Jp on B, there

exists a non-constant J g-holomorphic sphere

v: (CU{o0},i) = (B, Jp)
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passing through b.

Proof. By Theorem 5.1there exists a punctured pearly trajectory p.P which contains

at least one punctured (—jc X jc) holomorphic curve
U : (S, 85) — (WC X Wc, L, —jc X j()),
where S is a connected Riemann surface of genus zero with non-empty boundary

and satisfying the following properties:

(S1) Theintersections@(9S)N f5*(0)and the intersection @(9S) N f5*((0, 00))

isnon-empty.

(S2) Ifuisunbounded near a puncture, then % is asymptotic to a pair of cylinders

over generalised Reeb orbits on C' x C' when approaching the puncture.
(S3) All other boundary and interior punctures of % are removable.

By the choice of a (C, S)-adjusted almost complex structure Jo on We (see Sec-
tions 5.3 and 5.4), projection to B is holomorphic. Recall that L inherits a fibre
bundle structure from C":

T?* — Lo — AB.

Thus one has the following holomorphic projections:

WC X WC
LC CxC

lﬂBXﬂB lﬂ'BXﬂ'B

Ap <22, “Bx B

Here i1, the inclusion of L¢ into ({0} x C x {0} x C') € W¢ x We. Icontinue

to denote the projection to the F factors of the cartesian product by p+. Moreover
e Denoteby IV, theimage of the projection p_ (We x We, —Jo x Je)))and
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by W, the image of the projection p4 (W¢ x We, —Jo x J¢)))

e Denote by CT the coisotropic submanifold {0} x C' contained in the factor
WE.

e Denoteby BT = (BT, Jp) the symplectic reduction of CT.

Recall that L¢ contains the diagonal AC' C C' x C. By this and with the notations

above, the following projections are defined We x Wers

i— , P- Tr— T4+ P+ =4
Wo 2 W x W 2 W

[ oo |

C- 2 Lo —2 ct

JWB lﬂ'g XTR JWB

B« AB " , pt

As described in Section 5.6.2 one may also view u as a pair

o @ : (8,08) — (W5, p—(Lc))
. it 1 (8,08) = (Wg,py(Le))

of a punctured (j, —Jc)-holomorphic curve @~ and a punctured (j,.Jo)-

holomorphic curve ..

Define by u the punctured (—.Jp x Jp)-holomorphic curve
(6.2) up = (mp X ) o (m¢ X m¢)ow: (S,05) — (B x B,AB).

I claim that all punctures of u g are removable. To see this assume first that % is un-
bounded near a puncture. By property (S2) 4 is asymptotic to cylinders over gen-
eralised Reeb orbits in both factors . After projection to C' x C' these are entirely
contained in the fibres T* x T* of the fibration T* x T* — C x C' — B x B. Thus
near each puncture z; one has:

lim (u5(2), uf(2)) = (b, b)

zZ—rz;
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fora pair of points (b; , b} ) € B x B. Byassumption B is compact, so apply the re-
moval of singularities theorem to extend u}; holomorphically over (b, , b;). Since
all other punctures are removable by property (S3) of @ it follows that u g is a holo-
morphic curve without punctures. Thus up defines a pair of holomorphic curves

without punctures which I will continue to denote by « ;. The maps
U]jg =TROT(C O at (Sv aS7]) — (B:F7 TB¥ (pZ(LC)))

define apair of an anti-holomorphic and aholomorphic curve with respect to Jz. By

the definition of Lo

Lo = {(z,y) € C x Clrp(z) = 78(y)},

or again the fact the L¢ fibres over A B the maps u; agree along their boundary.

Recall that (.5, 95) is a connected Riemann surface with non-empty boundary of
genus zero. In fact, S is a collection of punctured discs and spheres which are
identified along nodal pairs, which arose from the original sequence of discs in the
neck stretching procedure. Since, by Property (S1) of Theorem 5.1, u(0.S) inter-
sects f5'((0, 00)) there exists a disc component (D, dD) of S which also hast this
property. Thus the pair u}; gives rise to at least one pair of .Jg-holomorphic discs
uT : (D,0D) — (BT, mp=(pi(Lc))) whicharenon-trivialin B¥ by choosing such

adisc component of the domain.

To establish the existence of a non-trivial Jp-holomorphic sphere, perform the
doubling operation for Riemann surfaces described in Section 5.10 explicitly to glue
uT along their common boundary: Denote by ¢ complex conjugation z — Zz. Given

u~ and uT define:

ut(2) Jif 2] <1
v(z) =
umoc(l) Lif [2]>1

Firstnoticethatif|z| = 1wehave 1 = zsothatviswelldefined. Sinceu™is (i, J)-
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anti-holomorphic, u™ o c¢is (i, Jp)-holomorphic. Since z % is holomorphic on
CU{oo}andu™ is (i, Jp) holomorphic, the map visan (i, Jp)-holomorphic sphere
in B. This sphere is non-constant by construction and contains a given point b in
B by property (pP1). By Definition 1.5 this means precisely that B is geometrically

uniruled.

This completes the proof of Theorem 1.6. O
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