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Abstract

In this thesis I study the geometry and topology of coisotropic submanifolds of sym-

plectic manifolds. In particular of stable and of fibred coisotropic submanifolds. I

prove that the symplectic quotient B of a stable, fibred coisotropic submanifold C

is geometrically uniruled if one imposes natural geometric assumptions on C . The

proof has four main steps. I first assign a Lagrangian graphLC and a stable hyper-

surfaceHC to C , which both capture aspects of the geometry and topology of C .

Second, I adapt and apply Floer theoretic methods to LC to establish existence of

holomorphic discs with boundary onLC . I then stretch the neck aroundHC and ap-

ply techniques from symplectic field theory to obtain more information about these

holomorphic discs. Finally, I derive that this implies existence of a non-constant

holomorphic sphere through any given point inB by glueing a holomorphic to an

antiholomorphic disc along their commonboundary and a simple argument.
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Chapter 1

Introduction

In this thesis I study the geometry and topology of coisotropic submanifolds of sym-

plecticmanifolds. In this introduction I present in

Section 1.1 A brief introduction to, and examples of, coisotropic submanifolds.

Section 1.2 Themain results of this thesis and a summary of the proofs.

Section 1.3 An overview of previous research and results on coisotropic submani-

folds.

Section 1.4 An outline of the thesis.

1.1 Coisotropic submanifolds

A symplectic structure on a smooth manifoldW is a closed, non-degenerate 2-form

ω ∈ Ω2(W ), whereΩl(W ) denotes the space of smooth sections of the l-th exte-

rior power of the cotangent bundle ofW for a non-negative integer l. A symplectic

manifold of dimension 2n is a pair (W,ω) consisting of a smooth 2n-dimensional

manifoldW and a symplectic structureω. The symplectic complement of a submani-

foldN of (W,ω) at a pointx ∈ N is defined by

TxN
ω = {v ∈ TxW | ω(v, w) = 0 for all w ∈ TxN},
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where TxN denotes the tangent space of N at x. A submanifold C of (W,ω) is

coisotropic if

TxC
ω ⊆ TxC for allx inC.

Bythenon-degeneracyof the2-formω, thedimensionofTxCω agreeswiththecodi-

mension ofTxC inTxW and is thus an integer k between 0 andn.

It follows from Lemma 5.4.1 in [MS17] that a coisotropic submanifold C is a foli-

ated manifold (C,F). I explain in Section 2.1, that coisotropic submanifolds form

the naturally interesting foliated spaces in symplecticmanifolds. The foliationF is

called the characteristic foliationofC . Givenapointx in acodimensionk coisotropic

submanifoldC ,Fx,the leaf through x, is tangent to TxCω and thus k-dimensional.

I prove this in Lemma 2.1.

Coisotropics formabroadclassof submanifoldsof symplecticmanifolds. Theman-

ifoldW itself is coisotropic since TqWω is trivial at every point q ∈ W by the non-

degeneracy of ω. Thus the leaves of the foliation are the points ofW . Again by the

non-degeneracy ofω, every hypersurfaceH in a symplecticmanifold is coisotropic.

Hence the characteristic foliation of a hypersurface is one dimensional. By defi-

nition, Lagrangian submanifoldsL are coisotropic submanifolds of maximal codi-

mension n, i.e. TxLω = TxL. A LagrangianL is foliated by a single leaf, namelyL

itself.

Conisder a coisotropic (C,F) as a foliated manifold. At each point x ∈ C one

can form the quotient TxC/TxCω . This 2n − 2k dimensional quotient of vector

spaces naturally inherits a symplectic structure, since the restriction of ω to C at

each x inC vanishes along the symplectic complement, which agrees with the tan-

gent space to the leafFx atx. One is tempted to form thequotientC/F by identify-

ing all points on the same leaf on all ofC . However, the quotientC/F will often fail

to beHausdorff (see Example 2.6). If the quotient is a smoothHausdorffmanifold,

writeB = C/F and callB the symplectic quotient ofC .

The notation, which I use for the symplectic quotient originates in the case where

the leavesF of thecharacteristic foliationF fit together to formasmooth fibrebun-
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dleF → C → B withC as the total space of the fibre bundle. In this case the base

B of the fibre bundle carries a smooth symplectic structureωB which is induced by

ω. For a proof of this fact see Proposition 5.4.5. in [MS17]. A famous instancewhere

this structure arises is the following

Example 1.1 (The generalisedHopf fibration).

Consider R2n with its standard symplectic structure ω0 and its standard complex

structureJ0. The generalisedHopf fibration

S1 → S2n−1 → CPn−1,

isa fibrebundlewiththe2n−1dimensionalunitsphereS2n−1 as its total space. The

symplecticquotientof thecoisotropicS2n−1 ⊂ (R2n, ω0) is thecomplexprojective

spaceCPn−1 of real dimension 2n− 2.

By considering the cartesian product of k copies of the Hopf fibration one obtains

a fibre bundle with total space the coisotropic C = S2n−1 × · · · × S2n−1 of

codimension k in R2n × · · · × R2n ∼= R2kn. The fibres are k-dimensional tori

Tk = S1×· · ·×S1 and the symplectic quotientB, a product ofk projective spaces

CPn−1 × · · · × CPn−1, has dimension 2k(n− 1).

The process by which one obtains the symplectic quotient is often called symplec-

tic reduction. This terminology has its origin in the context of Hamiltonian group

actions, which were presented byMarsden andWeinstein as “a unified framework

for the construction of symplectic manifolds from systems with symmetries“ in

[MW74]. MorepreciselyMarsden andWeinstein consider a free andproperHamil-

tonian group actionG on symplecticmanifoldW . By Theorem 1 of [MW74], a reg-

ular level set of the associated moment map is a coisotropic submanifoldC ofW ,

the leafFx is the orbit of x ∈ C under the action ofG, and the quotientB, usually

denotedbyW //G in this context, is a smoothsymplecticmanifold. In tribute to the
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authors of [MW74] the symplectic quotientW //G is called theMarsden-Weinstein

quotient. Here is awell-known example of symplectic reduction:

Example 1.2 (The complexGrassmanian).

Consider, for k ≤ n, the space hom(Ck,Cn) of homomorphisms of Ck into Cn.

Identify this spacewith the spaceofnbyk complexmatricesCn×k andequip itwith

the Hermitian inner product tr(A∗B), where tr(·) denotes the trace operator, A∗

denotes the conjugate transpose of the matrixA ∈ Cn×k andB ∈ Cn×k. Then a

symplectic formonCn×k is given by

ωtr(A,B) := Im(tr(A∗B)),

where Im(·) denotes the imaginary part of a complex number. It is a standard fact

(see for example Exercise 5.43 of [MS17]) that the action of the unitary groupU(k)

onCn×k by rightmultiplication isHamiltonianwithmomentmap

µ(A) =
1

2i
A∗A.

The level setµ−1( 1
2i1) is acoisotropicsubmanifoldof (Cn×k, ωtr)bythetheoremof

Marsden-Weinstein above. The coisotropic submanifoldC is diffeomorphic to the

spaceofunitaryk-frames, alsocalledtheStiefelmanifold,S(k, n,C). TheMarsden-

Weinstein quotient

B = µ−1(
1

2i
1) // U(k)

ofC is diffeomorphic to the complexGrassmannian,G(k, n,C).

We have just seen in Example 1.2 above how coisotropic submanifolds arise natu-

rally in symplectic topology as the level sets of moment maps. In algebraic geom-

etry, coisotropic submanifolds arise naturally in the context of normal crossing di-

visors. For concreteness I base the following exposition on [Rua02], where Ruan
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considers the following situation:

LetD = ∪ni=1Di be a normal crossing divisor, where eachDi is a smooth divisor

in a 2n-dimensional Kählermanifold (X,ωg), andωg denotes the Kähler form. For

each index set I ∈ I , whereI denotes the collectionof index sets of{1, . . . , n}, set

DI = ∩i∈IDi,

when the intersection is non-empty. ThenDI is a Kähler submanifold ofX of real

dimension 2n− 2|I|. Denoting byUi a tubular neighbourhood ofDi,

UI = ∩ni=1Ui

defines a tubular neighbourhood ofDI .

By Lemma 7.2 of [Rua02] for each x in DI there exist holomorphic coordinates

(wI
x, z

I
x) in a neighourhood of x, such that, near x one hasDI = {zIx = 0} and

wI
x are holomorphic coordinates onDI . These coordinates vary smoothly with x.

In Proposition 7.1 of [Rua02] Ruan shows that these charts give rise to fibrations

πI : UI → DI with holomorphic fibres for each index set I , which vary smoothly

with x ∈ DI and which are compatible with the obvious stratification ofD. The

holomorphiccoordinatesoneach fibreπ−1
I (x)aregivenbythezIx. Thesedetermine

a rank |I| real torusT|I| action on each fibre, which varies smoothlywithx and thus

gives rise to a smooth, realT|I| action onUI .

ByTheorem7.2 of [Rua02] theKähler formωg can be perturbed such that all differ-

ent components ofD intersect orthogonally with respect to ωg . Ruan calls such a

metric a global toroidal metric for (X,D). Moreover, Theorem 7.2 asserts that ωg

can be made flat on each fibre of πI : UI → DI for every index set I and that, by

possibly shrinking the collection {UI}, the projections {πI} can bemade compati-

blewith the stratification ofD in the sense of Proposition 7.1 of [Rua02].

Call such a systemof neighbourhoods {πI , UI , }I∈I with holomorphic coordinates

(wI
x, z

I
x) which are compatible with the stratification of D and equipped with a a
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global toroidal metric ωflat
g , which is flat on each fibre, a global toroidal structure T

for (X,D, ωg).

To see how coisotropic submanifolds come into play in this context fix a normal

crossing divisorD in a Kähler manifold (X,ωg) and a global toroidal structure T

for it. Set

HI
i (w

I
x, z

I
x) =

1

2
|zI,ix |2

for thenorm | · | inducedby theHermitian innerproduct || · ||oneach fibre. This de-

fines an |I|-tuple ofHamiltonians onUI for a smoothT|I|-actiononUI determined

by the zIx. Choose level setsCi
I := (HI

i )
−1(rIi ) for r

I
i ∈ R \ {0} and i ∈ I . Then

for each set I , the submanifoldCI :=
∩

i∈I C
i
I is coisotropic in (UI , ω

flat
g ) and is the

total space of the fibre bundle

T|I| → CI → DI .

SinceDI is Kähler and therefore symplectic , and T|I|(x) is Lagrangian in π−1
I (x),

the total space CI of the torus bundle is coisotropic and of real codimension |I|.

Thus onemay viewDI as the symplectic quotient ofCI . The process of symplectic

reduction corresponds to collapsing the torus fibres. Notice that Ruan’s construc-

tionprovides avery rich familyof examplesof coisotropics. For everynormal cross-

ingdivisorD inaKählermanifold(X,ωg)asabovethereexistsafamilyofcoisotrop-

ics {CI}I∈I . For a given index set I , the real codimension of a coisotropic subman-

ifoldCI is |I|, and thus for each integer |I| between 0 andn there existn choose |I|

coisotropic submanifolds. Below is an illustration of Ruan’s construction in a very

simple, yet illuminating case:

Example 1.3 (Complete intersections inCP3).

Consider the toric manifold CP3 with the Fubini study form ωFS . Recall that the
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action of the complex torus (C∗)3 onCP3 is given by

(C∗)3 × CP3 → CP3

(λ1, λ2, λ3) 7→ [z0 : λ1z1 : λ2z2 : λ3z3]

Define divisorsD2 andD3 as follows:

D2 = {[z0 : z1 : z2 : z3] ∈ CP3 | z2 = 0} ∼= CP2

D3 = {[z0 : z1 : z2 : z3] ∈ CP3 | z3 = 0} ∼= CP2.

ThenD = D2 ∪D3 is a normal crossing divisor, and

D{2,3} = {[z0 : z1 : z2 : z3] ∈ CP3 | z2 = z3 = 0} ∼= CP1

is Kähler. Choose the chart

V1 = {[z0 : z1 : z2 : z3] ∈ CP3 | z0 ̸= 0}.

The holomorphic toroidal coordinates on a neighbourhood of a point x = [1 : z1 :

0 : 0] inD2,3 can in this case be constructed explicitly by defining

ϕ : C3 → U{2,3}

(w1, w2, w3) 7→ [1 : w1 : w2 : w3].

Notice thatU{2,3} ∩D2 = {[1 : z1 : 0 : z3] gives a holomorphic coordinate chart

for a neighbourhood ofD2 in its normal bundle. SimilarlyU{2,3} ∩D3 = {[1 : z1 :

z2 : 0]and thus theneighbourhoodU{2,3} is compatiblewith the stratificationofD.

In polar coordinates one has (w2, w3) = (r2e
iθ2 , r3e

iθ3) for r2, r3 ∈ R and θ2 and

θ3 ∈ [0, 2π]. DefineHamiltonians

Hi =
1

2
|wi|2 =

1

2
r2i for i = 2, 3.

15



Then for some fixed r, r′ ∈ R \ {0} a coisotropic C{2,3} = C{2,3}(r, r
′) ⊂

(U{2,3}, ωFS , is given by

C{2,3} = [1 : w1 : re
iθ2 : r′eiθ3 ].

ThusC{2,3} is a fibre product S3 ×CP1 S3 of two Hopf fibrations and in particular

a codimension 2 coisotropic inCP3. Its preimage inS7 ⊂ C4 is a five dimensional

coisotropic and the symplectic quotient,D{2,3} ofC{2,3} is a copy ofCP1.

Example 1.3 above can be generalised in variousways. For instance to

Example 1.4 (Divisors inCPn).

Again, considerCPn with the Fubini-study form ωFS and a complete intersection

Dk definedbyk homogenous equations of degreesd1, . . . , dk such thatDk is a nor-

mal crossing divisor. Then by Ruan’s construction one obtains a coisotropic Ck

which is a real torus bundle overDk. If d1 + · · · + dk ≤ n, V is a Fano variety,

by the following equality for first Chern class c1(Dk):

(1.1) c1(Dk) = ((n+ 1)− (d1 + · · ·+ dk)) [ωFS ].

Note that if one choose d1 = 1, thenCk ⊂ Cn−1 and is therefore displaceable.

Notice that Examples 1.1, 1.2, 1.3 and 1.4 all share a common characteristic: the sym-

plectic quotientsCPn,G(k, n,C) or a Fano variety are uniruled.

In the Fano case this follows fromMori’s bend and break agruments, see [Mor79].

The precise definition of “uniruledness” depends on the setting. Roughly speaking

a space is uniruled if, given a point constraint, there exists a non-constant sphere

meeting this point constraint. For a precise definition in the symplectic setting see
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[Voi08], and inthealgebraicgeometrysettingseeChapter4of [Deb01]. For thepur-

poses of this thesis I introduce the notion of geometrical uniruledness below.

Definition 1.5 (geometrically uniruled).

The symplectic quotient (B,ωB)of a fibred coisotropic submanifoldsC is geomet-

rically uniruled ifB has the following property:

Given any point b ∈ B, for every ωB- compatible almost complex structure JB on

B, there exists a non-constantJB-holomorphic sphere

v : (C ∪ {∞}, i)→ (B, JB)

passing through b.

Also notice that the leaves of the characteristic foliationF ofC are tori in Example

1.1, 1.3 and 1.4 but not in Example 1.2. With these examples in mind, the following

question seems natural:

Question 1.

If one imposes natural geometric assumptions (like displaceability) on a coisotropic sub-

manifoldC of a symplecticmanifold (W,ω), what are the consequences for the symplectic

quotientB ofC?

Themain result of this thesis is a first answer to this question. I state it, explainhow

it is related to the above examples andpresent anoutlineof its proof in thenext sec-

tion.
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1.2 Statementofthemainresultandsummaryoftheproof

Theorem 1.6.

LetC bea closed, codimensionk, coisotropic submanifoldof a symplecticmanifold (W,ω).

IfC is fibred and stable, thenC is the total space of a torus fibre bundle

Tk → C → B

over its symplectic quotient (B,ωB). Assume thatC ismonotone andhasminimalMaslov

number at least three. IfC is displaceable, then the symplectic quotient (B,ωB) is geomet-

rically uniruled.

Some remarks on assumptions and assertions of the theoremare in order:

By the nature ofQuestion 1 some assumptions on the coisotropic are indispensable

even tomake sense of the question. Recall fromSection 1.1 that the symplectic quo-

tient B is not necessarily Hausdorff. Therefore, unless one develops a theory for

non-Hausdorff symplectic manifolds, one needs to make an assumption that en-

sures theB is smooth symplectic manifold. I now briefly explain the assumptions

of Theorem 1.6 above.

Fibredness: A coisotropic submanifold C is called fibred if the leaves of the

isotropic foliationF are closed submanifolds ofC and the holonomy of each leach

is trivial. (See Definition 2.7). I introduce fibred coisotropic submanifolds in Sec-

tion 2.2. In particular, I show in Proposition 2.8 that a fibred coisotropic submani-

foldC is the total space of a fibre bundleF → C → B over its symplectic quotient

(B,ωB) as it is the case in Examples 1.1, 1.2, 1.3 and 1.4 above. Thus the leaves of the

characteristic foliationF of a fibreed coisotropic are the fibres of the fibration and

thus all diffeomorphic. In particular, their geometry cannot change drastically un-

der arbitrarily small perturbations (see again Example 2.6).

The notions of monotonicity, the minimal Maslov number and displaceability of a

18



coisotropic submanifold are introduced and explained in detail in Section 3.1.1. I

give a quick explanation of these assumptions below.

Monotonicity: I definemonotonicity ofC in Definition 3.4 asmonotonicity of a La-

grangian submanifold which is called the Lagrangian graphLC . This Lagrangian is

the fibre productC ×B C in the symplectic manifold (W ×W,−ω × ω). For the

definition ofLC as a set see Equation 1.2 below. I introduceLC in detail in Section

3.1. A Lagrangian submanifold ismonotone if the symplectic energy of a holomorphic

disc with boundary on the Lagrangian is positively proportional to theMaslov index

of the disc by a fixed constant independent of the disc.

NotethatmonotonicityofLC asaLagrangian,despite implyingmonotonicityofW ,

is not the same asmonotonicity of the symplectic quotientB. Nonetheless, Exam-

ple 1.4 aims to give some intuition why the monotonicity assumption is necessary.

If thecomplete intersection isFanoand thereforemonotone it isuniruledbyMori’s

bend and break arguments [Mor79]. However, it is not difficult to construct a non-

uniruledcomplete intersectionDk: choosek equations such that the sumof thede-

greesd1+· · ·+dk isat leastn+1. ByEquation(1.1),Dk isnoweitherCalabi-Yauorof

general type and therefore not necessarily uniruled. SinceDk is a normal crossing

divisor the coisotropicCk can still be constructed using Ruan’s method described

above. ThusCk is a torus bundle over a symplectic quotientDk, which is not neces-

sarily uniruled.

On the technical side of things, themonotonicity assumptionmakes the pearl com-

plexmachinery of Biran-Cornea (see [BC07]) available, which is the formulation of

Floer theory used in the proof of Theorem 1.6.

Minimal Maslov number: The minimal Maslov number of a coisotropic submani-

fold is defined as the minimal Maslov number of the associated Lagrangian graph

LC (seeDefinition 3.5). I recall the definition of theminimalMaslov number of a La-

grangian in Equation 3.3 and compute it for the Lagrangian graph of the generalised

Hopf fibration, Example 1.1 above, in Example 3.6. Roughly speaking theMaslov in-

dexofadiscwithboundaryonaLagrangianmeasures the rotationof theLagrangian
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tangent planes around the boundary of the disc. The minimal Maslov number of a

monotone LagrangianL is then the minimal Maslov index of all discs with bound-

ary onL. It is positive if such a disc exists and set to “∞” otherwise.

The assumption on the minimal Maslov number is necessary. To see this, assume

the theorem holds and that the codimension of C is n, so that C is a Lagrangian

torusTn. Now there certainly cannot exists any non-constant holomorphic sphere

in the symplectic quotientB, which is a point. Bydefinition,LC is diffeomorphic to

T2n, andthereforecannotbeamonotone,displaceableLagrangiantorusofminimal

Maslovnumberat least three. Thus,assumingLC ismonotoneanddisplaceable, the

assumptionthatNLC
isat least threemust fail. IfLC isorientable, it followsthat the

minimalMaslov numberNLC
is equal to two, since it is strictly positive by the dis-

placeability assumption. This is in accordancewith theAudin conjecture formono-

tone tori being true, see for example [Dam12]. In fact, the assumption thatNLC
is

at least three is crucial in the proof of Theorem 1.7 below. I would like to point out

that I discovered that part of theproof ofTheorem1.7 is similar toBuhovsky’s proof

of the Audin conjecture formonotone tori in [Buh10] after proving the theorem.

It is worth pointing out that Ziltener defines a Maslov index for coisotropic sub-

manifolds in [Zil09], which agrees with the definition put forward in [Gin11]. Oh

also defines a coisotropic Maslov index in [Oh03]. It would have been also possi-

ble to phrase our assumption as a requirement on the coisotropicMaslov index and

it would be interesting to relate the Maslov index of LC to the coisotropic Maslov

index.

Displaceability: A submanifold N is Hamiltonian displaceable if there exists a

Hamiltonian symplectomorphismψ such thatψ(N)∩N = ∅. I recall thenotionof

(Hamiltonian) displaceability in Definition 3.7 and begin to explore the relation of

displaceability ofC andofLC in Section 3.1.2. The proof presented in this thesis re-

liesonthepropertyofLC toboundnon-trivialholomorphicdiscs. Assumingtheex-

istenceof suchdiscs is, despitebeing sufficient, somewhat artificial. Amorenatural

geometric condition which implies the existence of many non-constant holomor-

phic discs with boundary onLC is displaceability ofC . Notice that it would also be
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sufficient to assume displaceability of the Lagrangian LC , which is implied by dis-

placeability ofC (see Lemma 3.11). For the proof, themost important consequence

of displaceability of C is the vanishing of Floer homology of LC , which I prove in

Lemma 4.23. Notice that the coisotropic submanifolds in Examples 1.1, 1.2 the sub-

example of Example 1.4 obtained by choosing d1 = 1, are submanifolds ofCn,Ckn

andCn−1 respectively, where every submanifold is displaceable. Generally speak-

ing, if one considers coisotropics inW = R2N for someN one can drop the dis-

placeability assumption.

Stability: I examine the stability condition on the coisotropicC , which was intro-

ducedbyBolle in [Bol98], indetail inSection2.3. A stablecoisotropic submanifoldC

(seeDefinitions2.11 and2.13) is thestraightforwardgeneralisationofastablehyper-

surface(seeLemma2.1 in[CV10] for thedefinition)tohighercodimension. Astable

coisotropic submanifold of codimension 1 is a stable hypersurface. Roughly speak-

ing stability means in this context that the characteristic foliationF ofC remains

unchanged under small perturbations in the normal directions of the coisotropic.

Imposing the stability condition on C has several important consequences. First,

it implies that C has a trivial normal bundle and second that there exists a model

neighbourhoodU ofC , which is symplectomorphic toBk
ϵ0 ×C , whereBk

ϵ0 denotes

the ball of radius ϵ0 inRk, andk is the codimension ofC inW . The coisotropic sub-

manifoldC is embeddedas{0}×C in thisneighbourhoodand the symplectic form

is given explicitly by 2.6. Moreover the characteristic foliation Fp of {p} × C is

conjugate via a family of diffeomorphisms smoothly depending on the coordinate

p inBk
ϵ to the foliationF of {0} × C . I prove existence of such a neighbourhood

in Lemma 2.18 and call it a Bolle neighbourhood in tribute to Bolle who established

its existence in Section 5 of [Bol98]. By the Arnold-Liouville Theorem (see Section

10 of [Arn89]), a stable Lagrangian is necessarily a torus. As a straightforward ap-

plication of this theorem, I prove in Proposition 2.22 that the closed leaves of a sta-

ble coisotropic are k-dimensional tori. In particular, the assertion of the theorem

thatfibred, stablecoisotropicsarethetotalspacesoftorusbundlesfollowsfromthis

proposition.
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As one might expect, Examples 1.1, 1.3 and 1.4 are stable coisotropic submanifolds.

I explain this in more detail in Section 2.3. Example 1.2 illustrates that the stabil-

ity condition is not necessary, sinceU(k) is not a torus, but the symplectic quotient

G(k, n,C) is uniruled. If onechooses amaximal torus inU(k)andconsiders theac-

tionof thismaximal torus, oneobtains thepartial flag variety as the symplectic quo-

tient, which is also uniruled. I spell this out inExample 2.25 in Section 2.3. Theorem

7.5 of Usher’s paper [Ush11] also suggests that one could hope to relax the stabil-

ity assumption onC , to the assumption that the there exists a Riemannian metric

which renders the leaves totally geodesic. The proof presented in this thesis how-

ever relies heavily on the stability assumption.

Before giving the summary of the proof of Theorem 1.6, I would like to remark that

the assertion of the theorem is different from other results on uniruling in the fol-

lowing sense: Being symplectically uniruledmeans that there exists a non-vanishing

Gromov-Witten invariant. Proving this forBwould imply the geometric statement

about the existence of non-trivial holomorphic spheres through any given point in

B fromtheassertionofTheorem1.6. In this thesis, Iderive thegeometric statement

directly, hence the term geometrically uniruled. It would be very interesting to com-

pute theGromov-Witten invariantsofB and to relate themto theFukaya-Floer ale-

bgra of the LagrangianLC .

1.3 Summary of the proof of themain theorem

The main obstruction to answering questions like Question 1 is the lack of mathe-

matical machinery which is tailored to study coisotropic submanifolds. I therefore

chose the strategy below for the proof:

(I) Assign a Lagrangian submanifoldLC and a hypersurfaceHC toC . BothLC

andHC capture some relevant parts of the geometry and topology ofC but

both have the advantage of belonging to classes of submanifolds of symplec-

ticmanifolds forwhichmoremathematicalmachinery is available.
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(II) Adapt existing theories for Lagrangians and hypersurfaces toLC andHC in

order to make the theories incorporate the structures of C which are cap-

tured inLC andHC .

(III) Apply standard techniques to LC andHC and thereby extract information

aboutC .

More concretely, Chapter 3 is dedicated to accomplishing (I): I show in Section

3.1 how to assign a Lagrangian graph LC to a given fibred coisotropic submani-

fold C ⊂ W . The Lagrangian graph is defined as a subset of the twisted product,

(W ×W,−ω × ω), of (W,ω) by

(1.2) LC = {(x, y) ∈ C × C | πB(x) = πB(y)}.

I prove in Lemma 3.2 that LC is a Lagrangian submanifold of (W × W,−ω × ω).

In a nutshell this follows from the fact thatω vanishes along the leaves and that one

uses opposite signs in both factors. More abstractly,LC can be described as a fibre

productC×BC ofCwith itselfoverB (seeDefinition3.1). Alsoobserve thatLC is a

special caseof aLagrangiancorrespondence. Themost important featureof this as-

signment is thatLC inherits a fibre bundle structure from the fibred coisotropicC .

I demonstrate this in Lemma 3.2. Moreover, I explain in Section 3.1.2 how the self

intersection theory ofLC as a monotone Lagrangian, which can be studied via La-

grangian Floer theory, is related to the self intersection theory ofC . Thus, as a con-

sequenceof assigningLC toC , LagrangianFloer theory and its algebraicmachinery

become available to study fibred coisotropic submanifoldsC .

InSection 3.2 I assigna stablehypersurfaceHC toC . Moreprecisely, I showthat for

every ϵ < ϵ0 the hypersurface

HC,ϵ := Sk−1
ϵ × C

contained in theBolleneighbourhoodof a stable coisotropic submanifoldC is a sta-

blehypersurface. Themost important featureof thisassignment is that theReebdy-
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namics ofHC correspond to the generalised Reeb dynamics on the (isotropic) leaves

F of the coisotropic submanifoldC in an appropriate sense (see Definition 3.16 for

details). The Reeb dynamics on stable hypersurfaces are intimately related to the

asymptotics of holomorphic curves in the symplectisations of stable hypersurfaces

(see for example [Hof93] or [Abb14]). Roughly speaking, by studying C through

HC , one extends this relation to stable coisotropic submanifolds. Thus assigning

HC to a stable coisotropic C makes techniques from symplectic field theory (see

[EGH00]), and inparticularneck stretching available tostudystablecoisotropic sub-

manifolds.

With these assignments in place, Theorem 1.6 is proved in three main steps. The

first twosteps areprovingTheorem1.7, statedbelow, inChapter 4 andTheorem1.8,

stated furtherbelow, inChapter5. Theproofsof these theoremsaresubdivided into

adapting theories to LC andHC respectively, i.e. (II) and then applying standard

techniques, i.e. (III). The last step in the proof of Theorem 1.6 is a simple argument

which I present inChapter 6.

Theorem 1.7.

LetC be a fibred, stable coisotropic submanifold of a symplecticmanifold (W,ω). Assume

that the Lagrangian graphLC in the product (W ×W,−ω × ω) is monotone and has

minimal Maslov numberNLC
at least three. Let b be any point in the symplectic quotient

B ofC .

IfLC is displaceable, then there exist:

(M) Analmost fibredMorse functionf onLC such that the unique globalminimumx of

f onLC is contained inf−1
B (0)andprojects to (b, b) ∈ ∆B thediagonal inB×B.

(E) A constantE0 > 0, such that for allω-compatible almost complex structures J on

W , there exists at least one pearly trajectory P of energy at mostE0 and with the

following property:

(P) The pearly trajectoryP connects a critical pointy off contained inf−1
B ([1,∞)) to

theminimumx of f .
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Analmost fibredMorse functionf is aMorse function,which isconstructedby liftinga

Morse function fB fromB toLC andperturbing it by a smallMorse function fF on

a typical fibre (seeDefinition 4.6 for details). I recall the definitionof a pearly trajec-

tory inDefinitions 4.12 and4.14 respectively. Roughly speaking, apearly trajectory is

aconfigurationofholomorphicdiscswhicharearrangedalonggradient flowlinesof

Morse functions onLC . Pearly trajectories play a key role in defining the algebraic

structures on the pearl complex in [BC07], where this complex is used to define the

Lagrangianquantumcohomology ringof amonotoneLagrangianL. This cohomol-

ogy theory is isomorphic to the self-Floer cohomology of L via the PSS map. The

energy of a pearly trajectory is the symplectic area associated to thehomology class of

the pearly trajectory (seeDefinition 4.16) and∆B denotes the diagonal inB ×B.

To prove Theorem 1.7 above I first I adapt the construction of the pearl complex to

make it incorporate the fibre bundle structure ofLC (and thus ofC) in Sections 4.2

and 4.3. As a result of the adapation, the algebraic structures defined on the pearl

complex “see” information contained in the fibred coisotropicC . Then, in Section

4.4, Iapplythealgebraicstructuresdefinedonthisalmost fibredpearl complex tocarry

out the proof of Theorem 1.7, which I nowdescribe briefly.

The displaceability of LC implies the existence of at least one pearly trajectory P

ending in the unique minimum x of an almost fibred Morse function f on LC . I

prove this in Lemma 4.23. By the assumption that C is fibred, LC is a torus fibra-

tion (seeProposition 3.2). Inparticular the fibre over theminimumx is a2k dimen-

sional torusT2k
x = f−1

B (0). The set of critical points of f generates the pearl com-

plex. It can be partitioned into the set of critical points contained in f−1
B (0) and in

f−1
B ([1,∞)) by an appropriate choice of fB .

To prove Theorem 1.7 one needs to eliminate the possibility that all pearly trajec-

tories P ending in the minimum x are contained entirely in the torus fibre, T2k
x ,

over theminimum. First of all notice that if the minimal Maslov number is at least

2k + 2, this is impossible as the pearly differential then counts pearly trajectories

which connect critical points of indexdifference at least2k+1. Thusnopearly tra-

jectoryending in theminimumcanemanate fromacriticalpoint in the fibreT2k
x and
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the theorem follows.

To achieve the improvement that the assumption of Minimal Maslov number at

least three suffices one argues as follows: If there exists a pearly trajectory, begin-

ning inf−1
B ([1,∞)), theTheoremfollows. Ifnot, allpearly trajectoriesending inthe

minimumemanate fromcriticalpointsy off whicharecontained inT2k
x = f−1

B (0) .

Everysuchcriticalpointy canbegeneratedassumsof linearcombinationsofMorse

cup products x1 ⋆0 · · · ⋆0 xK of index 1 critical points x1, . . . , xK in the fibreT2k
x

(seeDefinition4.22). One thenanalysespearly trajectories arising from linear com-

binations of quantumdeformationsx1 ⋆ · · · ⋆ xK of theMorse cup products of the

xi, which were used to generate y. The assumption that the minimal Maslov num-

ber is at least three then implies that there exists apearly trajectorywhichemanates

froma critical point y′ contained in f−1
B [1,∞) and satisfies the properties stated in

the assertion of Theorem 1.7 (see Porposition 4.24). Amore detailed outline of the

proof is given at the beginning of Chapter 4.

Observe that Theorem 1.7 asserts nothing about the the holomorphic discs u :

(D, ∂D) → (W,LC) which contribute to the pearly trajectory P . For example,

the interior of these holomorphic discs is not necessarily contained in LC or even

in aneighbourhoodofLC and therefore, a priori, cannotbeprojected toB. Inorder

to obtainmore information about the holomorphic discs contributing toP , I adapt

andapplytechniquesfromsymplectic fieldtheory. Moreprecisely, IproveTheorem

1.8 below.

Theorem 1.8.

LetC be a fibred, stable coisotropic submanifold of a symplecticmanifold (W,ω). Assume

that the Lagrangian graphLC in the product (W ×W,−ω × ω) is monotone and has

minimal Maslov numberNLC
at least three. Let b be any point in the symplectic quotient

B ofC .

IfLC is displaceable, then there exist:

(M) Analmost fibredMorse functionf onLC such that the unique globalminimumx of

26



f onLC is contained in f−1
B (0) and projects to (b, b) ∈ ∆B.

(E) A constantE0 > 0, such that for allωB-compatible almost complex structuresJB

onB, there exists at least one punctured pearly trajectory pP of energy at mostE0

andwith the following properties:

(pP1) The punctured pearly trajectory pP connects a critical point y of f contained in

f−1
B ([1,∞) to theminimumx of f .

(pP2) The punctured pearly trajectory pP contains at least one punctured, non-trivial

holomorphic curve

ũ : (S, ∂S, j)→ (W̃C × W̃C , LC ,−J̃C × J̃C)

with the following properties:

(S1) The intersection ũ(∂S)∩f−1
B (0)and the intersection ũ(∂S)∩f−1

B ((0,∞))

are both non-empty.

(S2) If ũ is unboundednear an interior puncture, then ũ is asymptotic to a cylinder

over a generalised Reeb orbit onC when approaching the puncture.

(S3) All other boundary and interior punctures of ũ are removable.

Here (S, ∂S) denotes a nodal, stable connected Riemann surface with nonempty

boundary of genus zero.

A punctured pearly trajectory is a pearly trajectory in which the domains of the con-

tributing holomorphic discs are allowed to degenerate to nodal, connected, stable,

genus zero Riemann surfaces (see Definitions 5.10, 5.11 and 5.12) with nonempty

boundary. ThemanifoldW̃C is the symplectic cobordism(seeDefinition5.4)obtained

as the symplectic completion of the Bolle neighbourhood ofC and diffeomorphic to

Rk × C . The almost complex structure J̃C is the limit of a sequence (Jτ
S)τ≥0 of al-

most complex structures used in a neck-stretching procedure on W̃C . These almost

complex structures Jτ
S are adjusted to the stable coisotropic (C,S)(see Definition
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5.5). In particular, they render the projections toB, and the symplectic quotient of

HC holomorphic and are radially invariant inRk (see Sections 5.3 and 5.5.3 for de-

tails).

Roughly speaking the proof of Theorem 5.1 is a translation of the ideas of the com-

pactness proof in symplectic field theory from [Bou+03] to the present setting.

Recall that, as a consequence of the stability requirement onC , there exists a Bolle

neighbourhoodU ofC symplectomorphic via amapψ toBk
ϵ0 × C . The symplectic

form on U is given explicitly by Equation 2.6. By looking atC from a Hamiltonian

groupactionperspective, theboundaryofU canbe identifiedwith the stablehyper-

surfaceHC (see Section 3.2.2). By construction, there is a one to one correspon-

denceof the set of generalisedReeb trajectoriesG onC and the set ofReeb trajecto-

riesRonHC (seeProposition3.25). ThecoisotropicsubmanifoldC getsembedded

intoU as {0} × C . Thus one can interpretHC as a stable hypersurface separating

W into symplectic cobordisms (seeDefinition 5.4).

It is a common technique in symplectic and contact topology to “stretch the neck”

around a stable hypersurfaceH in order to obtain information about holomorphic

curves inthemanifoldW (see forexample[EGH00], [Bou+03], [CM05]andtheref-

erences therein). “Theneck” refers to a neighbourhooddiffeomorphic to (−ϵ, ϵ)×

H , which gets “stretched” toR × H . Stretching the neck is also called “splitting”

as it results in disjoint, non-compact symplectic cobordisms. In the present case

these disjoint components are W̃C
∼= Rk ×C , the symplectic completionof theBolle

neighbourhood U , W̃H
∼= R × HC , called the symplectization ofHC and W̃R, the

symplectic completion ofW \ U . As a result of splitting, a J-holomorphic curve

u : S → W with domain a Riemann surfaceS which satisfies certain assumptions,

defines (see again [Bou+03]), a punctured J̃C-holomorphic curve ũC in W̃C , where

the domain of ũC is a nodal Riemann surface.

As alluded to above, the almost complex structure J̃S is a limit of a sequence of al-

most complex structures Jτ
S for τ > 0 ∈ Rwhich are translationally invariant on

the longer and longer necks (−τ, τ) × H . These specific families of almost com-
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plexstructuresplayakeyrole inobtainingmore informationabouttheholomorphic

curves via splitting themanifold.

I show in Section 5.3 how to construct such a family of almost complex structures

JS . The correspondence of the generalised Reeb trajectories G onC and the Reeb

trajectoriesR onHC , now implies that if the Rk component of ũC is unbounded

near a puncture, ũC is asymptotic to a cylinder over a generalised Reeb orbit onC .

I explain this in Proposition 5.14. Themain assumptions on the holomorphic curve

u which are needed to ensure this behaviour are finiteness of energy (see Section

5.5.2), andthat, if thedomainofuhasnon-emptyboundary∂S,umapstheboundary

to a Lagrangian submanifoldL ofW i.e. u(∂S) ⊂ L.

Set

W− ×W+ := (W ×W,−ω × ω,−J × J).

To prove Theorem 5.1 one uses this apparatus as follows: Theorem 1.7 implies that

there exists a pearly trajectory which, by definition of a pearly trajectory, contains

at least one non-trivial (−J × J)-holomorphic disc

u = (u−, u+) : (D, ∂D) −→ (W− ×W+, LC)

The component u− mapping to the first factor ofW ×W satisfies u−(∂D) ⊂ C .

If the codimension of C is not n, C is not Lagrangian, and thus the results from

[Bou+03] donot apply directly tou− and likewise donot apply directly tou+. How-

ever, u = (u−, u+) does satisfy a Lagrangian boundary condition in the product

manifoldW × W . Since LC is a subset of C × C it is embedded as a subset of

ψ({0} × C × {0} × C) ⊂ U × U inW ×W . Then “splitting”W− ×W+ along

HC × HC by splitting both factorsW− andW+ alongHC using family of almost

complex structures (−Jτ
S × Jτ

S), gives rise to a sequence (Pτ )τ≥0 of pearly trajec-

tories. This sequence has uniformly bounded energy by construction. To prove the

theorem it remains to show that there exists a subsequence of this sequence which

converges to a punctured pearly trajectory pP with the properties (pP1) and (pP2)

stated in the assertion of Theorem 5.1.
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In a nutshell, the sequence of pearly trajectories (Pτ )τ≥0 converges to a punctured

pearly trajectory pP because the splitting is happening “far away” from LC . This

allows to view each non-trivial holomormpic map uin for in ∈ {1, . . . ,Kn} with

Kn ∈ Z≥1 contributing to the sequence of pearly trajectories as either a single

(−Jn
S × Jn

S )-holomorphic map, satisfying Lagrangian boundary condition in the

compact parts of W̃C andas apair (u−, u+)of a (−Jn
S )- and aJn

S -holomorphicmap

in thenon-compactpart ofW̃C . The existenceof apuncturedpearly trajectorywith

theproperties (pP1) and (pP2) thenbasically follows fromapplyingGromov’s com-

pactness Theorem in the compact parts (see for example [Fra08]) and by applying

the compactness results from [Bou+03] in the non-compact parts. As a result, the

limit object pP contains a holomorphic curvewith domainS′ a nodal Riemann sur-

face. Theproperties (S1)-(S3)of theholomorphiccurve ũ followfromthe fibrebun-

dlestructureofLC byastraightforwardargument,whichIgiveat theveryendof the

proof of Theorem 1.8. Amore detailed outline of the proof is given in Section 5.1 of

Chapter 5where I present the proof of the theorem.

Most of the effort of proving Theorem 1.8 lies in adapting the setup of symplectic

field theory to the present setting. A priori performing the k-dimensional analogue

ofaneck-stretcharoundacodimensionk-coisotropiccould lead todifferent results

than neck stretching around the associated stable hypersurface HC . It turns out

that the two approaches yield the same result (see Remark 5.9).Thus the machin-

ery developed here allows to use neck stretching techniques for stable coisotropics

C via neck stretching around the stable hypersurfaceHC

Given these two results, the final step of proving Theorem 1.6 is the following argu-

ment: Theorem 1.8 provides, by projection to the first and second factor of the tar-

get−W̃C × W̃C , a pair (ũ−, ũ+) of a punctured anti-holomorphic and a punctured

holomorphic discwhich havewell defined projections toC andB. All punctures of

(ũ−, ũ+) are either removable by (S3)or approach apair of generalisedReeborbits

contained in a pair of leaves of the characteristic foliationF ×F . SinceC is fibred,

the leaves of the characteristic foliation coincide the fibres of the fibre bundle, and

thus generalised Reeb orbits project to points in the symplectic quotientB. Thus
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after projection to the compact spaceB ×B, the pair (πB ◦ ũ−, πB ◦ ũ+)defines a

pair of an honest (i.e. without punctures) antiholomorphicu−B and an honest holo-

morphic disc u+B , by the removal of singularities theorem. By the definition of LC

as a fibre product overB (recall Equation 1.2 above) and the Lagrangian boundary

condition on ũ, the discs u−B and u+B agree along their boundaries in∆B. Thus one

may glue them to an (i, JB)-holomorphic sphere v : C ∪ {∞} → B, which passes

trough a given point b ∈ B.

1.4 Previous and related researchoncoisotropic subman-

ifolds

Coisotropics encompass classes of submanifolds which have been studied exten-

sively in symplectic topology: Lagrangians, hypersurfaces and of course symplectic

manifolds themselves. Floer’s proof of the Arnold conjecture by developing an in-

tersection theory for Lagrangian submanifolds, see for example [Hof+95], inspired

an abundance of research in symplectic topology. Likewise, Viterbo’s [Vit87] and

Hofer’s [Hof93]proofsof theWeinsteinconjecturehave inspiredplentyof research

on the dynamics of contact and stable hypersurfaces. Consequently, many ques-

tions about coisotropics which have been addressed in the past have their origins

either in questions about symplecticmanifolds, Lagrangians or hypersurfaces. Put

differently, coisotropic submanifolds provide a general framework for addressing

many interesting questions in symplectic topology. Consider for example the fol-

lowing:

Question 2.

Given a symplectomorphismψ of a symplecticmanifoldW and a coisotropic submanifold

C , do there exist leaf-wise fixed points ofψ onC?
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Recall the definition of a leaf-wise fixed point. A point x in a coisotropic subman-

ifold C is a leaf-wise fixed point of a (Hamiltonian) symplectomorphism ψ ofW if

ψ(x) lies in the leaf Fx through x, i.e. ψ(x) ∈ Fx. In the case where C is the en-

tire symplecticmanifoldW , a leaf-wise fixed point is a fixed point ofψ. Thus in the

caseC = W , Question 2 above is about fixed points of symplectomorphisms and

thus related to the Arnold conjecture. IfC is a LagrangianL a leaf-wise fixed point

is an intersection point ofL andψ(L) and in this case Question 2 is about the self-

intersection properties ofL. Amore detailed exposition of these correspondences

is given in Lemma 3.9 andRemark 3.10.

Already in 1978Moser proved the following result in [Mos78]: given an embedding

i of a compact coisotropic submanifoldC into a simply connected, exact symplec-

ticmanifoldW . If the composition of a differentiable, exact symplecticmappingψ

with i is sufficientlyC1 close to i, thenψ ◦ ihas at least two leaf-wise fixedpointson

C . TheseexistenceresultswerethenextendedbyBanyaga in[Ban80]tonon-simply

connected symplectic manifolds even before Gromov’s “founding” paper [Gro85]

and the advent ofmodern symplectic geometry.

Dragnev, Ziltener, Kang andGürel independently proved the existence of leaf-wise

fixed points in more general settings using Floer theoretic methods in [Dra08],

[Zil10], [Zil14], [Kan13][Gür10]respectively. Themainassumptiononthesymplec-

tomorphism ψ is that the Hofer norm of ψ does not exceed a symplectic capacity

associated toC . Ziltener explains in footnote 2 of [Zil14] how the Hofer norm can

be compared to theC1-norm. The assumptions onC andW vary. For example Zil-

tener assumes in [Zil10] thatW is geometrically bounded and thatC is closed and

fibred. In [Kan13], Kang assumesW to be convex at infinity andC to be closed and

of restricted contact type. To illustrate the kind of results that were proved, I state

Dragnev’s result from [Dra08]: A symplectomorphisms ψ of Rn with its standard

symplectic structure, has a leaf-wise fixed point on a compact, contact coisotropic

(seeDefinition 2.14), provided theHofer normofψ is smaller than the Floer-Hofer

capacity ofC .

Recently, Ziltener proved in [Zil14], that, if the inclusion of a closed coisotropic
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C into (W,ω) is not necessarily contact, then a Hamiltonian symplectomorphism,

which is close to the inclusion in an appropriate sense in theC0-norm, has at least

one leaf-wise fixed point it . Ginzburg and Gürel show in [GG15] that it is not suf-

ficient to assume closeness to the identity in the Hofer norm if one drops the con-

tact conditiononC . It seems that either closeness inanappropriateC0 normor the

contactconditiononC are indispensableassumptions for theexistenceof leaf-wise

fixedpoints. Albers andFrauenfelder have also studiedQuestion 2 in the context of

stable and contact hypersurfaces using Rabinowitz Floer theory. See for example

[AF12].

A simpler, yet closely related question, originating in the rigidity results for La-

grangian intersections obtained byChekanov in [Che98], is the following:

Question 3.

Is the displacement energy of a coisotropic submanifold strictly positive?

The displacement energy of a submanifold of a symplectic manifold is, roughly

speaking, the infimum over the Hofer norms of all Hamiltonian symplectomor-

phism displacing the submanifold. For a precise definition see for example page

3 of [Ker08]. Ginzburg in his paper [Gin07], which also provides an overview on

the theory of coisotropic intersections, Ziltener [SZ12] and Kerman in [Ker08] ob-

tained affirmative answers toQuestion 3. Again their assumptions vary. For exam-

pleGinzburg assumes thatW is either symplectically aspherical and closed orwide

andgeometricallybounded, and thatC is closedandstable. Themostgeneral result

in thisdirection isTheorem1.6ofUsher’spaper [Ush11],which implies inparticular

(Corollary 1.7 of [Ush11]) that any closed stable coisotropic submanifold of a Stein

manifold has positive displacement energy.

Questions 2 above has its origin in studying symplectic manifolds, or through

Floer’s work, in studying Lagrangians. Question 3 originates in the study of La-

grangian submanifolds. A question originating in the interest on the dynamics of
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hypersurfaces, which can in fact be seen as a generalisation of the Weinstein con-

jecture to higher codimension k > 1 is the following:

Question 4.

Do there exist loops, which are non-contractible in the leaves of the characteristic foliation

of a coisotropic (andwhich bound positive symplectic energy)?

Recall thatBolle, inhis 1997paper [Bol98], introduced thecontact andstability con-

dition on coisotropic submanifolds. Using symplectic capacities, he gave a positive

answer toQuestion 4 for contact coisotropics inR2n. The Floer theoreticmethods

developed in [Gin07], [Kan13], [Ush11], and used to answer Questions 3 and 2 are

also applicable to adress Question 4. The most general result for stable coisotrop-

ics follows fromTheorem7.5 of [Ush11]: if a closed, stable coisotropic submanifold

C of a closed symplectic (or Stein) manifoldW is displaceable, then there exists a

loop in a leaf F which is a non-contractible in F , bounds positive symplectic area

and is contractible inW . Notice the converse implication of this result: If there are

no non-contractible loops tangent to the foliationF ofC , bounding positive sym-

plectic area and contractible inW , thenC is non-displaceable.

Another interesting direction of research on the rigidity properties of coisotropic

submanifolds has been introduced by Humilière, Leclercq and Seyfaddini. In

[HLS15] theyprovethatpreviouslyobservedC0-rigidityresults forLagrangiansand

hypersurfaces are manifestations of the C0-ridigity of coisotropic submanifolds:

the image of a coisotropic submanifoldC under a symplectic homeomorphisms θ

is a coisotropic θ(C), given the image ofC under θ is smooth. If this is the case, also

the image of the characteristic foliationF ofC is smooth under θ.

The phenomena described above can be seen a generalisation of the rigidity of La-

grangian intersections and the fact that a Lagrangian which is displaceable bounds

anon-trivial holomorphic disc. In the codimensionn case the fact that Lagrangians

have non-zero displacement energy was proved by Chekanov in [Che98]. A dis-
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placeable Lagrangian bounds a non-trivial holomorphic disc by Lemma 4.23. For a

displaceable coisotropic, the leaves of the characteristic foliation, play the role of

the Lagrangian. The rigidity of Lagrangian intersections can be interpreted as one

of the underlying reasons why Floer could prove the Arnold conjecture by looking

at the self intersection properties of Lagrangians. That coisotropics exhibit similar

rigidity properties gives hope that an appropriate “coisotropic Arnold conjecture”

could be formulated. In fact, Ziltener formulates a coisotropic Arnol’d-Givental

conjecture and proves a version of it for fibred coisotropic submanifolds in [Zil10].

Moreover this hope is supported by theWork ofOh,Ginzburg andZiltenerwhode-

fine coisotropicMaslov indices in [Oh03], [Gin11] and [Zil09]. Ginzburg in [Bat13]

andBatoréo [Bat13] showthat the coisotropicMaslov index satisfies similar rigidity

properties as the LagrangianMaslov index.

Interestingly this phenomenon can also be seen as a generalisation of the non-

triviality of the displacement energy of stable hypersurfaces. In the hypersurface

case, thenon-trivialityof thedisplacementenergy followsfromthenon-degeneracy

of the Hofer norm as observed by Ginzburg in [Gin07] (page 2). The observation

that there exists a non-trivial loop bounding positive symplectic energy in the char-

acteristic foliation of a displaceable coisotropic has interesting implications. In the

case whereC is a contact hypersurface, displaceability ofC thus implies theWein-

stein conjecture forC . This gives hope that an appropriate “coisotropicWeinstein

conjecture” could be formulated.

The generality of coisotropics now allows to link the two conjectures! Hence, one

could try to prove a coisotropic Arnold conjecture using methods which were ap-

plied to prove theWeinstein conjecture, and one could try to prove the coisotropic

Weinstein conjecture using Floer-theoretic methods which were originally devel-

oped to prove the Arnold conjecture.

Ultimately one could therefore be tempted to formulate the following (very specu-

lative!) conjecture which would subsume the Arnold, the Arnold-Givental and the

Weinstein conjecture in some cases.
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Conjecture (very speculative).

Given aHamiltonian symplectomorphismψ and a closed and stable coisotropic submani-

foldC of a symplecticmanifold (W,ω).

(A-W) Eitherψ has a number of leaf-wise fixed points which is bounded below by a num-

ber depending only on the topology ofC or, if not, there exists a non-trivial loop in

the characteristic foliationF ofC which bounds non-trivial symplectic energy.

Notice that the statment about the existence of leaf-wise fixed points is the Arnold

conjecture if C = W and the Arnold-Givental conjecture if C = L, by taking

the sum of the Betti numbers as a lower bounds. Also notice that the statement

about the existence of a non-trivial loop, coincides with the Weinstein conjecture

if theW = R2n and the codimension ofC is one. In the codimension n case, this

statement follows from the Arnold-Liouville theorem, since stable codimensionn-

coisotropic are necessarily Lagrangian tori. In the codimension 0 case the leaves

are the points ofW , and thus the question about the existence of non-contractible

loops does notmake sense.

Besides providing a general framework to investigating these conjectures,

coisotropics are also conjectured to play a role in homological mirror symme-

try. More precisely, in [KO03], Kapustin and Orlov postulated the integration of

objects associated tocoisotropics into theFukayacategoryas anecessary condition

to establish homological mirror symmetry in the context of certain Hyperkähler

four-manifolds. They indicate that for thesemanifolds theK-theory of the Fukaya

category is smaller (in an appropriate sense) than the K-theory of the derived

category of the mirror and therefore the Fukaya category must be enlarged in

someway. They suggest usingD-branes associated to coisotropics. Following this

paper, in an attempt to understand the space of endomorphisms of coisotropic

submanifolds, viewed as objects of a, yet to define, enlarged Fukaya category, the

following question has been investigated:
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Question 5.

What is the structure of the space of deformations of coisotropics?

Infact, thefirstresultwhichcanbeseenasaddressingthisquestion,wasobtainedby

Gotay in [Got82] as early as 1982 and thus around thirty years before [KO03]. Gotay

provedthatallcoisotropicembeddingsofpre-symplecticmanifolds intosymplectic

manifolds are equivalent up to symplectomorphism.

Recall that thespaceof infinitesimaldeformationsofaLagrangianLmoduloHamil-

tonian equivalence is diffeomorphic to a neighbourhood of 0 inH1(L,R). In sharp

contrast, Oh and Park explain in [OP05] that for general coisotropics the space of

deformations is “non-commutative and fully non-linear”, has the structure of an

L∞ algebra and is, in general, obstructed. Ruan demonstrates in [Rua05] that if the

coisotropic is fibred, its space of deformations modulo Hamiltonian equivalence

is unobstructed and a smooth finite dimensional manifold, which is in accordance

with the fact that it is possible to assign the Lagrangian graphLC toC in this case.

Beyond this conjectured role coisotropic submanifolds play in mirror symmetry,

coisotropics occur in related fields of (Quantum-)Physics: Dirac in [Dir67] refers

to coisotropics as the configuration space of “the general Hamiltonian theory” of

quantummechanics. To go intomore detail about themore recent physics publica-

tions on coisotropic submanifolds of Poissonmanifolds is beyond the scope of this

introduction.

To conclude this introductory chapter, I give a brief outline of the thesis below.

1.5 Outline of the thesis

In Chapter 2, I introduce coisotropic submanifolds in detail . I give the defini-

tions of fibred and stable coisotropic submanifolds and derive some first conse-

quences of these assumptions. I illustrate some important phenomena,which arise
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for coisotropic submanifolds by examples and expand on the examples given in the

introduction. The thesis is then structured according to the goal of accomplishing

steps (I), (II) and (III) stated at the beginning of Section 1.3 subsequently which

serve to proveTheorem 1.6.

I assign theLagrangianLC andthehypersurfaceHC toC inChapter3. InSection3.1

I introducetheLagrangiangraphLC ofafibredCoisotropicC indetail. Inparticular,

Iexplainhowthe intersectiontheoryofC is relatedtothe intersectiontheoryofLC .

In Section 3.2 I construct the stable hypersurfaceHC for a given stable coisotropic

C . Moreover I show that the generalised Reeb dynamics onC correspond to to the

Reeb dynamics onHC . Thus, in Chapter 3, I assign to a stable, fibred coisotropic a

Lagrangian submanifoldLC and a hypersurfaceHC which both capture some rele-

vant parts of the geometry ofC . The advantage ofLC andHC is that they belong to

classes of submanifolds, forwhichmoremathematicalmachinery is available.

Chapter 4 is devoted to proving theorem 1.7. This is done by first adapting the pearl

complexmachinerydevelopedbyBiranandCornea, inorder tomakeuseof the fibre

bundle structureonC andLC and thenapplying themachinery, i.e. deriving results

aboutC by utilising the algebraic structures at hand.

Chapter 5 is dedicated to the proof of Theorem 1.8. Most of the effort in proving the

theorem lies in adapting ideas from symplectic field theory to the present setting.

The application of the tools I develop is then a straightforward adaptation of the

bubbling-off analysis carried out in proof of the compactness theorem in [Bou+03]

to the present setting. I also briefly outline how themachinery developed could be

used to formulate and prove a coisotropic SFT compactness theorem.

Finally, inChapter 6, I explain the small final step of the proof of Theorem 1.6 in de-

tail.
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Chapter 2

Introduction to coisotropic

submanifolds

2.1 Coisotropic submanifolds . . . . . . . . . . . . . . . . . . . 40

2.2 Fibredness of coisotropic submanifolds . . . . . . . . . . . 46

2.3 Stability of coisotropic submanifolds . . . . . . . . . . . . . 49

2.4 Dynamics on coisotropics submanifolds and Hamiltonian

group actions . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Standing assumptions and conventions: I work in the category of smooth

manifolds unless stated otherwise. The main object of study of this thesis are

coisotropic submanifolds C of symplectic manifolds (W,ω). I will often abbrevi-

ate the term“coisotropic submanifold(s)of thesymplecticmanifold (W,ω)” to just

“coisotropic(s)”,mimicking the commonpracticeof referring to a “Lagrangian” in-

stead of referring to a “Lagrangian submanifoldf of (W,ω)”. I will assume through-

out that the symplecticmanifold (W,ω) is real2n-dimensional, and that coisotrop-

icsC have codimension k ∈ {0, . . . , n} and are thus of dimension 2n − k. More-

over assume that all coisotropics are embedded, connected and closed (compact

andwithout boundary), unless stated otherwise.
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In this section, I introduce coisotropic submanifolds of symplecticmanifolds inde-

tail. First, in Section 2.1, I give an overview of the general theory of coisotropic sub-

manifolds and provide some elementary examples. Then, I recall the definition of

fibred coisotropic submanifolds and explain how one forms the symplectic quotient

of a coisotropic inSection2.2. Following this, in Section2.3, I investigate thenotion

of stabilityof a coisotropic submanifold. I establish the existence of standardmodel

for a neighbourhood of a stable coisotropic in Proposition 2.18. In Section 2.4, I ex-

plore the stability requirement with respect to the dynamics on the coisotropic. It

turns out that stable coisotropics fit into the context of Hamiltonian group actions

and can be seen as “locally Hamiltonian group actions”. Finally, in Proposition 2.22, I

state and prove the coisotropic version of the Arnold-Liouville theorem.

2.1 Coisotropic submanifolds

Recall that a symplectic structure on a smooth manifold W is a closed, non-

degenerate 2-formω ∈ Ω2(W ). A diffeomorphism

ψ : (W,ω)→ (W ′, ω′),

which preserves this structure, i.e. ψ∗ω′ = ω, is called a symplectomorphism. Given

a symplecticmanifold (W,ω), themap

ι : TW → T ∗W(2.1)

X 7→ ι(X)ω = ω(X, ·)

defines a canonical isomorphismof the tangentbundleTW and thecotangentbun-

dle T ∗W of a symplectic manifold (W,ω). It identifies the sections of these bun-

dles, namely vector fields Γ(W,TW ) with 1-forms Ω1(W ). Every function H :

(W,ω)→ R defines aHamiltonian vector field by

ι(XH)ω = dH.
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LetN beasubmanifoldand iN : N →W thenatural inclusion. Thetangentbundle

TN is a subbundle of the pullback bundle i∗NTW . The symplectic complement TNω

ofTN in i∗NTW is given by

(2.2) TNω := {v ∈ i∗NTW | ω(w, v) = 0 for all w ∈ TN},

and is also a subbundle of i∗NTW . Unlike for the orthogonal complement in Rie-

mannian geometry, it is not necessarily true that i∗NTW splits as TN ⊕ TNω . In-

terestingandnaturalclassesofsubmanifoldsofsymplecticmanifoldsaredefinedby

looking at the relation ofTN andTNω . A submanifoldN of a symplecticmanifold

(W,ω) is called:

• coisotropic ifTNω ⊆ TN .

• Lagrangian ifTNω = TN .

• isotropic ifTNω ⊇ TN .

• symplectic ifTNω ∩ TN = {0}.

The following Lemma illustrates the foliation theory of the submanifolds listed

above.

Lemma2.1.

LetN beasubmanifoldof(W,ω) suchthat thebundleTN∩TNω isof constantdimension

alongN . ThenN is foliated by leavesF tangent toTN ∩ TNω .

Proof. This proof is exactly as the proof of Lemma 5.33 in [MS17]. By the Frobenius

theorem, a foliationofN tangent toTN ∩TNω exists if andonly if thisdistribution

is closed under the Lie bracket [·, ·]. Let q ∈ N andX and Y be vector fields in a

neighbourhood ofN with values in TN ∩ TNω . LetZ be any vector field on TN

defined inaneighourhoodofN . Since (TNω∩TN) ⊆ TN andN is a submanifold,

it follows that [X,Y ] ∈ TN . It remains to show that [X,Y ] ∈ TNω . By Cartan’s
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identity:

0 = dω(X,Y, Z)

= LX(ω(Y, Z)) + LZ(ω(X,Y )) + LY (ω(Z,X))

+ ω([X,Y ], Z) + ω([X,Z], Y ) + ω([Y, Z], X)

= ω([X,Y ], Z)

The three terms in the second line vanish, since the functions

ω(Y, Z)(q), ω(X,Y )(q) and ω(Z,X)(q) all vanish identically along N by def-

inition of the ω-complement. The two last terms in the third line vanish since

[X,Z] and [Y, Z] are contained inTN .

Observethat theproofofLemma2.1aboveusesboththeclosednessofω andthe iso-

morphism ι induced byω. In particular every submanifoldN which is coisotropic,

isotropic,Lagrangianorsymplectic is foliated. Forsymplectic submanifolds, the fo-

liation consists of 0-dimensional leaves, so each leaf is just a point in the subman-

ifold. Isotropic submanifolds are foliated by just one k-dimensional leaf, namely

themselves since here TN ∩ TNω = TN . The same holds for Lagrangians,

with the addition that these submanifolds are the maximal isotropic (or minimal

coisotropic) submanifolds, and k = n.

Coisotropics are the most interesting submanifolds in view of foliation theory:

Lemma 2.1 implies that every coisotropic submanifold C is foliated by k dimen-

sional isotropic leaves F , tangent to TCω . Recall from the introduction that this

foliationF ofC is called the characteristic foliation of C. Before embarking on fur-

ther on the studies of coisotropics I give some elementary examples of coisotropics

below. The reader is also invited to revisit Examples 1.1, 1.2, 1.3 and 1.4 from the in-

troduction.

Example 2.2 (Hypersurfaces).

Every hypersurfaceH in a symplecticmanifold (W,ω) is coisotropic. H is foliated

42



by one dimensional leaves.

Example 2.3 (Lagrangians).

Every Lagrangian is a coisotropic, foliated by onen-dimensional leaf, namely itself.

Example 2.4 (Poisson-commutingHamiltonians).

Assume there exist k Poisson-commutingHamiltoniansH1, . . . ,Hk on a symplec-

ticmanifold i.e. ω(Xi, Xj) = 0. If 0 is a common regular value of all Hamiltonians

Hi, then the intersection of level sets,

H−1
1 (0) ∩ · · · ∩H−1

k (0),

is a codimension-k coisotropic.

Example 2.5 (Linear coisotropics).

ConsiderR2n with coordinates (q1, . . . qn, p1, . . . , pn) and its standard symplectic

structure

ω0 = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn.

For 1 ≤ k < l ≤ n and k + l ≥ n, define the linear subspaceC ofR2n by

Clin = (q1, . . . , ql, 0, . . . , 0, p1, . . . , pk, 0, . . . , 0, pl+1, . . . , pn).

Then,C is a k + l dimensional coisotropic submanifold. More concretely consider

the following subspace ofR6:

Clin = (q1, q2, 0, p1, 0, p3).

Then,TCω
lin = (q2, p3), TClin/TC

ω
lin = (q1, p1) ∼= R2 andR6 \ TClin = (q3, p2).
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Returningtothegeneral theory,denotebyTW/TC thenormalbundleofC defined

as the quotient of the bundles i∗CTW andTC and likewise forTC/TCω . Consider

the isomorphism ι introduced in Equation (2.12) and denote by ξ0 the annihalator

of a sub-bundle ξ ofTW . AlongC the isomorphism ιhas the following properties:

(2.3)

ι(TC/TCω) = (TCω ⊕ TW/TC))0 = (TC/TCω)∗

ι(TCω ⊕ TW/TC) = (TC/TCω)0

ι(TCω) = (TW/TC)∗

ι(TW/TC) = (TCω)∗.

This induces in particular the following splittings of the tangent bundle i∗CTW

alongC .

i∗CTW
∼= TC/TCω ⊕ TCω ⊕ TW/TC(2.4)

∼= TC/TCω ⊕ TCω ⊕ (TCω)∗

∼= TC/TCω ⊕ (TW/TC)∗ ⊕ TW/TC

These splittings depend on a choice of complement ofTCω inTC , sinceTC/TCω

is notnaturally a sub-bundleofTC andachoiceof complementofTC inTW . Such

a choice can bemade by choosing an identification of TW with TW ∗, for example

by choosing an ω-compatible almost complex structure J . Recall that an almost

complex structure is an endomorphism of TW which squares to −id. J is called

ω-compatible if ω(Jv, v) > 0 for all v ∈ TW and ω(Jv, Jw) = ω(v, w) for all

v, w ∈ TW .

Gotay explains in [Got82] how the splitting 2.4 can be used to show that all em-

beddings of neighbourhoods of coisotropic submanifolds are symplectomorphic.

These splittings of the tangent bundle alongC will become important later.

In the case whereC is a Lagrangian L, the space TL/TLω is a point and the main

result from [Got82] recovers the fact that every LagrangianL has a neighbourhood
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symplectomorphic to its cotangent bundle T ∗L. For a hypersurfaceH , THω and

TW/TH are one dimensional, and the space TH/THω is 2n − 2 dimensional. A

famous examples of this is theHopf fibrationS1 → S3 → S2 (Example 1.1.)

In view of the splittings above one is tempted to consider the quotient spaceC/F .

However this space is not necessarily amanifold as quotienting out by the leaves of

F which are tangent to TCω may yield non-Hausdorff spaces. A simple, yet very

instructive, illustration of this property of foliations (not necessarily foliations of

coisotropics) is the following:

Example 2.6 (Torus foliations).

Consider the two-torusT2 = R2/Z2 with the topology induced fromR2. Let λ ∈

R \ {0}. The torus admits a vector field

X(x, y) = (
∂

∂x
, λ

∂

∂x
).

Given a point (x0, y0) ∈ T2, the integral curves

fλ : R −→ T2

x 7→ (x0 + x, λx+ y0).

ofX foliate the torus. Ifλ is a rational numberλ = p
q for p, q coprime inZwith q ̸=

0, then each leaf F p
q
through a given point (x0, y0) is compact. If λ is an irrational

number λ ∈ R \ Q, then each leaf of the foliationFλ ofT2 is everywhere dense in

T2.

In Example 2.6 above, assume that λ is irrational. Since each leafFλ is dense inT2,

the quotientT 2/Fλ is not aHausdorff space. The topology ofFλ as a leaf of the fo-

liationFλ does not agree with the topology ofFλ as a submanifold ofT2. If λ is ra-

tional, the quotientT2/F p
q
is diffeomorphic to a circle. In particular, an arbitrarily
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small perturbation of the angle defining the foliation drastically changes the prop-

erties of the quotientT2/Fλ.

2.2 Fibredness of coisotropic submanifolds

In this section I introduce the notion of a fibred coisotropic. This condition ensures

that characteristic foliation ofC does not change drastically under small perturba-

tions withinB. Moreover I will show that ifC is fibred, then the quotientC/F is a

smooth symplecticmanifold.

Definition 2.7 (Fibredness of coisotropic submanifolds).

AcoisotropicC is called fibred if the isotropic leavesF of thecharacteristic foliation

F of C , which are connected by definition, are closed submanifolds of C and the

holonomyof each leaf, as defined in Section 2.1, of [MM03] is trivial.

An important consequence of this requirement is the following Lemma:

Lemma2.8.

LetC be a fibred coisotropic. ThenC is the total space of a smooth fibre bundle

(2.5) F → C
π−→ B.

ThebaseB is called the symplectic quotient ofC and carries anatural symplectic structure

ωB = π∗i
∗
Cω.

Proof. Theholonomyofall leaves is trivialbyassumption. Thus it followsfromThe-

orem 2.15 of [MM03] that the quotient C/F carries a canonical, smooth, second

countable, Hausdorff manifold structure. The projection π is induced by the quo-
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tientmap, which identifies points on the same leaf.

To showthatωB iswell-definedandnon-degenerate I argueas follows: assume that

x, y ∈ C lie in the same leaf, say Fx. Choose a finite collection of foliation charts

U = U1 ∪ · · · ∪ Un such thatx, y ∈ U . Choose a curve

γ : [0, 1] −→ U

such that γ(0) = x, γ(1) = y and γ̇(t) ∈ Tγ(t)Cω for all t in [0, 1]. Define a vector

fieldX onU with values inTCω such that

X(γ(t)) =
d

dt
γ(t) ∈ TxCω.

Then the Lie derivativeLX of i∗Cω in the direction ofX is well defined inU . Calcu-

late at t0 ∈ [0, 1]

d

dt

∣∣∣∣
t=t0

γ(t)∗i∗Cω = LX(γ(t))(i
∗
Cω(γ(t)))

= d(ι(X(γ(t0)))i
∗
Cω(γ(t0)))

= 0.

Hence i∗Cω(y) = i∗Cω(x) andωB is well defined. By definition

ker(i∗Cω)(x) = ker dπ(x) = TxC
ω.

Consequently ωB is non degenerate onB and varies smoothly with b ∈ B. By the

closednessofω, onehasd(i∗Cω) = 0. Nowanelementarycomputation ina foliation

chart shows that this implies thatωB is closed onB .

Remark 2.9.

It is also possible to assume the existence of local slices and impose theHausdorff condition

on the quotient in order to prove Lemma 2.8. This is the approach taken in [MS17] Section
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5.4. For a detailed proof of Lemma2.8 under these assumptions see Proposition 5.4.5 of the

former reference.

Theassumptionthat theholonomyofeach leaf is trivial isnecessaryeven ifall leaves

are closed submanifolds of C . Otherwise the quotient C/F can be an orbifold.

Many thanks to Dominic Joyce for pointing this mistake out tome! I illustrate this

in the example below:

Example 2.10 (Foliation of theMöebius strip).

ViewtheMöbiusstripM astherectangle [0, 1]×[−1, 1]with{0}×[−1, 1] identified

with {1} × [−1, 1] via themapϕ(y) = −y, for y ∈ {0} × [−1, 1]. If y is non-zero,

the leafFy := [0, 1]×{y}has trivial holonomy. Thus there exists a neighbourhood

of y such that quotient,M/Fy , whereFy is the foliation by parallel leaves, in this

neighbourhood, is diffeomorphic to an open interval.

The leafF0 = [0, 1]× {0} hasZ2-holonomy and the quotientM/F0 can be identi-

fiedwith the orbifold [0, 1]/Z2.

Note that the leaves F of the foliation F are now the fibres of a fibre bundle and

hence nearby leaves are diffeomorphic. Thus the foliation does not change drasit-

cally under small perturbations in the symplectic quotientB. Fibredness is quite a

restrictive assumption. Nonetheless all the interesting Examples 1.1, 1.2, 1.3 and 1.4

from the introduction are fibred coisotropics.

With this property of the characteristic foliation established, in the next section

I consider a condition which ensures that the characteristic foliation remains un-

changed under small pertubations in the normal directions ofC .
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2.3 Stability of coisotropic submanifolds

In this section I explore the notion of stability for coisotropics. It is a straightfor-

ward generalisation of the concept of a stable hypersurface to higher codimension

1 ≤ k ≤ n. If k = 1 the notion of a stable codimension 1 coisotropic and a stable

hypersurface coincide. The stability conditionwas introduced by Bolle in [Bol98]

Definition 2.11 (Stability (Bolle)).

Acodimensionk, coisotropic submanifoldC of a symplecticmanifold (W,ω) is sta-

ble if there exist k one-formsα1, . . . αk defined onC , which satisfy:

(S1’) ker i∗Cω ⊂ ker dαi for all 1 ≤ i ≤ k,

(S2’) For allx inC ,α1 ∧ · · · ∧ αk ∧ (ω)n−k(x) ̸= 0.

Remark 2.12.

Condition (S2’) in Definition 2.11 above is equivalent to the linear independence of the αi

on ker i∗Cω = TCω . Also notice that by applying the isomorphism ι fromEquation to the

one-formsα1, . . . , αk implies thatC has trivial normal bundle.

Iwould liketoadvocateanalternative,butequivalentdefinitionwhichI thinkbetter

illustrates the fact that stability is a condition on how the coisotropic is embedded

into the surroundingmanifold. In particular one immediately sees fromDefinition

2.13 below that stability implies that C has trivial normal bundle. I will prove that

the twodefinitions are equivalent in Lemma2.16 below. Denote by iF the inclusion

of a leafF intoC .

Definition 2.13 (Stability of coisotropic submanifolds).

Acodimensionk, coisotropic submanifoldC of a symplecticmanifold (W,ω) is sta-

bilizable if there exist vector fields Y1, . . . Yk on a neighbourhood U ofC such that
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their pullbacks to i∗CTW satisfy

(S1) i∗FLYiω = i∗F (d(ι(Yi)ω) = 0.

(S2) Y1, . . . , Yk are linearly independent on i∗C(TW/TC) and transverse toC .

I call thevector fieldsY1, . . . , Yk stabilisingvector fields. I call ι(Y1)ω, . . . , ι(Yk)ω sta-

bilising one forms, the (k+1)-tupleS = (ω, Y1, . . . , Yk) a stable structureonC and a

pair (C,S) a stable coisotropic.

This terminology is inspired by [CV15], which deals with stable hypersurfaces. The

notions put forward here coincide with the corresponding definitions in [CV15] in

the codimension one case. From a dynamical systems point of viewCondition (S1)

means precisely that the characteristic foliation F is stable under small perturba-

tions of the coisotropic in the normal directions.

Definition 2.14 (Contact coisotropic).

A contact structure on a coisotropicC is a stable structureΛ = (ω, Y1, . . . , Yk) such

that

(C1) LYiω = d(ι(Yi)ω) = i∗Cω for all 1 ≤ i ≤ k.

(C2) Y1, . . . , Yk are linearly independent on i∗C(TW/TC) and transverse toC .

The pair (C,Λ) is called a contact coisotropic submanifold.

A codimension one contact coisotropic is thus a contact hypersurface. In this case

the vector fieldY is usually calledLiouville vector field.

Remark 2.15.

The product (C × C ′,S × S ′) ⊆ (W × W ′, ω × ω′) of two stable coisotropics

(C,S) ⊆ (W,ω) and (C ′,S ′) ⊆ (W ′, ω′) is again a stable coisotropic. This does not
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necessarily hold for contact coisotropic submanifolds. Bolle shows in Remark 3 of [Bol98]

that a contact coisotropic (C,Λ) of codimension k has to satisfy

dim(H1(C)) ≥ k − 1.

Notice that this provides a large class of examples of submanifolds which are stable-but-

not-contact coisotropics. For example, consider the cartesian product of spheresS2m−1×

S2n−1 ⊂ R2m × R2n with the standard symplectic structureω0 × ω0. ThenS2m−1 ×

S2n−1 cannot be contact ifm,n > 1. HoweverS2m−1 × S2n−1 is a stable codimension

2 coisotropic. More generally, the product of any two contact hypersurfaces, which have

trivial fundamental groups, is a stable-but-not-contact coisotropic of codimension 2.

Lemma2.16.

Defintion 2.11 andDefinition 2.13 are equivalent.

Proof. Condition (S2′) in Definition 2.11 is equivalent to the existence of a triviali-

sation of (TCw)∗ given by theαi. Choosing α1, . . . , αk corresponds to choosing a

trivialisation

τ ′ : (TCω)∗ → Rk∗ × C

in the same way as choosing Y1, . . . , Yk linearly independent and transverse to C

corresponds to choosing a trivialisation

τ : TW/TC → Rk × C.

Recall from (2.3) that ι(TW/TC) = (TCω)∗. In particular given Y1, . . . , Yk we

may choose α1, . . . , αk such that ι(Yj)ω = αj and vice versa. Thus Conditions

(S2′) and (S2) are equivalent.

By definition, ker(i∗Cω) = TCω = TF . As described above, one may always ar-

range d(ι(Yi)ω) = dαi. Thus condition (S1′) is equivalent to condition (S1).
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Fromnowon, I will workwithDefinition 2.13.

Definition 2.17 (Generalised Reeb vector fields).

Given a stable coisotropic C , because Y1, . . . , Yk are defined at every point of C ,

there exist k vector fieldsX1, . . . , Xk onC with values in∈ TCω which areω-dual

toY1, . . . , Yk, that is:

ω(Yi, Xj) = αi(Xj) = δij .

The vector fieldsX1, . . . , Xk are called generalised Reeb vector fields. Denote byϕj :

R× C → C the flowofXj defined by the equation

d

dt
ϕtj(x) = Xj(ϕ

t
j(x)) ϕ0j (x) = x,

where x ∈ C and t ∈ R. For k = 1 this definition coincides with the usual defini-

tion of the Reeb vector field on a hypersurface.

The most important consequence of the stability requirement is the following

neighbourhood theorem due to and originally proved by Bolle in [Bol98]. I present

a proof it of using Definition 2.13. Denote byBk
ϵ0 the standard ball of radius ϵ0 > 0

inRk.

Proposition 2.18 (Bolle neighbourhood theorem).

Assume (C,S) is stable. Then there exists a neighbourhoodU ofC , an ϵ0 > 0 and a dif-

feomorphismψ : Bk
ϵ0 × C → U which satisfies:

(2.6) ψ∗ω = ωs := ψ∗i∗Cω +

k∑
i=1

d(piαi).

whereαi = ψ∗(ι(Yi)ω) and p1, . . . , pk are the coordinates onBk
ϵ0 .

Moreover, throughoutBk
ϵ0 the foliationsFp ofCp := {p}×C areconjugate to the foliation

F ofC = {0} × C via a family of diffeomorphisms depending smoothly on p. I will refer
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to such a neighbourhoodU as a Bolle neighbourhood.

Proof. By condition (S2) inDefinition 2.13 choose a smooth trivialisation

τ : TW/TC → Rk × C,

given by vector fields Y ′
1 , . . . Y

′
k of the normal bundle ofC . By the inverse function

theorem there exists an ϵ′ > 0 and a smoothmapψ : Bk
ϵ′ × C → U which satisfies

ψ ◦ iC = id and

ψ∗Y ′
j = ∂pj ,

where I denote by ∂pj the canonical vector field of unit length associated to the co-

ordinate pj using the identification ofRk with its dual space provided by the stan-

dard inner product onRk. Choose k Reeb vector fieldsX1, . . . , Xk as inDefinition

2.17. On T (Bϵ′ × C) view theXj as (0, Xj). Now perform a symplectic version of

Gram-Schmidt to construct vector fields Y1, . . . Yk onC such that ω(Yi, Yj) = 0.

GivenY ′
1 , . . . , Y

′
k set

Y1 = Y ′
1

...

Ym = Y ′
m −

m−1∑
n=1

ω(Y ′
m, Yn) ·Xn for 2 ≤ m ≤ k.

Thenω(Yi, Yj) = 0 for all 1 ≤ i, j ≤ k. First notice that ω(Yi, Xj) = ω(Y ′
i , Xj)

sinceω(Xi, Xj) = 0. Next, notice that the one-forms dHj := ψ∗dpj are exact for

each j and satisfy dHj(Yi) = ω(Yi, Xj) = δij onTW/TC . By choosing appropri-

ate constants, assume that theHj are defined onU , satisfyHj(ψ(pj , c)) = pj and

give

C =

k∩
i=1

H−1
j (0).
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Define k one-forms onTCω by setting ᾱi = ι(Yi)ω. Then

(2.7) ω(Yi, Xj) = dHj(Yi) = ᾱi(Xj) = δij .

Define a symplectic form ω̄s on i∗CTW at each pointx inC by

ω̄s(x) = i∗Cω(x) +
k∑

i=1

d(Hi(x) · ι(Yi)ω(x))

Then ω̄s is closed and agreeswith i∗Cω alongC by construction. Thus apply Lemma

3.14 from [MS17] (the Weinstein extension theorem) to extend ψ to a symplecto-

morphism from a possibly smaller ballBk
ϵ0 × C → U . By construction ωs has the

required form:

ωs := ψ∗ω̄s = ψ∗i∗Cω +
k∑

j=1

ψ∗d(Hj(x) · ι(Yj)ω)

= ψ∗i∗Cω +

k∑
j=1

d(ψ−1(Hj(x)) · ψ∗ι(Yj)ω)

= ψ∗i∗Cω +
k∑

j=1

d(pjψ
∗ι(Yj)ω)

= ψ∗i∗Cω +

k∑
j=1

d(pjαj)

Observe that condition (S1)hasnotbeenused so far. Theone formsαi onT (Bk
ϵo×

C) are of the form (0, αi). Recall that (S1) implies that dαi vanishes on TCω and

thus in particular on theXj . Calculate

(2.8)

L∂pjωs = d

(
ι(∂pj)

(
ψ∗i∗Cω +

k∑
i=1

d(piαi)

))

= d

(
ι(∂pj)

(
k∑

i=1

dpiαi +

k∑
i=1

pidαi

))

= d

(
k∑

i=1

dpi(∂pj)αi(·)

)

= dαj = d(ι(ψ∗Yj)ω)
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Thus it follows from Calculation 2.8 above that ωs gets scaled by
∑k

j=1 pjdαj as

flowing outwards from the origin {0} × C towards the boundary of Bk
ϵ0 × C via

the flowof ( ∂
∂p1

, . . . , ∂
∂pk

). Condition (S1) inDefinition 2.13 preciselymeans that

i∗F

 k∑
j=1

d(ι(ψ∗Yj)ω)

 = 0

so that the characteristic foliation F of C remains “unchanged” throughout

Bk
ϵ0 .

The following proposition summarises the relations between Definition 2.11, Defi-

nition 2.13 andProposition 2.18. It is the “stable coisotropics” version of Lemma2.1

in [CV15].

Proposition 2.19.

LetC be a coisotropic . Then the following are equivalent

(i) C is stable according to Definition 2.11.

(ii) C is stabilizable according to Definition 2.13.

(iii) There exists a Bolle neighbourhood ofC .

Proof. The equivalence of (i) and (ii)was proved in Lemma 2.16. That (ii) implies

(iii) is the content of theproof of Proposition 2.18. It remains to show that the exis-

tence of aBolle neighbourhood implies thatC is stable according toDefinition 2.13.

Given a Bolle neighbourhoodBk
ϵ × C , set Yi = ∂pj on Tp,c(Bk

ϵ × C) = Rk × C.

Thesevector fields are linearly independentonRk and transverse toC byconstruc-

tion. The assertion thatFp are all conjugate toF via a family of diffeomorphisms

depending smoothly on p implies that

i∗FL∂pjωs = i∗F (d(ι(∂pj)(ωs)) = 0

55



so that condition (S1) inDefinition 2.13 is also satisfied for ∂pj .

2.4 DynamicsoncoisotropicssubmanifoldsandHamilto-

nian group actions

In this section I begin to study the k-dimensional dynamics on stable coisotropics.

In particular I establish that all compact leaves are tori. I then explain how one can

interpret stable coisotropics as “locally Hamiltonian group actions”. This section

has its roots in chapter 5 of [MS17] whereHamiltonian group actions are treated in

detail.

Assume throughout this subsection that C is stable. One question that arises im-

mediately in codimensionk > 1 iswhether the flows of theReeb vector fields com-

mute. The following Lemma answers this question in the affirmative.

Lemma2.20.

On a stable codimension-k coisotropic the flows ϕ1, . . . , ϕk of the Reeb vector fields

X1, . . . , Xk (see Definition 2.17) commute and preserve the symplectic formωs

Proof. Recall from the proof of Proposition 2.18 that there exist k Hamiltonians

H1, . . . , Hk on the Bolle neighbourhood ofC . These satisfy:

−dHi(·) = ω(Xi, ·).

ThusX1, . . . , Xk areHamiltonian vector fields onU . Denote by {·, ·} the Poisson-

bracket. Observe that

−dHi(Xj) = −ω(Xi, Xj) = −{Hi, Hj} = 0,

because the vector fieldsXi andXj have values inTCω . Therefore theLie brackets
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[Xi, Xj ] vanish for all 1 ≤ i, j ≤ k and the flowsϕi andϕj commute. Moreover

LXiωs = d(ι(Xi)i
∗
Cω + ι(Xi)

k∑
j=1

d(pjαj))

= d

 k∑
j=1

(dpj(·)αj(Xi)− dpj(Xi)αj(·) + pjdαj(Xi, ·))


= ddpi = 0

and thus for each fixed t ∈ R and each i, the flow for time t, ϕti, is a Hamiltonian

symplectomorphismof the Bolle neighbourhood.

Iwould like to remark that this does not automatically follow from the integrability

of TCω but is a consequence of the stability condition. While the integrability of

TCω implies [Xi, Xj ] ∈ TCω , stability forces [Xi, Xj ] = 0 for all generalisedReeb

vector fieldsXi, Xj .

Definition 2.21 (Generalised Reed flow).

Let q = (q1, . . . , qk) ∈ Rk and x ∈ C . The generalised Reeb flow on a stable

coisotropicC is

(2.9)
Rk × C → C

(q, x) 7→ Φq(x) := (ϕqkk ◦ · · · ◦ ϕ
q1
1 )(x).

Thus for each fixed q this is a well defined symplectomorphism by Lemma 2.20

above.

I define below aHamiltonian group action on the Bolle neighbourhoodU . This is a

“locally Hamiltonian group action” in the sense that it is not defined onW \ U but

only onU . More precisely the generalisedReeb flow as defined in 2.21 above, can be

interpreted as an action of the non-compact Lie groupRk on the Bolle neighbour-

hoodU ∼= Bk
ϵ0 ×C as follows: define a group actionΦ on the Bolle neighbourhood

57



by

(2.10)
Φ : Rk ×Bk

ϵ × C −→ Bk
ϵ × C

(q, p, x) 7→ (p,Φq(x)).

Denote by e1, . . . , ek the standard basis ofRk, viewed as the (trivial) Lie algebra of

the Lie group Rk. Denote by e∗1, . . . , e
∗
k the standard basis of (Rk)∗ viewed as the

dual of this (trivial) Lie algebra. Denote the canonical pairing of (Rk)∗ and Rk by

⟨⟨·, ·⟩⟩ and by ⟨·, ·⟩ the standard inner product onRk. I claim that themomentmap

of this action is given by:

(2.11)
µC : Bk

ϵ × C −→ (Rk)∗

(p, x) −→ (p1e
∗
1, . . . , pke

∗
k).

Consider a vector q in the Lie algebra ofRk:

Hq(p, x) = ⟨⟨µ(p, x), q⟩⟩

= ⟨⟨(p1e∗1, . . . , pke∗k), (q1e1, . . . , qkek⟩⟩(2.12)

= ⟨p, q⟩.

This implies

−dHq(p, x) =

k∑
i=1

qidpi.

Recall that

−dHi(·) = ωs(qiXi, ·) =
k∑

j=1

(dpj(·)αj(qiXi)− dpj(qiXi)αj(·) + pjdαj(qiXi, ·))

= qidpi.

ThusµC is indeed themomentmap of thisRk action.
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By definition, the stabiliser of (p, x) ∈ Bk
ϵ × C under theRk actionΦ is given by

stabRk(p, x) = {q ∈ Rk | Φq(x) = x}.

It isadiscretesubgroupofRk andthus,byastandardresult (see forexampleSection

49 of [Arn89]

(2.13) stabRk(x) = Λl ∼= Zl ⊂ Rk

for a latticeΛl isomorphic toZl for k ≥ l.

Proposition 2.22 (Arnold-Liouville).

LetC be a stable, fibred coisotropic of codimensionk. Then each fibreF of the fibre bundle

(2.5) is diffeomorphic to a torusTk so thatC is the total space of a smooth fibre bundle

(2.14) Tk → C
π−→ B

over a symplectic base (B,ωB).

Proof. SinceC is fibredwemay apply Lemma2.8. It remains to show that the fibres

are diffeomorphic to tori of dimension k. Letx ∈ C . The coisotropic is stable, thus

work in a Bolle neighbourhood and considerC as the zero level set of the group ac-

tion(2.10). ThegroupRk acts transitivelyonFx the leaf troughx. Byequation(2.13)

chooseanisomorphismfromthestabilisersubgroupstabRk(x) toZl fork ≥ l. With

respect to the group action (2.10) the leafFx is a homogenous space. Thus there ex-

ists a k′ such that k = k′ + l and a diffeomorphism

Φ : Rk′ × Rl/Zl −→ Fx.

By assumptionFx is compact. Therefore k′ = 0 andFx is diffeomorphic to a torus

of dimension k = l.
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Corollary 2.23.

IfC is stable and not necessarily fibred, each leafF of the characteristic foliation is diffeo-

morphic toRk′ × Tl for k = k′ + l. In particular each closed leaf is diffeomorphic to a

torusTl.

Remark 2.24.

Lemma 2.22 is an adaptation of the so-called Arnold-Liouville theorem to the present set-

ting. The original result, which is proved in [Arn89], is the special case where k = n and

where the action (2.10) is globally defined on the symplectic manifoldW . Such an action

is called a completely integrable system and was the starting point of what is called KAM

theory. See again [Arn89].

Below I quickly revisit Example 1.2 from the introduction. Since the fibresF of the

coisotropic are the orbits of theU(k) action, the coisotropic cannot be stable. I ex-

plain belowhowa stable coisotropic arises in this context. Generally speaking, sim-

ilar constructionswork for all (compact) Lie-groups, which contain an appropriate

(maximal) torus.

Example 2.25 (The partial flag variety).

Consider for k ≤ n the space hom(Ck,Cn). Identify this space with the space

of n by k complex matrices Cn×k and equip it with the Hermitian inner product

tr(A∗B), whereA∗ denotes the conjugate transposeof thematrixA ∈ Cn×k. Then

ωtr(A,B) := Im(tr(A∗B))

is a symplectic form onCn×k. It is a standard fact (see for example Exercise 5.43 of

[MS17]) that theactionofU(k)onCn×k byrightmultiplication isHamiltonianwith

momentmap

µ(A) =
1

2i
A∗A.
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The level setµ−1( 1
2i1) is a coisotropic submanifold of (Cn×k, ωtr).

ThinkofCn×k asaproductCn×· · ·×Cn (k-times). Choosingthelevelsetµ−1( 1
2i1)

corresponds to restricting to k tuples of vectors V = (v1, . . . , vk) inCn, such that

⟨vi, vj⟩ = δij for the Hermitian inner product ⟨·, ·⟩ on Cn. This means that V ,

viewed as amatrix, is a unitary k-frame.

Under the U(k) action however the isotropic leaves in µ−1( 1
2i1) are the orbits of

theU(k) action and thus, unless k is equal to 1, not diffeomorphic toTk. Therefore

µ−1( 1
2i1) under this action cannot be stable by Lemma 2.22. Hence consider the

diagonal action of themaximal torus

T = U(1)× · · · × U(1)

inU(k). Under this action the level setµ−1( 1
2i1) is a stable coisotropicC . Geomet-

rically the action by elements of T is given by subsequently rotating each of the k

vectors inCn around a Hopf fibre while leaving the vectors previously rotated un-

touched. This is different to theU(k) actionwhere each vector in the k by kmatrix

associated to an element ofU(k) acts on each vector inCn × · · · × Cn. It follows

that the symplectic quotient ofB ofC is diffeomorphic to the partial flag variety

P (k, n,C) ∼= U(n)/(U(1)× · · · × U(1)× U(n− k)),

where thediffeomorphismcomes fromviewing the spaceof unitaryk-frames as the

homogenous spaceU(n) under the sameU(k) action.
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Chapter 3

Constructionswith coisotropics

submanifolds

3.1 TheLagrangian graphof a fibred coisotropic submanifold . 65

3.1.1 Montonicity and the minimal Maslov number of

coisotropic submanifolds . . . . . . . . . . . . . . . . . 68

3.1.2 Displaceability and leaf-wise fixed points ofC andLC . 72

3.2 The stable hypersurfaceHC and generalised Reeb dynam-

ics onC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 Generalised Reeb dynamics on stable coisotropics . . . 75

3.2.2 Construction of the stable hypersurfaceHC . . . . . . . 79

3.2.3 Relation of generalised Reeb dynamics on C and Reeb

dynamics onHC . . . . . . . . . . . . . . . . . . . . . . 84

Coisotropics encompass two extensively studied classes of submanifolds of sym-

plecticmanifolds. EveryLagrangian is a coisotropic andso is everyhypersurface. In

thischapter, Iexplainthat it isalsopossible toassignLagrangiansandhypersurfaces

to certain coisotropics. More precisely, I assign a Lagrangian LC to a given fibred

coisotropicF → C → B, andconstruct a stablehypersurfaceHC fromagiven sta-

ble coisotropic (C,S).The goal of this chapter is to introduce the Lagrangian graph
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LC and the stable hypersurfaceHC and to explain how these submanifolds capture

aspects of the geometry and topology of the coisotropicC .

Concretely,LC inherits a fibre bundle structure fromC . The proof of Theorem 1.7

in Chapter 4 builds on adapting and applying methods from Lagrangian Floer the-

ory to LC . The Reeb dynamics on the stable hypersurfaceHC are in equivalent to

the generalised Reeb dynamics of the coisotropic C in an appropriate sense. The

proof of Theorem 1.8 in Chapter 5 relies on adapting and applying techniques from

symplectic field theory toHC .

I introduce theLagrangiangraphLC ofC inSection3.1 andexplainhowLC inherits

its fibre bundle structure from a fibredC . I define the notions of monotonicity of

C and of theminimalMaslov number ofC by defining them as notions forLC (see

Definitions 3.4 and 3.5) in Section 3.1.1. I then compute theminimalMaslov number

of LC in a simple case (see Example 3.6). In Section 3.1.2 I explore the relation of

displaceability ofC andLC and explain how leaf-wise fixed points ofC correspond

to the self-intersection theory of the LagrangianLC .

I have already derived some elementary facts about the k-dimensional dynamics of

stable coisotropics in Section 2.4. Recall in particular that stable coisotropics can

be seen as level sets of moment maps of a Hamiltonian group action on the Bolle

neighbourhood. Before turning to the construction ofHC , I study a subset of the

one dimensional dynamics on C which I call the generalised Reeb dynamics on C in

Section 3.2.1. This subset of the dynamics was first studied by Bolle in [Bol98]. The

generalised Reeb dynamics play an important role in the proof of Theorem 1.8 and

Theorem 1.6. I constructHC as a level set of a moment map of anR-action which

has the generalised Reeb dynamics as orbits and prove thatHC is stable in Section

3.2.2. I then explain how the Reeb dynamics of the hypersurfaceHC are related to

the generalised Reeb dynamics on the stable coisotropicC in Section 3.2.3.
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3.1 The Lagrangian graph of a fibred coisotropic subman-

ifold

Given a symplectic manifold (W,ω) one can consider its twisted product (W ×

W,−ω × ω). For the sake of brevitiy I set

W− ×W+ = (W ×W,−ω × ω).

Throughout I denote byp− the projectiononto the first factorW− = (W,−ω) and

by p+ the projection onto the second factorW+(W,ω). Assume throughout this

section thatC is fibred, so that Lemma 2.8 applies. I continue to denote the projec-

tion onto the symplectic quotientB ofC byπB .

Definition 3.1 (Lagrangian graph of a fibred coisotropic submanifold).

TheLagrangian graph ofC , is defined as the fibre productC ×B C of the diagram:

LC C

C B.

p−

p+

πB

πB

As a set,LC is given by:

LC = C ×B C = {(x, y) ∈ C × C | πB(x) = πB(y)}(3.1)

= {(x, y) ∈ C × C | y ∈ Fx}.

Note that this is a special case of a Lagrangian correspondence which were intro-

duced byWeinstein as canonical relations in [Wei77].
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Lemma3.2.

IfC is fibred,LC is aLagrangian submanifold of (W ×W,−ω×w). MoreoverLC is the

total space of the smooth fibre bundle

(3.2) F × F → LC → ∆B,

where∆B denotes the diagonal inB ×B.

Proof. Note thatLC ⊆ C × C . For v, w ∈ T(x,y)LC write

v = (vx, vy) ∈ TxC × TyC

w = (wx, wy) ∈ TxC × TyC.

Let

γv(t) = (γvx(t), γ
v
y (t)) and γw(t) = (γwx (t), γ

w
y (t))

be curves inLC such that

γv(0) = (x, y) and
d

dt

∣∣∣∣
t=0

γv(t) = (vx, vy),

γw(0) = (x, y) and
d

dt

∣∣∣∣
t=0

γw(t) = (wx, wy).

Thus by differentiating Equation (3.1) definingLC along these curves one obtains

dπB(x)vx = dπB(y)vy

dπB(x)wx = dπB(y)wy

SinceLC is a subset ofC × C , andC is fibred the kernel of the restriction ofω toC

agreeswith the kernel of the linearised projection dπB :

ker i∗Cω(x) = TxC
ω = TxF = ker dπ(x).
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Calculate

(−ω × ω)(v, w) = −ω(vx, wx) + ω(vy, wy)

= −ωB(vx, wx) + ωB(vy, wy)

= −ωB(vx, wx) + ωB(vx, wx)

= 0

Therefore i∗LC
(−ω × ω) = 0 andLC is Lagrangian.

To see how LC inherits a fibre bundle structure from C , consider F × F and the

maps

i− = iF ◦ p− : F × F → C

i+ = iF ◦ p+ : F × F → C.

By the universal property of the fibre product, there exists amap iF×F : F × F →

LC , such that the diagram below commutes. Notice that both, rows and columns,

are exact.

F × F F F

F LC C

F C B

iF×F

p+

p−

id

iF iF

id

iF

p−

p+

πB

iF πB

ThatLC is the total space of the fibre bundle (3.2) now follows from equation (3.1)

above.

Lemma3.2 shows that onemay associate to every fibred coisotropicC aLagrangian

LC which inherits a fibre bundle structure from C . By the universal property of

the product, this assignment is unique. Notice also that the embedding ofLC into

W− ×W+ is uniquely determined by the embedding ofC into (W,ω).
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3.1.1 Montonicity and theminimalMaslovnumberof coisotropic sub-

manifolds

I nowrecall two important definitions forLagrangian submanifoldsLof a symplec-

ticmanifold (W,ω). Given a disc

u : (D, ∂D)→ (W,L),

wedenote byEω(u) the symplectic energy and byµ(u) theMaslov index ofu. Both

maps descend to homomorphisms onHD
2 (M,L) ⊂ H2(M,L), the image of the

Hurewicz homomorphismh : π2(M,L)→ H2(M,L).

Definition 3.3 (Monotone Lagrangian).

A LagrangianL in a symplectic manifold (W,ω) is monotone if there exists a posi-

tive real number η > 0 such that

Eω(A) = η · µ(A) for all A ∈ HD
2 (M,L).

Denote by

(3.3) NL = min
A∈HD

2 (M,L)
µ(A) > 0

theminimalMaslov number of amonotone LagrangianL.

Definition 3.4 (Monotone coisotropic).

A fibred coisotropicC of a symplecticmanifold (W,ω) ismonotone ifLC is amono-

tone Lagrangian submanifold of the twisted productW− ×W+.

Definition 3.5 (MinimalMaslov number of a coisotropic).
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TheminimalMaslov numberNC of a fibred,monotone coisotropicC is theminimal

Maslov numberNLC
of the associated Lagrangian graphLC .

To gain some intuition about these definitions consider the following simple ,yet

illuminating example below. This example canbe generalised in various directions:

Example 3.6 (MinimalMaslov number of the generalisedHopf fibration).

ConsiderR2n = (q1, . . . , qn, p1, . . . , pn) and its standard symplectic structureω0.

Then the standard almost complex structureJ0 given by

J0 =

0 −1

1 0


isω0-compatible, i.e. for v, w ∈ R2n

ω0(v, w) = ⟨J0v, w⟩.

The standard unit sphere S2n−1 is a stable coisotropic with respect to ω0. Recall

that

TvS
2n−1 = v⊥

the orthogonal complement of v. The isotropic distribution at v is given by:

(
TvS

2n−1
)ω0 =

{
w ∈ R2n|⟨J0v′, w⟩ = 0 ∀v′ ∈ v⊥

}
= span{J0v}

At each point v ∈ S2n−1 define the 1-formα onTvS2n−1 by

αv(w) := ιvω0(w) = ⟨J0v, w⟩

Then

αv(J0v) = ⟨J0v, J0v⟩ = 1
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and

dα(v, w) = d(ιvω0(w)) = ⟨v, J0w⟩ = ω0(v, w)

Thus S2n−1 is a contact coisotropic and particular stable. View S2n−1 as the total

space of the generalisedHopf fibration

S1 → S2n−1 → CPn−1.

TheLagrangianLS2n−1 is thus the total space of the fibre bundle

(3.4) S1 × S1 → LS2n−1 → ∆CPn−1.

As a set it is given by

LS2n−1 = {(v, w) ∈ S2n−1 × S2n−1|πCPn−1(v) = πCPn−1(w)}.

Denote byS1
∓ the imageof theprojectionp∓(S1×S1) to each factor ofR2n×R2n.

To compute the minimal Maslov number of LS2n−1 consider the long exact se-

quence of the fibre bundle (3.4) .

π2(∆CPn−1) π1(S
1 × S1) π1(LS2n−1) π1(∆CPn−1)

π2(CPn−1) π1(S
1
−)× π1(S1

+) π1(LS2n−1) 0

∼=

∆i∗

∼=

i∗

∼=

π∗

∼=
δ∗ i∗

From the long exact sequence of the generalisedHopf fibration

S1 → S2n−1 → CPn−1,

it follows that π2(CPn−1) ∼= π1(S
1) ∼= Z, where the generator ofZ corresponds

to the loopgenerating theHopf fibre. One can identify∆CPn−1withCPn−1 either

via p− or via p+. If one identifies the diagonal∆CPn−1 with p−(CPn−1×CPn−1),

the image of δ∗ is π1(S1
1) or the (1, 0)-loop in T 2. Since i∗ is surjective it follows in
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this case that

π1(S
1
+)
∼= π1(LS2n−1) ∼= Z,

where the generator of Z is the (0, 1) loop in π1(T 2). Thus the generator of

π1(LS2n−1) corresponds to the loop around the Hopf fibre in the second factor. In

the casewhere one identifies the diagonal∆CPn−1 with p+(CPn−1 ×CPn−1) the

generatorofπ1(LS2n−1)correspondsto (1, 0) looparoundtheHopf fibre in the first

factor. Noticealsothatthegeneratorπ2(∆CPn−1)correspondsunderthemap∆i∗

to the (1, 1) loop around bothHopf fibres inT 2which is not aminimal loop.

Next, examine long exact sequence of relative homotopy groups

· · · −→ πi(LS2n−1) −→ πi(R2n × R2n) −→ πi(R2n × R2n, LS2n−1) −→ . . .

Since R2n × R2n is contractible it follows that πi+1(R2n × R2n, LS2n−1) ∼=

πi(LS2n−1) and in particular π2(R2n × R2n, LS2n−1) ∼= π1(LS2n−1) ∼= Z is gen-

erated by the loop around either theHopf fibre in the first or the second factor.

I now compute theMaslov number ofLS2n−1 . In complex coordinates

LS2n−1 = {(z1, . . . , zn, w1, . . . wn) ∈ S2n−1 × S2n−1 | wi = eiθzi for θ ∈ [0, 2π]}

Consider the loop

γ : S1 → LS2n−1

θ 7→ (eiθz1, . . . , e
iθzn, z1, . . . , zn).

with base point γ0 = (eiθ, 0, . . . , 0, 1, 0, . . . , 0), which generates π1(LS2n−1). A

loopΛγ of unitary frames of the tangent spacesTγ(θ)LS2n−1 along this loop is given

by

Λγ = (ieiθv1, e
iθv2, . . . , e

iθvn, iv1, v2 . . . , vn),

forabasis{v1, . . . , vn}ofTγ0LS2n−1 . ThustheMaslov indexof this loops is2nsince
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it rotateseachof the firstncoordinatesoncearoundtheorigin. This implies that the

minimalMaslov number satisfies

NLS2n−1 = 2n.

Moreover, an elementary computation shows thatLS2n−1 ismonotone.

3.1.2 Displaceability and leaf-wise fixed points ofC andLC

It is awell known fact that a diffeomorphismψ :W →W is a symplectomorphism

if and only if the graph ofψ, given as a set by

graph(ψ) = {(q, ψ(q)) ∈W− ×W+ | q ∈W}

is a Lagrangian submanifold ofW− ×W+ (see Proposition 3.27 in [MS17]).

Definition 3.7 (Displaceability).

AsubmanifoldN ⊂W isHamiltoniandisplaceable if thereexistsaHamiltoniansym-

plectomorphismψ :W →W such thatϕ(N) ∩N = ∅.

Definition 3.8 (Leaf-wise fixed point).

Letψ : W → W be a symplectomorphism andC a coisotropic. A point x ∈ C is a

leaf-wise fixed point ifψ(x) lies in the leafFx throughx.

Lemma3.9.

Given a fibred coisotropicC and a symplectomorphismψ there is a one to one correspon-

dence between the set of leafwise fixed points

Fix(ψ,F) = {x ∈ C | ψ(x) ∈ Fx}
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and the intersection of the graph(ψ(LC))withLC .

Proof.

graph(ψ) ∩ LC = {(x, ψ(x)) ∈W ×W | x ∈W} ∩ {(x, y) ∈ C × C | πB(x) = πB(y)}

= {(x, ψ(x)) ∈ C × C | πB(x) = πB(ψ(x))}

= {(x, ψ(x)) ∈ C × C | ψ(x) ∈ Fx}

∼= Fix(ψ,F).

Remark 3.10.

If the coisotropicC ⊂ W is fibred, the notion of leafwise fixed points is a generalisation of

twowell knownnotions: IfC is the entire symplecticmanifoldW , leafwise fixed points are

fixed points of the symplectomorphismψ. If the coisotropic is Lagrangian i.e. C = L, the

leafwise fixed points are intersectionsψ(L) ∩ L.

k = 0 : {ψ(q) = q} 1:1←→ {graph(ψ) ∩∆W}

1 < k < n : Fix(ψ,F) 1:1←→ {graph(ψ) ∩ LC}

k = n : {x ∈ L | ψ(x) ∈ L} 1:1←→ {ψ(L) ∩ L}

Lemma3.11.

IfC is displaceable, so isLC .

Proof. This followsimmediately fromthefact thatLC ⊂ C×C , sinceϕ(C)∩C = ∅

impliesϕ(C)× ϕ(C) ∩ C × C = ∅.
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Remark 3.12.

A natural question to ask is whether displaceability ofLC implies displaceability ofC or if

not, where exaclty the differences of these notions lie. This would be interesting to investi-

gate in the future.

3.2 The stable hypersurfaceHC and generalised Reeb dy-

namics onC

Assume throughout this section thatC is stable. As pointed out at the beginning of

Section 1.4 the Reeb dynamics on stable and contact hypersurfaces have been stud-

ied extensively. In particular, theWeinstein conjecture has inspired important de-

velopments in symplectic geometry andhasbeenproved in somecases. See [Pas12]

for a survey and the references therein. In higher codimension k > 1, several new

questions about the dynamics on C arise. If a leaf of a stable coistropic (C,S) is

closed, it is a k-dimensional torus byCorollary 2.23. However as one sees already in

Example2.6or, inadifferentcontext,byconsideringtheReebfoliationofS3, nearby

leavesof foliatedmanifoldsarenotnecessarilydiffeomorphic. Forastable-but-not-

fibred coisotropic this implies that the symplectic quotient is not necessarilyHaus-

dorff. One possible starting point to study the dynamics of leaves is to consider the

one dimensional sub dynamics of the leaves. An obvious question is whether the

Weinstein conjecture holds for (stable) coisotropics (see also theConjecture 1.4 in

the Introduction):

Conjecture (Weinstein conjecture for stableCoisotropics).

Do there exist (maybe under appropriate additional assumptions) non-contractible loops

within the leaves of stable coisotropics?

First of all notice that a closed characteristic on a hypersurface within a leaf of
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the characteristic foliation is necessarily non contractible. For a loop within a k-

dimensional leaf, this is not necessarily true. One therefore has to distinguish be-

tween contractible and non-contractible loops within a leaf. Bolle proved the ex-

istence of a non-contractible loop on contact coisotropics in R2n in [Bol98]. As

pointed out already at the beginning of this chapter, I will describe in this section

howone can translate questions about the generalisedReebdynamics on the leaves

of a stable coisotropic toquestions about theReebdynamics of the stable hypersur-

faceHC .

3.2.1 GeneralisedReebdynamics on stable coisotropics

Throughout this section Iwill identifyS1 withR/Z, so that a loop γ : S1 →W has

the basepoint γ(0) = γ(1).

Definition 3.13 (Action vector).

LetC be stable and letx ∈ C . Letγ : S1 → Fx bea looponFx. Theaction vectorAk

of γ is the vector

Ak(γ) = (A1, . . . Ak),

where

Ai =

∫
S1

γ∗αi.

Lemma3.14.

Letx inC . A loop γ : S1 → Fx such that γ(0) = x is non-contractible inFx if and only

ifAk(γ) is non-trivial.

Proof. By the stability assumption onC and Stokes’ theorem, the action vector de-

pends only on the homotopy class of γ inFx. Thus contractible loops q have trivial

action vectorAk(q) = 0.
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Now assume that γ : S1 → C is non-contractible. By Corollary 2.23, Fx is diffeo-

morphic toRk′ × Tl for k = k′ + l. If l = 0, all loops inFx are contractible, thus

assume l ≥ 1. Since γ is non-contractible inFx its homotopy class [γ] inTl is non-

trivial, thus there exists an 1 ≤ i ≤ l such thatAi(γ) ̸= 0). ThusAk(γ) = 0 if and

only if γ is contractible inF .

Remark 3.15.

A loop γ in a leafFγ(0) satisfies the equation:

γ̇(t) =

k∑
i=1

qi(t)Xi(γ(t)).

Aswe have seen above the action vector depends only on its homotopy class. SinceR is con-

tractible every loop γ as above is homotopic to a loop β : S1 → Fγ(0) which is a solution

to

(3.5) β̇(t) =

k∑
i=1

qiXi(β(t)).

Bolle proved theWeinstein conjecture for contact coisotropics inR2n by showing

that there exists a loopofpositive actionwhich satisfiesEquation 3.5 by considering

symplectic capacities. In tribute tohim, this equation is usually referred to asBolle’s

equation.

I now present a point of view on the one dimensional dynamics on C which links

them to the action of the generalised Reeb flow and the associated moment map

considered in Section 2.4. Observe that contractible loops correspond to trivial so-

lutions of Bolle’s equation 3.2.1. Hence, the loop γ is non-contractible if and only if,

the vector q = (q1, . . . , qk) is non-trivial. Given any non-trivial vector q of the eu-

clidean vector spaceRk, set q̂ = q
|q| and q̂i =

qi
|q| where | · | is the standard euclidean
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norm. For non-contractible loops one can rewrite Bolle’s equation as:

β̇(t) =

k∑
i=1

T q̂iXi(β(t)),

forT = |q| ∈ R>0. I call such a loopβ a solution to Bolle’s equation of periodT .

Recall that the generalisedReeb flow is given by theRk-action fromDefinition 2.21.

Consider the span of q overR

⟨q⟩ = {t · q̂ | t ∈ R}

as a one parameter subgroup of the group Rk. Denote by ⟨q⟩⊥ the span of the or-

thogonal complementof qwith respect to the standard innerproductonRk. Inpar-

ticular, q induces a decomposition ofRk into the direct sum

(3.6) Rk = ⟨q⟩ ⊕ ⟨q⟩⊥.

of vector spaces and of normal subgroups. Therefore there is a well defined action

of these subgroups onC .

Definition 3.16 (Generalised Reeb trajectories and orbits).

For a stable coisotropic C and a point x ∈ C a generalised Reeb trajectory (γ, q)

through x is an orbit of a subgroup ⟨q⟩ of the action described in Definition 2.21

which passes through x. A generalised Reeb trajectory is non-trivial if and only if

the vectorq is. A non-trivial generalised Reeb trajectory through a point x ∈ C is

closed if there exists aT ∈ R>0 such thatΦT q̂(x) = x.

A generalised Reeb orbit through x is a closed, non-trivial generalised Reeb trajectory

through x. I denote generalised Reeb orbits through a point x as triples (γ, q̂, T )

consisting of a loop γ : S1 → Fγ(0)which satisfies γ(0) = γ(1) = x and Bolle’s

equation 3.5 for a vector q̂ in the unit sphere Sk−1 and a positive real number T ,

which is the period of the orbit.
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The following Lemma follows immediately from this definition by :

Lemma3.17.

The set ofnon-contractible loopsγ,withbasepointγ(0) = x,whichare solutions toBolle’s

equation 3.5 for the vector q and have periodT = |q|, is in one to one correspondence with

the set of generalised Reeb orbits throughx of periodT = |q|.

Remark 3.18.

The set of nontrivial, generalised Reeb trajectories through a given pointx ∈ C is nothing

but the set of orbits of subgroupsofRk of the form ⟨p⟩and thus the set of orbits is isomorphic

to the space of lines through the origin inRk, and thus to eitherSk−1 or the real Grassma-

nianG(1, k), depending one the whether one wants to consider the loops associated to q

and−q as equivalent or not. In the case k = 1 the set of generalised Reeb trajectories (or-

bits) is the set ofReeb trajectories (orbits) on the hypersurface. Here the quotientmap from

S0 toRP0 corresponds to choosing an orientation onR.

Assume the period of a generalised Reeb orbit throughx isT . Then the stabiliser of

x under the action of ⟨q⟩, is the discrete subgroup

stabq(x) = {T ′q̂ ∈ ⟨q⟩, T ′ ∈ R | ΦT ′q̂(x) = x} = {kT · q̂ ∈ ⟨q⟩ | k ∈ Z}.

and thus isomorphic to a copy ofZ ⊂ ⟨q⟩ by sendingT to 1.

Example 3.19 (Generalised Reeb orbits onT2).

As an example consider a Lagrangian torus T2 ⊂ (R4, ω0). Then the generalised

Reeborbits are integral curves of rational slope p
q as inExample 2.6. Theperiod is q

p .

Example 3.20 (Generalised Reeb orbits on stable codimension 2 coisotropic sub-
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manifolds).

Consider a stable coisotropic of codimension 2. Assume there exists a closed leaf

F ∼= T2 of the characteristic foliationF . Then the generalised Reeb orbits ofC in

the leafF are again the integral curves of rational slope p
q as in Example 2.6.

By Lemma 3.17 above non-trivial solutions to Bolle’s equation 3.5 of period T are in

one toone correspondencewithnontrivial generalisedReeborbits of periodT as in

Definition 3.16. Iwill explain belowhowone can study the onedimensional dynam-

icsonC byviewing themas theReebdynamicsof a stablehypersurface,which Inow

construct. This hypersurface is the hypersurfaceHC alluded to in the introduction

and at the beginning of this chapter.

3.2.2 Construction of the stable hypersurfaceHC

Recall thatastablecoisotropic iscontained inaBolleneighbourhoodU ∼= Bk
ϵ0 × C .

Themoral of being stable is that the dynamics of the foliationF ofC are the conju-

gate throughoutU . Putdifferently, at agivenpointwithin theBolleneighbourhood,

one isunable tospecifyone’spositionwithinU if theonly informationonehas is the

dynamics on the foliation. With this inmind it is not entirely surprising that k − 1

dimensional spheresSk−1
ϵ for ϵ < ϵ0 inBk

ϵ0 give rise to a stable hypersurfaces, with

Reeb dynamics which are in one to one correspondence with the generalised Reeb

dynamics onC . Thus, given a stable coisotropicC for each ϵ < ϵ0 define:

(3.7) HC,ϵ = Sk−1
ϵ × C.

Note that in case where C is a Lagrangian L,HL is symplectomorphic to the unit

cotangent bundle U∗L and in particular a contact hypersurface of the cotangent

bundleT ∗L. IfC is a hypersurfaceH , thenHH consists of two copies ofH .

Proposition 3.21.
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Consider a stable coisotropicC in itsBolle neighbourhoodBk
ϵ0×C . Denote a vector inBk

ϵ0

by p = (p1, . . . , pk). Then, for every fixed 0 < ϵ < ϵ0, the hypersurfaceHC,ϵ, is the level

setµ−1
S ( ϵ

2

2 ) of themomentmap

µS(p, x) =
1

2

k∑
i=1

p2i

associated to theR-action

R× (Bk
ϵ0 \ {0})× C −→ (Bk

ϵ0 \ {0})× C(3.8)

(t, p, x) 7−→ (p,Φtp(x)).

Proof. First of all observeµS(p, x) = 1
2

∑k
i=1 p

2
i =

ϵ2

2 implies |p|2 = ϵ2. Thus

µ−1
S (

ϵ2

2
) = Sk−1

ϵ × C.

At an element t0 in the trivial Lie AlgebraR of the trivial Lie groupR, the time de-

pendentHamiltonianHt0 is given by.

Ht0(p, x) = ⟨µ(p, x), t0∂t⟩

= ⟨⟨(1
2

k∑
i=1

p2i dt, t0∂t⟩⟩

= ⟨1
2

k∑
i=1

p2i , t0⟩ =
1

2

k∑
i=1

p2i · t0

This implies

dHt0(p, c) = t0d

(
1

2

k∑
i=1

p2i

)
(3.9)

= t0

k∑
i=1

pidpi =

k∑
i=1

ωs(t0piXi, ·).

Since
∑k

j=1 t0pjXj generates the flow ofΦt0p it follows that µS is indeed the mo-
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mentmap of theR-action 3.8 above.

Lemma3.22.

For each x inC there is a one-to-one correspondence of the sets of non-trivial, generalised

Reeb trajectories G onC through x and the set of orbits of the action defined by Equation

3.8which pass throughx.

Proof. Fix a point x on C . The set of non-trivial generalised Reeb trajectories

throughx is the set of orbits of subgroups ⟨q⟩ ⊂ Rk of the action described inDefi-

nition2.21whichpass throughx. Asdescribed inRemark3.18 there is anSk−1worth

of these orbits.

Anorbit through the point (p, x) ∈ Hϵ of the action defined inEquation 3.8 is given

as a set by

{(p,Φtp(x)) ∈ Sk−1
ϵ × C | t ∈ R},

and thus is a pair consisting of a vectorp ∈ Sk−1
ϵ and anorbit of the subgroup ⟨p⟩ ⊂

Rk under the action 3.8, whose C component coincides with the C component of

the action described in Definition 2.21 for a fixed vector p. Since for each x, there is

anSk−1 worth of vectors p to define the subgroup ⟨p⟩, the two sets are isomorphic

by sending p 7→ p
|p| .

Level sets ofmomentmaps are not neccessarily stable. See Example 1.2. I show be-

low that the level sets ofµS are both stable and separating. Moreover, the Reeb dy-

namics onHC,ϵ, are independent of the choice of ϵ up to reparametrisation. Pre-

empting this fact, fromnow on I assume that an appropriate ϵ has been chosen and

abuse notation by setting

HC = HC,ϵ

whenever the radius ofSk−1
ϵ is either clear from context or irrelevant.
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Proposition 3.23.

Given a stable coisotropic (C,S), considerHC . Denote the stabilising one forms on C

byα1, . . . , αk. Denote the stabilising vector fields by Y1, . . . , Yk. Denote by p a vector in

Sk−1
ϵ Then the following holds

(i) HC is a stable and separating hypersurface in (Bk
ϵ0 × C,ωs).

(ii) The Reeb vector field at a point (p, x) onHC is given by

(3.10) X(p, x) =

0,

k∑
j=1

p̂jXj(x)

 .

(iii) The stabilising one formα forHC is given by

α(p, x) =
k∑

i=1

p̂iαi(x).

(iv) The stable vector field Y at (p, x) ∈ Sk−1
ϵ × C is given by the radial vector field

∂p ∈ Γ(Sk−1
ϵ , TSk−1

ϵ )which satisfies at ∂p = p̂ ∈ ⟨p⟩ at each point p ∈ Sk−1
ϵ .

Thus∂p satisfies

ι(∂p)ωs = α and in particular ωs(Y,X) = 1.

Proof. Recall that by the Bolle neighbourhood theorem 2.18 there exists an ϵ0 > 0,

a neighbourhoodU ofC inW and a symplectomorphismψ : C × Bk
ϵ0 → U such

that

(3.11) ωs = ϕ∗ω = i∗Cω + d(p1α1) + · · ·+ d(pkαk)

wherethepi denote thecoordinatesonthek-dimensionalballof radiusϵ0 inRk. Re-

call fromSection2.3 thata1-formαonahypersurfaceH is stabilising ifα isnonzero

on ker(i∗Hω) andker(i
∗
Hω) ⊂ ker dα. Denote byX1, . . . , Xk theReeb vector fields

associated to the stable 1-formsα1, . . . , αk onC . The tangent space ofHC splits as
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follows:

(3.12) T(p,c)HC = TpS
k−1
ϵ × TcC = p⊥ × TcC.

Here, p⊥ denotes the orthogonal complement of the vector p with respect to the

standard inner product ⟨·, ·⟩ onRk. To prove assertion (ii), I first show thatX , de-

fined in Euqation 3.10, lies in the one dimensional kernel of the restriction of ωs to

HC . LetZ = (q, ZC) ∈ T(p,x)HC = p⊥ × TxC and consider:

ωs(X,Z) = i∗Cω(X,Z) +
k∑

i=1

d(piαi)(X,Z)

= i∗Cω

 k∑
j=1

p̂jXj , Z

+

k∑
i=1

pidαi

 k∑
j=1

p̂jXj , Z


+

k∑
i=1

dpi ∧ αi

 k∑
j=1

p̂jXj , Z


= 0 + 0 +

k∑
i=1

dpi ∧ αi

 k∑
j=1

p̂jXj , Z


=

k∑
i=1

dpi

 k∑
j=1

p̂jXj

 · αi(ZC)− dpi(q) · αi

 k∑
j=1

p̂jXj


=

k∑
i,j=1

(0 · Zc − qi · p̂j · δij)

= −⟨q, p̂⟩ = 0

= 0

The two terms in the second line of the calculation vanish sinceXj ∈ ker(i∗Cω) ⊂

ker dαi for all 1 ≤ i, j ≤ k by the stability assumption onC . The last equality fol-

lows fromthedefinitionof the tangent space ofHC . ThusX is contained in theone

dimensional kernel of the restriction ofωs toHC . To prove (ii) it remains to show
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thatα(X) = 1. Compute:

(3.13) α(X)(p, x) =
k∑

i=1

p̂iαi

 k∑
j=1

p̂jXj

 =
k∑

i,j=1

p̂ip̂jδij =
k∑

i=1

p̂2i = 1.

Thusαdoesnotvanishon theonedimensional kernel ofω onHC and isnormalised

correctly. Observe that

dα =

k∑
i=1

dpi ∧ αi +

k∑
i=1

pidαi.

But we have just seen above that dα vanishes along the one dimensional kernel of

i∗Hϵ
ωs. Thusα is a stablizing one form forHC and (iii) is proved.

To prove (iv), calculate:

L∂p ωs = d(ι(∂p)ωs)

= d

(
i∗Cω(p̂, ·) +

k∑
i=1

dpi ∧ αi(p̂, ·) +
k∑

i=1

pidαi(p̂, ·)

)

= d

(
k∑

i=1

p̂iαi

)

= dα

Thus i∗FL∂pωs = i∗Fdα = 0, which proves assertion (iv).

ByProposition 2.19 (HC , ωs, ∂p) is a stable hypersurface. To see thatHC is separat-

ing consider the open and disjoint setsUC := ψ(C × B̊k
ϵ ) andUR := W \ ψ(B̄k

ϵ ).

Assertion (i) follows.

3.2.3 Relation of generalised Reeb dynamics onC and Reeb dynamics

onHC

I nowprove a key Lemma for the proof of themain results of this thesis.
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Lemma3.24.

LetC be a stable coisotropic submanifold of codimension k. Fix ϵ < ϵ0. There is a one to

one correspondence of the setG of non-trivial generalisedReeb trajectories onC and the set

R of non-trivial Reeb trajectories onHC :

(3.14) G 1:1←→ R.

Inparticular foreverygeneralisedReeborbit(γ, p̂, T )onC thereexistsauniqueReeborbit

(p, γ(tT )) onHC .

Proof. By choosing t0 = 1
ϵ in Equation 3.9 it follows that the Hamiltonian vector

fieldXH 1
ϵ

associated to the moment map µS agrees with the Reeb vector fieldX

given by Equation 3.10 onHC . The assertion now follows fromLemma 3.22.

I summarise the relation of the generalised Reeb dynamics on C and the Reeb dy-

namics onHC in the following proposition:

Proposition 3.25.

Given a pointx ∈ C , consider a loop γ : S1 → Fx. The following are equivalent:

(i) γ has a non-trivial action vectorAk(γ).

(ii) γ is non-contractible inFx.

(iii) γ is homotopic to a non-trivial solutionβ of Bolle’s equation for some q ∈ Rk.

(iv) (β, q̂, T ) is a generalised Reeb orbit which is homotopic to γ.

(v) (β, q̂, T ) is a closed, non-trivial orbit of the action 3.8 andβ is homotopic to γ.

(vi) Forβ homotopic to γ, there exists a unique, closed, non-trivial Reeb orbit β̃ onHC .

Proof. The assertion that (i) is equivalent to (ii) follows from Lemma 3.14. That

(ii) is equivalent to (iii) from Remark 3.15. Statement (iii) is equivalent to state-
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ment (iv)byLemma3.17. Lemma3.22showsthat (iv) is equivalent to (v)andfinally

Lemma 3.24 proves (v) is equivalent to (vi).

When studying theReebdynamics on stable hypersurface oneusually assumes that

thedynamicsassociated to the stableone formα areeitherofMorse typeorofMorse-

Bott type. These conditions ensure that the moduli space of closed Reeb orbits is

either discrete up to reparametrisation (Morse type) or has a manifold structure

(Morse-Bott type). ByProposition3.24 thegeneralisedReebflowonacoisotropicC

coincideswith theReeb flowontheassociatedstablehypersurfaceHC . I extend the

notion ofMorse-Bott type in a straightforwardway to stable coisotropics inDefini-

tion3.26below. Unlessonemakesverystringentassumptions, thegeneralisedReeb

flowonC isofMorse-Bott type. Thekeyresultof this subsection isProposition3.27:

The generalisedReeb flowonC is ofMorse-Bott type if and only if theReeb flowon

HC is ofMorse-Bott type.

Definition 3.26 (Morse-Bottness of stable coisotropic submanifolds).

A closed, nontrivial, generalised Reeb orbit (γ, q̂, T ) is of Morse-Bott type if the set

GT (q̂)of generalisedReeb orbits of periodT in direction q̂ ∈ Sk−1 is a smooth sub-

manifold ofC such that

(i) At each pointx inGT (q̂) the tangent spaceTxGT (q̂) satisfies

TxGT (q̂) = ker(dΦT q̂ − id)(x).

(ii) The rank of i∗GT (q̂)ω is constant on each connected component ofGT (q̂).

Astablecoisotropic(C,S) isofMorse-Bott type if allgeneralisedReeborbits(γ, q̂, T )

are ofMorse-Bott type.

This definition coincides with the definition given in [Bou+03] in the case whereC

is a hypersurface, since, up to sign, there is only one direction q̂ ∈ R and the gener-
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alised Reeb flow on a hypersurface is the Reeb flow on the hypersurface. Recall that

every generalised Reeb orbit defines a loop γ contained in a torusTl for l ≤ k. This

torus is invariant under the action described inDefinition 2.21. Thus there is aTl−1

family of orbits γ, given by translations of γ inTl. Thus, if nonempty, the setGT (q̂)

contains an l-dimensional torusTl
γ for each orbit (γ, q̂, T ). Therefore, unless l = 1

forall suchtoriTl
γ , thespaceGT (q̂)cannotbeonedimensionalandthusC cannotbe

ofMorse type. IfC is a hypersurface, necessarily l ≤ k = 1 and thus the Reeb flow

onahypersurfacehasachancetobegenericallyof”Morsetype”. Seeagain[Bou+03]

for reference.

Proposition 3.27.

A stable coisotropic (C,S) is of Morse Bott type if and only if the Reeb flow onHC is of

Morse-Bott type.

Proof. Examine the Reeb flow onHC . It coincides with the orbits of the action 3.8.

For each t ∈ R it is a symplectomorphismof the Bolle neighbourhoodwith restric-

tion toHC given by

Φt : Sk−1
ϵ × C → Sk−1

ϵ × C

(p̂, x) 7→ (p̂,Φtp̂(x)).

Recall the actionRk-action from Definition 2.21 onC . Given any vector p̂ one can

viewthis actionas thecompositionof theactionsΦp of the1-dimensional subgroup

⟨p⟩ and the actionΦp⊥ of the (k − 1) dimensional subgroup ⟨p⟩⊥:

Rk × C → C

⟨p⟩ ⊕ ⟨p⟩⊥ × C → C

(p, q) 7→ Φtp̂ ◦ Φq(x)
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Examine the linearisation of the Reeb flowonHC :

(3.15) dΦt(p, x) =

 id 0

d
dp̂Φ

t(p, x) d
dxΦ

t(p, x)

 .

Observe that the differential of Φt with respect to p̂ in direction of a vector

q ∈ ⟨p⟩⊥ = TpS
k−1 is given by the infinitesimal action of p⊥ in direction q:

d

dp̂
Φt(p, x)q̂ = Φtq(p, x).

Thus d
dp̂Φ

t(p, x) corresponds to the inclusion of the Lie algebra of ⟨p⟩⊥ intoTxC . I

will denote this inclusion by i(q). Consider

ker
(
dΦt(p, x)− id(p, x)

)
= ker

 id 0

Φtq̂ d
dxΦ

t(p, x)

−
id 0

0 id

(3.16)

= ker

 0 0

i(q) d
dxΦ

t(p, x)− id


= ker(

d

dx
Φt(p, x)− id)

By Proposition 3.25 for each generalised Reeb orbit (γ, q̂, T ) on C there exists a

unique Reeb orbit (γ̃, p, T ) on HC . By Equation 3.16 above, the tangent space

TxGT (p̂) is isomorphic to the tangent spaceT(p̂,x)RT . Theproposition follows.

Lemma3.28.

If (C,S) is a stable, fibred, codimension k coisotropic, then (C,S) is ofMorse-Bott type.

Proof. By Lemma 2.8, C is the total space of the fibre bundle Tk → C → B.

Thus for every generalised Reeb orbit (γ, q̂, T ), the set TxGT (q̂) contains the fibre

Fγ(0)
∼= Tk

γ . In a local chart around γ(0), the generalised Reeb flow is given by

(b, f) 7→ (b,Φtq̂(b, f)) and thus leaves the base directions invariant. It follows that

88



d
dxΦ

Tp(x) = id(x) and thus thatTxGT (q̂) = TxC .

Combining the two previous results one obtains immediately:

Corollary 3.29.

For a stable, fibred coisotropic submanifoldC , the Reeb flow onHC is ofMorse-Bott type.
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Chapter 4

Existence of pearly trajectories

4.1 Outline ofChapter 4 . . . . . . . . . . . . . . . . . . . . . . 92

4.2 TheMorse complex of an almost fibredMorse function . . 95

4.2.1 TheMorse complex . . . . . . . . . . . . . . . . . . . . 95

4.2.2 Almost fibredMorse functions . . . . . . . . . . . . . . 99

4.3 Thepearl complex of an almost fibredMorse function . . . 102

4.4 Proof of Theorem4.1 . . . . . . . . . . . . . . . . . . . . . . 112

The goal of this chapter is to prove Theorem 1.7 which I state again below as Theo-

rem4.1.

Theorem4.1.

LetC be a fibred, stable coisotropic submanifold of a symplecticmanifold (W,ω). Assume

that the Lagrangian graphLC in the productW− ×W+ is monotone and has minimal

Maslov numberNLC
at least three. Let b be any point in the symplectic quotientB ofC .

IfLC is displaceable, then there exist:

(M) An almost fibred Morse function f onLC such that the unique global minimum x

of f on LC is contained in f−1
B (0) and projects to (b, b) ∈ ∆B the diagonal in
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B− ×B+.

(E) A constantE0 > 0, such that for allω-compatible almost complex structures J on

W , there exists at least one pearly trajectory P of energy at mostE0 and with the

following property:

(P) The pearly trajectoryP connects a critical pointy off contained inf−1
B ([1,∞)) to

theminimumx of f .

TheLagrangian graphLC was introduced inSection 3.1. Thenotionsofmonotonic-

ity and theminimalMaslovnumber of theLagrangianLC were introduced andSec-

tion 3.1.1 as the as notions for the coisotropicC . I recall these in Definition 4.9 and

in Equation 4.11 respectively and define the energy of a pearly trajectory in Defini-

tion4.16below. Analmost fibredMorsefunction isaMorse functiononafibrebundle

whichtakesthisstructure intoaccount, seeSection4.2. Apearly trajectory is, roughly

speaking, a configuration of holomorphic discs which lives inmoduli spaces which

are used to define the the algebraic structures on the pearl complex. The cohomol-

ogy of the pearl complex is amodel of the self-Floer cohomology of a Lagrangian. I

explain this construction in Section 4.3 where I also recall the definition of a pearly

trajectory (seeDefinition 4.12 and 4.14).

4.1 Outline ofChapter 4

Givena fibredcoisotropicC as inTheorem4.1, assign theLagrangiangraphLC toC

as described in Section 3.1. Recall fromLemma 3.2 thatLC inherits the fibre bundle

structure

T2k → LC → ∆B

from the fibred coisotropicC .

By assigningLC toC theapparatusofLagrangianFloer theorybecomesavailable to

studyC . Lagrangian Floer theory can be regarded as a quantumdeformation of the
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classicalMorse theory of a Lagrangian. The Lagrangian quantum homology theory

definedbyBiranandCornea in[BC07],makesthis ideaexplicit: thevectorspaceun-

derlying the pearl complex is still generatedby the critical points of aMorse function

on the Lagrangian. The differential and the product structure on the pearl complex

canbedecomposed intoaMorse (theclassical)part andaFloer (thequantum)part.

The quantum part of the differential counts configurations of pseudoholomorphic

discs, which are arranged alongMorse flow lines like pearls along a string (seeDefi-

nition4.12). Thesearecalled thepearlydifferential trajectories. Thequantumproduct

countsconfigurationsofpseudoholomorphicdiscsarrangedlikepearlsonthe letter

‘Y’ (see Defintion 4.14). These are called pearly product trajectories. I call the collec-

tion of pearly product trajectories and pearly differential trajectories, pearly trajec-

tories. See [BC09] for an overview of the theory developed by Biran andCornea.

Inoder toproveTheorem4.1, I adapt the constructionof thepearl complex tomake

it incorporate the fibre bundle structure ofLC . To achieve this I construct in Sub-

section 4.2.2 a natural class of Morse functions f and almost gradient vector fields

Z defined on LC in the following way: define a Morse function fB onB and lift it

to a Morse function f on LC by using perturbations of a small Morse function fF

on the typical fibre F . By allowing almost gradient vector fields one can ensure that

Morse flow-lines off project toMorse flow lines offB . I call suchpairs almost fibred

pairs (see Definition 4.6). With these choices, the critical points x of f are filtered

according to theMorse index |πB(x)|of their projection to the symplectic quotient

B. Assume for simplicity fB(πB(x)) = i for all critical points x such |πB(x)| = i,

i.e. fB is self indexing. ThenLC can be partitioned into super- and sublevel sets of

a fixed value of fB

LC = {x ∈ LC |fB(πB(x)) < 1} ∪ {x ∈ LC |fB(πB(x)) ≥ 1}

I learned about the construction of almost fibred Morse functions from Alex

Oancea’s thesis [OAN03], where this filtration is used to define the Leray-Serre

spectral sequence in aMorse theoretic setting.
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Next, Iquickly recall thedefinitionof thepearl complexandthealgebraicstructures

defined on it in Section 4.3. I then define the almost fibred pearl complex as the pearl

complexassociated toanalmost fibredMorsecomplex inSection4.3 (seeDefintion

4.18). I then explain how the almost fibred pearl complex incorporates some of the

fibre bundle structure ofLC inNotation 4.19, Lemma4.20 andDefinition 4.22. This

concludes the adaptation of the pearl complex to the fibre bundle structure onLC .

To prove the existence of a pearly trajectory P with the Property (P) from the as-

sertion of Theorem 4.1 one nowuses the algebraic structures on the pearl complex.

More precisely one proceeds as follows: choose an almost fibred pair (f, Z) such

that the unique minimum x projects to b. The pearl complex is generated as a vec-

tor space byMorse critical points, thus the existenceof a pearly trajectory ending in

theminimumx follows almost immediately from the displaceability ofLC . I prove

this in Lemma 4.23 below. To prove Theorem 4.1 one needs to exclude the possibil-

ity that all pearly trajectories emanate from critical points y in the fibre above the

minimumand are entirely contained in the fibre over theminimum.

Observe that the fibre over theminimum is a 2k-dimensional torus,T2k
x , by Propo-

sition 2.22. Thus if the Floer part of the differential on the pearl complex decreases

theMorse degree of a critical point by at least 2k + 2, there cannot exist any pearly

trajectory ending in theminimum x and emanating from a critical point y in the fi-

breT2k
x fordegree reasons. Thus if onemakes thishighminimalMaslovassumption

Theorem4.1 is not that hard to prove.

However, the assumption of the Theorem,NLC
≥ 3, is independent of the codi-

mension of the coisotropic. One achieves this improvement by the following ob-

servation: If there exists a pearly trajectory emanating froma critical pointwhich is

not contained in the fibre over theminimum, the theorem follows. If not, all pearly

trajectories ending in the minimum emanate from critical points y which are con-

tained in the fibreT2k
x over theminimumx. Every critical point y ofMorse index at

least one in thecochain complexof the torusT2k
x canbegeneratedas sumsofMorse

cup products of finite linear combinations of critical points x1, . . . , xK which are

all of degree one for someK ∈ Z≥0. One then considers the quantum deforma-
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tion of thisMorse cup product. This quantumproduct ofx1, . . . xK results in a col-

lection y′ of critical points in the fibre T2k
x above the minimum and a collection of

critical points y′′ which all satisfy |πB(y′′)| ≥ 1. The quantum deformation of the

Morse cup product satisfies a Leibnitz rule with respect to the full quantum differ-

ential on the almost fibredpearl complex. The critical pointsx1, . . . xK whichwere

used to generate y have Morse index one, and thus, by applying the Leibnitz rule,

the assumptionNL ≥ 3 is now sufficient to eliminate contributions to the Floer

differential coming from the collection of points y′ above theminimum. By a priori

choosing a perfectMorse function on the torus fibre one can then show that the re-

maining terms y′′ ∈ f−1
B ([1, dimL]) in the quantumproduct ofx1, . . . xK give rise

to a pearly product trajectory with the property (P) from the assertion of Theorem

4.1.

The chapter is structured as follows. In Section 4.2 I explain the construction of an

almost fibredMorse complex associated to a of a fibre bundle via almost fibred pairs of

Morse functions and almost gradient vector fields. In Section 4.3 I quickly review the

construction of the pearl complex and explain its adaptation to almost fibred Morse

complexes resulting in the construction of an almost fibred pearl complex. With this in

place I carry out the proof of Theorem4.1 in Section 4.4.

4.2 The Morse complex of an almost fibred Morse func-

tion

4.2.1 TheMorse complex

To achieve transversality of the moduli spaces involved in the construction of the

Morse cohomology ring on needs to allow for certain perturbation data. I will work

with a single Morse function and allow for varying almost gradient vector fields.

This approach has twomain advantages for the proof of Theorem4.1. The algebraic

structures on the pearl complex are defined as counts of elements inmoduli spaces

associated to pearly trajectories (see Definition 4.13 and 4.15 below or Section 3 of

95



[BC07] for details). The regularity of these moduli spaces relies on the perturba-

tion data for the Morse complex. If one uses a single Morse function and allows

for varying almost gradient vector fields, the critical points of theMorse functionf ,

which generate the pearl complexes associated to sets of perturbation data, remain

unchanged under these perturbations. Thismakes themain argument in the proof

of Theorem 4.1 easier to phrase and prove. The second advantage is that one avoids

having to to deal with derivatives of cut-off functions in the construction of an al-

most fibred Morse complex using almost fibred Morse pairs, which also simplifies

this argument.

Many thanks to Paul Biran for pointing out the advantages of using almost gradient

vector fields in this context to me, an insight that was presented to him by Octav

Cornea. See [BK13].

Definition 4.2 (Almost gradient vector field).

GivenaMorse functionf onamanifoldL, a vector fieldZ onL isalmost gradient for

f if

1. LZ(f) = ι(Z)df > 0 throughout thecomplementof thesetof criticalpoints

of f .

2. For every critical pointx of f there exists a Riemannianmetric ρ and a neigh-

bourhoodUx such thatZ = +∇ρf throughoutUx.

I denoteaMorse functionf andanalmostgradientvector fieldZ forf by (f, Z)and

call this an almost gradient pair.

Without loss of generality, assume from now on that all the almost gradient pairs

(f, Z) used in the constructions satisfy theMorse-Smale condition.

DenotebyϕtZ the flowofZ . For critical pointxoff define the forward (or positive or
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stable)manifold:

(4.1) W≤(x) = {q ∈ L| lim
t→+∞

ϕtZ(q) = x}

and the backward (or negative or unstable)manifold of the positive gradient flow as

W≥(x) = {q ∈ L| lim
t→−∞

ϕtZ(q) = x}.

The reason forusing ‘‘ ≤′′ and ‘‘ ≥′′ in thisnotationwill becomeclear inRemark4.7.

Moreover this notation behaves intuitively when converting from positive almost

gradient flows tonegative almost gradient flowsor passing from(Morse) cohomol-

ogy to homology:

W≤(x) =W≥
− (x)(4.2)

W≥
− (x) =W≤(x),

whereW≤
− (x) andW≥

− (x) denote the forward and backward manifolds of x with

respect to the negative almost gradient flow respectively. TheMorse index |x| of a

critical pointx satisfies

|x| := indMorse(f, Z, L;x) = dimW≤(x),

where dimW≤(x) denotes the dimension ofW≤(x) as amanifold.

For the purposes of this thesis it will be sufficient to work with Z2 coefficients.

Therefore set

K = Z2.

Define

(4.3) Cp
f,Z(L) =

⊕
x∈Critf
|x|=p

K⟨x⟩

as the freeK-module generatedby the finite set of critical pointsCritp(f)of critical
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points (f, Z) on L of Morse index p. SinceK is a field, this is nothing but a finite

dimensional vector space with basis Critp(f) overZ2. ViewingCp as amodule will

be relevant for the definition of the pearl complex.

In abuse of notation, I dropL from the notation and abbreviateCp
f,Z(L) toC

p
f,Z . I

nowrecall thedefinitionsof thealgebraic structuresontheMorsecochaincomplex.

Definition 4.3 (Morse differential).

For every p ∈ Z≥0. TheMorse differential dM counts almost gradient flow lines be-

tween critical points of index difference one:

(4.4)

dM : Cp
f,Z → Cp+1

f,Z

dM (y) =
∑

x∈Critf
|x|=|y|+1=p

m(y, x)⟨x⟩,

where

m(y, x) := #K{W≥(y) ∩W≤(x)}.

is the count inKofpoints in the intersectionof thebackwardmanifoldofywith the

forwardmanifold ofx.

Definition 4.4 (Morse product).

For every pair (p, q) ∈ {0, . . . dim(L)} × {0, . . . dim(L)}. TheMorse cup (or star)

product ⋆0 is a binary operation:

⋆0 : C
p
f,Z ⊗ C

q
f,Z′ → Cp+q

f,Z′′ ,

where one needs to work with at least two different almost gradient vector fields

to ensure transversality of the relevantmoduli spaces. It is theMorse theoretic in-

terpretation of the cup product. Onemay as well work with three different almost

gradient vector fields as in [BC09]orwith threedifferentMorse functions and their

gradients as in [Fuk93]. Thenotation⋆0, which I usehereoriginates indenoting the
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quantumproduct on the pearl complex by ‘‘⋆′′. See Equation 4.17 below.

Let |x1| = p and |x2| = q. Then the ⋆0-product is defined as:

(4.5) x1 ⋆0 x2 := x1 ∪ x2 =
∑

z∈Critf
|z|=p+q

n(x1, x2, z)⟨z⟩,

where

n(x1, x2, z) := #K{W≥(x1) ∩W≥(x2) ∩W≤(z)}.

is the count inK of points in the triple intersection of the backward manifold of x

and y respectivelywith the forwardmanifold of z.

Assume from now on that L is compact and connected. Choose a Morse function

with an unique minimum xmin. It is almost immediate from the definition of the

product thatxmin represents the identitywith respect to the product ⋆0.

Definition 4.5 (Morse complex andMorse cohomology).

Denote by

C∗
f,Z = C0

f,Z
dM−−→ C1

f,Z . . .
dM−−→ CdimL

f,Z

theMorsecochaincomplexof analmostgradientpair (f, Z)onL. TheMorsecoho-

mology ringHM∗(L) is the cohomology of the cochain complex (C∗
f,Z , dM ) with

the ⋆0-product.

4.2.2 Almost fibredMorse functions

Assume that themanifoldL has a fibre bundle structureF → L → B with closed

baseB andclosed fibreF . Note that this is different fromthe assumptionofL to be

fibred as a coisotropic. In the applicationwhich leads to the proof of Theorem4.1L

will beLC .
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I nowconstruct analmost gradientpair (f, Z)onL forwhich theMorsedifferential

preserves the filtrationunderlying theLeray-Serre spectral sequence. Formorede-

tails on this construction see [OAN03]. Recall that I assume that choices of almost

gradient pairs satisfy theMorse-Smale condition.

Definition 4.6 (Almost fibred pair).

An almost fibred pair (f, Z) is the result of the following construction:

Choose an almost gradient pair (fB, ZB) on B. The Morse function fB ◦ πB is

Morse-BottonL. Label thecriticalpointsoffB onB bybi for i = 0, . . . ,M . Choose

mutually disjoint neighbourhoods Ui of bi containing smaller neighbourhoods Vi

such that the closure V̄i of Vi is a proper subset ofUi. Next choose smooth cut-off

functionsθiwhichare identically1near bi and identically0onUi \ V̄i. Chooseanal-

most fibred pair (fF , ZF ) on the typical fibreF . Without loss of generality assume

that fF is self-indexing. Denote the local trivialisations of the fibre bundle by

Ψi : π
−1
B (Ui) :→ Ui × F

and by πF : Ui × F → F the obvious projection. Denote a point on L by q and

extendZF to a vector fieldZi onπ
−1
B (Ui) by:

Zi(q) = ZF ◦ πF ◦Ψi(q).

Wedenote the zeros ofZi by cij for j = 0, . . . , N . Nowdefine the almost fibred pair

(f, Z) onL by

f = fB + fF ,

Z(q) = ZB ◦ πB(q) + ϵ

N∑
i=0

θiZi(q),

for a choice of ϵ small enough to guarantee that no new zeros are introduced.
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Set

(4.6) xij = (bi, cij) for all pairs (i, j) ∈ {0, . . . ,M} × {0, . . . N}.

Then xij are critical points of (f, Z) onLC . It follows from Propositions 3.3.3 and

3.3.4 in [OAN03] that (f, Z) construced as above isMorse-Smale onL if the almost

gradientpairs(fB, ZB) inthebaseand(fF , ZF ) inthefibresatisfytheMorse-Smale

condition. Moreover notice that by construction

(4.7) dπB ◦ Z(x) = ZB(x).

This implies that trajectories of the flow of Z project to trajectories of the flow of

ZB .

Without loss of generality choose fB(πB(x)) = i for all such |πB(x)| = i (i.e. fB is

self indexing). Define for every s ≥ 0 the following sets

Ss = {z ∈ LC |fB(πB(z)) = s}

S<s = {z ∈ LC |fB(πB(z)) < s}

S≥s = {z ∈ LC |fB(πB(z)) ≥ s}.

Onecan then for examplepartitionL into super- andsub-level setsoffB as follows:

(4.8)

L = S<s ∪ S≥s

= {z ∈ LC |fB(πB(x)) < s} ∪ {z ∈ LC |fB(πB(x)) ≥ s}

= f−1
B ([0, s)) ∪ f−1

B ([s, dim(L)]).

Remark 4.7.

Observe the following consequences ofEquation4.7 and the partition fromEquation4.8: If
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a critical point x of f onL lies inSi, then its backward manifoldW≥(x), is contained in

S≥i and its forwardmanifoldW≤(x), is contained inS≤i i.e.

W≤(x) ⊆ S≤i(4.9)

W≥(x) ⊆ S≥i.(4.10)

Definition 4.8 (Almost fibredMorse complex).

Assume thatL has a fibre bundle structureF → L → B. TheMorse cochain com-

plex as describe in Defintion 4.5 of an an almost fibred pair (f, Z) as constructed in

Defintion 4.6 is called an almost fibredMorse cochain complex.

4.3 Thepearl complex of an almost fibredMorse function

I now briefly recall the construction of the pearl complex. Consider a closed, con-

nected Lagrangian submanifoldL of a symplecticmanifold (W,ω). As pointed out

above, I follow the ideas of Biran andCornea presented in [BC09]. My conventions

differ slightly from theirs, since I want to formulate the results purely in terms of

cohomology, for a “how to convert between conventions“ see Equation 4.2.

Denote by (D, ∂D) the closed unit disc inC. Given amap

u : (D, ∂D)→ (W,L),

denotebyEω(u) the symplectic energyofu andbyµ(u) theMaslov indexofu. Both

maps descend to homomorphisms onHD
2 (W,L) ⊂ H2(W,L), the image of the

Hurewicz homomorphismh : π2(W,L)→ H2(W,L).

Definition 4.9 (Monotone Lagrangian).
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ALagrangianL ismonotone if there exists a positive real number η > 0

Eω(A) = η · µ(A) ∀A ∈ HD
2 (W,L).

Definition 4.10 (MinimalMaslov number of amontone Lagrangian).

Denote by

(4.11) NL = min
A∈HD

2 (M,L)
µ(A) > 0

theminimalMaslov number of amonotone LagrangianL.

Assume fromnowon thatNL ≥ 2. Denote by

Λ = K[T, T−1]

the ring of Laurent polynomials in the formal variable T . Set the degree of T to

“+NL”. Consider the Morse cochain complex C∗
f,Z of L introduced in Defintion

4.5. Themodule underlying the pearl complex is given by

(4.12) C∗ = C∗
f,Z ⊗K Λ.

HereC∗ is defined as the tensor product overKof theK-cochainmoduleC∗
f,Z with

the ringΛ viewed as amodule overK. This is done by includingK asK · T 0 intoΛ.

For each fixed p ∈ Z thismeans:

(4.13) Cp =
⊕
k∈Z

Cp−kNL

f,Z ⊗K T
k,

whereT k denotesmonomials of degree k ∈ Z in the formal variableT . SinceK is a

fieldC∗ isnotingbut the tensorproductof the finitelydimensionalZ2-algebraC∗
f,Z

with theZ2-algebraZ2[T, T
−1].
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ThegradingofC∗ is defined tobe the sumof thegradingsonC∗
f andonΛ. Bydenot-

ing thisdifferential gradedalgebra simplybyC∗, I amagain abusingnotation for the

sake of brevity and readability.

Notice that for each fixed p ∈ Z, the sum inEquation 4.13 is finite, since

Cp−kminNL−1
f,Z = 0 for kmin =

p

NL
,

Cp−kmaxNL+1
f,Z = 0 for kmax =

p− dimL

NL
.

If one fixes k ∈ Z one obtainsC∗−kNL
f,Z ⊗ T k and thus a copy of theMorse cochain

complexC∗
f,Z .

Example 4.11 (Pearl complex in four dimensionswithNL = 2).

AssumeL is 4 dimensional andNL = 2. I denote below somenon-zero parts of the

complexC∗.

C2 = C4
f ⊗ T−1 ⊕ C2

f ⊗ T 0 ⊕ C0
f ⊗ T 1

C1 = C3
f ⊗ T−1 ⊕ C1

f ⊗ T 0

C0 = C4
f ⊗ T−2 ⊕ C2

f ⊗ T−1 ⊕ C0
f ⊗ T 0

C−1 = C3
f ⊗ T−2 ⊕ C1

f ⊗ T−1

C−2 = C4
f ⊗ T−3 ⊕ C2

f ⊗ T−2 ⊕ C0
f ⊗ T−1

Similarly to the construction of the algebraic structures for the Morse differen-

tial graded algebra a generic choice of perturbation data is necessary to guarantee

transversality of moduli spaces used to define the algebraic structures on the (al-

most fibred) pearl complex. Recall that an almost complex structure on a symplec-

tic manifold (W,ω) is an endomorphism J of the tangent bundle such that J2 =

−id. To define the pearl complex, choose a generic ω-compatible almost complex

structureJ onW . I continue toworkwith a singleMorse functionf andallowvary-
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ing almost gradient vector fieldsZ , which all satisfy theMorse-Smale condition as

auxiliary data. The reference for this approach is [BK13]. I remark that for the def-

inition of the quantum product it is sufficient to work with a fixed Morse function

f and two different gradient like vector fieldsZ ̸= Z ′ at the respective entry flow

lines of the core disc. This is explained in the proof of Lemma 5.2.2 in [BC07]. For

the purposes of this thesis onemay aswell workwith three distinct almost gradient

vector fields.

I now recall the definition of moduli spaces used to define the algebraic structures

on the pearl complex. The differential d of the pearl complex is a quantisation of

the Morse differential. Its classical part agrees with the Morse differential dM , its

quantum (or Floer) part dF counts the pearly configurations described below:

Definition 4.12 (Pearly differential trajectory).

Given y, x ∈ L and 0 ̸= A ∈ HD
2 (M,L). Let l ≥ 1 ∈ Z. Consider a sequence

(u1, . . . , ul). Apearlydifferential trajectoryof length l fromy tox is the followingcon-

figuration:

(PD1) For each i ∈ {1, . . . , l} the J-holomorphic disc ui : (D, ∂D) → (W,L) is

non-constant.

(PD2) [u1] + · · ·+ [ul] = A.

(PD3) There exists a t− ∈ [−∞, 0) such thatϕt
−
Z (u1(−1)) = y.

(PD4) For every 1 ≤ i ≤ l − 1 there exists a ti ∈ (0,∞) such that ϕt
i

Z(ui(1)) =

ui+1(−1).

(PD5) There exists a t+ ∈ (0,+∞] such thatϕt
+

Z (ul(1)) = x.

Denote by

Pprl := Pprl(y, x;A; f, Z, J)

the moduli space of all possible configurations of all possible lengths l ≥ 1 de-
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scribed inDefinition 4.12. IfA = 0 define the space

Pprl(y, x; 0; f, Z, J)

to be the space of unparametrized flowlines of the flow ϕtZ of the almost gradient

vector fieldZ from y tox.

IfA ̸= 0 and y and x are critical points of f , then conditions (PD 3) and (PD 5) be-

come u1(−1) ∈ W≥(y) and ul(1) ∈ W≤(x) respectively. In this case themoduli

spacePprl(y, x;A; f, Z, J) canbeused todefine the pearly differential in the follow-

ingway:

Definition 4.13 (Differential of the pearl complex).

(4.14)

d : C∗ → C∗+1

d(y) :=
∑
x,A

#K(Pprl(y, x;A; f, Z, J))⟨x⟩ ⊗ T
µ(A)
NL

where the sum runs over all combinations of x and A such that the moduli space

Pprl(y, x;A; f, Z, J) iszerodimensional. SeeSection5.1of[BC07]formoredetails.

The terms in the pearly differential d : C∗ → C∗+1 can be grouped as:

(4.15)
d = ∂0 ⊗ T 0 + dF where ∂0 = dM and

dF = ∂1 ⊗ ·T 1 + · · ·+ ∂m ⊗ ·Tm + . . . + ∂ (dimL+1)
NL

⊗ ·T
(dimL+1)

NL

.

Here

(4.16) ∂m : C∗
f,Z → C∗−mNL+1

f,Z

is them-th quantumcorrection termof d.

106



To define the ⋆ product on the pearl complex we consider the following configura-

tions:

Definition 4.14 (Pearly product trajectory).

Givenx1, x2, y ∈Critf and 0 ̸= A ∈ HD
2 (M,L). Consider a tuple (ũ, ũ′, ũ′′, v). A

pearly product trajectory fromx1 andx2 to y is the following configuration:

(PP1) v : (D, ∂D) → (W,L) is a J-holomorphic disc, which is allowed to be con-

stant.

(PP2) Set z1 = v(e
−2πi

3 ), z2 = v(e
2πi
3 ) and z3 = v(1). Let B1, B2, B3 ∈

HD
2 (W,L).

ũ ∈ Pprl(x1, z1;B1; f, Z1, J)

ũ′ ∈ Pprl(x2, z2;B2; f, Z2, J)

ũ′′ ∈ Pprl(z3, y;B3; f, Z3, J)

(PP3) B1 +B2 +B3 + [v] = A.

Again for generic choices of auxiliary data themoduli space

Pprod := Pprod(x1, x2, y;A; f, Z1, Z2, Z3, J)

of all configurations described in Definition 4.14 above can be used to define the ⋆

product:

Definition 4.15 (Product on the pearl complex).

The ⋆-product onC is the binary operation

(4.17)

⋆ :Ci ⊗ Cj −→ Ci+j

x1 ⋆ x2 :=
∑
y,A

#K(Pprod(x1, x2, y;A; f, Z1, Z2, Z3, J))⟨y⟩ ⊗ T
µ(A)
NL

,
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where the sum runs over all y andA such thatPprod is zero dimensional.

Like thepearlydifferential the⋆-product isaquantisationof theMorsecupproduct.

Forn ≥ 0 its quantisation is given by:

(4.18)
⋆ = ⋆0 ⊗ T 0 + ⋆F

⋆F = ⋆1 ⊗ ·T 1 + · · ·+ ⋆n ⊗ ·Tn + · · ·+ ⋆ 2dim(L)
NL

⊗ ·T
2dim(L)

NL .

Here then-th quantumcorrection term is given by:

(4.19) ⋆n : Ci
f,Z ⊗ C

j
f,Z′ −→ Ci+j−nNL

f,Z′′

The zeroth term ⋆0 of the ⋆-product coincideswith theMorse cup product.

A key factwhichwewill use is that ⋆ satisfies a Leibnitz rulewith respect to d:

(4.20) d(x ⋆ y) = dx ⋆ y + x ⋆ dy.

This is proved inProposition 5.2.1 of [BC07]. Carehas tobe taken since this identity

does in general not hold for individual terms ifm andn are not both zero:

∂m(x ⋆n y) ̸= ∂mx ⋆n y + x ⋆n ∂mx.

Definition 4.16 (Energy of a pearly trajectory).

Givenapearly differential or apearly product trajectoryP ofhomology classA (see

condition (PD2) of Definition 4.12 or condition (PP3) of 4.14 respectively), the en-

ergy ofP is defined as the symplectic energy

Ew(u) =

∫
D
u∗ω
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of a discu : (D, ∂)→ (W,L) such that [u] = A ∈ H2
D(W,L). Equivalently,

Ew(u) =

l∑
i=1

∫
D
u∗iω

for discsui : (D, ∂)→ (W,L) such that [u1] + · · ·+ [ul] = [A].

Definition 4.17 (Pearl complex and quantumcohomology).

The pearl complex of (f, Z) on L is the cochain complex (C∗, d), where C∗ =

C∗
f,Z ⊗K Λ and d is as in Defintion 4.13. The ⋆-product give C∗ the structure of a

(generally) non-commutative, non-associative algebra. The Lagrangian Quantum

cohomologyQH∗(L) is the cohomology of (C∗, d).

Notice also that I have dropped the almost complex structure J from the nota-

tion although the algebraic structures defined onC∗ depend on it. The Lagrangian

Quantum cohomology is independent of the choices of (f, Z) and J , by assertion

(i) of Theorem 2.1.1 in [BC07]. By assertion (v) of the same Theorem the La-

grangian Quantum cohomologyQH∗(L) is isomorphic to the self-Floer cohomol-

ogyHF ∗(L,L), via the PSSmap.

Definition 4.18 (Almost fibred pearl complex).

AssumeLhas a fibre bundle structureF → L→ B. The almost fibred pearl complex

C∗ ofL is the pearl complexC∗
f,Z ⊗K Λ, d of an almost fibred pair (f, Z) onL.

Recall thatΛ = K[T, T−1]. A cochain c of an almost fibred pearl complexC∗ is a

Λ-linear combination c =
∑

k λkxk, where the xk areMorse cochains ofC∗
f,Z and

λk areLaurent polynomials in the formal variableT . Notice that c is not necessarily

a pure tensor. Since the proof of Theorem4.1 relies on the partition ofL into super-

and sub-level sets of fB as described in Equation 4.8 introduce the following nota-
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tions:

Notation 4.19.

For a cochain

(4.21) c =
K∑
k=1

λkxk ∈ C∗

• Write c ∈ S≤i if all critical pointsxk contributing nontrivially to the cochain

c are contained inS≤i i.e. {x1, . . . , xK} ⊂ S≤i.

• Write c ∈ S≥i if all critical pointsxk contributing nontrivially to the cochain

c are contained inS≥i i.e. {x1, . . . , xK} ⊂ S≥i.

• Write c ∈ Si if all critical pointsxk contributing nontrivially to the cochain c

are contained inSi i.e. {x1, . . . , xK} ⊂ Si.

The following Lemmawill be important in the proof of Proposition 4.24.

Lemma4.20.

Assume that the pearl complexC∗ is almost fibred. Let c and c1, . . . , ck be cochains con-

tained inSi. Then

(D) d(c) = e+ e′, where e is a cochain inS≤i and z′ is a cochain inS≥i+1.

(S) c1 ⋆ · · · ⋆ ck = e+ e′, where e is a cochain inS≤i and e′ is a cochain inS≥i+1.

Proof. This immediately follows from the fact thatS≤i ∪S≥i+1 is a partition of the

setofcriticalpointsof thealmost fibreredMorse functionf onL(seeEquation4.8).
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Remark 4.21.

There exists a decreasing filtration on the almost fibred Morse complexC∗
f,Z . For each i

and p ∈ Z≥0 the i-th filtration ofCp
f,Z is given by

(4.22) F i(Cp
f,Z) = {x ∈ C

p
f,Z |x ∈ S

≥i}.

This filtration is preserved by both the differentialdM and the⋆0-product by the same rea-

soning as in the proof of Lemma 4.20 above. It can be used to define the Leray-Serre spec-

tral sequence. Notice however that the Floer part of the differential dF and the Floer part

of the product ⋆F do not preserve this filtration. One can define a filtration on an almost

fibred pearl complex, which takes the fibre bundle structure into account and is preserved

by the Floer differential and product. The idea is to filter by distance to a fibre. Given a

cochain c ∈ Si, ∂M (c) is contained inS≥i−mNL+1 ∩ S≤i+1 and similarly for the prod-

uct. Despite being interesting, I do not pursue this idea in this thesis, since the application,

computingQH∗ via a spectral sequence, is irrelevant for the proof of Theorem 1.6. Very

recently, Schultz defined a spectral sequence in a similar context in [Sch17]. It would be

very interesting to further investigate the relation of these spectral sequences and to com-

puteQH∗(LC , LC) via a spectral sequence.

Given the Lemma above itmakes sense tomake the following definition

Definition 4.22 (fibrewise generation).

Assume that the pearl complexC∗ is almost fibred.

• Given a cochain c ∈ Si, say that e is fibrewise generated by a set of

critical points G ⊂ Si via the ⋆0-product if there exist critical points

x11, . . . x
1
L1
, . . . , xK1 , . . . , x

K
LK
∈ C∗

f,Z such that

K∑
k=1

λk1x
k
1 ⋆0 · · · ⋆0 λkLk

xkLk
= c+ c′
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for k, l,K, L1, . . . LK ,≥ 1 ∈ Z ,λkl ∈ Λ and a cochain c′ ∈ S≥i+1.

This means that there exists Laurent polynomials λ11,...,lk , . . . , λ
K
1,...,lK

∈ Λ

and critical pointsx11, . . . , x
K
lK
∈ C∗

f,Z such that

K∑
k=1

λk1,...,lk(x
k
1 ⋆0 · · · ⋆0 xklk) = c+ c′.

This concludes the adaptation of the pearl complex to the present situation. In the

following section I apply this algebraicmachinery to proveTheorem4.1.

xmin

dF

dM

dF

dF

dM

S0 S1 S2

T2k

B

Figure 4.1: A picture of parts of the almost fibred pearl complex ofLC for a fibred,
stable coisotropicC

4.4 Proof of Theorem4.1

To prove the theorem I first prove Lemma 4.23 below, then Proposition 4.24 and fi-

nally the theoremby applying Lemma 4.23 andProposition 4.24.

Assume fromnowon thatL is a closed, connected,monotoneLagrangian submani-

fold of a symplecticmanifold (W,ω), equippedwith a genericω-compatible almost

complex structure J . From now on also assume that L is the total space of a fibre
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bundleF → L → B. Recall the decomposition ofL into sub- and superlevel sets

of fB descibed in Equation 4.8. In particular the unique minimum xmin of a Morse

function gives rise to a cochain

(4.23) xmin = xmin ⊗ T 0

in the almost fibred pearl complexwhich is contained inS0. Itwill be convenient in

the proof to introduce the following projection:

(4.24) pr0 : C
∗ → C0

f,Z ⊗ T 0.

TheLemmabelow also holds in the casewhereL is not fibred.

Lemma4.23.

Let L be a closed, connected, monotone Lagrangian submanifold. Denote by xmin the

uniqueminimumoff onL. ThenQH∗(L) = 0 ifandonly if thereexistsacochainc ∈ C∗

such that dF (c) = xmin.

Proof. The cochain xmin is a Floer cocycle. To see this note that dM (xmin) = 0.

By Equation 4.15, higher differentials ∂≥1 lower theMorse index of xmin by at least

NL − 1 ≥ 1by the assumption that theminimalMaslov number is at least two. But

xmin hasminimalMorse index among all critical points so d(xmin) = 0.

Assume thatQH∗(L) = 0. Thus every cocycle ofC∗ is a coboundary. Thus there

existsaprimitivec inC∗ suchthatd(c) = xmin. Since therearenonon-trivialMorse

flow lines ending in theminimum, it follows that c satisfies dF (c) = xmin.

Conversely, the cohomology class [xmin] of the cochain xmin is the identity in the

Quantum cohomology ring QH∗(L). If xmin is a coboundary, this implies that

[xmin] = 1 = 0 in the quantumcohomology ringQH∗(L). ThusQH∗(L) = 0.
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Proposition 4.24.

Assume thatL is a compact, connected Lagrangian which is the total space of a fibre bun-

dle F → L → B. Assume that L is monotone withNL ≥ 2. Assume also that fB

is self-indexing and that fF is perfect, where fB and fF are the Morse functions from the

constructionoof thealmost fibredpair(f, Z),which isused todefine thealmost fibredpearl

complexC∗.

IfL is displaceable and all cochains c such that

pr0(d(c)) = κxmin for κ ̸= 0 ∈ K

satisfy:

(F1) The cochain c is contained inS0.

(F2) The cochain c is fibrewise generated by a setG of critical points as inDefinition 4.22

such that all critical pointsx ∈ {x11, . . . , x1L1
, . . . , xK1 , . . . , x

K
LK
} are of the same

Morse index g and satisfy:

g = |xkl | < NL − 1 , for all k, l.

Then there exists a pearly product trajectory P containing a critical point y in S≥1 and

ending in theminimumxmin of f .

Proof. ByassumptionL is displaceable, soLemma4.23 andassertion (D)ofLemma

4.20 imply that there exists a cochain c ∈ C∗ such that

d(c) = xmin + e,

where e is a cochain in S≥1. Since pr0(d(c)) = xmin, it follows from Assumption

(F1) of the proposition that c is contained in S0. In particular, by the definition of
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the differential d, there exist critical points y ∈ S0 such that

pr0(d(λyy)) = κxmin,

for λy ∈ Λ, κ ̸= 0 ∈ K. Among all cochains c ∈ S0 which satisfy pr0(d(c)) =

κ′xmin for some κ′ ̸= 0 ∈ K, choose a critical point ymin of minimal Morse index

amongst these i.e.

pr0(d(λminymin)) = κ1xmin.

forλmin ∈ Λ andκ1 ̸= 0 ∈ K .

By assumption (F2) and Definition 4.22 there exist critical points

x11, . . . , x
1
L1
, . . . , xK1 , . . . x

K
LK

∈ G ⊂ S0, which are all of the same Morse

index g such that

K∑
k=1

λk1,...,lk(x
k
1 ⋆0 · · · ⋆0 xklk) = λminymin + c′

whereλk1,...,lk areLaurentpolynomialsandc′ isacochain inS≥1. Consider thequan-

tum deformation of the ⋆0-product. Since the ⋆-product is not commutative, the

productwill dependon the chosenorder of the critical points inG. By assertion (S)

of Lemma 4.20 onemaywrite

K∑
k=1

ck1 ⋆ · · · ⋆ cklk =
K∑
k=1

ck1 ⋆0 · · · ⋆0 cklk +
K∑
k=1

ck1 ⋆F · · · ⋆F cklk(4.25)

= (λminymin + c′) + (c′′ + c′′′),(4.26)

where c′ ∈ S≥1 as above and c′′ ∈ S0 and c′′′ ∈ S≥1. Note that the Morse index

of every critical point contributing nontrivally to c′′ ∈ S0 is strictly smaller than

theMorse index of ymin by Equation 4.19 and therefore c′′ cannot sum to zero with

λminymin.
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Next apply the differential d to this equation:

d(

K∑
k=1

ck1 ⋆ · · · ⋆ cklk) = d(λminymin + c′ + c′′ + c′′′)(4.27)

= d(λminymin) + d(c′′) + d(c′ + c′′′).(4.28)

I claim that d(λminymin) is the only non-trivial contribution toC0
f,Z ⊗ T 0. To see

this consider

pr0

(
K∑
k=1

d(ck1 ⋆ · · · ⋆ cklk)

)
=pr0(d(λminymin) + d(c′′) + d(c′ + c′′′))

= κ1xmin + pr0(d(c
′′)) + pr0(d(c

′ + c′′′))

= κ1xmin.

The last equality follows from the fact that the cochains c′ and c′′′ are contained in

S≥1 andthereforecannotcontributenon-trivially toC0
f,Z⊗T 0byassumptionofthe

proposition. TheMorse indexofeverycriticalpointcontributingnontrivallytoc′′ ∈

S0 is strictly smaller than the Morse index of ymin by Equation 4.19 and therefore

cannot contribute non-trivally toC0
f,Z ⊗ T 0 by theminimality of ymin.

Next apply the Leibnitz rule:

K∑
k=1

d(ck1 ⋆ · · · ⋆ cklk) =
K∑
k=1

lk∑
j=1

ck1 ⋆ · · · ⋆ d(ckj ) ⋆ · · · ⋆ cklk .

Byassumption (F2)of this proposition theMorse indices of all critical pointsx inG

satisfy g = |x| < NL − 1. Thus all quantum correction terms of the differential d

satisfy |∂mx| < 0 form ≥ 1 by Equation 4.16. Hence

(4.29)
K∑
k=1

d(ck1 ⋆ · · · ⋆ cklk) =
K∑
k=1

lk∑
j=1

ck1 ⋆ · · · ⋆ dM (ckj ) ⋆ · · · ⋆ cklk ,
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and

pr0

(
K∑
k=1

d(ck1 ⋆ · · · ⋆ cklk)

)
=

K∑
k=1

lk∑
j=1

ck1 ⋆ · · · ⋆ dM (ckj ) ⋆ · · · ⋆ cklk

= κ2xmin

for someκ2 ̸= 0. Thus there exists 1 ≤ k0 ≤ K and 1 ≤ j0 ≤ lk0 such that

pr0

(
ck01 ⋆ · · · ⋆ dM (ck0j0 ) ⋆ · · · ⋆ c

k0
lk

)
= κ3xmin

for some κ3 ̸= 0. Hence dM (ck0j0 ) ̸= 0 ∈ C∗. By the assumption that fF is perfect,

this implies that dM (ck0j0 ) is contained inS≥1. Set

cmin = ck0j0

a = ck01 ⋆ · · · ⋆ ck0j0−1

b = ck0j0+1 ⋆ · · · ⋆ c
k0
lko

With this notation

pr0

(
ck01 ⋆ · · · ⋆ dM (ck0j0 ) ⋆ · · · ⋆ c

k0
lk

)
= pr0 ((a ⋆ dM (cmin)) ⋆ b)

= κ3xmin.

While thecochainsa, barenotnecessarilycontained inS≥1 thecochaindM (cmin) is

contained inS≥1. This implies that there exists a pair of pearly product trajectories

consisting of

• Apearlyproducttrajectoryemanatingfromacriticalpointai ∈ S0 contribut-

ing to the cochain a and a critical point y1 ∈ S≥1 contributing to the cochain

dM (cmin) ending in a (not necessarily critical) point a′i onL.

• A pearly trajectory emanating from a′i and a critical point bi contributing to

the cochain b which ends in xmin, since the backward manifold W≤(xmin)

consists only ofxmin itself.
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This pearly trajectory P thus connects a critical point y = y1 contained in S≥1 to

theminimumxmin. The proposition follows.

ai

bi

y1

xmin

S0| S>0 |S1

u4

u1

a′i

u2

u3

Figure4.2: Apearlytrajectoryoftheform(a⋆∂0cmin)⋆bas intheproofofProposition
4.24

I nowproveTheorem4.1.

Proof of Theorem 4.1. Recall the definition 3.1 of the Lagrangian graphLC from Sec-

tion 3.1. By Lemma 3.2LC is a Lagrangian submanifold ofW− ×W+ and inherits a

fibre bundle structure

T2k −→ LC
π∆B−−−→ ∆B

fromC . Hereπ∆B denotes the projection to∆B.

Choose an almost fibred pair (f, Z) on LC as described in Definition 4.6. With-

out loss of generality assume that fB is self indexing. Choose the fibre component

(fT2k , ZT2k)used todefine (f, Z) to be the standard, perfectMorse functionon the

torus. Moreover since LC is closed and connected assume f has a unique global
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minimum xmin. Given b ∈ B onemay choose f such that π∆B
(xmin) = (b, b). The

decomposition ofLC described in equation (4.8) gives

LC = S<1 ∪ S≥1

= {x ∈ LC |fB(π∆B
(x)) < 1} ∪ {x ∈ LC |fB(π∆B

(x)) ≥ 1}.

Notice that all critical points of f in S<1 are contained in S0. Choose a sequence

of generic (Jn)n∈N approaching an arbitrary, but fixed almost complex structureJ .

Use (f, Z) and J to define the pearl complexC∗(LC). By assumption of the theo-

rem, LC is displaceable. ConsequentlyQH∗(LC) vanishes. By Lemma 4.23 there

exists a cochain c ∈ C∗ such that d(c) = xmin. Thus there exists at least one pearly

trajectory containingapositive, finitenumber, sayK , ofnon-trivialJ-holomorphic

discs u1, . . . uK . Recall the observation thatW≤(xmin) = xmin. Thus the bound-

aryof theK-th,non-trivialJ-holomorphicdisccontributingtothepearly trajectory

passes throughxmin.

If there exists a cochain c′ ∈ S≥1 such that pr0(d(c′)) = κxmin forκ ̸= 0 ∈ K, this

implies that there exists a pearly product trajectory which emanates from a critical

point y′ ∈ S≥1 and ends in xmin. By definition of a pearly differential trajectory

thereare is apositivenumber, sayK ′ ofnon-trivialJ-holomorphicdiscu1, . . . , uK ′

contributing to this pearly trajectory. Theminimumxmin is contained inuK′(∂D).

The energy of the pearly differential trajectory is bounded above by η(dim(L) +

1)NL. This follows from the differential degree formula (4.15) and themonotonic-

ity ofLC . TheTheorem follows in this case.

If there does not exit a cochain c′ ∈ S≥1 such that pr0(d(c′)) = κxmin forκ ̸= 0 ∈

K, one is in the situation of Proposition 4.24.

I now verify the remaining conditions of Propsition 4.24. The fibre over the mini-

mum is a 2k dimensional torus. Recall that I use the standard, perfect Morse func-

tion and positive gradient flow to define the almost fibred Morse complex and ⋆0-

product on the fibre. Recall also that every closed formofMorse degree at least one
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on the torus is generated by sums and products of degree one forms on the torus.

Thus every cochain c ∈ S0 ∼= T2k
xmin

such that all critical points contributing non-

trivially to c have Morse index at least 1 is fibrewise generated by a set of critical

pointsG as in Definition 4.22. All critical points inG can be chosen to haveMorse

index g = 1. The last condition one needs to check is:

g = 1 = |xkl | < NL − 1 for all k, l.

This holds because in the statement of the theoremone assumedNL ≥ 3.

Thus all assumptions of Proposition 4.24 are verified. The proposition now implies

the existence of a pearly trajectory P with the desired properties. The energy of

this pearly product trajectories is bounded fromabove by 2η dim(L)NL by formula

(4.18).

This implies the theorem in this case and thus theproof ofTheorem4.1 is complete.

Remark 4.25.

The proof of Theorem 4.1 becomes significantly easier if one assumesNL ≥ 2k + 2:

Consideragain thedecompositionofLC intoS<1 andS≥1. If all holomorphicdiscs ending

in the minimumwere entirely contained in S<1, there would have to be a critical point of

Morse indexat leastNL−1 in the torus fibreabove theminimum. However, the chaincom-

plex of the 2k-dimensional torus fibre above the minimum is concentrated in degrees 0 to

2k thusNL ≥ 2k+2 implies that no suchpoint exists. Thus by the vanishing ofQuantum

cohomology theremust exist a pearly differential trajectorywith the desired properties.

Example 4.26.

Consider the productC = S2n−1 × S2m−1 ⊂ R2n ×R2m equippedwith the stan-

dard almost complex structureJ0 and the standard symplectic structureω0. I have

shown that the minimal Maslov number of LS2n−1 is 2n in Example 3.6. Thus the
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minimal Maslov numberNLS2n−1×S2m−1 is equal to the least common multiple of

2m and 2n. Settingm = n = 2 one sees that

NLS3×S3 = lcm(4, 4) = 4

Thus the assumptionNLS3×S3 ≥ 3 is verified but one cannot apply the easier proof

fromRemark 4.25 since k = 2 implies 2k + 2 = 6 > 4.
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Theorem4.1establishes theexistenceofapearly trajectoryP emanating fromacrit-

ical point y ∈ f−1
B ([1,∞)) and ending in the minimum x ∈ f−1

B (0) of an almost

fibred Morse function f on LC . The main ideas of the proof of Theorem 4.1 were

to associate a Lagrangian LC to C and to then adapt and use techniques from La-

grangian Floer theory. However, Theorem 4.1 asserts nothing about the holomor-

phicdiscs contributing to thepearly trajectoryP . For example, the interior of these

holomorphic discs is not necessarily contained in LC or even in a neighbourhood

ofLC . In order to obtainmore information about theholomorphic discs contribut-

ing toP , I adapt and apply techniques fromsymplectic field theory. Moreprecisely,

the goal of this chapter is to proveTheorem 1.8 from the Introduction,which I state

again below as Theorem 5.1.

Theorem5.1.

LetC be a fibred, stable coisotropic submanifold of a symplecticmanifold (W,ω). Assume

that the Lagrangian graphLC in the product (W ×W,−ω × ω) is monotone and has

minimal Maslov numberNLC
at least three. Let b be any point in the symplectic quotient

B ofC .

IfLC is displaceable, then there exist:

(M) Analmost fibredMorse functionf onLC such that the unique globalminimumx of

f onLC is contained in f−1
B (0) and projects to (b, b) ∈ ∆B.

(E) A constantE0 > 0, such that for allωB-compatible almost complex structuresJB

onB, there exists at least one punctured pearly trajectory pP of energy at mostE0

andwith the following properties:

(pP1) The punctured pearly trajectory pP connects a critical point y of f contained in

f−1
B ([1,∞) to theminimumx of f .

(pP2) The punctured pearly trajectory pP contains at least one punctured, non-trivial
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holomorphic curve

ũ : (S, ∂S, j)→ (W̃C × W̃C , LC ,−J̃C × J̃C)

with the following properties:

(S1) The intersection ũ(∂S)∩f−1
B (0)and the intersection ũ(∂S)∩f−1

B ((0,∞))

is non-empty.

(S2) If ũ is unboundednear an interior puncture, then ũ is asymptotic to a cylinder

over a generalised Reeb orbit onC when approaching the puncture.

(S3) All other boundary and interior punctures of ũ are removable.

Here (S, ∂S) is a nodal, stable, connected Riemann surface of genus zero with

nonempty boundary .

A punctured pearly trajectory is a pearly trajectory in which the domains of the con-

tributing holomorphic discs are allowed to degenerate to nodal, connected, stable,

genus zero Riemann surfaces with nonempty boundary (see Definitions 5.10, 5.11

and5.12) . ThemanifoldW̃C is the symplectic cobordism (seeDefinition 5.4)obtained

as the symplectic completion of the Bolle neighbourhood ofC and diffeomorphic to

Rk×C . The almost complex structure J̃C onW̃C is the limit of a sequence (Jτ
S)τ≥0

of almost complex structures which is used in a neck-stretching procedure. These al-

most complex structures Jτ
S are adjusted to the stable coisotropic (C,S) and the

neck stretching procedure (seeDefinition 5.5, Section 5.3 and Section 5.5.3).

5.1 Outline ofChapter 5

Roughly speaking, the proof of Theorem 5.1 is a translation of the ideas of the proof

of compactness in symplectic field theory from [Bou+03] to the present setting.

Recall the constructionof the stable hypersurface in Section 3.2.2. Themost impor-
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tant feature of this construction is that there is a one to one correspondence of the

set of generalisedReeb trajectoriesG onC and the set ofReeb trajectoriesRonHC

(seeProposition3.25). MoreoveronemayviewHC as theboundaryofaBolleneigh-

bourhoodU ∼= Bk
ϵ0×Cwherethesymplectic formωs isgivenexplicitlybyEquation

2.6. Thecoisotropic submanifoldC gets embedded intoU as{0}×C . Thusonecan

interpretHC as a stable hypersurfacewhich separatesW into symplectic cobordisms

(seeDefinition 5.4).

It is a common technique in symplectic and contact topology to “stretch the neck”

around a stable hypersurfaceH in order to obtain information about holomorphic

curves inthemanifoldW (see forexample[EGH00], [Bou+03], [CM05]andtheref-

erences therein). “Theneck” refers to a neighbourhooddiffeomorphic to (−ϵ, ϵ)×

H , which gets “stretched” toR × H . Stretching the neck is also called “splitting”

as it results in disjoint, non-compact, symplectic cobordisms. In the present case

these disjoint components are W̃C
∼= Rk ×C , the symplectic completionof theBolle

neighbourhood U , W̃H
∼= R × HC , called the symplectization ofHC and W̃R, the

symplectic completion ofW \ U . As a result of splitting, a J-holomorphic curve

u : S → W with domain a Riemann surfaceSwhich satisfies certain assumptions,

defines (see again [Bou+03]), a punctured J̃S -holomorphic curve ũC : S′ → W̃C ,

with domainS′, which is a nodal Riemann surface.

As alluded to above, the almost complex structure J̃S is a limit of a sequence of

almost complex structures Jτ
S for τ > 0 ∈ R on the longer and longer necks

(−τ, τ)×H . Thisspecific familyofalmostcomplexstructuresplaysakeyrole inob-

taining more information about the holomorphic curves via splitting the manifold

W . I show in Section 5.3 how to construct such a family of almost complex struc-

tures JS which are adjusted to the stable coisotropic (C,S) and the neck stretch-

ing procedure. In particular the (C,S)-adjusted almost complex structures JS are

translationally invariant in the normal direction ofHC and render projection toB

holomorphic. The correspondence of the generalised Reeb trajectoriesG onC and

the Reeb trajectoriesR onHC , now implies that if theRk component of ũC is un-

bounded near a puncture, then ũC is asymptotic to a cylinder over a generalised
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Reeb orbit onC . I explain this in Proposition 5.14 below. Themain assumptions on

theholomorphiccurveuwhichareneeded toensure thisbehaviourare finitenessof

energy (see Section 5.5.2), and that, if the domain ofuhas non-empty boundary∂S,

umaps the boundary to a Lagrangian submanifoldL ofW i.e. u(∂S) ⊂ L.

To prove Theorem 5.1 one uses this apparatus as follows: Theorem 4.1 implies that

there exists a pearly trajectory, which, by definition of a pearly trajectory, contains

at least one non-trivial (−J × J)-holomorphic disc

u = (u−, u+) : (D, ∂D) −→ (W− ×W+, LC).

Thecomponentu−mapping to the first factorofW−×W+ satisfiesu−(∂D) ⊂ C .

If the codimension of C is not n, C is not Lagrangian, and thus the results from

[Bou+03] donot apply directly tou− and likewise donot apply directly tou+. How-

ever, u = (u−, u+) does satisfy a Lagrangian boundary condition in the product

manifoldW− ×W+. SinceLC is a subset ofC × C it is embedded as a subset of

of ψ({0} × C × {0} × C) inW ×W . Hence a product neighbourhood ofLC in

W−×W+ is givenbyU ×U . Then “splitting”W−×W+ alongHC ×HC by split-

tingboth factorsW alongHC using familyof almost complex structures−Jτ
S×Jτ

S ,

gives rise to a sequence (Pn)n≥0 of pearly trajectories. The goal is now to show that

there exists a subsequence of this sequence which converges to a punctured pearly

trajectory pP with the desired properties.

In a nutshell, the pearly trajectory P from Theorem 4.1 converges to a punctured

pearly trajectory pP as described above, because the splitting is happening “far

away” from LC . This allows us to view each non-trivial holomormpic map uin for

i ∈ {1, . . . , Ln} contributing to the sequence of pearly trajectory as either a sin-

gle (−J × J)-holomorphic map, satisfying Lagrangian boundary condition in the

compact parts of W̃C or as a pair (u−, u+) of a (−J)- and a J-holomorphic map in

thenon-compact part of W̃C . Roughly speaking the existence of a puncturedpearly

trajectorywiththeproperties(pP1)and(pP2)thenfollows fromapplyingGromov’s

compactnessTheoreminthecompactparts(see forexample[Fra08])andbyapply-
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ing the compactness results from [Bou+03] in the non-compact part. As a result of

stretching the neck the domains of the pearly trajectories degenerate to connected,

noded, stable Riemann surfacesS′ with non-empty boundary . The limit object pP

containes a holomorphic curve with domain S′, which contains a disc component.

The properties (S1)-(S3) of the holomorphic curve ũ follow from the fibre bundle

structure of LC by a straightforward argument, which I give at the very end of the

proof of Theorem 5.1

Adetailedoutlineof the individual stepsof theproof isgivenat thebeginningofSec-

tion 5.6, where I present the proof of the theorem.

I have structured this chapter as follows: Sections 5.2 - 5.5 arededicated to the setup

of themachinery for theproof. InSection5.2 I recall thenotionof symplectic cobor-

disms and explain howW can be separated alongHC into three symplectic cobor-

disms. In section 5.3 I construct the class of (C,S)-adjusted almost complex struc-

turesdescribedabove. Idescribetheneckstretchingprocedure inSection5.4. I then

recall the relevant notions for Riemann surfaces with boundary and holomorphic

curves in Section 5.5 in order to introduce punctured pearly trajectories and define

a notion of energy for these objects. The last section of the chapter contains a very

rough outline of how to use the machinery developed in this chapter to define the

analogues of holomorphic buildings for stable coisotropics. I call these holomorphic

chessboards.

Most of the effort of proving Theorem 5.1 lies in adapting the setup of symplectic

field theory to the present setting. The actual proof is a simple adaptation of the ar-

guments and ideas in [Bou+03].

Remark 5.2.

The standard approachwhen considering discswith boundary on aLagrangian is to neck-

stretcharound theunit cotangent bundleU∗L, which is a contact hypersurface. As a result

of neck stretching aroundU∗L one obtains that the holomorphic discs with boundary on

LC converge to holomorphic buildings in a split manifold and are asymptotic at their non
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removable punctures to cylinders over Reeb orbits ofU∗L. In the present situation this ap-

proachdoes not lead to the desired outcomes. Recall that the goal is to produceholomorphic

spheres inB. In order to produce a holomorphic buildingwhich has a disc componentwith

boundary onLC , which projects holomorphically toB×B andhas only removable punc-

turesoneneeds that theprojection toboth factorsofB×B isholomorphicand that theReeb

orbitsofU∗LC arecontained inthe fibresF . TheReeborbitsofU∗LC arehowevernotnec-

essarily contained in the fibresF of the characteristic foliation. To see this, recall thatLC

is a fibre product over∆B. Thus the normal directions ofLC in its cotangent disc bundle

D∗L involvedirections ina(chosen)orthogonal complementof thediagonal∆B inB×B

with respect toa chosenRiemannianmetricgB×B onB×B. Thus, after the stretching the

neck in these directions, the projections to each factor are not necessarily holomorphic and

the rest of the argument would not work. Moreover there is, to my knowledge, no obvious

family of almost complex structures onB×Bwhich is translation invariant in these “off-

diagonal” directions and leads to the asymptotic behaviour of holomorphic curveswhich is

desirable in order to prove Theorem 1.6.

5.2 Symplectic cobordisms

To explain howC andHC fit into the symplectic cobordism setting, I would like to

expand on howHC is embedded into the Bolle neighbourhoodU ofC . Recall that

byProposition2.18 there exists an ϵ0 > 0 anda symplecmorphismψC : Bk
ϵ0×C →

U ofC such that ψ∗
Cω = ωs. By Proposition 3.23HC,ϵ is a stable hypersurface for

every ϵ < ϵ0. Applying the Bolle neighbourhood theorem toHC,ϵ ⊂ Bk
ϵ0 × C one

concludes that there exists an ϵ′ < min{ϵ, ϵ0− ϵ}, a neighbourhoodUH ⊂ Bk
ϵ0×C

ofHC,ϵ, and a symplectomorphism

ϕH : (ϵ− ϵ′, ϵ+ ϵ′)×Hϵ,C −→ UH
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such that the symplectic formωs pulls back underϕH to

ωH := ϕ∗Hωs = i∗Hωs + d(rα)

On the other hand, a neighbourhood Us of HC,ϵ in the symplectic manifold U is

given by a family

Us =
∪

r∈(ϵ−,ϵ+)

HC,r =
∪

r∈(ϵ−,ϵ+)

Sk−1
r × C,

where 0 < ϵ− < ϵ < ϵ+ < ϵ0. The Lemmabelow shows that these two neighbour-

hoods are symplectomorphic.

Lemma5.3.

LetC be a stable coisotropic andHC,ϵ the associated stable hypersurface. Then there exists

symplectomorphism ψH : ((ϵ− ϵ′, ϵ+ ϵ′)×Hϵ,C , ωH) → (Us, ωs), for (Us, ωs) as

above. ThemapψH is given by the restriction to (ϵ− ϵ′, ϵ+ ϵ′)× C of:

(5.1)
ψ :(0,∞)× Sk−1

ϵ × C −→ Rk \ {0} × C

(r, p, x) 7→
(rp1
ϵ
, . . . ,

rpk
ϵ
, x
)

Proof. Write

ψ(r, p, x) = (ψ1, . . . , ψk, id)(r, p, x),

where

ψi(r, p, x) =
rpi
ϵ

Thesymplectic formonRk\{0}×C isgivenbyωs. Thesymplectic formon(0,∞)×

Sk−1
ϵ × C is given by

ωH = i∗HC,ϵ
ωs + d(rα),

where

α = (p̂1α1 + . . . p̂kαk) and p̂ = (p̂1, . . . , p̂k) ∈ Sk−1
1 .
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To see thatψ is a symplectomorphism compute

ψ∗
i ωs = d(ψi(r, p, x)αi)

= d
(rpiαi

ϵ
.
)

Thus

ψ∗ωs = (ψ1, . . . , ψk, id)
∗ωs

= i∗Cωs +

k∑
i=1

d(r(
pi
ϵ
)αi)

= i∗Cωs + i∗HC,ϵ
d(
pi
ϵ
αi) + d(r(p̂iαi))

= ωH .

Note that given ϵ0 and ϵ onemay choose ϵ−, ϵ+ such that ϵ − ϵ′ = ϵ− and ϵ + ϵ′ =

ϵ+. Assume from now on that such a choice has been made. Thus one may iden-

tify the neighbourhood Us of HC,ϵ in the Bolle neighbourhood of C via ψHwith

the neighbourhoodUH ofHC,ϵ which is symplectomorphic to the standard model

(ϵ − ϵ′, ϵ + ϵ′) × Hϵ,C of the neighbourhood of a stable hypersurface. Pictorially

speaking,ψ converts a neighbourhood consisting of concentric spheresSk−1
r into a

cylinderofspheresSk−1
ϵ ofconstantradiusϵ. Thiscompatibilityofneighbourhoods

is relevant for the construction of almost complex structures which are adapted to

the stable structure S onC and the neck-stretching procedure on which the proof

of Theorem 5.1 relies.

Definition 5.4 (Symplectic cobordism).

A symplectic cobordism is a compact, symplecticmanifold (W,ω)with stable bound-

ary ∂W = V = V + ⊔ V −, where one or both components of the boundary are

allowed to be empty. For simplicity, I also assume thatW is connected.
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A connected component of V belongs to V+ if it has a collar neighbourhood sym-

plectomorphic to

(5.2) (−ϵ+R,R]× V+, d(rα) + i∗V+
ω)

and toV− if it has a collar neighbourhood symplectomorphic to

(5.3) [R,R+ ϵ)× V−, d(rα) + i∗V−ω)

for a someR ∈ R≥0. Since all boundary components are stable it is posible to ex-

tend the symplectic formd(rα) + i∗V+
ω fromcollar neighbourhoods ofV+ to bicol-

lar neighbourhoods (−ϵ + R,R + ϵ) × V+) and likewise for V−. Then identifying

[R,R+ ϵ)withR≥0 and (−ϵ+R,R]withR≤0 oneobtains a symplectic cobordism

W̃ , which is diffeomorphic toW andhas a positive endV+ ×R≥0 andnegative end

V− × R≤0 attached.

W̃ := R≤0 × V− ∪V− W ∪V+ R≥0V+.

In thecasewhereeitherV+ orV− are theemptyset such that∂W consistsof a single

componentW̃ ∼=W ∪V R≥0×V is called the symplectic completion ofW. In the case

whereW = I × V , for an an interval I ∈ R, themanifold W̃ ∼= R× V is called the

symplectization ofV .

Given a stable coisotropic submanifold C , the hypersurface HC is separating by

Proposition 3.23. One may thus write the surrounding symplectic manifoldW as

a union of three symplectic cobordisms. To obtain this decomposition first cutW

open along theboundary of theneighbourhoodUs as above, i.e. formW \Us. Since

thisneighbourhood is symplectomorphic toUH byLemma5.3 aboveonemaywrite:

(5.4) W =WC

∪
HC,ϵ−={ϵ−}×HC,ϵ

WH

∪
HC,ϵ×{ϵ+}=HC,ϵ+

WR,
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where

(5.5)

WC
∼= (B̄k

ϵ− × C,HC,ϵ− , ωs)

WH
∼= ((ϵ− ϵ′, ϵ+ ϵ′)×HC , ωH)

WR
∼= (W \ B̊k

ϵ+ ,HC,ϵ+ , ω)

5.3 Almost complex structures adjusted to stable

coisotropic submanifolds

In this section I explain how one can equip the symplectic cobordisms introduced

in Equation 5.5 above with almost complex structures whichmake projection toB

holomorphic and are natural with respect to a given stable structureS onC .

LetC beacoisotropicsubmanifoldof (W,ω). Recall thatω inducesan isomorphism

ι : TW → T ∗W which gives a splitting

i∗CTW
∼= TC/TCω ⊕ (TCω ⊕ TW/TC)

of the bundle i∗CTW into symplectic vector bundles ξC ∼= TC/TCω and ξωC
∼=

TCω ⊕ TW/TC over C . This splitting depends on a choice of complement of

TCω in TC and a choice of complement of TC in TW . Such a choice can bemade

by choosing a complex structure J1 on the bundle TC/TCω which is compatible

with the induced symplectic formon the quotient bundleTC/TCω and a choice of

a complex structure J2 on the bundle TCω ⊕ TW/TC which is compatible with

the induced symplectic structure onon this bundle. Note that a choice of an almost

complex structure J onW does not necessarily induces complex structure of the

typeJ1 ⊕ J2 as above.

From now on assume that (C,S) is a stable coisotropic submanifold of (W,ω). In

nowconstruct a natural class of almost complex structureswhich are adjusted toC

andtothestablestructureS . Recall fromSection2.3 that thestabilisingvector fields

Y1, . . . , Yk define stabilising one-forms α1, . . . , αk. Define corresponding gener-
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alised Reeb vector fieldsX1, . . . , Xk by:

αi(Xj) = dHj(Yi) = ω(Yi, Xj) = δij .

Given a stable structureS , the sub-bundle

ξC := ∩ki=1 kerαi

ofTC is isomorphic toTC/TCw and a complement ofTCω inTC . The splitting

(5.6) TC = ∩ki=1 kerαi ⊕ TCω

depends only onS andX1, . . . Xk. Likewise the splitting

(5.7) i∗CTW = ξc ⊕ ξωC = (∩ki=1 kerαi)⊕ (X1 ⊕ · · · ⊕Xk ⊕ Y1 ⊕ · · · ⊕ Yk)

depends only on S andX1, . . . Xk. Denote the symplectic forms arising as the re-

strictions ofω to ξC byωξC and the restriction ofω to ξωC byωX,Y .

Definition 5.5 ((C,S)-adjusted almost complex structures).

Let (C,S) be a stable coisotropic in a symplectic manifold (W,ω). A (C,S)-

adjusted almost complex structure JC on a Bolle neighbourhoodU ofC in (W,ω)

is constructed as follows:

chooseapair (JξC , Jξω),whereJξC is anyωξC -compatiblecomplexstructureonthe

bundle ξC = ∩kj=1 kerαj . DefineJX,Y on ξCω by

JX,YXi = Yi(5.8)

JX,Y Yi = −Xi.

Then JξC and JCω fit together to define an complex structure JC on i∗CTW , which

by construction preserves the splitting (5.7).
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Recall from Proposition 2.18 that there exists a symplectomorphism ψC : Bk
ϵ0 ×

C → U . Given q ∈ U choose (p, x) such thatϕ(p, x) = q and define

JC(q) := JC(p, x) := JC(x).

At a point (p, x) ∈ Bk
ϵ0 × C onemaywriteJC as amatrix

(5.9) JC(p, x) =

JX,Y (x) 0

0 JξC (x)


where JX,Y (x) : ξ

w → ξw denotes the 2k × 2kmatrix satisfying Equation 5.8 and

JξC (x) denotes a 2(n − k) × 2(n − k)matrix representing the complex structure

JξC onTxξC .

When (C,S) is clear from the context, I will refer to a (C,S)-adjusted almost com-

plex structureJC by an adjustedJC .

Remark 5.6.

If (C,S) is also fibred, an adjusted JC can be constructed by first choosing an ωB-

compatible almost complex structureJB on the symplectic quotientB ofC and then defin-

ingJC by

(5.10) JC(p, x) =

JX,Y (x) 0

0 π∗BJB(x)


on all ofU .

ThesymplecticcobordismWC inheritsanadjusted (C,S)-compatiblealmostcom-

plexstructureJC fromC bydefinition. ToequipWH withanalmostcomplexstruc-

ture, first pull backJC viaψH toHC,ϵ. More precisely set

(5.11) JHC
(p, x) = ψ∗

HJC(p, x).
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Let (p, x) ∈ Sk−1
ϵ ×C . Denote by∂r the vector field spanning the tangent space of

(ϵ − ϵ′, ϵ + ϵ′), byXH the Reeb vector field ofHC,ϵ. Denote by ∂p the vector field

which is the unit p̂ vector in the direction of p at p ∈ Sk−1
ϵ and by ∂qi a vector field

which is the unit vector q̂i in the direction qi of the tangent space to the sphere p⊥

for 1 ≤ i ≤ k. A simple calculation in coordinates shows that

JHC
(p, x)∂r = JC(p, x)dψ(p, x)∂r = JC(p, x)∂p = p̂XH

JHC
(p, x)XH = JC(p, x)dψ(p, x)XH = JC(p, x)XH = −∂p

JHC
(p, x)∂qi = JC(p, x)dψ(p, x)∂qi = JC(p, x)∂qi = q̂iXi

JHC
(p, x)q̂iXi = JC(p, x)dψ(p, x)q̂iXi = JC(p, x)q̂idXi = −∂qi .

HenceJHC
is (HC , (ωH , ∂p))-adjusted andmoreover preserves the splitting

i∗HC
TW = ξC ⊕ ξH/ξC ⊕ ξωH .

At a point (p, x) ∈ HC,ϵ onemaywriteJHC
as amatrix

(5.12)

JHC
(p, x) =


JX,∂p(p, x) 0 0

0 JS,R(p, x) 0

0 0 JξC (x)

 =

JX,∂p(p, x) 0

0 JξH(p,x)

 .

HereJξC (x)denotesa2(n−k)by2(n−k)matrix representing theωξC -compatible

complexstructureonthebundleξC asbefore. JS,R(p, x)denotesa2(k−1)by2(k−

1)matrix representing the almost complex structure pairing directions in TSk−1

and TCω \ THω . JX,∂p(p, x) denotes a 2 by 2matrix pairing the Reeb vector field

XH ofHC with thenormal direction∂p ofHC . FinallyJξH (p, x)denotes a2(n− 1)

by2(n−1)matrix representing theωHξH
-compatible almost complex structureon

ξH , This is, by construction, thematrix

(5.13) JξHC
(p, x) =

JS,R(p, x) 0

0 JξC(x)

 .
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Extend this almost complex structure onHC,ϵ to an almost complex structure on

WH = (ϵ− ϵ′, ϵ+ ϵ′)× Sk−1
ϵ × C by setting

JH(r, p, x) = JHC
(p, x)

for allr in (ϵ−ϵ′, ϵ+ϵ′). By constructionJC andJH fit together smoothly togive an

almost complex structure onWC ∪WH by using the restriction to the boundaries

of themapψ fromLemma5.3 andpossibly aperturbation asdescribed inSection 3.1

of [Bou+03]. Extendthisalmostcomplexstructure toanω-compatiblealmostcom-

plexstructureJR onWR in thesamewaytoobtainanω-compatiblealmostcomplex

structureJS on all ofW .

Iwill call such an almost complex structure constructed as above a (C,S) -adjusted

alomst complex structure onW and denote it by JS . If it is clear from the context I

will just callJS adjusted. Slightly abusingnotation Iwill denote the restrictionofJS

toWC byJC and likeswise forWH andWR.

5.4 Stretching the neck

In this section I briefly review the neck stretching or splitting construction from

symplectic field theory (see Section 3.4 of [Bou+03] or Section 2.7 of [CM05] ), that

willbeperformedtoobtainmore informationaboutthepearly trajectoriesprovided

byTheorem4.1.

Recall the separation ofW into the three symplectic cobordimsWC ,WH andWR

defined in Equation 5.5 above. Equip W with a (C,S)-adjusted almost complex

structureJS as describe in Section 5.3 above.

For τ > 0, the intervals (ϵ − ϵ′, ϵ + ϵ′) and (ϵ − τ, ϵ + τ) are diffeomorphic, for

example via the linear diffeomorphismϕτ : (ϵ − τ, ϵ + τ) → (ϵ − ϵ′, ϵ + ϵ′) given

by

(5.14) ϕτ (t) =
tϵ′

τ
+ ϵ− ϵϵ′

τ
.
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If one lets τ grow to infinity, the “neck”

(5.15) W τ
H := (ϵ− τ, ϵ+ τ)×HC

will expand to the symplectizationR×HC . If onenowconsiders (W τ
H , ϕ

∗
τJH)one

obtains

ϕ∗τJH =


0 − ϵ′

τ 0

τ
ϵ′ 0 0

0 0 JξH

 .

Letting τ grow to infinity, applying this almost complex structure “blows up” the

R-directionanddegenerates theReebdirection to zero. Anyorientationpreserving

sequenceofdiffeomorphisms{ϕ′τ}τ>0 ofthe intervals(ϵ−τ, ϵ+τ)and(ϵ−ϵ′, ϵ+ϵ′)

mapping the ends to the ends has to exhibit this behaviour. To avoid this degenera-

tion and to be able to extract information about the asymptotic behaviour of holo-

morphic curves in W̃ set:

(5.16) (W τ
H , J

τ
H) := (W τ

H , JH).

This neighbourhood ofHC is diffeomorphic toWH but carries a translationally in-

variant almost complex structurewhich does not degenerate as τ grows to infinity.

To fit this into the symplectic cobordism setting introduced above, set:

(5.17) W τ :=WC

∪
HC,ϵ−={ϵ−τ}×HC,ϵ

W τ
H

∪
HC,ϵ+

={ϵ+τ}×HC,ϵ

WR

Thismanifold isdiffeomorphic toW . Defineanalmost complexstructureonWτ by

(5.18) Jτ
S =


JR onWR

JH on (ϵ− τ, ϵ+ τ)×HC

JC onWC
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Again letting τ grow to infinity, one can write the resulting “split” manifold W̃ as a

theresultofattachingcylindrical ends to the threesymplecticcobordismsWC ,WH

andWR and thus as the non compact symplectic cobordisms

(5.19)

W̃C =WC

∪
{ϵ−}×HC

R+ ×HC .

W̃H = R×HC .

W̃R =WR

∪
{ϵ+}×HC

R− ×HC .

Set

(5.20) W̃ = W̃C ∪ W̃H ∪ W̃R.

The almost complex structures Jτ
S converge pointwise in an appropriate sense to

a (C,S)-adjusted almost complex structure J̃S on W̃ . See again Section 3.4 of

[Bou+03] for details. Denote the restriction of J̃S to W̃H by J̃H the restriction to

W̃C by J̃C and by J̃R for W̃R.

Remark 5.7.

Notice that by the stability assumption onC , one has

LXωs = LXα = 0.

The symplectic form ωH is compatible with JH as constructed. In the language of

[Bou+03],Jτ
S and J̃ are symmetric, cylindrical almost complex structures adjusted toω.

The symplectic formsωs andωH , will “blow up” as τ goes to infinity. This problem

isovercomebyadapting thenotionof symplectic energy to anotionwhich takes the

rescaling into account. I give the relevantdefinitions inSection 5.5.2.With theproof

of Theorem 5.1 inmind I summarise the relevant data from this section in the defi-
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nition below:

Definition 5.8 (neck stretching data).

Neck stretching dataN := N (W,ω, J,C) consist of the following:

(N1) A sequence of symplectic manifolds (Wn ×Wn,−ωn × ωn) indexed by an

increasing sequenceof non-negative integersn ∈ Z≥0 diverging to+∞. The

manifoldsWn and its parts are defined by equation (5.17)

(N2) A sequence of (C,S)-adjusted almost complex structures Jn
S onWn as con-

structed inSection 5.3. Thesedefine a sequenceof almost complexmanifolds

(Wn ×Wn,−Jn
S × Jn

S ). Notice that this product can be separated into nine

parts:

(5.21)
WC ×WC ,W

n
H ×WC ,WC ×Wn

H ,WR ×WC ,W
n
H ×Wn

H ,

WC ×WR,WR ×Wn
H ,W

n
H ×WR,WR ×WR

(N3) The limit object W̃ × W̃ which splits up into nine parts:

(5.22)
W̃C × W̃C , W̃H × W̃C , W̃C × W̃H , W̃R × W̃C , W̃H × W̃H ,

W̃C × W̃R, W̃R × W̃H , W̃H × W̃R, W̃R ×WR,

whereeachfactor isasdefined in(5.19)and(5.20). Theproductsareequipped

with the respective almost complex structure , (−J̃C × J̃C), (−J̃C ×

J̃H), (−J̃H × J̃C), (−J̃H × J̃H), (−J̃R × J̃H), (−J̃H × J̃R), (−J̃R × J̃R)

and (−J̃S × J̃S) respectively.

Remark 5.9.

It is also possible to define a “k-dimensional neck stretch“, by cutting outBk
r ×C fromW

and then letting r grow to infinity. The resulting symplectic cobordisms will be diffeomor-

phic to the three completed symplectic cobordisms W̃C , W̃H and W̃R above and can also

be equipped with (C,S)-adjusted almost complex structures. In this sense one may view
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W̃C as the k-dimensional symplectization of the coisotropicC . In this setting a notion of

k-dimensional Hofer energy can be developed, which is similar to the notion of energy put

forward inSection5.5.2. Thus thek-dimensionalanalogueofaneck-stretcharoundacodi-

mensionk-coisotropic doesnot seemto lead todifferent results thanneck stretchingaround

the associated stable hypersurfaceHC . Since irrelevant for the proof of Theorem 5.1, I do

not investigate the relationship of these two neck-stretching operations here.

5.5 Holomorphic curves

5.5.1 Puncturedpearly trajectories

I follow the notations and conventions used in [Abb14] and [Bou+03]. Many thanks

to Chris Wendl for explaining the “doubling operation” to me. See appendix B of

[Wen05].

Definition 5.10 (Riemann surface data).

Riemann surface data

(5.23) S = (S, ∂S, j, M̊ ∪M∂ , Z̊ ∪ Z∂ , D̊ ∪D∂) = (S, ∂S, j,M,Z,D)

consist of

(RS 1) ARiemannsurfaceS consistingof collectionofdisjoint connectedRiemann

surfacesS1, . . . , Sk with possibly nonempty boundaries ∂Si.

(RS 2) An (almost) complex structure j onTS.

(RS 3) The finite set of interiormarked points M̊ ⊂ S̊, and the finite set of bound-

arymarked pointsM∂ ⊂ ∂S. SetM = M̊ ∪M∂ .

(RS 4) The finite sets Z̊ ⊂ S̊ andZ∂ ⊂ ∂S of interior andboundarypunctures . Set

Z = Z̊ ∪ Z∂ .
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(RS 5) The finite set D̊ ⊂ S̊ of pairs {d, d′}of interiormarked points and the finite

setD∂ ⊂ ∂S of pairs {b, b′} of boundary marked points. SetD = D̊ ∪

D∂ . These points will be identified to form a nodal (or singular) Riemann

surface. So Iwill call them nodal pairs.

ToS we can associate a nodal or singular surfaceSsing by identifying nodal pairs:

Ssing = S/{zj ∼ z′j for each pair {zj , z′j} ∈ D}.

Say thatS is connected ifSsing is connected.

For eachRiemann surface (S, ∂S, j)withnon-emptyboundary∂S ̸= ∅ there exists

a conjugate Riemann surfaceSc = (S, ∂S,−j)which can be glued toS along∂S to

form a surface

(Sd, jd) = (S ∪∂S Sc, j ∪ −j)

without boundary, a natural almost complex structure jd, and a natural anti-

holomorphic involution σ : Sd → Sd whose fixed point set is ∂S. If S has empty

boundary define the doubled Riemann surface dataSd by

(Sd,Md, Zd, Dd) = (S,M,Z,D).

IfS has at least oneboundary component, define thedoubledRiemannsurfacedata

Sd to be

(Sd,Md, Zd, Dd) = (Sd, jd, M̊ ∪ M̊ c ∪M∂ , Z̊ ∪ Z̊c ∪ Z∂ , D̊ ∪ D̊c ∪D∂),

where M̊ c = σ(M̊), Z̊c = σ(Z̊), D̊c = σ(D̊). The setsM∂ , Z∂ , D∂ are fixed byσ.

Set Ṡd = Sd \ (Md ∪ Zd ∪Dd).

ConnectedRiemann surface dataS with boundary are stable if:

χ(Ṡd
j ) = 2− 2gj − |(Md ∪ Zd ∪Dd) ∩ Sj | < 0
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holds for each Sj . Here gj is the genus of Sd
j and | · | denotes the cardinalities of

the sets ofM,Z andD. Say that Riemann surface data S are stable if every con-

nectedcomponentofSd is stable. ForexampleadiscD = (D, ∂D, {m1
∂D,m

2
∂D} ∈

∂D,m3 ∈ D̊)with one interior and two boundarymarked points satisfies

2− 2 · 0− |{m1
∂D,m

2
∂D,m3,m

d
3}| = −2 < 0,

and is thus stable.

IfS is connected, its arithmetic genus ag is defined by:

ag(S) = |D| − C +

C∑
i=1

gj + 1

Here gj is the genus of a connected componentSj ofS andC is the number of con-

nected components ofS. The signature sig ofS is given by

sig(S) = (ag(S), |M̊ |, |M∂ |, |Z̊|, |Z∂ |),

Thus the signature ofSd is given by

sig(Sd) = (ag(Sd), |Md|, |Zd|)

For more details on Riemann surfaces with boundary the reader is referred to Sec-

tion1.3.3of [Abb14] andAppendixBof [Wen05] and the references therein. Inpar-

ticular one can prove a version of the Deligne-Mumford compactness theorem for

Riemannsurfaceswithboundary. Themain ideaof theproof is todouble thesurface

with boundary as described above and then follow the strategy of proof for the case

without boundary.

SinceTheorem4.1 establishes the existenceof apearly trajectorywith certainprop-

erties one will have to deal with the possible degenerations of pearly trajectories

in the neck stretching process. In order to absorb bubbling phenomena into alter-
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ationsof thedomainsof thepearly trajectoriesonethusallowsforslightlymoregen-

eral pearly trajectories. I will describe this bubbling-off procedure inmore detail in

Section 5.6.3.Throughout I will use the shorthand notation u : (S, ∂S) → (T,L)

for a holomorphic curve

u(S, ∂S, j,M,Z,D)→ (T, L, J)

mapping to a symplectic manifold T = (W,ω) equipped with an ω-compatible al-

most complex structure J and respecting the boundary condition u(∂S) ⊂ L and

defined away fromM ∪ Z ∪D. The relevant definitions for pearly trajectories are

below. For simplicity I will restrict to the case where one can split themanifold W̃

into three symplectic cobordisms W̃C , W̃H and W̃R defined in Equation 5.5. The

case in which a hypersurface is non-sperating is similar and for example dealt with

in [Abb14].

Definition 5.11 (Punctured pearly differential trajectory).

Apunctured pearly differential trajectory is a pearly differential trajectory as inDefini-

tion 4.12, where condition (PD1) is replaced by

(pPD1) At least one of the J-holomorphic curves ui : S → (T,L) for i ∈

{1, . . . , l}has at least one non-constant disc component (D, ∂D). HereS

are Riemann surface data as in Definition 5.10 with the additional condi-

tions that S is connected and that g = 0. Moreover there is a set Ed =

{zin, zout} ⊂ ∂S of entry and exit points of S which is disjoint from the

sets ofmarked points, double points and punctures i.e.:

(M∂ ∪ Z∂ ∪D∂) ∩ E = ∅.

Condition (PD2) is replaced by

(pPD2) The energyof thepuncturedpearly differential trajectory definedbelow in

Equation 5.37 is bounded above by a constantE0 > 0.
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Conditions (PD3)-(PD5) are replaced by

(pPD3) There exists a t− ∈ [−∞, 0) such thatϕt
−
Z (u1(zin)) = y.

(pPD3) For every1 ≤ i ≤ l−1 there exists a ti ∈ (0,∞) such thatϕt
i

Z(ui(zout)) =

ui+1(zin).

(pPD3) There exists a t+ ∈ (0,+∞] such thatϕt
+

Z (ul(zout)) = x.

Denote by

pPdiff := pPdiff(y, x;A; f, Z, J)

the moduli space of all possible configurations of all possible lengths l ≥ 1 de-

scribed in definition 5.11

Definition 5.12 (Punctured pearly product trajectory).

A punctured pearly product trajectory is a pearly product trajectory as in Definition

4.14where conditions (PP1)-(PP3) are replaced by:

(pPP1) v : (Sp, ∂Sp) → (T,L) is a J-holomorphic curve, which is allowed to be

constant. HereS areRiemannsurfacedata as indefinition 5.10with the ad-

ditional conditions thatSp is connected and that g = 0. Moreover there is

a set

Ep = {zpin,1, z
p
in,2, z

p
out}

of entry and exit points ofSp, the central, product component of the pearly

trajectory which is disjoint from the sets of marked points, double points

and punctures ofSp i.e.:

(Mp
∂ ∪ Z

p
∂ ∪D

p
∂) ∩ Ep = ∅.
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(pPP2) Set z1 = v(z1in), z2 = v(z2in) and z3 = v(zpout).

u ∈ pPdiff(x1, z1;B1; f, Z1, J)

u′ ∈ pPdiff(x2, z2;B2; f, Z2, J)

u′′ ∈ pPdiff(z3, y;B3; f, Z3, J)

Requireagain that the setof entryandexitpointsE∪Ep ofdiscs contribut-

ing to thepearly trajectories isdisjoint fromthesetsofmarkedpoints, dou-

ble points and punctures:

(M∂ ∪ Z∂ ∪D∂) ∩ (E ∪ Ep) = ∅.

(pPP3) The energy E as in definition below 5.37 of the punctured pearly product

trajectory is bounded above by a constantE0 > 0.

In abuse of notation denote a punctured pearly product or a punctured pearly dif-

ferential trajectoryasdefinedabovebypP . Iwill call bothkindsofpuncturedpearly

trajectories just punctured pearly trajectories.

5.5.2 Energy

Variations of Hofer’s energy as defined in [Hof93] are used throughout the litera-

ture. For example [Bou+03], [CM05] use slightly different conventions. The defi-

nitions in these references are equivalent in the sense that a uniform bound on one

implies a uniform bound on the other and vice versa. (see Lemma 4.1(b) in [CM05]

andLemma9.2 in [Bou+03] respectively)

I now adapt the notion of energy put forward in [Bou+03] to the present setting.

One needs to adapt these notions since in the proof of Theorem 5.1 I will be deal-

ingwith pearly trajectories converging to punctured pearly trajectories rather than

with holomorphic curves converging to holomorphic buildings. Moreover notice
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that the target of the pearly trajectories is a product of two symplecticmanifolds. I

give the relevant definitions below. Recall thatHC is separating, thus

(5.24) W τ =WC ∪W τ
H ∪WR.

whereW τ
H = (ϵ− τ, ϵ+ τ)×HC . Set

(5.25) W τ,− ×W τ,+ = (W τ ×W τ ,−ω × ω,−Jτ
S × Jτ

S),

and likewise for the products of the different parts of the symplectic cobordism.

Recall thatW τ × W τ has nine different parts listed in Equation 5.21, which con-

verge to the parts listed in Equation 5.22. For each τ > 0 a pearly trajectory Pτ

inW τ,− × W τ,+ consists of a finite collection u1, . . . , ulτ of holomorphic maps

ui : (Sτ , ∂S) → (W τ,− ×W τ,+, LC). First define the ω-energy of Pτ in the re-

spective parts of the product of the symplectic cobordismsWC ,W
τ
H andWR:

(5.26)

EC,C
ω (Pτ ) =

lτ∑
i=1

∫
ui

−1(W−
C ×W+

C )

u∗i (−ωs × ωs)

EC,H
ω (Pτ) =

lτ∑
i=1

∫
ui

−1(W−
C ×W τ,+

H )

(u−i , πH ◦ u
+
i )

∗(−ωs × ωH)

EH,C
ω (Pτ ) =

lτ∑
i=1

∫
ui

−1(W τ,−
H ×W+

C )

(πH ◦ u−i , u
+
i )

∗(−ωH × ωs)

EC,R
ω (Pτ ) =

lτ∑
i=1

∫
ui

−1(W−
C ×W+

R )

u∗i (−ωs × ω)

ER,C
ω (Pτ ) =

lτ∑
i=1

∫
ui

−1(W−
R ×W+

C )

u∗i (−ω × ωs)

EH,H
ω (Pτ ) =

lτ∑
i=1

∫
ui

−1(W τ,−
H ×W τ,+

H )

((πH × πH) ◦ ui)∗(−ωH × ωH)
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EH,R
ω (Pτ ) =

lτ∑
i=1

∫
ui

−1(W τ,−
H ×W+

R )

(πH ◦ u−i , u
+
i )

∗
(−ωH × ω)

ER,H
ω (Pτ ) =

lτ∑
i=1

∫
ui

−1(W−
R ×W τ,+

H )

(u−i , πH ◦ u
+
i )

∗(−ω × ωH)

ER,R
ω (Pτ ) =

lτ∑
i=1

∫
ui

−1(W−
R ×W+

R )

u∗i (−ω × ω)

The total ω-energy of Pτ , Eω(Pτ ), is then defined as the sum of the ω-energies in

different parts of the product of the symplectic cobordisms, i.e.

(5.27)

Eω(Pτ ) = EC,C
ω (Pτ ) + EC,H

ω (Pτ ) + EH,C
ω (Pτ ) + EC,R

ω (Pτ ) + ER,C
ω (Pτ )

+ EH,H
ω (Pτ ) + EH,R

ω (Pτ ) + ER,H
ω (Pτ ) + ER,R

ω (Pτ )

Define theα-energy in the respective parts of the product by

(5.28)

EC,H
α (Pτ ) = sup

ϕ

lτ∑
i=1

∫
u−1
i (WC×W τ,+

H )

(ϕ ◦ πR ◦ u+i )(u
+
i )

∗
(dr ∧ α)

EH,C
α (Pτ ) = sup

ϕ

lτ∑
i=1

∫
u−1
i (W τ,−

H ×WC)

(ϕ ◦ πR ◦ u−i )(u
−
i )

∗
(−dr ∧ α)

ER,H
α (Pτ ) = sup

ϕ

lτ∑
i=1

∫
u−1
i (WR×W τ,+

H )

(ϕ ◦ πR ◦ u+i )(u
+
i )

∗
(dr ∧ α)

EH,R
α (Pτ ) = sup

ϕ

lτ∑
i=1

∫
u−1
i (W τ,−

H ×WR)

(ϕ ◦ πR ◦ u−i )(u
−
i )

∗
(−dr ∧ α)

EH,H
α (Pτ ) = sup

(ϕ−,ϕ+)

lτ∑
i=1

∫
u−1
i (W τ,−

H ×W τ,+
H )

((ϕ−, ϕ+) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

Here πR : (ϵ − τ, ϵ + τ) × HC → (ϵ − τ, ϵ + τ) denotes the obvious projection

and the supremum is taken over either functions ϕ : (ϵ − τ, ϵ + τ) → R+ with
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∫
(ϵ−τ,ϵ+τ) ϕ(r)dr = 1, or functionsϕ∓ : (ϵ− τ, ϵ+ τ)→ R+

∫
(ϵ−τ,ϵ+τ)

(ϕ∓)(r)(dr = 1.

Note thatoneneedsnot todefine theα-energy inWC×WC ,WC×WR,WR×WC

andWR ×WR since no stretching is taking place in these parts of the product. The

totalα-energy ofP τ ,Eα(P
τ ), is defined by

Eα(P
τ ) = EC,H

α (P τ ) + EH,C
α (P τ ) + ER,H

α (P τ ) + EH,R
α (P τ ) + EH,H

α (P τ )

Finally, the total energy ofPτ ,E(Pτ ), is defined by

(5.29) E(Pτ ) = Eω(Pτ ) + Eα(Pτ ).

Asa result of stretching theneck,W splits into the three symplectic cobordismsde-

scribed in (5.19). ThusW ×W splits intoninepieces. Forapuncturedpearly trajec-

torypP as inDefinition 5.11 or 5.12 again first define theω-energy ofpP ,Eω(pP ), in

the different parts of the product of the symplectic cocbordisms W̃C , W̃H and W̃R:

(5.30)

EC,C
ω (pP ) =

l∑
i=1

∫
ui

−1(W−
C ×W+

C )

u∗i (−ωs × ws)

+
l∑

i=1

∫
ui

−1(W−
C ×R+×H+

C )

(u−i , πH ◦ u
+
i )

∗
(−ωs × ωH)

+
l∑

i=1

∫
ui

−1(R+×H−
C×W+

C )

(πH ◦ u−i , u
+
i )

∗
(−ωH × ωs)

+

l∑
i=1

∫
ui

−1(R+×H−
C×R+×H+

C )

((πH × πH) ◦ ui)∗(−ωH × ωH)
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(5.31)

EC,H
ω (pP ) =

l∑
i=1

∫
ui

−1(W−
C ×W̃+

H )

(u−i , πH ◦ u
+
i )

∗(−ωs × ωH)

+
l∑

i=1

∫
ui

−1(R+×H−
C×W̃+

H )

(πH ◦ u−i , πH ◦ u
+
i )

∗(−ωH × ωH)

EH,C
ω (pP ) =

l∑
i=1

∫
ui

−1(W̃−
H×W+

C )

(πH ◦ u−i , u
+
i )

∗(−ωH × ωs)

+
l∑

i=1

∫
ui

−1(W̃−
H×R+×H+

C )

(πH ◦ u−i , πH ◦ u
+
i )

∗(−ωH × ωH)

EC,R
ω (pP ) =

l∑
i=1

∫
ui

−1(W−
C ×W+

R )

u∗i (−ωs × ω)

+

l∑
i=1

∫
ui

−1(W−
C ×R−×H+

C )

(u−i , πH ◦ u
+
i )

∗
(−ωs × ωH)

+

l∑
i=1

∫
ui

−1(R+×H−
C×W+

R )

(πH ◦ u−i , u
+
i )

∗
(−ωH × ω)

+

l∑
i=1

∫
ui

−1(R+×H−
C×R−×H+

C )

((πH × πH) ◦ ui)∗(−ωH × ωH)

ER,C
ω (pP ) =

l∑
i=1

∫
ui

−1(W−
R ×W+

C )

u∗i (−ω × ωs)

+

l∑
i=1

∫
ui

−1(W−
R ×R+×H+

C )

(u−i , πH ◦ u
+
i )

∗
(−ω × ωH)

+
l∑

i=1

∫
ui

−1(R−×H−
C×W+

C )

(πH ◦ u−i , u
+
i )

∗
(−ωH × ωs)

+
l∑

i=1

∫
ui

−1(R−×H−
C×R+×H+

C )

((πH × πH) ◦ ui)∗(−ωH × ωH)
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(5.32)

EH,H
ω (pP ) =

l∑
i=1

∫
ui

−1(W̃−
H×W̃+

H )

((πH × πH) ◦ ui)∗(−ωH × ωH)

ER,H
ω (pP ) =

l∑
i=1

∫
ui

−1(W−
R ×W̃+

H )

(u−i , πH ◦ u
+
i )

∗(−ω × ωH)

+
l∑

i=1

∫
ui

−1(R−×H−
C×W̃+

H )

(πH ◦ u−i , πH ◦ u
+
i )

∗(−ω × ωH)

EH,R
ω (pP ) =

l∑
i=1

∫
ui

−1(W̃−
H×W+

R )

(πH ◦ u−i , u
+
i )

∗(−ωH × ω)

+

l∑
i=1

∫
ui

−1(W̃−
H×R−×H+

C )

(πH ◦ u−i , πH ◦ u
+
i )

∗(−ωH × ωH)

ER,R
ω (pP ) =

l∑
i=1

∫
ui

−1(W−
R ×W+

R )

u∗i (−ω × w)

+

l∑
i=1

∫
ui

−1(W−
R ×R−×H+

C )

(u−i , πH ◦ u
+
i )

∗
(−ω × ωH)

+

l∑
i=1

∫
ui

−1(R−×H−
C×W+

R )

(πH ◦ u−i , u
+
i )

∗
(−ωH × ω)

+

l∑
i=1

∫
ui

−1(R−×H−
C×R−×H+

C )

((πH × πH) ◦ ui)∗(−ωH × ωH)

The ω energy is then defined as the sum over the ω energies in the respective sym-

plectic cobordisms.

(5.33)

Eω(pP ) = EC,C
ω (pP ) + EC,H

ω (pP ) + EH,C
ω (pP ) + EC,R

ω (pP ) + ER,C
ω (pP )

+ EH,H
ω (pP ) + EH,R

ω (pP ) + ER,H
ω (pP ) + ER,R

ω (pP )

Similarily, the α-energy of pP ,Eα(pP ) is first defined in the different parts of the
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product:

(5.34)

EC,C
α (pP ) = sup

ϕ+

l∑
i=1

∫
u−1
i (W−

C ×R+×H+
C )

(ϕ+ ◦ πR ◦ u+i )(u
+
i )

∗
(dr ∧ α)

+ sup
ϕ+

l∑
i=1

∫
u−1
i (R+×H−

C×W+
C )

(ϕ+ ◦ πR ◦ u−i )(u
−
i )

∗
(dr ∧ α)

+ sup
(ϕ+,ϕ′

+)

l∑
i=1

∫
u−1
i (R+×H−

C×R+×H+
C )

((ϕ−, ϕ′+) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

EC,H
α (pP ) = sup

ϕ

l∑
i=1

∫
u−1
i (WC×W̃+

H )

(ϕ ◦ πR ◦ u+i )(u
+
i )

∗
(dr ∧ α)

+ sup
(ϕ+,ϕ)

l∑
i=1

∫
u−1
i (R+×H−

C×W̃+
H )

((ϕ+, ϕ) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

EH,C
α (pP ) = sup

ϕ

l∑
i=1

∫
u−1
i (W̃−

H×WC)

(ϕ ◦ πR ◦ u−i )(u
−
i )

∗
(−dr ∧ α)

+ sup
(ϕ,ϕ+)

l∑
i=1

∫
u−1
i (W̃−

H×R+×H+
C )

((ϕ, ϕ+) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

ER,H
α (pP ) = sup

ϕ

l∑
i=1

∫
u−1
i (WR×W τ,+

H )

(ϕ ◦ πR ◦ u+i )(u
+
i )

∗
(dr ∧ α)

+ sup
(ϕ−,ϕ)

l∑
i=1

∫
u−1
i (R−×H−

C×W̃+
H )

((ϕ−, ϕ) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

EH,R
α (pP ) = sup

ϕ

l∑
i=1

∫
u−1
i (W̃−

H×WR)

(ϕ ◦ πR ◦ u−i )(u
−
i )

∗
(−dr ∧ α)

+ sup
(ϕ,ϕ−)

l∑
i=1

∫
u−1
i (W̃−

H×R−×H+
C )

((ϕ, ϕ−) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

EH,H
α (pP ) = sup

(ϕ−,ϕ+)

l∑
i=1

∫
u−1
i (W̃−

H×W̃+
H )

((ϕ−, ϕ+) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)
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(5.35)

ER,R
α (pP ) = sup

ϕ−

l∑
i=1

∫
u−1
i (W−

R ×R−×H+
C )

(ϕ ◦ πR ◦ u+i )(u
+
i )

∗
(dr ∧ α)

+ sup
ϕ−

l∑
i=1

∫
u−1
i (R−×H−

C×W+
R )

(ϕ ◦ πR ◦ u+i )(u
+
i )

∗
(dr ∧ α)

+ sup
(ϕ−,ϕ′

−)

l∑
i=1

∫
u−1
i (R−×H−

C×R−×H+
C )

((ϕ−, ϕ
′
−) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

EC,R
α (pP ) = sup

ϕ−

l∑
i=1

∫
u−1
i (W−

C ×R−×H+
C )

(ϕ− ◦ πR ◦ u+i )(u
+
i )

∗
(dr ∧ α)

+ sup
ϕ+

l∑
i=1

∫
u−1
i (R+×H−

C×W+
R )

(ϕ+ ◦ πR ◦ u−i )(u
−
i )

∗
(−dr ∧ α)

+ sup
(ϕ+,ϕ−)

l∑
i=1

∫
u−1
i (R+×H−

C×R−×H+
C )

((ϕ+, ϕ−) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

ER,C
α (pP ) = sup

ϕ+

l∑
i=1

∫
u−1
i (W−

R ×R+×H+
C )

(ϕ+ ◦ πR ◦ u−i )(u
−
i )

∗
(dr ∧ α)

+ sup
ϕ−

l∑
i=1

∫
u−1
i (R−×H−

C×W+
C )

(ϕ− ◦ πR ◦ u−i )(u
−
i )

∗
(−dr ∧ α)

+ sup
(ϕ−,ϕ+)

l∑
i=1

∫
u−1
i (R−×H−

C×R+×H+
C )

((ϕ−, ϕ
+) ◦ πR × πR ◦ ui)u∗i (−dr ∧ α× dr ∧ α)

The totalα-energy is then defined as the sumover the different parts, i.e.

Eα(pP ) = EC,C
α (pP ) + EC,H

α (pP ) + EH,C
α (pP ) + ER,H

α (pP ) + EH,R
α (pP )

+ EH,H
α (pP ) + EC,R

α (pP )ER,C
α (pP ) + ER,R

α (pP )

The suprema for are taken over the sets of allC∞-functionsϕ, ϕ∓, ϕ′∓ : R → R+
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andϕ∓ : R∓ → R+, such that

(5.36)
∫
R
ϕ(r)dr =

∫ ∓∞

0
ϕ∓∓(r)dr =

∫
R
ϕ∓(r)dr =

∫
R

ϕ′∓(r)dr = 1.

Notice that this definition of energy differs slightly from the definition given in

[Bou+03]where themaximum is taken instead of summing over the different parts

of theα-energy. Again these two choices are equivalent in the sense that a uniform

boundonthemaximumoftheα-energies impliesauniformboundonthesumofthe

α-energies and vice versa. Finally the total energy of a punctured pearly trajectory

pP is given by:

(5.37) E(pP ) = Eω(pP ) + Eα(pP ).

It follows from Lemma 9.1 in [Bou+03] that the energy of a sequence of pearly tra-

jectories (P )n∈N in (Wn, Jn)which converges to a puncturedpearly trajectorypP

in (W̃ , J̃) satisfies

(5.38) lim
n→∞

Eω((P )n∈N) = Eω(pP ).

By Lemma 9.2 of the same reference there exists a constantC > 0 depending only

onW,J,C,andSsuch that for every τ > 0 every pearly trajectoryP satisfies

(5.39) E(P ) ≤ CEω(P )

Remark 5.13.

I have modelled the definition of energy put forward in this section on the definition of

energy put forward in Section 9.2 of [Bou+03]. Thus, given a holomorphic curve u :

(S, j) → (T, J) with domain a Riemann surface S and target T = W,W τ or W̃−×

as above, the energy ofu is defined exactly in the samemanner as I have defined the energy

of pearly and punctured pearly trajectories above. I will therefore, abusing notation, also
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refer to the energy of a (single) holomorphic curve byE(u).

5.5.3 Holomorphic projections and asymptotics

For the proof of Theorem 5.1 and later the proof of Theorem 1.6 the following con-

sequences of usingS-adapted almost complex structures of the formofJC andJH

are relevant:

For theobvious projections in the symplectic cobordismsWC andWH andW τ
H de-

finedinEquation5.5andtheircompletionsW̃C , W̃H definedinEquation5.19above,

set

πN ◦ u = uN for themanifolds N = HC , C,B.

Moreover denote the projection THC → ξH along the Reeb direction ofHC by

prξH .

Amapu : S → T with domain a Riemann surface (S, j) and target

(T, J) ∈ {(WC , JC), (W̃C , J̃C), (WH , JH), (W τ
H , J

τ ), (W̃H , J̃H)}

is defined by a (k + 1)-tuple ofmaps:

u = (a1, . . . , ak, uC) : (S, j)→ (T, J),

where, if necessary, the change of coordinates, is provided by the symplectomor-

phismψ of Lemma 5.3.

Themapu is (j, J) holomorphic if it satisfies the (k + 1) equations:

(5.40)
JB ◦ duB = duB ◦ j

uC
∗αi = dai ◦ j for i = 1, . . . , k.
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Amapu : S → T ′ with domain a Riemann surface (S, j) and target

(T ′, J ′) ∈ {(WH , JH), (W̃H , J̃H)}

is also defined as a pair ofmaps

ũ = (a, uH) : (S, j)→ (T ′, J ′).

Themapu′ is (j, J ′) holomorphic if it satisfies the equations

(5.41)
JξH ◦ prξH ◦ du

′ = prξH ◦ du ◦ j.

uH
∗α = da ◦ j.

Thus for a(j, J ′)-holomorphicmapu as above, there are twoways inwhich its holo-

morphicity can be expressed.

Moreover notice that

uC = πC ◦ u.(5.42)

= πC ◦ πH ◦ u.

uB = πB ◦ uC(5.43)

= πB ◦ πC ◦ u.(5.44)

= πB ◦ πC ◦ πH ◦ u.

An important ingredient of any compactness proof is the asymptotic behaviour of

holomorphic curves near punctures in the domain. This is described Theorem 9.6

[Wen16], which is the generalisation of Proposition 5.8 to the stable case. A more

detaileddescription is given inTheorem9.8of [Wen16],whichgeneralisesProposi-

tion 5.6, 5.7 in [Bou+03] to the stable case. I present themain implications of Theo-

rem9.8 in [Wen16] to the present situation below:

DenotebyḊ = D\{0} thepuncturedunitdiscanddefinetwobiholomorphicmaps
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φ± by

φ+ : Z+ := [0,∞)× S1 → Ḋ : (s, t)→ e−2π(s+it)

φ− : Z− := (−∞, 0]× S1 → Ḋ : (s, t)→ e2π(s+it).

Proposition 5.14.

LetC be a fibred, stable coisotropic submanifold of a symplecticmanifold (W,ω). Assume

W̃C andW̃H are equippedwithS-adaptedalmost complex structures. If one of the follow-

ing conditions hold

(i) ũ : Ḋ → W̃C is a J̃C-holomorphic curve of finite energyE(ũ) <∞.

(ii) ũ : Ḋ → W̃H is a J̃H -holomorphic curve of finite energyE(ũ) <∞.

Then either the singularity at 0 ∈ D is removable or ũ is a proper map. In the latter case

themap

u(a1, . . . , ak, uC) := ũ ◦ φ± for (s, t) ∈ Z± near infinity

satisfies

ai(s, ·)− s(T p̂i)→ c in C∞(S1) as s→ ±∞ for all 1 ≤ i ≤ k(5.45)

ũC(s, ·)→ γ(·) in C∞(S1, C) as s→ ±∞(5.46)

for a constant c ∈ R and where the triple (γ, p̂, T ) is a generalised Reeb orbit, i.e.

p̂ ∈ Sk−1
1 , T ∈ R>0 and γ : S1 → C is a solution to Bolle’s equation γ̇(t) =∑k

i=1 T p̂iXi(γ(t)) of periodT . The energyE(ũ) is bounded below by |T |. Moreover the

JB-holomorphicmap ũB mapping to the symplectic reductionB ofC approaches a point

b ∈ B.

Proof. By assumptionC is stable and fibred, thus by 3.23HC is stable and the Reeb

flowonHC is ofMorse-Bott type byCorollary 3.29. By Theorem9.8 of [Wen16] the
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holomorphic curve (a, uH) := ũ ◦ φ± satisfies

a(s, ·)− s(T p̂)→ c in C∞(S1) as s→ ±∞(5.47)

ũH(s, ·)→ (p̂, γ(T ·)) ∈ Sk−1 × C in C∞(S1, HC) as s→ ±∞.(5.48)

for a Reeb orbit (p, γ) of period T onHC . Recall that by Proposition 3.25 there is a

one to one correspondence ofReeb trajectories onHC and generalisedReeb trajec-

tories onC . In particular, given (p, γ, T ) as aReeb orbit ofHC there exists a unique

generalisedReeborbit(γ, p̂, T )onC . Theresultnowfollowsbyapplyingthechange

of coordinates ψ from Lemma 5.3. By Equations 5.40 and 5.41 ũC is holomorphic.

SinceC is fibred the leafTk
γ(0) is the kernel ofπBC

(γ(o). NowEquation 5.42 implies

that ũB approaches a point b ∈ B.

5.6 Proof of Theorem5.1

Before embarking on the proof of Theorem 5.1 I give an outline of the structure of

the proof below.

5.6.1 Outline of the proof

Strategy of the proof

Given a coisotropic C satisfying the assumptions of Theorem 5.1 choose neck

stretching dataN as in Definition 5.8. Apply Theorem 4.1 to each manifoldWn ×

Wn toobtain a sequenceof pearly trajectories (Pn)n∈Z≥0with theproperties listed

in the assertion of Theorem4.1. The strategy of the proof is to subsequently extract

subsequences of (Pn)n∈Z≥0 which eventually converge in an appropriate sense to a

puncturedpearly trajectorywhichhas theproperties fromtheassertionofTheorem

5.1.

ByellipticbootstrappingandtheArzela-Ascoli theorem, theonlyobstructiontothe

existence of a converging subsequence is the lack of a uniform bound on the gradi-
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ent of the sequence of pearly trajectories (Pn)n∈Z≥0 (see Section 2.2.3 of [Abb14]

fordetails). Toestablishauniformgradientboundonerepeatedlycarriesoutabub-

bling off analysis, which “absorbs” gradient blow ups in the targets as alterations of

the domains by a local, conformal rescaling procedure. I describe this procedure in

more detail in Section 5.6.3.

As a result of the analysis the local gradient blow up no longer occurs and the do-

main has a new part which serves as the domain of the “bubble”. Each such bubble

carriesapositiveamountofenergyasdefinedinSection5.5.2. Thus ifoneshowsthat

the energy of the sequence of pearly trajectories is bounded and diminishes in this

process, this algorithmic bubbling-off process terminates after finitely many repe-

titionsandauniformgradientboundexists. ByArzela-Ascoli andellipticbootstrap-

ping this implies the existence of a converging subsequence.

In this proof I follow the exposition given in [Abb14], which relies on the ideas pre-

sented in [Bou+03].

The proof of the theorem is structured into fourmain parts, which I list and explain

briefly below

Section 5.6.2: Preliminaries

I show first how pearly trajectories fit into the framework of stable Riemann sur-

faces. I thenexplainhowonecandecomposedomainand targetof thepearly trajec-

tories into different parts which can be analysed separately. The domain consists

of a thin and a thick part (see Equation 5.49). The target consists of the products of

symplectic cobordisms listed in Equation 5.21. A key point is that onemay view the

holomorphic curves contributing to the pearly trajectories as either a single holo-

morphic curve satisfying a Lagrangian boundary condition or as a pair of holomor-

phic curves depending on which part of the target one considers. Moreover I show

that there exists a uniform bound on the energy of the sequence of pearly trajecto-

ries provided byTheorem4.1.

Section 5.6.3: The bubbling Lemma
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I describe how gradient blow-ups of the pearly trajectories in the target can be “ab-

sorbed” by alterations of the domain: A conformal rescaling of a neighbourhood of

theblowupinthedomainmakes itpossible toboundthegradient inthatneighbour-

hood. Acasebycaseanalysis, dependingonthe localdataof theRiemannsurfaces in

the neighbourhood, shows that one can “absorb” the blow up by adding one or two

sphere or one or two disc components to the domains.

Section 5.6.4: Algorithmic removal of obstructions to compactness

It takes three main steps to establish uniform gradient bounds for the sequence of

pearly trajectories:

Step 1 Gradient bounds away frompunctures:

One proceeds algorithmically in a case by case analysis to establish uniform

gradient bounds away from finitely many points in the domain. If there is a

sequence of points along which the gradient of the pearly trajectory is un-

bounded one alters the domains according to the procedure described in

Section 5.6.3 on the bubbling Lemma. Each sphere or a disc bubble has pos-

itive energy, thus this bubbling-off process terminates after finitely many

steps. One can treat each of the parts of the targetmanifold, listed in Equa-

tion 5.21, separately. In each part one has to make the necessary case dis-

tinctions. InWC ×WC one has to distinguish between a gradient blow up

occurring along a sequence of points converging to the boundary of the do-

main and a gradient blow up along a sequence of points remaining in the in-

terior. In theother eight parts , onehas to analyse all possible cases that lead

to a gradient blow -up of Pn. There are essentially two of these: The gradi-

ent ofPn blows up if either the gradient of projection to the first factor,P−
n

blows up while the gradient of P+
n , the projection to the second factor, re-

mains bounded, or both the gradients of Pn
− and Pn

+ blow up, possibly at

different speeds.

Step 2 Convergence in the thick part:

One establishes convergence in the thick part of the Riemann surface by us-
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ing theuniformgradient boundsobtained above and the estimate for the in-

jectivity radiuson the thickpart. This part is not different fromthe standard

literature. I include it for the sake of completeness

Step 3 Convergence in the thin part:

I establish convergence in the thin part of theRiemann surface. I use the de-

scriptionof the thinpart fromthepreliminaries anda rescalingmetric toob-

tainuniformgradient bounds. Thusonehas established convergenceon the

entireRiemannsurface, and thereby shown theexistenceof limit punctured

pearly trajectory pP . This part is also notmuch different from the standard

procedure described in Section 10.2.3 of [Bou+03]. Again I include it for the

sake of completeness.

Section 5.6.5: Properties of the limit puncturedpearly trajectory

Finally I prove that the limit objectpP satisfies theproperties listed in theassertion

of Theorem 5.1.

5.6.2 Preliminaries

Given a coisotropic C satisfying the assumptions of Theorem 5.1, choose neck

stretching dataN as in Definition 5.8. Apply Theorem 4.1 to each manifoldWn ×

Wn toobtain a sequenceof pearly trajectories (Pn)n∈Z≥0with theproperties listed

in the assertion of Theorem4.1.

Since thedomainofPn is (D, ∂D)add the setM∂ = {m1,m2,m3}of threebound-

ary marked points to (D, ∂D) (one could also add two marked points in the inte-

rior). Associate the (now stable) Riemann surface dataSn = (D, ∂D, i,M∂) to the

domainsof thepearly trajectories asdescribed inSection5.5.1 anddenote thepearly

trajectories by pPn. Notice that the sets ofDn andZn of nodal pairs and punctures

are empty. The uniformisation theorem (Theorem 1.14 of [Abb14]) now guarantees

the existence of a unique complete hyperbolic metric hn on Sd
n with constant cur-

vature−1. Denote by ρn(z) the injectivity radius ofhn. DecomposeSd
n into a thick
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and a thin part given by

(5.49)
Thickϵ(Sn)= {z ∈ (Sn \M)|ρn(z) ≥ ϵ}.

Thinϵ(Sn) = {z ∈ (Sn \M)|ρn(z) < ϵ}.

One may choose ϵ universally in such a way that every thin component in the se-

quence Sd
n is conformally equivalent to either a finite cylinder [−R,R] × S1 or to

[0,∞) × S1. Another fact from hyperbolic geometry we will use is Bers’ theorem

stated at the beginning of Section 1.3 of [Abb14]. It asserts the existence of a pair

of pants decomposition of each Sd
n where the length of the boundaries of each pair

of pants is bounded above. By having added themarked points to the domains, one

may now view the sequence of pearly trajectoriesPn : Sn → Wn as a sequence of

punctured pearly trajectories pPn.

In the proof one subsequently extracts subsequences (of subsequences) of punc-

tured pearly trajectories, such that a subsequence of (pPn)n≥0 eventually con-

verges to a finite energy punctured pearly trajectory pP which satisfies the proper-

ties (pP1) and (pP2) stated in Theorem 5.1 above. In abuse of notation I will denote

all subsequence of (pPn)n≥0 still by (pPn)n≥0.

For all n ≥ 0, I continue to denote the projection onto the first factor of the carte-

sian productsWn,− × Wn,+ and W̃− × W̃+ by p−, and the projection onto the

second factor by p+. It can be helpful to keep the diagrams below inmind.

W−
C W−

C ×W
+
C W+

C

{0} × C LC {0} × C

W τ,−
H W τ,−

H ×W τ,+
H W τ,+

H

HC C HC

πC

p−

iLC

p+

πC

i− i+

πH

p− p+

πH

πC πC

The following seemingly trivial observation is important for the proof: By the defi-
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nition of the cartesian product and by our choice of product almost complex struc-

tures−Jn
S × Jn

S and−J̃S × J̃S the sequence of punctured pearly trajectories pPn

can be interpreted in twoways:

1. As a sequenceof finite collections (u1, . . . , ukn)n≥0 of (jn,−Jn
S ×Jn

S )- holo-

morphicmaps

(5.50)

un,i : (Sn, ∂Sn, j
n)→ (Wn,− ×Wn−+, LC ,−Jn

S × Jn
S ). for i = 1, . . . , kn

To simplify the notation I will continue to denote such a sequence of finite

collectionsofholomorphicmapscontributingtothepearly trajectorybypPn.

2. As a sequence of finite collections (u1, . . . , ukn)n∈Z≥0
of pairs (u−n,i, u

+
n,i)

consisting of:

(5.51)

finite collections of (jn,−Jn
S )-holomorphicmaps:

u−n,i : (Sn, ∂Sn, jn)→ (Wn,−, C−,−Jn
S ) for i = 1, . . . , kn,

and finite collections of (jn, Jn
S )-holomorphicmaps:

u+n,i : (Sn, jn)→ (Wn,+, C+, JSn) for i = 1, . . . , kn.

Again simplifying notation I will denote these projections of sequences of fi-

nite collections by pP−
n and pP+

n respectively.

Theenergyof a sequenceof finitepearly trajectorieswasdefined inSection 5.5.2. By

the definition of the algebraic structures on the pearl complex, see Equations 4.15

and 4.18 in Chapter 4, the Maslov index µ(Pn) of each element of the sequence is

boundedabovebyeither2 dimLC ,ordimLC+1dependingonwhether it isapearly

product or a pearly differential trajectory ending in the minimum. By the mono-

tonicity assumption the energy of a pearly trajectoryPn, as defined in section 5.5.2

is positively proportional to theMaslov index. Thus the constantE0 fromassertion

(E) of Theorem 4.1 can be chosen to serve as a uniform bound on the energy of the

sequence of pearly trajectories.
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5.6.3 The bubbling Lemma

A key step in proving the existence of a convergent subsequence is to understand

how a concentration of energy leading to a gradient blow up of a sequence of pearly

trajectories in the target can be absorbed by an alteration of the domains of the se-

quence. This analysis is not limited to the sequences of pearly trajectories, but valid

for all stable Riemann surfaces and standard. Despite the name of this Section, I do

not state the results of this section as a Lemma, since the formulation is very cum-

bersome. For a precise statement see for example Proposition 4.3 in [Bou+03] or

Section3.2 in [Abb14]. InsteadI includeadetaileddescriptionof thephenomena for

the sake of clarity of the exposition and in an attempt to increase the readability of

the manuscript. I suggest consulting the picutres, which illustrate the phenonema

in each of the possible cases, before reading the description of the respective case.

Given a sequence of stable Riemann surface datawithSn with fixed signature, then

Sn converges to a stable, nodal Riemann surface S by the Deligne-Mumford com-

pactness theorem (see Section 1.3 of [Abb14] and the references therin). Now as-

sume that there exists a sequence of points zn ∈ Sn such that the gradient blows

up, i.e.

Rn := ||dPn(zn)|| → ∞.

By this I mean that there exists a sequence of holomorphicmaps, denoted in abuse

of notation by un contributing to the pearly trajectory such that ||dun(zn)|| → ∞.

I now describe how one can bound derivatives in a sequence of neighbourhoods in

the sequence of Riemann surfacesSn by conformal rescaling .

First assume that the sequence zn stays away from the boundary of the Rie-

mann surface. Then there exists a sequence of holomorphic coordinate charts

ψn : BϵnRn(0)→ Un, whereUn is a neighbourhoodof zn. By Lemma3.8 in [Abb14]

one has for all z ∈ Un

(5.52) dn(zn, z) ≤
C2ρn(zn)|ψ−1

n (z)|C
Rn

≤ C2ρn(zn)ϵn.
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Choose ϵn → 0, while ϵnRn →∞. By (5.49), the injectivity radiusρn is strictly less

than a fixed ϵ ifUn is contained in the thin part of theRiemann surface for alln large

enoughor greater thanor equal to ϵ ifUn is contained in the thick part ofSn for alln

large enough. In essence, the idea is now to consider the boundaryψn(∂BϵnRn) =

∂Un as a degenerating boundary component in the sequence of Riemann surfaces,

which is thesituationconsidered intheproofof theDeligne-Mumfordcompactness

theoremas given inTheorem1.91 of [Abb14]. The key idea here is to associate nodal

pairs to degenerating boundary components and vice versa. Notice that by this one

alters the pair of pants decomposition of the Riemann surface and therefore needs

tomakesure that theRiemannsurfaceonecreatesbyaddingmarkedpoints remains

stable. Depending on the position of the marked points and nodal pairs in the pair

of pants decomposition of the sequence Sn relative to Un, there are three cases to

consider:

Bubbling, Case 1: Un contains neither a marked nor a nodal point for all n large

enough.

Bubbling, Case 2: Un contains a marked wn point fromMn ∪ Dn for all n large

enough.

Bubbling, Case 3: Un contains a nodal pair {wn, w
′
n} for alln large enough.

These are all the cases one has to consider since double andmarked points are iso-

lated.

Bubbling, Case 1:

∂Un

zn wn

∂Un

zn

wn

d ∼ d′

z

w
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Oneneedstoaddtwomarkedpoints inthe interiorofUnordertostabiliseUn,which

one views as a disc. A natural choice for one of the two marked points is zn. De-

note the other marked point by wn. Removing these two marked points and ∂Un

will makeUn into a pair of pants. This is the situation described in the proof of the

Deligne-Mumford compactness theorem as presented in Section 1.3.2 of [Abb14].

Remove∂Un fromSn andreplace itwith twoboundarycomponents (one in thepair

of pants obtained from Un, one in Sn \ Un ). Treat these two boundary compo-

nents as apairof geodesicsof thehyperbolicmetrichn degenerating tonodalpoints

{d, d′}. ThusSn with the two addedmarked points zn andwn converges to a stable

nodal Riemann surfaceS′ = S ∪{d∼d′} S
2 obtained by attaching a sphere with the

marked points z, w ∈ S2 corresponding to the limits of zn andwn at {d, d′} toS .

Bubbling, Case 2:

zn

U ′
n

w′
n

An An

U ′
n

zn z′n

w′
n

z z′

w′

d ∼ d′

e ∼ e′

There are two subcases to consider. If the marked point wn contained in Un does

not correspond to a boundary component that degenerates to a point as n → ∞,

one adds zn andwn as marked points toUn and is back in the situation considered

in Bubbling, Case 1.

Otherwise themarkedpointwn contained inUn corresponds toaboundarycompo-

nent of a pair of pants composition that collapses faster to a point than ∂Un. Then

thereexistsa sequenceofannuliAnwhichseparatewn fromzn inUn. By this Imean

that one of the boundary components ofAn coincides with ∂Un and that zn is con-

tained in the interiorofUn\An. The innerboundarycomponentofAn corresponds
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to themarked pointwn.

One now adds amarked point z′n toU ′
n = Un \An and anothermarked pointw′

nto

An tostablisebothAn andU ′
n. Byassumption, theboundaryofSn\Un andtheouter

boundary of the annulusAn collapse to a pairs of nodal points {d, d′} as n → ∞.

Moreover the inner boundary of An and the boundary of U ′
n collapses to a pair of

nodal points{e, e′} as asn→∞. So, repeating theproceduredescribe in case 1, the

sequenceSn with themarked points zn, z′n andw′
n, converges to a stable nodal Rie-

mann surfaceS′′ obtained fromS by attaching one sphere containingw′
n along the

nodal pair {d, d′} corresponding to the boundary ofSn \ Un and ∂Un and a sphere

containing z and z′, the limits of zn and z′n attached along a pair of nodal points

{e, e′} corresponding to the inner boundary component ofAn and the boundary of

U ′
n.

Bubbling, Case 3:

zn

wn

w′
n

z′n

w′
n

wn

zn

z′n

UnAn

z

z′

d ∼ d′

e ∼ e′

f ′ ∼ f ′′

Represent the pair of nodal points {wn, w
′
n} as a pair of degenerating boundary

components. If there exists an annulus in An that separates one of the points in

{wn, w
′
n} and zn from the other point in {wn, w

′
n}, the situation is as the one con-

sidered in Bubbling, Case 2.

OtherwiseUn is contained in an annulusAnwhose degenerating boundary compo-

nents are represented by the pair {wn, w
′
n} of nodal points. Add a marked point

z′n to Un to stabilise it. Now both boundary components of the annuli An and

the boundary component of Un collapse to pairs of nodal points {d, d′}, {e, e′}
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and {f ′, f ′′}. Repeating the analysis from the previous cases, we see that Sn with

marked points zn, z′n, wn, w
′
n converges to a nodal Riemann surface S′′′. This sur-

face is obtained from S by attaching in a sphereS′ along the pairs of nodal points

{d, d′} and {e, e′}. The sphere S′ has another sphere S′′ attached to it along the

nodal pair {f, f ′}. The pair of nodal points {d, d′} corresponds to one boundary

componentofAn and the correspondingboundary component inSn \An. Thepair

of nodal points {e, e′} corresponds to the other boundary component ofAn and its

corresponding boundary component inSn \ An. The pair {f ′, f ′′} corresponds to

the boundary ∂Un inUn and the corresponding boundary component inAn \ Un.

The sphere S′ is stable since it contains {d′, e′, f ′}. The sphere S′′ has z and z′ the

limits of zn and z′n on it and is thus also stable since it is attached along {f ′, f ′′}.

If the sequence of points converges to the boundary of the Riemann surfaces, one

uses rescaling coordinate charts described in the following Lemma, which is the

boundaryversionofLemma3.8 from[Abb14]. I state it for thesakeofcompleteness:

Lemma5.15 (boundary version of Lemma 3.8 in [Abb14]).

There are holomorphic chartsψn : B+
1 → Vn ⊂ (̇Sn, jn)withψn(B

+
R ∩ R) ⊂ ∂Ṡn

andψn(0) = zn for zn ∈ ∂Ṡn and positive constantsC3,C4 such that for all z ∈ D+

and all largen

(5.53) C3ρn(zn) ≤ ||dψn(z)|| ≤ C4ρn(zn),

whereB+
R = {z ∈ C

∣∣ ||z|| < R, Im(z) ≥ 0} andVn is a neighbourhood of zn.

The boundary of Vn degenerates to a point as n grows to infinity. Double the Rie-

mann surface as described in Section 5.5.1, so that Vn becomes a neighbourhood

without boundary like Un with additional data remembering that Un sits at the

boundary of the original Riemann surface. Then carry out exactly the same bub-

blingoffanalysisas for interiorpointskeepingtrackof theadditionalboundarydata.
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Having carriedout the analysis described above, one can goback to theoriginal Rie-

mannsurfacewithboundary. It turnsoutthatoneisattachingoneortwodiscsalong

boundary nodal pairs instead of one or two spheres along interior nodal pairs. Thus

ifagradientblowupoccursalongtheboundary,onecanabsorbthisbyattachingone

or two disc components to the original sequence of Riemann surfaces. For further

details see section 3.2 of [Abb14].

Summing up, if a gradient blow up occurs, one adds a set of marked points to the

original sequence Sn of Riemann surfaces, forming a new sequence of stable Rie-

mann surfaces S′
n. This new sequence converges to a nodal Riemann surface S′

which differs from the limit S of the original sequence Sn by one or two sphere or

disc components. These spheres or discs serve as the domains of the sphere or disc

bubblewhich now contributes to the new sequence of pearly trajectories pPn′ .

5.6.4 Algorithmic removal of obstructions to compactness

Step 1: Gradient bounds

In this section I explain how to obtain gradient bounds for the sequence of pearly

trajectories (pPn)n≥0 away from finitely many points in the domain. I will use the

bubbling-off procedure described in the preceding section to jump back and forth

between the sequences of domains and the sequences of images of (pPn)n≥0 in an

algorithmicprocedure. Moreprecisely Iprove the followingproposition in this sec-

tion:

Proposition 5.16 (Prop 3.7 in [Abb14]).

There exists an integerK ≥ 0 and a constantC > 0which depend only onE0 and points

(5.54) Yn = {y(1)n , y′
(1)
n , . . . , y(K)

n , y′
(K)
n } ⊂ Sn \ (Mn)
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such that

(5.55) ||dPn(z)|| ≤
C

ρn(z)
∀z ∈ Ṡn := Sn \ (Mn ∪ Yn).

Hereρn denotes the injectivity radiuswith respect to the PoincarémetrichṠn\Yn on (Ṡn \

Yn, jn). The gradient is computed with respect to hṠn\Yn and the metric induced by the

respective compatible choices ofω andJS in the corresponding parts of the targetmanifold

and for the corresponding holomorphicmaps contributing to pPn.

Proof. The sets of double points and punctures are empty, i.e.Dn ∪ Zn = ∅. In

Section 5.6.2markedpointswere added to stabilise theRiemannsurfacesSn under-

lying the pearly trajectories. By the Deligne-Mumford compactness result for Rie-

mann surfaceswith boundary onemay assume that, after passing to a subsequence,

Sn converges to a noded surfacewith boundaryS. Note thatSmayhave nonempty

setsD andZ . Recall that by elliptic bootstrapping, the only obstruction to applying

theArzela-Ascoli theoremcancome fromthe lackof aC1 boundofpPn. Thus, if the

gradient of pPn is uniformly bounded onSn \Mn, Proposition 5.16 follows.

Otherwise there exists a sequence zn ∈ Sn \Mn such that

(5.56) lim
n→∞

ρ(zn)||dPn(zn)|| = +∞.

Recall that this mean that there exists a sequence of holomorphic maps contribut-

ing to thepearly trajectory such that thegradientblowsup. Onemay treat eachsuch

sequence individually, one after the other since there are only finitely many holo-

morphicmaps contributing topPn and finitelymanypossibilities of configurations

ofholomorphicdiscsduetotheuniformenergybound. Bythenotation(5.56) Iwant

to indicate that oneperforms the relevant stepswhenever necessary. There are two

main cases to consider:

Step1, Case 1: pPn(zn) is contained in a compact subset of W̃C × W̃C or of W̃R ×

W̃R for alln large enough.

170



Step1, Case 2: pPn(zn) is contained in any other of the remaining seven parts of

W̃ × W̃ listed in Equation 5.22 for alln large enough.

In all cases, the procedure is similar: first choose an appropriate rescaling (either

Lemma 3.8 of [Abb14] or Lemma 5.15 above), which bounds the gradient on a neigh-

bourhood of a blow-up and extract a subsequence of holomorphic curves, with do-

main the rescaledneighbourhood, converging toanonconstantholomorphic curve

(the bubble) . Second, use the appropriate quantisation of energy theorem (Propo-

sition 4.1.4 in [MS12], Proposition 2.59 in [Abb14] or Proposition 5.14) to show that

the limitholomorphiccurvehaspositivenergyboundedawayfromzero. Finallyadd

a set of marked points representing the domain of the limit holomorphic curve to

the domain of the original Riemann surfaces according to the procedure described

in Section 5.6.3. If there are still sequences along which the gradient blows up, re-

peat this series of steps. In order to avoid notation like ẙ5
′

n I will abuse notation and

always denote the marked points one adds by yn and y′n. Likewise I will always de-

notethesetcontainingyn, y′n byYn. Thisprocess terminates, sincetheenergyof the

sequence of pearly trajectories is finite. Each time one runs this “algorithm” con-

sumes a positive amount of energy. I nowdescribe this procedure inmore detail:

Step1, Case 1:

In this case view pPn as in equation (5.50), since one wants to use the Lagrangian

boundary condition for the analysis. Recall that the LagrangianLC is defined only

as a submanifold of the product W̃C × W̃C and not in a single factor.

There are two subcases to analyse:

Step 1, Case 1.1: The sequence zn stays away from ∂Sn for alln large enough.

Step1, Case 1.2: The sequence zn converges to the boundary ∂Sn for all n large

enough.

Remark 5.17.

Notice that one needs to make another case distinction in Case 1.2. If the sequence zn con-
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verges to the boundaryat slower speed than the rescaling parameterRn, a spherical bubble

forms, thus one is back in Case1.1. This is explained in detail for example in [Fra08].

Step1,Case 1.1: First notice that this is always the case given the sequence stays in a

compact subset of W̃R × W̃R for alln large enough. Define

(5.57) Qn = Pn ◦ ψn : BϵnRn → W̃C × W̃C

By the standard bubbling off analysis this sequence converges to a non constant

holomorphicsphereQ∞ : C∪{∞} → W̃CW̃C ,Thisspherebubblehaspositiveen-

ergy by Proposition 4.1.4 in [MS12]. Add the set Yn consisting of themarked points

yn andy′n to the sequencesSn according to theproceduredescribed inSection5.6.3.

ThenS′
n = (Sn,Mn ∪ Yn), converges to a stable nodal Riemann surfaceS′, which

differs fromS byoneor twospherical components, dependingonthe localRiemann

surface data as described in Section 5.6.3 above.

Step1, Case 1.2: UseLemma 5.15 to define a sequence of holomorphic curves

(5.58) Qn = Pn ◦ ψn : B+
ϵnRn

→ Un.

The standardbubbling off analysis shows that the limitmap is a non-constant holo-

morphic disc with boundary on LC , because the puncture is always removable in

the present case, since the image ofQn is contained in the compact part of W̃C and

LC is compact by assumption. This disc has positive energy by Proposition 4.1.4 in

[MS12]. Again, add the set Yn consisting of the marked points yn and y′n to the se-

quences Sn as describe in Section 5.6.3. Then S′
n = (Sn,Mn ∪ Yn), converges to

a stable nodal Riemann surfaceS′, which differs fromS by one or two disc compo-

nentsasdescribed inSection5.6.3above. Thisconcludes theanalysis forStep1,Case

1.

Step1, Case 2:
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In this case view pPn as in equation (5.51). This is possible since in this case there

cannot be a sequence zn alongwhich the gradient blows up andwhich converges to

the boundary of ∂Sn and thus as sequence pPn(zn) converging toLC . To see this,

recall thatLC is asubsetofψC({0}×C)×ϕC({0}×C),whereψC is thesymplecto-

morphismprovidedbytheBolleneighbourhoodtheorem,Proposition2.18andthus

increasingly far away asn grows to infinity. Note that

(5.59) ||dPn(zn)|| = ||dP−
n (zn)||+ ||dP+

n (zn)||.

Thus there are again two sub-cases to analyse:

Step 1, Case 2.1: dP∓
n is bounded and dP±

n is unbounded.

Step 1, Case 2.2: Both dP−
n and dP+

n are unbounded.

First analyseStep 1, Case 2.1:

Without loss of generality assume

(5.60) ||dP−
n (zn)|| → ∞ , ||dP+

n (zn)|| ≤ C

Choose holomorphic rescaling charts

(5.61) ψn : BϵnRn(0)→ Un,

whereRn = ||dP−
n (zn)|| and define:

(5.62) (Q−
n , Q

+
n ) = (P−

n ◦ ψn, P
+
n ◦ ψn).

Then it follows from the usual bubbling off analysis in each separate factor thatQ−
n

converges to a finite energy holomorphic planeQ−
∞, whileQ+

n converges to a con-

stantmaponUn. If theR-componentofP−
∞ isunbounded, thenbyProposition5.14,

P−
∞ is asymptotic to a cylinder over a generalisedReeborbit and the energy ofP−

∞ is

bounded below by the period of the generalised Reeb orbit it converges to. Other-

wiseapply the removalof singularities theorem(Theorem2.68 in [Abb14]) toobtain
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anon-constantholomorphicsphere,whichhaspositiveenergyagainbyProposition

4.1.4 in [MS12]. Add a set Yn consisting of the marked points yn and y′n to the se-

quenceSn. ThenS′
n = (Sn,Mn ∪ Zn ∪ Yn), converges to a stable nodal Riemann

surfaceS′, whichdiffers fromS byoneor twospherical components asdescribed in

Section 5.6.3 above.

Step1, Case 2.2

One cannot, without loss of generality, assume that there is any relation between

||dP−
n (zn)|| and ||dP+

n (zn)||.

Choose holomorphic rescaling charts

(5.63) ψn : BϵnR
−
n
(0)→ Un,

whereR−
n = ||dP−

n (zn)|| and define

(5.64) (Q−
n , Q

+
n ) = (P−

n ◦ ψn, P
+
n ◦ ψn).

Thenit followsfromtheusualbubblingoffanalysis ineachfactor thatQ−
n converges

to a finite energyholomorphic planeQ−
∞. If theR-component ofP−

∞ is unbounded,

thenbyProposition5.14P−
∞ is asymptotic toacylinderoverageneralisedReeborbit

and theenergyofP−
∞ is boundedbelowby theperiodof thegeneralisedReeborbit it

converges to by Proposition 5.14. Otherwise apply the removal of singularities the-

orem and obtain a non-constant holomorphic sphere, which has again has positive

energy by Proposition 4.1.4 in [MS12]. Again add a set Yn consisting of the marked

points yn and y′n to the sequence Sn. Then S′
n = (Sn,Mn ∪ Zn ∪ Yn), converges

to a stable nodal Riemann surface S′, which differs from S by one or two spherical

components as described in section 5.6.3 above.

Now there are two cases to consider

Step 1, Case 2.2.1: Q+
n also converges to a finite energy holomorphic plane or to a

constantmap.
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Step 1, Case 2.2.2: Q+
n does not converge.

Step 1, Case 2.2.1:

If Q+
n converges to a constant map one is back in Case 2.1. Thus assume Q+

n is

non-constant. It follows from the usual bubbling off analysis in each factor that

both Q−
n and Q+

n converge to finite energy holomorphic planes Q∓
∞. Notice that

in the present case, by the choice of R−
n , 0 < ||dQ+

n || ≤ ||dQ−
n || ≤ C . If If

bothR-components ofQ∓
∞ are unbounded, the energy ofQ∓

∞ is bounded below by

the smaller period of the pair of generalised Reeb orbits to whichQ∓
∞ converge by

Proposition 5.14. If bothQ∓
∞ are contained in some compact subset of the symplec-

tisations onemay apply removal of singularities andobtain twonon-constant holo-

morphic spheres of positive energy. Notice that all possible combinationsmay oc-

cur, for exampleQ−
∞ couldasymptote toageneralisedReeborbitwhileQ+

∞ hasa re-

movable singularity or vice versa. In each case, the energy of the pairQ∓
∞ is strictly

positive and bounded away from zero. Thus add a set Yn consisting of the marked

points yn and y′n to the sequencesSn. ThenS′
n = (Sn,Mn ∪ Zn ∪ Yn), converges

to a stable nodal Riemann surface S′, which differs from S by one or two spherical

components as described in section 5.6.3 above. These spherical components serve

as the domains of bothmapsQ∓
∞.

Step 1, Case 2.2.2:

IfQ+
n does not converge, one has not formed a bubble for P+

n although the gradi-

ent of P+
n explodes. Thus there could be a sequence z′n such that ||dP+

n (z′n)|| →

∞ on the sequence of Riemann surfaces S′
n. If along this sequence ||dP−

n (z′n)|| is

bounded, the analysis of the bubble arising from ||dP+
n (z′n)|| → ∞ is now the same

as in Step 1, Case 2.1. If not, repeat the procedure of Step1, Case 2.2 just described.

As soon as there do not exist any sequences zn such that ||dP−
n (zn)|| → ∞, choose

holomorphic rescaling charts

(5.65) ψn : BϵnRn(0)→ Un,
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whereRn = ||dP+
n (zn)|| and define

(5.66) (Q−
n , Q

+
n ) = (P−

n ◦ ψn, P
+
n ◦ ψn).

Then carry out the procedure described above with all minuses replaces by pluses

and vice versa. Since every sphere or a Reeb cylinder that bubbles off has positive

energy, this bubbling-off process terminates, possibly after jumping back and forth

between rescalings of ||dP−
N || and ||dP

+
N || finitely many times, after a finite num-

ber of repetitions. Note that this process terminates independently of the order in

which the analysis is carriedout. Thus regardless of the choiceof rescaling, it is pos-

sible to bound the gradient in both factors of the target.

This finishes the proof of Proposition 5.16 and concludes Step 1 in the proof.

Step 2: Convergence in the thick part

This part of the proof is exaclty as in [Abb14]. I include it for the sake of complete-

ness. By Proposition 5.16 onemay assume that

||dPn(z)|| ≤
C

ρn(z)
∀z ∈ Sn \ (Mn ∪ Zn ∪ Yn).

Absorb the set Yn intoMn ∪ Zn ∪ Dn and denote this set byM ′
n ∪ Z ′

n ∪ D′
n. By

Deligne-Mumford compactness:

Sn = (Sn, ∂Sn, jn,M
′
n, D

′
n, Z

′
n, )

n→∞−−−→ (S = S, ∂S, j,M,D,Z).

Abusing notation I will denote Sn \ M ′
n ∪ Z ′

n ∪ Y ′
n still by Ṡn and likewise for S

and Ṡ. I now establish a uniform gradient bound in terms of the injectivity radius ρ

on the thick part of the nodal Riemann surface S. Recall that on the thick part one

has ρ(z) ≥ ϵ by equation (5.49) for a fixed ϵ. By the definition of convergence in the

Deligne-Mumford space there exist mapsφ : Ṡn → Ṡ such thatφ∗
nhn → h. Thus
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assume for sufficiently largen

(5.67) sup{|ρn(z)− ρ(z)|
∣∣z ∈ Thick(Ṡ)} ≤ ϵ

4
.

Thus ρn(z) ≥ 3
4ϵ. Estimate:

||dPn ◦ φn(z)|| ≤ |
C

ρn(z)
− C

ρ(z)
|+ C

ρ(z)

≤ C |ρn(z)− ρ(z)
ρn(z)ρ(z)

+
C

ρ(z)

≤
ϵ
4

3
4ϵρ(z)

+
C

ρ(z)

≤ 4

3

C

ρ(z)
.

Hence, for every ϵ > 0 one obtains a uniform gradient bound on Thickϵ. By elliptic

bootstrapping and repeated application of Arzela Ascoli, extract a subsequence of

puncturedpearly trajectoriespPnwhich converges inC∞
loc

(
∪ϵThickϵ(Ṡ)

)
. Denote

this limit by pP ′. This establishes Step 2 of the proof.

Step 3: Convergence in the thin part

This part of the proof is also exactly as in [Abb14] or in [Bou+03]. I include a sum-

mary of the necessary analysis for the sake of completeness. Denote byC1, . . . Ck

the connected components of theRiemann surfaceS \D obtained in Step 2. There

are two kinds of nodal pairs, interior nodal pairs {d, d′} ⊂ D̊ and boundary nodal

pairs {b, b′} ⊂ D∂ . First of all notice that if pP ′ is bounded near a node, pP ′ ex-

tends continuously over this boundary node by the removal of singularities theo-

rem. SinceLC is compact this holds for all pairs inD∂ . If pP ′ is unbounded near a

node apply Proposition 5.14, to conclude that pP ′ is asymptotic to a pair of gener-

alised Reeb orbit as it approaches the node.

The goal is now toestablish auniformgradient boundonall components of the thin

part of the Riemann surface in order to extract a subsequence of pPn which con-

verges on all parts of the underlying Riemann surface. By the preliminary choices,

177



each ϵ-thin componentTn,ϵ ofSnwhichdegenerates to apair ofnodal points is con-

formally equivalent to [−Rn,ϵ, Rn,ϵ] × S1 or to [0, R+
n,ϵ) × S1 . IfD∂ is nonempty,

double [0, R+
n,ϵ) × S1. Thus one has to consider thin components of the form

[−Rn,ϵ, Rn,ϵ] × S1 only. By using the flat metric on [−Rn,ϵ, Rn,ϵ] × S1 the holo-

morphic parameterisations

ϕn,ϵ : An,ϵ := [−Rn,ϵ, Rn,ϵ]× S1 → Tn,ϵ.

satisfy

||ϕn,ϵ(z)|| ≤ C ′ρn(ϕn,ϵ(z).

Use the estimate fromProposition 5.16 to obtain

||dPn ◦ φn(z) ◦ ϕn,ϵ(z)|| ≤ ||dPn ◦ φn(z)||||ϕn,ϵ(z)||

≤ C

ρn(ϕn,ϵ(z))
· C ′ρn(ϕn,ϵ(z))

≤ C ′′.

Thus again byArzela Ascoli onemay extract a subsequence of pPn which converges

also on the thin parts of S to a punctured pearly trajectory pP which is asymptotic

to apair of generalisedReeborbits orhasoneor two removable singularities at each

nodal pair.

The asymptotic limits on the thin components are a priori not equal to the asymp-

totic limitsonthe thickpart. Bycarryingoutyetanotherbubblingoff analysisonthe

thinpart andbypossibly adding components to thedomainsSn as described in sec-

tion 5.6.3, one can arrange that the limits within the thin part and on thin and thick

partsmatchup. In essence theoriginof thebubbling lies indifferencesof the action

vectors of the generalised Reeb orbits on the different componentsCi andCj adja-

cent to the puncture. Since this more detailed analysis is not needed for the proof

of Theorem 1.6 I refer the reader to [Abb14] or [Bou+03] for details. This concludes

Step 3 in the proof.

So far I have shown that there exists a subsequence of pPn which converges onS to
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apuncturedpearly trajectorypP . It remains toshowthat theassertionsofTheorem

5.1 hold and in particular that pP has the desired properties.

5.6.5 Properties

Byassertion(M)ofTheorem4.1 thereexistsaMorse functionfn onLC ineachman-

ifoldWn ×Wn considered in the spitting process. Since one is not changingLC in

theneck stretchingprocedureonemaychoosefn = f tobe identical for alln. Thus

assertion (M) of the theorem follows.

The energy of pP is finite by Equation (5.38) and (5.39). Moreover since (C,S) is

also fibred by assumption of the theorem, the adjusted almost complex structure

JS may be constructed by first choosing any ωB almost complex structure on the

symplectic reductionB ofC , as explained in Remark 5.6. Thus assertion (E) of the

theorem follows if pP satisfies properties (pP1) and (pP2). Recall that each pearly

trajectory in the original sequence (Pn)n≥0 connects a a critical point yn of f con-

tained in f−1
B ([1,∞)) to theminimum x of f contained in f−1

B (0). This is a closed

condition, therefore the limit pP has the same property which means nothing but

that it has property (pP1).

I now show that pP also satisfies assertions (S1)-(S3) and thus has property (pP2).

Recall that the genus of the Riemann surfacesSn underlying the sequence (Pn)n≥0

is zero and that all Sn are connected by the definition of a punctured pearly trajec-

tory. Thus the Riemann surface S underlying pP is also connected and has (arith-

metic)genuszero. ConsideronlythecomponentpPC ofpP containedinW̃C×W̃C .

Recall that the backwardmanifold of theminimumW≤(x) consists only ofx alone

by Equation 4.1 and that a punctured pearly trajectory has at least one non-trivial

J-holomorphic discs component. Say there are l ≥non-trivial components

ũ1, . . . ũl : (S, ∂S)→ (W̃C × W̃C , LC)

of genus zero contributing to pPC (see Definitions 5.11 and 5.12). The exit point of
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the l-th non-trivial component contributing to the punctured pearly trajectory has

to be contained inW≤(x) = x by the definition of a punctured pearly trajectory.

Thus pPC contains a non-trivial holomorphic curveu such thatx ∈ ũl(∂S).

Recall the notation S0 and S>0 for level- and super-level-sets of an almost fibred

pair (f, Z) introduced above Equation 4.8. To prove that pPC contains a holomor-

phic curve ũwhich satisfies ũ(∂S) ∩ S0 ̸= ∅ and ũ(∂S) ∩ S>0, I argue as follows.

If the entry pointpoful is contained inS>0, then the claim follows. If not, the entry

pointmust be contained inS0. The exit point q of the (l− 1)-th holomorphic curve

ul−1 flows to the entry pointpof the l-th holomorphic curve under the positive gra-

dient flowofanalmost fibredMorse functionbythedefinitionofapuncturedpearly

trajectory. Recall that a trajectory of this flow cannot enterS>0 and then returnS0

by construction of an almost fibred Morse function. This implies that if p is con-

tained inS0, then so is q. Thus if all l holomorphic curves contributing to the pearly

product trajectorywere contained inS0 itwould follow that the entry point r of the

first holomorphic curve u1, which is contained in the forward manifoldW≥(y), is

also contained in S0. However y is contained in S≥1 by (pP1). Since these sets are

disjoint there exists l0 such that 1 ≤ l0 ≤ l and such that ul0(∂S) intersects both

S0 andS>0. Thus ũl0 has property (S1).

I have shown in Steps 1-3 of the proof of Theorem 5.1 that each boundary puncture

orboundarynodal pair is removable since it is contained in the compactLagrangian

LC . If pPC is unbounded near a node or puncture it is asymptotic to a pair of cylin-

ders over a generalised Reeb orbits onC by Proposition 5.14. In particular, ũl0 has

properties (S2) and (S3). Setting ũ = ũl0 completes the proof of Theorem 5.1.

5.7 Holomorphic chessboards

I conclude this chapter by briefly outlining how the machinery developed in this

chapter canbeused todefineholomorphic chessboards. This is theanalogueof aholo-

morphic builidings, as defined in [Bou+03], for stable coisotropics.
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To define a holomorphic chessboard, instead of considering sequences of pearly

trajectories and punctured pearly trajectories one considers holomorphic curvesu

with domainS a general Riemann surface as in Definition 5.10. For the purposes of

this exposition Iwill stick to the splitting scenariowhere the targetT consistsof the

symplecticmanifoldW equippedwith a (C,S) adjusted almost complex structure

JS and split alongHC as in Equation 5.5. It is also possible to develop similar no-

tions for the symplectic completion W̃C of a stable coisotropic. In the splitting case

a (k, l)-holomorphic chessboard, which I denote by U(k, l) consists of the following

data

• A holomorphic curve ũ(1, 1) = ũC : SC → W̃C × W̃C , with domain a

Riemann surface SC . The curve ũC maps the boundary ∂S to LC if ∂SC ̸=

∅. Moreover ũ(1, 1) is asymptotic at its non-removable punctures to gener-

alisedReeborbitsandsuchthat theasymptoticsmatchtheasymptoticsof the

adjacent fields of the chessboard, i.e. ofũ(1, 2), ũ(2, 2) and ũ(2, 1) described

below.

• Holomorphic curves

ũ(i, j) : Si,j → W̃ i
H × W̃ J

H

For 1 ≤ i ≤ k and 1 ≤ j ≤ l excluding the pairs (i, j) = (k, l) and

(i, j) = (1, 1). Each map ũi,j is asymptotic at its non-removable punctures

to generalised Reeb orbits whichmatch the asymptotics of all adjacent fields

of the chessboard i.e. of ũ(i−1, j−1), ũ(i, j−1), ũ(i+1, j−1), ũ(i+1, j)

and ũ(i+ 1, j + 1), ũ(i, j + 1), ũ(i− 1, j + 1), ũ(i− 1, j).

• A holomorphic curve ũ(k, l) = uR : SR → W̃R × W̃R. Which is asymptotic

at its non-removable punctures to generalised Reeb orbits and matches the

asymptotics of adjacent fields of the chessboard.

The analysis carriedout inSection 5.6 goes throughwithout anymajor changes. For

the matching of asymptotics one carries out Step 3 “Convergence in the thin part”

of the proof in detail. The assumption that C is either fibred, or that (C,S) is of
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Morse-Bott type, which both result inMorse-Bottnes of the Reeb flowonHC is im-

portant to guarantee uniqueness in Proposition 5.14. Given this assumption, in or-

dertoderivetheholomorphicchessboardstructureoneproceedsexactlyas in10.2.4

[Bou+03], where the level structure of a holomorphic building is derived. The only

difference being that one uses the order ‘‘ ≤′′ and the equivalence relation ‘‘ ∼′′

from [Bou+03] in both factors of the cartesian product W̃ × W̃ .

To formulate a “stable coisotropic SFT compactness theorem” the notions of con-

vergencehave tobeadaptedaccordingly. Thenotionof energydeveloped forpearly

trajectories in Section 5.5.2 carries over in a straightforwardway.

Sincenotrelevant forprovingthemainresultof this thesis Idonotpursuethisdirec-

tion here. Given an interesting application, it would be very interesting to develop

this theory in the future. Below is a picture of holomorphic disc with boundary on

LC and a possible limit holomorphic chessboardU(3, 3).

C

(W,ω)

C
(W,−ω)

LC

HC

HC

Figure 5.1: A picture disc of (looking like a genie)with boundary onLC escaping the
product Bolle neighbourhood(red)
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W̃C

W̃H

W̃R

W̃C W̃H W̃R

LC

Figure5.2: A(3, 3)holomorphicchessboardwhichisapossible limitofthegeniedisc
above.
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Chapter 6

Geometric uniruling of the

symplectic quotient

In this chapter Iprove themain result of this thesis, Theorem1.6,which I state again

below.

Theorem6.1.

LetC bea closed, codimensionk, coisotropic submanifoldof a symplecticmanifold (W,ω).

IfC is fibred and stable,C is the total space of a torus fibre bundle

Tk → C → B

over its symplectic quotient (B,ωB). Assume thatC ismonotone andhasminimalMaslov

number at least three. IfC is displaceable, then the symplectic quotient (B,ωB) has the

following property:

Givenanypointb ∈ B, for everyωB- compatible almost complex structureJB onB, there

exists a non-constantJB-holomorphic sphere

v : (C ∪ {∞}, i)→ (B, JB)
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passing through b.

Proof. ByTheorem5.1 there exists a puncturedpearly trajectorypP which contains

at least one punctured (−J̃C × J̃C) holomorphic curve

ũ : (S, ∂S) −→ (W̃C × W̃C , LC ,−J̃C × J̃C),

where S is a connected Riemann surface of genus zero with non-empty boundary

and satisfying the following properties:

(S1) The intersections ũ(∂S)∩f−1
B (0) and the intersection ũ(∂S)∩f−1

B ((0,∞))

is non-empty.

(S2) If ũ is unbounded near a puncture, then ũ is asymptotic to a pair of cylinders

over generalised Reeb orbits onC × C when approaching the puncture.

(S3) All other boundary and interior punctures of ũ are removable.

By the choice of a (C,S)-adjusted almost complex structure J̃C on W̃C (see Sec-

tions 5.3 and 5.4), projection to B is holomorphic. Recall that LC inherits a fibre

bundle structure fromC :

T2k → LC → ∆B.

Thus one has the following holomorphic projections:

W̃C × W̃C

LC C × C

∆B ×B ×B

πC×πC

iLC

πB×πB πB×πB

i∆B

Here iLC
the inclusionofLC intoψ({0}×C ×{0}×C) ⊂ W̃C × W̃C . I continue

to denote the projection to the∓ factors of the cartesian product by p∓. Moreover

• DenotebyW−
C the imageof theprojectionp−((W̃C×W̃C ,−J̃C× J̃C))) and
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byW+
C the image of the projection p+((W̃C × W̃C ,−J̃C × J̃C)))

• Denote byC∓ the coisotropic submanifold {0} × C contained in the factor

W̃∓
C .

• Denote byB∓ = (B∓, JB) the symplectic reduction ofC∓.

Recall thatLC contains the diagonal∆C ⊂ C × C . By this andwith the notations

above, the following projections are defined W̃C × W̃C :

W̃−
C W̃−

C × W̃
+
C W̃+

C

C− LC C+

B− ∆B B+

πC

p−

iLC

p+

πC

p−

πB

p+

πB×πB
πB

p− p+

As described in Section 5.6.2 onemay also view ũ as a pair

(6.1)
ũ− : (S, ∂S)→ (W̃−

C , p−(LC))

ũ+ : (S, ∂S)→ (W̃+
C , p+(LC))

of a punctured (j,−J̃C)-holomorphic curve ũ− and a punctured (j, J̃C)-

holomorphic curve ũ+.

Define byuB the punctured (−JB × JB)-holomorphic curve

(6.2) uB = (πB × πB) ◦ (πC × πC) ◦ ũ : (S, ∂S) −→ (B ×B,∆B).

I claim that all punctures ofuB are removable. To see this assume first that ũ is un-

bounded near a puncture. By property (S2) ũB is asymptotic to cylinders over gen-

eralised Reeb orbits in both factors . After projection to C × C these are entirely

contained in the fibresTk×Tk of the fibrationTk×Tk → C×C → B×B. Thus

near each puncture zi one has:

lim
z→zi

(u−B(z), u
+
B(z)) = (b−i , b

+
i )
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for a pair of points (b−i , b
+
i ) ∈ B ×B. By assumptionB is compact, so apply the re-

moval of singularities theorem to extend u∓B holomorphically over (b−i , b
+
i ). Since

all other punctures are removable by property (S3) of ũ it follows that uB is a holo-

morphic curve without punctures. Thus uB defines a pair of holomorphic curves

without punctureswhich Iwill continue to denote byu∓B . Themaps

u∓B := πB ◦ πC ◦ ũ∓ : (S, ∂S, j)→ (B∓, πB∓(pi(LC)))

defineapairof ananti-holomorphicandaholomorphiccurvewith respect toJB . By

the definition ofLC

LC = {(x, y) ∈ C × C|πB(x) = πB(y)},

or again the fact theLC fibres over∆B themapsu∓B agree along their boundary.

Recall that (S, ∂S) is a connected Riemann surface with non-empty boundary of

genus zero. In fact, S is a collection of punctured discs and spheres which are

identified along nodal pairs, which arose from the original sequence of discs in the

neck stretching procedure. Since, by Property (S1) of Theorem 5.1, u(∂S) inter-

sects f−1
B ((0,∞)) there exists a disc component (D, ∂D) ofS which also hast this

property. Thus the pair u∓B gives rise to at least one pair of JB-holomorphic discs

u∓ : (D, ∂D)→ (B∓, πB∓(pi(LC)))whicharenon-trivial inB∓ bychoosingsuch

a disc component of the domain.

To establish the existence of a non-trivial JB-holomorphic sphere, perform the

doublingoperation forRiemann surfacesdescribed inSection 5.10 explicitly to glue

u∓ along their common boundary: Denote by c complex conjugation z 7→ z̄. Given

u− andu+ define:

v(z) =


u+(z) , if |z| ≤ 1

u− ◦ c (1z ) , if |z| ≥ 1

Firstnoticethat if |z| = 1wehave 1
z̄ = z sothatv iswelldefined. Sinceu− is(i, JB)-
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anti-holomorphic, u− ◦ c is (i, JB)-holomorphic. Since z 7→ 1
z is holomorphic on

C∪{∞}andu+ is (i, JB)holomorphic, themapv is an (i, JB)-holomorphicsphere

inB. This sphere is non-constant by construction and contains a given point b in

B by property (pP1). By Definition 1.5 this means precisely thatB is geometrically

uniruled.

This completes the proof of Theorem 1.6.

189



190



Bibliography

[Abb14] CasimAbbas.An introduction to compactness results in symplectic field the-

ory. Springer, Heidelberg, 2014, pp. viii+252. ISBN: 978-3-642-31542-8;

978-3-642-31543-5. DOI: 10.1007/978-3-642-31543-5. URL: http:

//dx.doi.org/10.1007/978-3-642-31543-5.

[AF12] Peter Albers and Urs Frauenfelder. “Rabinowitz Floer homology: a

survey”. In: Global differential geometry. Vol. 17. Springer Proc. Math.

Springer, Heidelberg, 2012, pp. 437–461. DOI: 10.1007/978-3-642-

22842-1_14. URL: http://dx.doi.org/10.1007/978-3-642-

22842-1_14.

[Arn89] V. I. Arnol′d. Mathematical methods of classical mechanics. Second.

Vol. 60. Graduate Texts in Mathematics. Translated from the Russian

by K. Vogtmann and A. Weinstein. Springer-Verlag, New York, 1989,

pp. xvi+508. ISBN: 0-387-96890-3. DOI: 10 . 1007 / 978 - 1 - 4757 -

2063- 1. URL: http://dx.doi.org/10.1007/978- 1- 4757-

2063-1.

[Ban80] Augustin Banyaga. “On fixed points of symplectic maps”. In: Invent.

Math. 56.3 (1980), pp. 215–229. ISSN: 0020-9910. DOI: 10 . 1007 /

BF01390045. URL: http://dx.doi.org/10.1007/BF01390045.

[Bat13] Marta Batoréo. “On the rigidity of the coisotropic Maslov index on

certain rational symplectic manifolds”. In: Geom. Dedicata 165 (2013),

pp. 135–156. ISSN: 0046-5755. DOI: 10.1007/s10711-012-9747-8.

URL: http://dx.doi.org/10.1007/s10711-012-9747-8.

191

http://dx.doi.org/10.1007/978-3-642-31543-5
http://dx.doi.org/10.1007/978-3-642-31543-5
http://dx.doi.org/10.1007/978-3-642-31543-5
http://dx.doi.org/10.1007/978-3-642-22842-1_14
http://dx.doi.org/10.1007/978-3-642-22842-1_14
http://dx.doi.org/10.1007/978-3-642-22842-1_14
http://dx.doi.org/10.1007/978-3-642-22842-1_14
http://dx.doi.org/10.1007/978-1-4757-2063-1
http://dx.doi.org/10.1007/978-1-4757-2063-1
http://dx.doi.org/10.1007/978-1-4757-2063-1
http://dx.doi.org/10.1007/978-1-4757-2063-1
http://dx.doi.org/10.1007/BF01390045
http://dx.doi.org/10.1007/BF01390045
http://dx.doi.org/10.1007/BF01390045
http://dx.doi.org/10.1007/s10711-012-9747-8
http://dx.doi.org/10.1007/s10711-012-9747-8


[BC07] P. Biran andO. Cornea. “QuantumStructures for Lagrangian Subman-

ifolds”. In:ArXiv e-prints (Aug. 2007). arXiv: 0708.4221 [math.SG].

[BC09] Paul Biran and Octav Cornea. “A Lagrangian quantum homology”. In:

New perspectives and challenges in symplectic field theory. Vol. 49. CRM

Proc. LectureNotes. Amer.Math. Soc., Providence, RI, 2009, pp. 1–44.

[BK13] Paul Biran and Michael Khanevsky. “A Floer-Gysin exact sequence

for Lagrangian submanifolds”. In: Comment. Math. Helv. 88.4 (2013),

pp. 899–952. ISSN: 0010-2571. DOI: 10.4171/CMH/307. URL: http:

//dx.doi.org/10.4171/CMH/307.

[Bol98] PhilippeBolle. “Acontact condition forp-codimensional submanifolds

of a symplectic manifold (2 ≤ p ≤ n)”. In: Math. Z. 227.2 (1998),

pp. 211–230. ISSN: 0025-5874. DOI: 10 . 1007 / PL00004373. URL:

http://dx.doi.org/10.1007/PL00004373.

[Bou+03] F.Bourgeois et al. “Compactness results in symplectic field theory”. In:

Geom. Topol. 7 (2003), pp. 799–888. ISSN: 1465-3060. DOI: 10.2140/

gt.2003.7.799. URL: http://dx.doi.org/10.2140/gt.2003.

7.799.

[Buh10] LevBuhovsky. “TheMaslovclassofLagrangian tori andquantumprod-

ucts inFloer cohomology”. In: J.Topol. Anal.2.1 (2010), pp. 57–75. ISSN:

1793-5253. DOI: 10.1142/S1793525310000240. URL: http://dx.

doi.org/10.1142/S1793525310000240.

[Che98] Yu.V.Chekanov. “Lagrangian intersections, symplectic energy, and ar-

eas of holomorphic curves”. In: Duke Math. J. 95.1 (1998), pp. 213–226.

ISSN: 0012-7094. DOI: 10.1215/S0012-7094-98-09506-0. URL:

http://dx.doi.org/10.1215/S0012-7094-98-09506-0.

[CM05] K. Cieliebak and K. Mohnke. “Compactness for punctured holomor-

phic curves”. In: J. Symplectic Geom. 3.4 (2005). Conference on Sym-

plectic Topology, pp. 589–654. ISSN: 1527-5256. URL: http : / /

projecteuclid.org/euclid.jsg/1154467631.

[CV10] K. Cieliebak and E. Volkov. “First steps in stable Hamiltonian topol-

ogy”. In:ArXiv e-prints (Mar. 2010). arXiv: 1003.5084 [math.SG].

192

http://arxiv.org/abs/0708.4221
http://dx.doi.org/10.4171/CMH/307
http://dx.doi.org/10.4171/CMH/307
http://dx.doi.org/10.4171/CMH/307
http://dx.doi.org/10.1007/PL00004373
http://dx.doi.org/10.1007/PL00004373
http://dx.doi.org/10.2140/gt.2003.7.799
http://dx.doi.org/10.2140/gt.2003.7.799
http://dx.doi.org/10.2140/gt.2003.7.799
http://dx.doi.org/10.2140/gt.2003.7.799
http://dx.doi.org/10.1142/S1793525310000240
http://dx.doi.org/10.1142/S1793525310000240
http://dx.doi.org/10.1142/S1793525310000240
http://dx.doi.org/10.1215/S0012-7094-98-09506-0
http://dx.doi.org/10.1215/S0012-7094-98-09506-0
http://projecteuclid.org/euclid.jsg/1154467631
http://projecteuclid.org/euclid.jsg/1154467631
http://arxiv.org/abs/1003.5084


[CV15] Kai Cieliebak and Evgeny Volkov. “First steps in stable Hamiltonian

topology”. In: J. Eur. Math. Soc. (JEMS) 17.2 (2015), pp. 321–404. ISSN:

1435-9855. DOI: 10.4171/JEMS/505. URL: http://dx.doi.org/

10.4171/JEMS/505.

[Dam12] MihaiDamian. “Floerhomologyontheuniversal cover,Audin’s conjec-

ture and other constraints on Lagrangian submanifolds”. In:Comment.

Math. Helv. 87.2 (2012), pp. 433–462. ISSN: 0010-2571. DOI: 10.4171/

CMH/259. URL: http://dx.doi.org/10.4171/CMH/259.

[Deb01] Olivier Debarre. Higher-dimensional algebraic geometry. Universitext.

Springer-Verlag, New York, 2001, pp. xiv+233. ISBN: 0-387-95227-6.

DOI: 10.1007/978- 1- 4757- 5406- 3. URL: http://dx.doi.

org/10.1007/978-1-4757-5406-3.

[Dir67] Paul A.M.Dirac.Lectures on quantummechanics. Vol. 2. BelferGraduate

School of ScienceMonographs Series. Secondprinting of the 1964orig-

inal. Belfer Graduate School of Science, New York; produced and dis-

tributed byAcademic Press, Inc., NewYork, 1967, pp. v+87.

[Dra08] DragomirL.Dragnev. “Symplectic rigidity, symplectic fixedpoints, and

global perturbations of Hamiltonian systems”. In: Comm. Pure Appl.

Math. 61.3 (2008), pp. 346–370. ISSN: 0010-3640. DOI: 10.1002/cpa.

20203. URL: http://dx.doi.org/10.1002/cpa.20203.

[EGH00] Y. Eliashberg, A. Givental, and H. Hofer. “Introduction to symplectic

field theory”. In: Geom. Funct. Anal. Special Volume, Part II (2000).

GAFA 2000 (Tel Aviv, 1999), pp. 560–673. ISSN: 1016-443X. DOI: 10.

1007/978-3-0346-0425-3_4. URL: http://dx.doi.org/10.

1007/978-3-0346-0425-3_4.

[Fra08] Urs Frauenfelder. “Gromov convergence of pseudoholomorphic

disks”. In: J. Fixed Point Theory Appl. 3.2 (2008), pp. 215–271. ISSN:

1661-7738. DOI: 10 . 1007 / s11784 - 008 - 0078 - 1. URL: http :

//dx.doi.org/10.1007/s11784-008-0078-1.

[Fuk93] KenjiFukaya. “Morsehomotopy,A∞-category,andFloerhomologies”.

In: Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul,

193

http://dx.doi.org/10.4171/JEMS/505
http://dx.doi.org/10.4171/JEMS/505
http://dx.doi.org/10.4171/JEMS/505
http://dx.doi.org/10.4171/CMH/259
http://dx.doi.org/10.4171/CMH/259
http://dx.doi.org/10.4171/CMH/259
http://dx.doi.org/10.1007/978-1-4757-5406-3
http://dx.doi.org/10.1007/978-1-4757-5406-3
http://dx.doi.org/10.1007/978-1-4757-5406-3
http://dx.doi.org/10.1002/cpa.20203
http://dx.doi.org/10.1002/cpa.20203
http://dx.doi.org/10.1002/cpa.20203
http://dx.doi.org/10.1007/978-3-0346-0425-3_4
http://dx.doi.org/10.1007/978-3-0346-0425-3_4
http://dx.doi.org/10.1007/978-3-0346-0425-3_4
http://dx.doi.org/10.1007/978-3-0346-0425-3_4
http://dx.doi.org/10.1007/s11784-008-0078-1
http://dx.doi.org/10.1007/s11784-008-0078-1
http://dx.doi.org/10.1007/s11784-008-0078-1


1993). Vol. 18. Lecture Notes Ser. Seoul Nat. Univ., Seoul, 1993, pp. 1–

102.

[GG15] Viktor L. Ginzburg and Ba�ak Z. Gürel. “Fragility and persistence of

leafwise intersections”. In:Math. Z. 280.3-4 (2015), pp. 989–1004. ISSN:

0025-5874. DOI: 10.1007/s00209-015-1459-y. URL: http://dx.

doi.org/10.1007/s00209-015-1459-y.

[Gin07] Viktor L. Ginzburg. “Coisotropic intersections”. In:DukeMath. J. 140.1

(2007), pp. 111–163. ISSN: 0012-7094. DOI: 10.1215/S0012- 7094-

07-14014-6. URL: http://dx.doi.org/10.1215/S0012-7094-

07-14014-6.

[Gin11] Viktor L. Ginzburg. “OnMaslov class rigidity for coisotropic subman-

ifolds”. In: Pacific J. Math. 250.1 (2011), pp. 139–161. ISSN: 0030-8730.

DOI: 10.2140/pjm.2011.250.139. URL: http://dx.doi.org/

10.2140/pjm.2011.250.139.

[Got82] Mark J. Gotay. “On coisotropic imbeddings of presymplectic mani-

folds”. In: Proc. Amer. Math. Soc. 84.1 (1982), pp. 111–114. ISSN: 0002-

9939. DOI: 10.2307/2043821. URL: http://dx.doi.org/10.

2307/2043821.

[Gro85] M.Gromov. “Pseudoholomorphic curves in symplecticmanifolds”. In:

Invent. Math. 82.2 (1985), pp. 307–347. ISSN: 0020-9910. DOI: 10 .

1007 / BF01388806. URL: http : / / dx . doi . org / 10 . 1007 /

BF01388806.

[Gür10] Ba�ak Zehra Gürel. “Leafwise coisotropic intersections”. In: Int. Math.

Res. Not. IMRN 5 (2010), pp. 914–931. ISSN: 1073-7928. DOI: 10.1093/

imrn/rnp164. URL: http://dx.doi.org/10.1093/imrn/rnp164.

[HLS15] Vincent Humilière, Rémi Leclercq, and Sobhan Seyfaddini.

“Coisotropic rigidity and C0-symplectic geometry”. In: Duke Math.

J. 164.4 (2015), pp. 767–799. ISSN: 0012-7094. DOI: 10 . 1215 /

00127094 - 2881701. URL: http : / / dx . doi . org / 10 . 1215 /

00127094-2881701.

194

http://dx.doi.org/10.1007/s00209-015-1459-y
http://dx.doi.org/10.1007/s00209-015-1459-y
http://dx.doi.org/10.1007/s00209-015-1459-y
http://dx.doi.org/10.1215/S0012-7094-07-14014-6
http://dx.doi.org/10.1215/S0012-7094-07-14014-6
http://dx.doi.org/10.1215/S0012-7094-07-14014-6
http://dx.doi.org/10.1215/S0012-7094-07-14014-6
http://dx.doi.org/10.2140/pjm.2011.250.139
http://dx.doi.org/10.2140/pjm.2011.250.139
http://dx.doi.org/10.2140/pjm.2011.250.139
http://dx.doi.org/10.2307/2043821
http://dx.doi.org/10.2307/2043821
http://dx.doi.org/10.2307/2043821
http://dx.doi.org/10.1007/BF01388806
http://dx.doi.org/10.1007/BF01388806
http://dx.doi.org/10.1007/BF01388806
http://dx.doi.org/10.1007/BF01388806
http://dx.doi.org/10.1093/imrn/rnp164
http://dx.doi.org/10.1093/imrn/rnp164
http://dx.doi.org/10.1093/imrn/rnp164
http://dx.doi.org/10.1215/00127094-2881701
http://dx.doi.org/10.1215/00127094-2881701
http://dx.doi.org/10.1215/00127094-2881701
http://dx.doi.org/10.1215/00127094-2881701


[Hof+95] HelmutHofer et al., eds.TheFloermemorial volume. Vol. 133. Progress in

Mathematics. Birkhäuser Verlag, Basel, 1995, pp. xii+685. ISBN: 3-7643-

5044-X. DOI: 10.1007/978-3-0348-9217-9. URL: http://dx.

doi.org/10.1007/978-3-0348-9217-9.

[Hof93] H. Hofer. “Pseudoholomorphic curves in symplectizations with appli-

cations to the Weinstein conjecture in dimension three”. In: Invent.

Math. 114.3 (1993), pp. 515–563. ISSN: 0020-9910. DOI: 10 . 1007 /

BF01232679. URL: http://dx.doi.org/10.1007/BF01232679.

[Kan13] Jungsoo Kang. “Generalized Rabinowitz Floer homology and

coisotropic intersections”. In: Int. Math. Res. Not. IMRN 10 (2013),

pp. 2271–2322. ISSN: 1073-7928.

[Ker08] Ely Kerman. “Displacement energy of coisotropic submanifolds and

Hofer’s geometry”. In: J. Mod. Dyn. 2.3 (2008), pp. 471–497. ISSN: 1930-

5311. DOI: 10.3934/jmd.2008.2.471. URL: http://dx.doi.org/

10.3934/jmd.2008.2.471.

[KO03] Anton Kapustin andDmitri Orlov. “Remarks on A-branes, mirror sym-

metry, and the Fukaya category”. In: J. Geom. Phys. 48.1 (2003), pp. 84–

99. ISSN:0393-0440.DOI:10.1016/S0393-0440(03)00026-3.URL:

http://dx.doi.org/10.1016/S0393-0440(03)00026-3.

[MM03] I. Moerdijk and J. Mr�un. Introduction to foliations and Lie groupoids.

Vol. 91. Cambridge Studies in AdvancedMathematics. CambridgeUni-

versity Press, Cambridge, 2003, pp. x+173. ISBN: 0-521-83197-0. DOI:

10.1017/CBO9780511615450. URL: http://dx.doi.org/10.

1017/CBO9780511615450.

[Mor79] Shigefumi Mori. “Projective manifolds with ample tangent bundles”.

In: Ann. of Math. (2) 110.3 (1979), pp. 593–606. ISSN: 0003-486X. DOI:

10.2307/1971241. URL: http://dx.doi.org/10.2307/1971241.

[Mos78] J. Moser. “A fixed point theorem in symplectic geometry”. In: Acta

Math. 141.1–2 (1978), pp. 17–34. ISSN: 0001-5962. DOI: 10 . 1007 /

BF02545741. URL: http://dx.doi.org/10.1007/BF02545741.

195

http://dx.doi.org/10.1007/978-3-0348-9217-9
http://dx.doi.org/10.1007/978-3-0348-9217-9
http://dx.doi.org/10.1007/978-3-0348-9217-9
http://dx.doi.org/10.1007/BF01232679
http://dx.doi.org/10.1007/BF01232679
http://dx.doi.org/10.1007/BF01232679
http://dx.doi.org/10.3934/jmd.2008.2.471
http://dx.doi.org/10.3934/jmd.2008.2.471
http://dx.doi.org/10.3934/jmd.2008.2.471
http://dx.doi.org/10.1016/S0393-0440(03)00026-3
http://dx.doi.org/10.1016/S0393-0440(03)00026-3
http://dx.doi.org/10.1017/CBO9780511615450
http://dx.doi.org/10.1017/CBO9780511615450
http://dx.doi.org/10.1017/CBO9780511615450
http://dx.doi.org/10.2307/1971241
http://dx.doi.org/10.2307/1971241
http://dx.doi.org/10.1007/BF02545741
http://dx.doi.org/10.1007/BF02545741
http://dx.doi.org/10.1007/BF02545741


[MS12] DusaMcDuffandDietmarSalamon.J-holomorphic curvesandsymplectic

topology. Second. Vol. 52. American Mathematical Society Colloquium

Publications. American Mathematical Society, Providence, RI, 2012,

pp. xiv+726. ISBN: 978-0-8218-8746-2.

[MS17] DusaMcDuff and Dietmar Salamon. Introduction to symplectic topology.

Third.OxfordGraduateText inMathematics.OxfordUniversityPress,

Oxford, 2017. ISBN: 978-0-19-879490-5.

[MW74] Jerrold Marsden and Alan Weinstein. “Reduction of symplectic mani-

foldswithsymmetry”. In:Rep.MathematicalPhys.5.1 (1974),pp. 121–130.

ISSN: 0034-4877.

[OAN03] ALEXANDRU OANCEA. “The Leray-Serre spectral sequence in Floer

homology of compact symplectic manifolds with contact type bound-

ary”. RAPPORTEURS: Paul SEIDEL, Jean-Claude SIKORAV JURY:

Francois LABOURIE, Dietmar SALAMON, Jean-Claude SIKORAV,

Claude VITERBO. Theses. Université Paris Sud - Paris XI, Sept. 2003.

URL: https://tel.archives-ouvertes.fr/tel-00005504.

[Oh03] Y.-G. Oh. “Geometry of coisotropic submanifolds in symplectic and

K\“ahlermanifolds”. In:ArXivMathematics e-prints (Oct. 2003). eprint:

math/0310482.

[OP05] Yong-Geun Oh and Jae-Suk Park. “Deformations of coisotropic sub-

manifolds and strong homotopy Lie algebroids”. In: Invent. Math. 161.2

(2005), pp. 287–360. ISSN: 0020-9910. DOI: 10.1007/s00222-004-

0426-8. URL: http://dx.doi.org/10.1007/s00222-004-0426-

8.

[Pas12] Federica Pasquotto. “A short history of theWeinstein conjecture”. In:

Jahresber. Dtsch.Math.-Ver. 114.3 (2012), pp. 119–130. ISSN: 0012-0456.

[Rua02] Wei-Dong Ruan. “Lagrangian torus fibration of quintic Calabi-Yau hy-

persurfaces. II. Technical results on gradient flow construction”. In: J.

Symplectic Geom. 1.3 (2002), pp. 435–521. ISSN: 1527-5256. URL: http:

//projecteuclid.org/euclid.jsg/1092403030.

196

https://tel.archives-ouvertes.fr/tel-00005504
math/0310482
http://dx.doi.org/10.1007/s00222-004-0426-8
http://dx.doi.org/10.1007/s00222-004-0426-8
http://dx.doi.org/10.1007/s00222-004-0426-8
http://dx.doi.org/10.1007/s00222-004-0426-8
http://projecteuclid.org/euclid.jsg/1092403030
http://projecteuclid.org/euclid.jsg/1092403030


[Rua05] Wei-DongRuan. “Deformation of integral coisotropic submanifolds in

symplectic manifolds”. In: J. Symplectic Geom. 3.2 (2005), pp. 161–169.

ISSN: 1527-5256. URL: http://projecteuclid.org/euclid.jsg/

1144947794.

[Sch17] D.Schultz. “LagrangianFloertheory insymplectic fibrations”. In:ArXiv

e-prints (Jan. 2017). arXiv: 1701.07788 [math.SG].

[SZ12] JanSwobodaandFabianZiltener. “Coisotropicdisplacementandsmall

subsets of a symplectic manifold”. In: Math. Z. 271.1-2 (2012), pp. 415–

445. ISSN: 0025-5874. DOI: 10.1007/s00209- 011- 0870- 2. URL:

http://dx.doi.org/10.1007/s00209-011-0870-2.

[Ush11] Michael Usher. “Boundary depth in Floer theory and its applications

to Hamiltonian dynamics and coisotropic submanifolds”. In: Israel J.

Math. 184 (2011), pp. 1–57. ISSN: 0021-2172. DOI: 10.1007/s11856-

011-0058-9. URL: http://dx.doi.org/10.1007/s11856-011-

0058-9.

[Vit87] Claude Viterbo. “A proof of Weinstein’s conjecture in R2n”. In: Ann.

Inst. H. Poincaré Anal. Non Linéaire 4.4 (1987), pp. 337–356. ISSN: 0294-

1449. URL: http://www.numdam.org/item?id=AIHPC_1987__4_

4_337_0.

[Voi08] ClaireVoisin. “Rationally connected3-foldsandsymplectic geometry”.

In:Astérisque 322 (2008).Géométrie différentielle, physiquemathéma-

tique,mathématiques et société. II, pp. 1–21. ISSN: 0303-1179.

[Wei77] Alan Weinstein. Lectures on symplectic manifolds. Expository lectures

from the CBMS Regional Conference held at the University of North

Carolina, March 8–12, 1976, Regional Conference Series in Mathemat-

ics, No. 29. American Mathematical Society, Providence, R.I., 1977,

pp. iv+48.

[Wen05] ChrisWendl. Finite energy foliations and surgery on transverse links. The-

sis (Ph.D.)–NewYorkUniversity. ProQuest LLC, AnnArbor,MI, 2005,

p. 411. ISBN: 978-0496-90328-3. URL: http://gateway.proquest.

com/openurl?url_ver=Z39.88- 2004&rft_val_fmt=info:

197

http://projecteuclid.org/euclid.jsg/1144947794
http://projecteuclid.org/euclid.jsg/1144947794
http://arxiv.org/abs/1701.07788
http://dx.doi.org/10.1007/s00209-011-0870-2
http://dx.doi.org/10.1007/s00209-011-0870-2
http://dx.doi.org/10.1007/s11856-011-0058-9
http://dx.doi.org/10.1007/s11856-011-0058-9
http://dx.doi.org/10.1007/s11856-011-0058-9
http://dx.doi.org/10.1007/s11856-011-0058-9
http://www.numdam.org/item?id=AIHPC_1987__4_4_337_0
http://www.numdam.org/item?id=AIHPC_1987__4_4_337_0
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3157866
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3157866
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3157866


ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_

dat=xri:pqdiss:3157866.

[Wen16] C. Wendl. “Lectures on Symplectic Field Theory”. In: ArXiv e-prints

(Dec. 2016). arXiv: 1612.01009 [math.SG].

[Zil09] F. Ziltener. “A Maslov Map for Coisotropic Submanifolds, Leaf-wise

Fixed Points and Presymplectic Non-Embeddings”. In: ArXiv e-prints

(Nov. 2009). arXiv: 0911.1460 [math.SG].

[Zil10] FabianZiltener. “Coisotropic submanifolds, leaf-wise fixedpoints, and

presymplectic embeddings”. In: J. Symplectic Geom. 8.1 (2010), pp. 95–

118. ISSN: 1527-5256. URL: http://projecteuclid.org/euclid.

jsg/1271166377.

[Zil14] F. Ziltener. “Leafwise fixed points forC0-small Hamiltonian flows and

local coisotropic Floer homology”. In:ArXiv e-prints (Aug. 2014). arXiv:

1408.4578 [math.SG].

198

http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3157866
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3157866
http://arxiv.org/abs/1612.01009
http://arxiv.org/abs/0911.1460
http://projecteuclid.org/euclid.jsg/1271166377
http://projecteuclid.org/euclid.jsg/1271166377
http://arxiv.org/abs/1408.4578

	Introduction
	Coisotropic submanifolds
	Statement of the main result and summary of the proof
	Summary of the proof of the main theorem
	Previous and related research on coisotropic submanifolds
	Outline of the thesis

	Introduction to coisotropic submanifolds
	Coisotropic submanifolds
	Fibredness of coisotropic submanifolds
	Stability of coisotropic submanifolds
	Dynamics on coisotropics submanifolds and Hamiltonian group actions

	Constructions with coisotropics submanifolds
	The Lagrangian graph of a fibred coisotropic submanifold
	Montonicity and the minimal Maslov number of coisotropic submanifolds
	Displaceability and leaf-wise fixed points of C and LC

	The stable hypersurface HC and generalised Reeb dynamics on C
	Generalised Reeb dynamics on stable coisotropics
	Construction of the stable hypersurface HC
	Relation of generalised Reeb dynamics on C and Reeb dynamics on HC


	Existence of pearly trajectories
	Outline of Chapter 4
	The Morse complex of an almost fibred Morse function
	The Morse complex
	Almost fibred Morse functions

	The pearl complex of an almost fibred Morse function
	Proof of Theorem 4.1

	Compactness for pearly trajectories
	Outline of Chapter 5
	Symplectic cobordisms
	Almost complex structures adjusted to stable coisotropic submanifolds
	Stretching the neck
	Holomorphic curves
	Punctured pearly trajectories
	Energy
	Holomorphic projections and asymptotics

	Proof of Theorem 5.1
	Outline of the proof
	Preliminaries
	The bubbling Lemma
	Algorithmic removal of obstructions to compactness
	Properties

	Holomorphic chessboards

	Geometric uniruling of the symplectic quotient

