6 Ma Age of carving Westernmost Grand Canyon: Reconciling geologic data
with combined AFT, (U-Th)/He, and 4He/3He thermochronologic data

*Winn¹, Carmen, *Karlstrom¹, Karl E.; Shuster²,³, David L.; Kelley⁴, Shari; Fox²,³,⁵, Matthew

¹ Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM, USA
² Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
³ Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA, USA
⁴ New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and
Technology, Socorro, NM, USA
⁵ Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United
Kingdom

*Corresponding authors: cwinn264@unm.edu; kek1@unm.edu

Abstract

Conflicting hypotheses about the timing of carving of the Grand Canyon involve either a
70 Ma (“old”) or < 6 Ma (“young”) Grand Canyon. This paper evaluates the controversial
westernmost segment of the Grand Canyon where the following lines of published evidence
firmly favor a “young” Canyon. 1) North-derived Paleocene Hindu Fanglomerate was deposited
across the present track of the westernmost Grand Canyon, which therefore was not present at
~55 Ma. 2) The 19 Ma Separation Point basalt is stranded between high relief side canyons
feeding the main stem of the Colorado River and was emplaced before these tributaries and the
main canyon were incised. 3) Geomorphic constraints indicate that relief generation in tributaries
and on plateaus adjacent to the westernmost Grand Canyon took place after 17 Ma. 4) The late Miocene-Pliocene Muddy Creek Formation constraint shows that no river carrying far-traveled materials exited at the mouth of the Grand Canyon until after 6 Ma.

Interpretations of previously-published low-temperature thermochronologic data conflict with these lines of evidence, but are reconciled in this paper via the integration of three methods of analyses on the same sample: apatite (U-Th)/He ages (AHe), $^4\text{He}/^3\text{He}$ thermochronometry ($^4\text{He}/^3\text{He}$), and apatite fission-track ages and lengths (AFT). “HeFTy” software was used to generate time-temperature (t-T) paths that predict all new and published $^4\text{He}/^3\text{He}$, AH, and AFT data to within assumed uncertainties. These t-T paths show cooling from ~ 100 °C to 40-60 °C in the Laramide (70-50 Ma), long-term residence at 40-60 °C in the mid-Tertiary (50-10 Ma), and cooling to near-surface temperatures after 10 Ma, and thus support a “young” westernmost Grand Canyon.

A subset of AHe data, when interpreted alone (i.e., without $^4\text{He}/^3\text{He}$ or AFT data), are better predicted by t-T paths that cool to surface temperatures during the Laramide, consistent with an “old” Canyon. This inconsistency, which mimics the overall controversy, is reconciled by optimizing cooling paths so they are most consistent with multiple thermochronometers from the same rocks and adjusting parameters to account for model uncertainties. We adjusted model parameters to account for uncertainty in the rate of radiation damage annealing during sedimentary burial in these apatites and thus possible changes in He retentivity. In the westernmost Grand Canyon, peak burial conditions (temperature and duration) during the Laramide were likely insufficient to fully anneal radiation damage that accumulated during prolonged, near-surface residence since the Proterozoic. The combined AFT, AHe, and $^4\text{He}/^3\text{He}$ analysis of a key sample from Separation Canyon can only be reconciled by a ‘young’ Canyon,
but thermochronologic uncertainties remain large for this geologic scenario. Additional new AFT
(5 samples) and AHe (3 samples) data in several locations along the canyon corridor also support
a “young” Canyon and suggest the possibility of variable mid-Tertiary thermal histories beneath
north-retreating cliffs. We conclude that application of multiple thermochronometers from
common rocks reconciles conflicting thermochronologic interpretations and is best explained by
a “young” westernmost Grand Canyon.

Keywords: Grand Canyon, apatite, thermochronology, (U-Th)/He, fission track, 4He/3He

1. **Introduction to the “age of Grand Canyon” controversy**

 The 140-year-long controversy about the age of the Grand Canyon was initially posed in
terms of the hypothesis that the Colorado River was older than the tectonic uplifts it carves
across (Powell, 1875; Dutton, 1882) and an alternate hypothesis that a younger river became
erosionally superimposed on older, deeper monoclinal structures (Davis, 1901). It has long been
recognized that Laramide-aged deposits from north-flowing rivers were present in the
westernmost Grand Canyon (Young, 1966; Elston and Young, 1991) and some workers have
related these deposits to an “old”, Laramide-aged (~70 Ma) Grand Canyon (e.g. Wernicke,
2011). As more research in the area was done, early proponents of a “young” (< 6 Ma) Grand
Canyon (e.g. Babenroth and Strahler, 1945; Blackwelder, 1934; Longwell, 1946; Lucchitta,
1966, 1972; McKee et al., 1967; Strahler, 1948) based their conclusions on the locally-derived
Miocene-Pliocene Muddy Creek Fm., which stipulates that no far-traveled material reached the
Grand Wash trough through the mouth of the Grand Canyon between ~13 and 6 Ma.

 Low-temperature apatite thermochronology methods began to be applied to Grand
Canyon incision by Naeser et al. (1989) and Kelley et al. (2001). Subsequent studies have
included apatite fission track (AFT), (U-Th)/He ages (AHe), and $^4\text{He}/^3\text{He}$ thermochronometry ($^4\text{He}/^3\text{He}$) such that the combined data should resolve continuous t-T paths from ~110 °C to surface temperatures of 10-25 °C. AFT relies on the temperature sensitivity of annealing the damage done by spontaneous fission of ^{238}U to the crystal structure. An AFT age is determined by the number of these ‘fission tracks’ relative to the parent isotope, while the lengths of the tracks (i.e., the degree of shortening from a ~17 μm initial length) provides information about residence time in the partial annealing zone (110-60 °C; Ketcham et al., 2007). AHe dating is sensitive to temperatures of 90-30 °C, where apatite crystals begin retaining radiogenic ^4He at different temperatures depending on initial U and Th parent concentrations (Shuster et al., 2006; Flowers, 2009). $^4\text{He}/^3\text{He}$ thermochronometry provides additional information about a given sample’s continuous cooling path and is especially sensitive to the lowest resolvable temperatures of the three methods (Shuster and Farley, 2005). The datasets, individually and combined, can be used to constrain multiple time-temperature (t-T) cooling paths that predict the data within acceptable statistical confidence. Cooling paths are then related to burial depths by assuming values for surface temperature and geothermal gradient, which in this area are commonly assumed to be 10-25 °C surface temperatures and a 25 °C/km geothermal gradient (Wernicke, 2011; Karlstrom et al., 2014).

Wernicke (2011) hypothesized that a NE-flowing 70-80 Ma California River and then a SW-flowing 55-30 Ma Arizona River both followed the modern Colorado River’s current path through the Grand Canyon and carved the canyon to within a few hundred meters of its modern depth by ~50 Ma. In this hypothesis, the Colorado River “was not an important factor in the excavation of Grand Canyon”. Flowers and Farley (2012) noted a major difference between eastern and western Grand Canyon cooling histories but supported an “old” westernmost Grand
Canyon and stated: “The western Grand Canyon $^{4}\text{He}/^{3}\text{He}$ and AHe data demand a substantial cooling event at 70-80 Ma, and provide no evidence for the strong post-6 Ma cooling signal predicted by the young canyon model.” Flowers and Farley (2013) further supported the conclusion of “... apatite $^{4}\text{He}/^{3}\text{He}$ and (U-Th)/^{3}He (AHe) evidence for carving of the western Grand Canyon to within a few hundred meters of modern depths by ~70 million years ago (Ma).”

Other workers have proposed a more complex landscape evolution for individual canyon segments (Figure 1A, inset map). Laramide rivers flowed generally north across the Grand Canyon–Colorado Plateau region (McKee et al., 1967; Young, 2001), perhaps following the Hurricane fault system (Figure 1; Karlstrom et al., 2014). Thermal histories generated by AHe and AFT data from Lee et al. (2013) and Karlstrom et al. (2014) indicated different cooling histories for rim and river-level rocks in the Eastern Grand Canyon before 25 Ma but similar temperatures after 15 Ma, indicating that no canyon existed in this segment until the incision of an East Kaibab paleocanyon at 25-15 Ma. Thermochronologic data from these studies and others (Warneke, 2015) also indicate that Marble Canyon was not incised until the past 5-6 Ma.

Karlstrom et al. (2014) proposed a “paleocanyon solution” whereby an “old” 70-55 Ma paleocanyon segment paralleling the Hurricane fault and an “intermediate” NW-flowing 25-15 Ma East Kaibab paleocanyon segment got linked together by the 5-6 Ma Colorado River as it was downwardly integrated from the Colorado Plateau to the Gulf of California. In this hypothesis, most of the Grand Canyon was incised by the Colorado River in the past 6 Ma. Karlstrom et al. (2016) reinforced this paleocanyon hypothesis and suggested that the 25-15 Ma East Kaibab paleocanyon was carved by an ancestral Little Colorado (not Colorado) River.

Laramide (70-50 Ma) thermochronologic ages seen in many samples of that study were
attributed to northward cliff retreat of Mesozoic strata off the Mogollon highlands rather than carving of a ~70 Ma Grand Canyon. Fox and Shuster (2014) proposed that thermochronologic data from the westernmost Grand Canyon were compatible with “young” incision provided that sufficient radiation damage was retained during burial, thereby effectively changing the predicted temperature sensitivity of the system at the time of canyon incision. However, interpretations of thermochronology data from the westernmost Grand Canyon segment remain in controversy (Flowers et al., 2015).

Here we applied the three different thermochronology methods using apatite from the same sample from the westernmost Grand Canyon to resolve conflicting thermal histories generated by inverse modeling of data originating from the same sample. Our key sample (sample #1; see Table 1) has new, high precision $^{4}\text{He}/^{3}\text{He}$ data, multiple AHe ages, and AFT data and is from the same location as the single Flowers and Farley (2012) $^{4}\text{He}/^{3}\text{He}$ sample (#2) upon which their “old” Canyon conclusion was mainly based. These are from Separation Canyon, RM 240, where RM = river miles downstream of Lees Ferry (Stevens, 1983). We also report two new samples with combined AFT and AHe data and two new samples with AFT data that span from RM 225-260. Our objective is to re-evaluate and reconcile all new and published thermochronologic data from the westernmost Grand Canyon including AFT and AHe from Lee et al. (2013), AHe from Flowers et al. (2008), and $^{4}\text{He}/^{3}\text{He}$ from Flowers and Farley (2012).

Westernmost Grand Canyon is defined as the segment between Diamond Creek (RM 225) and the Grand Wash Cliffs (RM 276) (Figure 1). We use the term “old” Canyon for time-temperature (t-T) paths that have a single cooling pulse at 70-55 Ma during which rocks cool to <30 °C and hence to within ~200 m of river level using a 25 °C surface temperature and a 25 °C/km geothermal gradient (Wernicke, 2011). We use the term “young” Canyon for either a
single-stage cooling history that does not reach temperatures of <30 °C or a two-stage cooling history with cooling pulses at 70-50 Ma and at < 6 Ma separated by a period of long-term residence at temperatures of 40-60 °C. These temperatures correspond to burial by 0.8 to 1.4 km of sedimentary rock, the depth of the modern westernmost Grand Canyon measured from the south and north rims respectively, and indicate no westernmost Grand Canyon had been carved.

2. Summary of recent geologic studies supporting a < 6 ma westernmost Grand Canyon

Several recent studies have reinforced the evidence for a “young” 5-6 Ma westernmost Grand Canyon, independent of thermochronology-based studies. “Rim gravels” (e.g. Young, 2001) on the Hualapai Plateau (Figure 1A) document an aggrading base level from 65-55 Ma (Music Mountain Formation), through ~24 Ma (Buck and Doe Formation), to younger than ~19 Ma (Coyote Springs Formation), aggradation which is incompatible with a deep paleocanyon of near-modern depth during this time (Young and Crow, 2014). The Paleocene Music Mountain Formation is interbedded with the Hindu Fanglomerate (see star in Figure 1A and 1C), which locally contains clasts sourced from the Kaibab escarpment to the north and precludes the presence of a paleo-Grand Canyon in the Eocene (Young and Crow, 2014). The 19 Ma Separation Point basalt (Wenrich et al., 1995) overlies the Buck and Doe Formation in a location on the Hualapai Plateau that has been steeply incised on all sides (Figure 1B) suggesting lowering of base level after 19 Ma (Young and Crow, 2014).

Darling and Whipple (2015) examined the longitudinal profiles of Colorado River tributary drainages and compared them to profiles of similar-sized drainages established on the 17 Ma Grand Wash escarpment. From this comparison, Darling and Whipple (2015) concluded that the morphology of the tributary drainages and slopes adjacent to the westernmost Grand
Canyon must be younger than the 17 Ma Grand Wash escarpment. They also noted that the beveling of the Hualapai Plateau indiscriminately across lithologies is indicative of a long-lived base level incompatible with a long lived paleo-Grand Canyon. A third conclusion is that a 70 Ma westernmost Grand Canyon requires improbably low erosion rates of ~4 m/m.y. maintained for tens of millions of years.

The “Muddy Creek constraint” is based on sediments from Grand Wash Trough, at the mouth of the Grand Canyon, that contain limited or no Colorado Plateau detritus and no far-traveled gravels from a pre-6 Ma Colorado River; instead, this area was internally drained prior to 6 Ma (Longwell 1946; Blackwelder, 1934; Lucchitta, 1966; 1972). More recent support for the Muddy Creek constraint comes from the geometry of the Miocene Pearce Canyon fan deposited across the modern path of the Colorado River (Lucchitta, 2013), and by detrital zircon data from siltstones near the mouth of the Grand Canyon that show no far-traveled sediment from the Colorado Plateau or Grand Canyon between 13 and 7 Ma (Crossey et al., 2015). Each of these lines of evidence refutes an “old” deeply carved canyon that followed the path of the westernmost Grand Canyon.

3. Procedures and parameters of thermochronologic modeling

Thermal history models were calculated incorporating data from multiple thermochronometers using HeFTy software (v. 1.8.3) (Ketcham, 2005), with constraints based on the best understanding of the geologic history of the sampled rocks (Figure 2). We assumed a surface temperature of 20±10°C, which spans the range of surface temperatures assumed in published studies for this region. All thermal models assumed the Radiation Damage Accumulation and Annealing Model (the RDAAM; Flowers et al., 2009), which quantifies He
diffusivity in apatite through geologic time. The RDAAM accounts for the effects of radiation
damage concentration on helium diffusivity in apatite (Shuster et al, 2006) by assuming the
annealing behavior of fission tracks can be used as a proxy for alpha-recoil damage annealing
(Flowers et al., 2009).

For many of our samples the ages appear to be over-dispersed (Vermeesch, 2010) and we
were unable to find time-temperature paths that predict the observed AHe ages within error. The
issue of age dispersion is a problem faced by other thermochronology studies (e.g. Vermeesh,
2010) that needs to be better addressed by the apatite thermochronology community. In our case,
in order to attempt to account for over-dispersion, we increased the measured uncertainty
proportionally until we were able to find time temperature paths that could explain the data,
which is equivalent to lowering the p-value and accepting more paths (Vermeesch and Tian,
2014). Over-dispersed ages may arise because uncertainty in AHe ages is estimated using the
high precision of the He, U and Th molar abundance measurements. These “analytical”
uncertainties that do not incorporate additional uncertainties, such as: corrections for alpha
ejection that do not account for the true shape of the crystal or the spatial distribution of U and
Th (Ault and Flowers, 2012), possible undetected micro inclusions (Farley and Stockli, 2002), or
neighboring minerals leading to alpha - injection (Spiegel et al., 2009). Therefore, the reported
“analytical” error likely underestimates system uncertainties. Other assumptions in the models
used to interpret the data may also not account for the true complexity of the system. For
example, Cl content may control the temperature and rate of radiation damage annealing
(Carlson et al., 1999; Donelick et al., 2005; Gautheron et al., 2013) and this is not accounted for
in RDAAM. Therefore, when discussing “good” and “acceptable” paths below, these are in
relation to the data with additional uncertainty included that attempts to account for the over-
dispersed ages. For complete transparency, a comparison of predicted ages and corrected ages are therefore shown for each model result figure.

Constraint boxes (Figure 2) were defined by potassium feldspar $^{40}\text{Ar}^{39}\text{Ar}$ thermochronology data from McDermott (2011) and the known geologic history of the region (DR-6). Because all apatites are from Proterozoic basement rocks near river level, t-T paths began during the Precambrian and cooled to near-surface temperatures by Cambrian time beneath the Great Unconformity, with depth of near-surface residence thereafter determined by deposition and erosion of Paleozoic (~1 km) and Mesozoic (~2 km) strata. Flowers and Farley (2012) modeling of AHe data assumed that apatites were completely reset, and radiation damage was annealed, at temperatures of 110-120 °C at 80-100 Ma, just before the Laramide orogeny, and therefore began their thermal history models at these t-T conditions. However, long-term low-temperature residence of apatites between the Cambrian and the Laramide in our modeling allows for extensive pre-Laramide accumulation of radiation damage in the model, which may or may not have been completely annealed by Laramide burial (Fox and Shuster; 2014), and our broader 40-140 °C Laramide constraint box allow the data themselves to determine maximum Laramide burial temperatures.

In addition to reanalyzing the key sample (#2) from the Flowers and Farley (2012) study, we pursue a multi-sample approach to test geologic evidence for spatially variable thermal histories during progressive north-to-south cooling (Flowers, 2008) due to cliff retreat (Karlstrom et al., 2014; 2016), Laramide reverse and Miocene normal faulting (Huntoon et al. 1981, 1982), and the formation of older paleocanyon segments (Kelley et al., 2001; Young and Hartman, 2014; Karlstrom et al., 2014). These geologic factors argue against the assertion of Flowers et al. (2015) that “all western Grand Canyon samples have the same thermal history”.
Instead, we consider samples and data types individually before synthesizing the thermochronology of westernmost Grand Canyon relative to the geologic evidence outlined above.

Throughout this paper, we assume average surface temperatures of 25 °C and a geothermal gradient of 25 °C/km (Wernicke, 2011). Estimates of the surface temperature for westernmost Grand Canyon range between 10-25 °C (average surface temperature in Death valley is 25 °C), whereas geothermal gradient estimates are between 18-30 °C/km; these estimates are generally based on well log and heat flow data summarized by Wernicke (2011). The assumptions of Wernicke (2011) and Flowers and Farley (2008) provide a reasonable ‘minimum’ value for a paleodepth estimate given the relatively high surface temperature. However, these assumptions regarding the inversion of temperature to burial depth represent a major uncertainty in any thermochronologic study that involves estimating burial depth from temperature. These values undoubtedly vary by location and through geologic time in ways that are not quantifiable. Variables that have undetermined effects on surface temperatures and geothermal gradients through time and space include changes in the climate, elevation, and mantle temperatures; variations in thermal conductivity as strata are deposited and eroded; and the transient flow of groundwater. Complexities of how isotherms mimic topography in cases of ragged cliff retreat and/or below the edge of Music Mountain paleovalleys may also result in variations in the geothermal gradient. Thus, given the wide variation in published surface temperature and geothermal gradient assumptions compiled in Supplementary Table 2 of Karlstrom et al., (2014), thermochronology-determined paleodepths remain approximate and represent a continued uncertainty in geologic interpretations of thermal history models. While it is worth acknowledging these variables as a major uncertainty in our depth estimates, it is
beyond the scope of this paper to attempt to quantify the many effects of these variables. For the purposes of this study, it is enough to recognize that for a t-T path to be compatible with the proposed model of an “old” westernmost Grand Canyon cut to within 200 m of its modern depth (Wernicke, 2011), t-T paths must reach ~30 °C by 70-50 Ma, using the above assumptions. In contrast, modeled temperatures of ~40° C are interpreted to reflect ~600 m burial, the elevation differential between the river and present south rim in the westernmost Grand Canyon. Use of any higher geotherm or lower average surface temperature increases the interpreted depth of burial.

4. New thermochronologic data and thermal history models

All new and some previously published data used in this study are reported in the supplementary files and data repository of this paper. New AFT ages and lengths are presented in DR-1. Chemical data indicate that apatites from the westernmost Grand Canyon are dominantly fluoro-apatite, with low concentrations of Cl, indicating relatively rapid annealing of fission tracks. DR-2 presents new $^4\text{He}/^3\text{He}$ data, DR-3 presents published AHe data with errors and uncorrected ages (back-calculated in the case of Lee et al., 2013), DR-4 presents new AHe data, and DR-5 presents all goodness-of-fit (GOF) data and modeling parameters used for the thermal history models done in this study. Supplementary figures, including modeled thermal histories of published AHe data, are shown in DR-6 and a detailed summary of methodology and model results is presented in DR-7.

Each of the t-T path diagrams generated using HeFTy software shows the imposed t-T constraint boxes that are based on geologic observations, the good and/or acceptable t-T paths, and a gray bar that indicates the range of surface temperatures that need to be reached by 50 Ma
to support the “old” Canyon hypothesis. “Good” paths are designated by a goodness-of-fit (GOF) of \(p = 0.5 \) or greater and are shown in pink, while “acceptable” paths have a GOF of \(0.05 < p < 0.5 \) and are shown in green, where \(p \) is the probability that the chosen path is not randomly selected and in fact, represents the data in question. Per the user manual for HeFTy v.1.8.4, the relative statistical fitting of good vs. acceptable paths implies that a “good” \(t \)-\(T \) path is supported by the data, while an “acceptable” \(t \)-\(T \) path is not ruled out by the data.

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>River Mile</th>
<th>Sample ID</th>
<th>Data source</th>
<th>Source rock description (Karlstrom et al., 2003)</th>
<th>AHe age range (Ma)</th>
<th>eU range (ppm)</th>
<th># of AHe ages</th>
<th>AFT age</th>
<th>AFT lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>240</td>
<td>10GC161</td>
<td>this study</td>
<td>Separation pluton: weakly foliated, medium-grained granite; 1.71-1.68 Ga</td>
<td>55.3-93.4</td>
<td>1.1-14.6</td>
<td>4</td>
<td>60.8±4.4</td>
<td>13.1±1.6 (102)</td>
</tr>
<tr>
<td>2</td>
<td>240</td>
<td>CP06-69</td>
<td>Flowers et al., 2008, 2012</td>
<td>Separation pluton: weakly foliated, medium-grained granite; 1.71-1.68 Ga</td>
<td>64-76</td>
<td>11-13</td>
<td>5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>243</td>
<td>01GC86</td>
<td>Lee et al., 2013</td>
<td>245-mile pluton: weakly foliated granodiorite; 1.73 Ga</td>
<td>29-72</td>
<td>10.6-17.1</td>
<td>3</td>
<td>62.8±4</td>
<td>13±0.4 (67)</td>
</tr>
<tr>
<td>4</td>
<td>245</td>
<td>10GC164</td>
<td>this study</td>
<td>245-mile pluton: weakly foliated granodiorite; 1.73 Ga</td>
<td>66.9-94.9</td>
<td>7.2-18.7</td>
<td>6</td>
<td>72.2±5.9</td>
<td>13.1±1.6 (92)</td>
</tr>
<tr>
<td>S1</td>
<td>245</td>
<td>CP06-71A</td>
<td>Flowers et al. 2008</td>
<td>245-mile pluton: weakly foliated granodiorite; 1.73 Ga</td>
<td>48-55</td>
<td>5-14</td>
<td>4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>252</td>
<td>01GC87</td>
<td>Lee et al., 2013</td>
<td>Surprise pluton: granite; 1.7 Ga</td>
<td>69.5-90.1</td>
<td>81.8-231.7</td>
<td>6</td>
<td>68.7±3.8</td>
<td>12.1±0.4 (101)</td>
</tr>
<tr>
<td>S2</td>
<td>~252</td>
<td>GC863</td>
<td>Flowers and Farley, 2012</td>
<td>Surprise pluton: granite; 1.7 Ga</td>
<td>54-71</td>
<td>47-85</td>
<td>6</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>260</td>
<td>MH10-260</td>
<td>this study</td>
<td>Quartermaster pluton: megacrystic non-foliated granite; 1.35 Ma</td>
<td>15-71</td>
<td>3-34</td>
<td>4</td>
<td>63.2±7</td>
<td>12.3±2 (5)</td>
</tr>
<tr>
<td>7</td>
<td>225</td>
<td>04GC138</td>
<td>this study</td>
<td>Diamond Creek</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>114±6.5</td>
<td>13.3±2.4</td>
</tr>
</tbody>
</table>
Table 1: Summary of thermochronologic data modeled in this study

<table>
<thead>
<tr>
<th>Sample</th>
<th>AFT Age</th>
<th>AHe Age</th>
<th>AHe/Ar Age</th>
<th>t-T Path</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>04GC139</td>
<td>--</td>
<td>--</td>
<td>112±6.1</td>
<td>--</td>
</tr>
<tr>
<td>Flowers et al., 2008</td>
<td>CP06-65</td>
<td>1.73 Ga</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>225</td>
<td>51-81.4</td>
<td>32.48</td>
<td>69.0±6.2</td>
<td>12.8±2.1 (101)</td>
</tr>
<tr>
<td>9</td>
<td>230.5</td>
<td>MH10-230.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

4.1 Sample #1, Separation Canyon (RM 240): Combined AFT, AHe, and $^{4}\text{He}/^{3}\text{He}$ data

Sample #1 (10GC161) is a new sample collected in the same location as sample #2 (CP06-69) from Flowers et al., 2008 and Flowers and Farley, 2012, which was the single key sample with interpretable $^{4}\text{He}/^{3}\text{He}$ and AHe data that led to their “old” Canyon conclusion. We applied all three complementary apatite thermochronology methods to this new sample. This section highlights initial inconsistencies in t-T paths derived from different thermochronologic data types in this location and throughout the westernmost Grand Canyon. Thermal history modeling was initially unable to produce any good or acceptable t-T paths when all three datasets (AHe, AFT, and $^{4}\text{He}/^{3}\text{He}$) were combined after ~500,000 random tested paths for sample #1 (10GC161). Thus, we modeled the datasets independently (Figure 3 and Supplementary Figure 1) to generate viable t-T paths and then compared these t-T paths for both sample #1 and sample #2 (Figure 4A). Our reconciliation of all data into a single thermal history by modifying modeling parameters is presented after informative exploration of the separate datasets.

Bulk AHe ages for both sample #1 and #2 (age range 55.3-93.4 Ma and 64-76 Ma, respectively; Table 1), considered on their own, can be predicted by “old” Canyon t-T paths that
cool in a single event to near surface temperatures (~ 30°C) by ~70 Ma, in apparent agreement with Flowers and Farley (2012). AFT data from sample #1 (age of 60.8 Ma) are best predicted by t-T paths that cool gradually from peak Laramide temperatures of 100-140 °C to reach surface temperatures after 20 Ma and prefer a “young” Canyon. However, even with track length data, these AFT data alone are relatively insensitive to the <60 °C part of the t-T path where the controversy lies.

Figure 3 shows high-precision $^4\text{He}/^3\text{He}$ data obtained from sample #1, apatite A (Figure 3A), and our new model of $^4\text{He}/^3\text{He}$ data from sample #2 using our constraint boxes and the published U and Th zonation profiles for apatites C and D as model inputs (Figure 3B). The increased precision of $^4\text{He}/^3\text{He}$ data from sample #1 is due to higher ^4He concentration, derived from both larger crystal size and slightly higher U and Th concentrations. Accurate $^4\text{He}/^3\text{He}$ modeling requires knowledge of both the measured age and the U and Th zonation profile of an apatite crystal; unfortunately only one or the other can be measured on the same crystal as a consequence of the destructive nature of each measurement. Flowers and Farley (2012) measured zonation for sample #2 and used an assumed age of ~85 Ma (corrected) based on the mean age of four other apatite grains in the sample that had been previously analyzed (Flowers et al., 2008). Conversely, we measured the age of apatite A of sample #1 (93.4 Ma, corrected) and assumed no zonation in our modeling of this data, based on minimal zonation present in other crystals from this rock seen in the distribution of fission tracks and further analysis in the companion paper Fox et al. (in press; see Supplementary Figure 2 and Flowers and Farley, 2012).

$^4\text{He}/^3\text{He}$ data for sample #1 are best predicted by “young” Canyon t-T paths shown in Figure 3A and 3C. These paths show two-stage cooling: from 75 °C to ~60 °C at ~80 Ma, long-
term residence at ~55 °C, and then cooling to surface temperatures after 5 Ma. For comparison, an approximate ‘old’ Canyon path from Flowers and Farley (2012) (red lines in Figures 3A and 3C), does not predict the new $^4\text{He}/^3\text{He}$ data in Figure 3A. These new data alone therefore provide strong support for a “young” Canyon.

Figure 3D shows our new inverse modeling of sample #2 with $^4\text{He}/^3\text{He}$ data for two grains (C and D) using our constraint boxes that represent the complete thermal history and do not assume full annealing in the Laramide. The data are best predicted by t-T paths that reside at ~40 °C after the Laramide, although cooling still appears to be single-stage. We still interpret this as favoring a “young” Canyon because a temperature of 40 °C corresponds to a minimum of 600m of burial assuming a 25 °C surface temperature and 25 °C/km geothermal gradient, and does not support an “old” Canyon carved to within 200m of the modern depth at this location. Thus, both samples #1 and #2, when modeled using $^4\text{He}/^3\text{He}$ alone, favor a “young” Canyon and the uncertainty is whether rocks resided at ~ 55 °C (1.2 km) or ~40 °C (0.6 km) using the minimal depth conversion values of 25 °C and 25 °C/km.

Figure 4A shows a summary of the best-fit paths for samples #1 and #2 generated by independent modeling of the three types of datasets (AHe, AFT, and $^4\text{He}/^3\text{He}$) from the Separation Canyon location. Best-fit t-T paths from AHe data for both samples favor an “old” Canyon and are in striking disagreement with the thermal histories that best predict the $^4\text{He}/^3\text{He}$ data. Paths from the $^4\text{He}/^3\text{He}$ data and AFT data from sample #1 differ, but overlap near 50-60 Ma, the AFT age of this sample. For the Separation Canyon location, AFT and $^4\text{He}/^3\text{He}$ data, when modeled individually, are compatible with post-Laramide residence temperatures of 40-60 °C and a “young” Canyon whereas the t-T paths for the AHe data cool to near-surface temperatures by 70 Ma and are compatible with an “old” Canyon.
The importance of applying all methods to the same sample and of comparing two samples from the same location is that it is physically impossible for these apatites to have undergone different cooling histories. Our approach to reconcile all of the datasets is to favor the AFT and $^4\text{He}/^3\text{He}$ data, which agree best with the geologic evidence outlined earlier in this paper and provide better constraints on thermal history solutions due to the greater numbers of data in these measurements. For westernmost Grand Canyon, where the discussion is focused on the lowest temperatures of apatite sensitivity, AHe ages alone have limited resolution in comparison to $^4\text{He}/^3\text{He}$. $^4\text{He}/^3\text{He}$ data is also internally consistent as it originates from a single crystal, and is consequently subject to fewer variables and less uncertainty within the RDAAM. AHe ages from multiple crystals may be influenced by varying parameters per crystal that affect He diffusion kinetics (such as Cl content) that may not be accounted for by the RDAAM and therefore may not accurately predict the independent evolution of each crystal.

To account for uncertainty in the rate of alpha-recoil damage annealing, and its influence on He diffusivity, we adjust the r_{mr0} parameter in the RDAAM, following Fox and Shuster (2014). This empirically derived parameter links AFT annealing to alpha-recoil damage annealing and reflects the grain’s resistance to annealing of radiation damage, which strongly influences He retentivity after reheating during sedimentary burial. Lower r_{mr0} values represent more retentive apatite that has a higher closure temperature range (Gautheron et al., 2013); thus AHe ages with lower r_{mr0} values are best predicted by higher temperature t-T paths. The RDAAM assumes a value of 0.83, which represents a typical fluorapatite’s resistance to annealing; however values generally range between zero and one, with most values between 0.65 and 0.85, and often vary from apatite to apatite (Carlson et al., 1999; Ketcham et al., 1999; Ketcham et al., 2007). Figure 4B shows the effect of lowering r_{mr0} from the default value of 0.83
to 0.60 for a reference “young” Canyon path (Figure 4C) for the $^4\text{He}/^3\text{He}$ spectra of sample #2. Lowering r_{mr0} to 0.60 increases the GOF from 0.0 to 0.25 for grain c and from 0.0 to 0.16 for grain d. This point was also made by Fox and Shuster (2014) using a different modeling approach.

Figure 4D shows that all three datasets in sample #1 (AHe, AFT, and $^4\text{He}/^3\text{He}$) can be predicted by the same “young” Canyon t-T paths by adjusting the r_{mr0} values of individual AHe ages. This required adjustment of the r_{mr0} values for AHe ages and relaxing the age uncertainties to 10x the analytical error allowed the AHe ages, AFT age and lengths, and $^4\text{He}/^3\text{He}$ data to be jointly modeled via the RDAAM, albeit with a poor GOF of 0.07. One AHe age (apatite X) was excluded from this model as an old outlier on a positive age-eU trend given by the otherapatites Z, Y, and A (Supplemental Figure 1B). The t-T path from this final combined dataset (Figure 4D) shows a narrow set of 25 acceptable GOF paths after over 3 million total paths were tested. These paths were only generated by varying r_{mr0} values for the different apatites to 0.70, 0.60, and 0.60 for apatites A (with $^4\text{He}/^3\text{He}$ data), Z, and Y respectively. Other values for r_{mr0} for apatite A were tried, but resulted in unrealistic values of r_{mr0} values (0.20 and lower) for the other two apatites in order for t-T paths with acceptable GOF to be generated. Thus, our preferred thermal history for sample #1 and the Separation Canyon location reaches burial temperatures of 90-120 °C during the Laramide, cools rapidly to residence temperatures of 40-50 °C, and reaches surface temperatures after 5 Ma.

4.2 Combined (U-Th)/He and AFT models

This section expands the thermochronologic coverage to other areas of the westernmost Grand Canyon with the other samples, listed by river mile, in Table 1. We present new modeling
of previously published samples from Lee et al. (2013): sample #3 (01GC86, RM 243) and #5
(01GC87, RM 252) using our uniform model constraint boxes and new chemical data for the
AFT analyses. We also report new combined AFT and AHe analyses for sample # 4 (10GC164, RM 245) and #6 (MH10-260, RM 260). Thermal histories for the jointly modeled datasets are
presented in Figure 5A-D.

4.2.1 Sample # 3 (01GC86, RM 243); 245-mile granodiorite

Figure 5A shows t-T paths that predict the combined AFT and AHe data from sample #3
(01GC86) from Lee et al. (2013). Three AHe ages range from 29-72 Ma, with a scattered age-eU
plot. Flowers et al. (2015) stated that this sample was “a problematic sample” because of high
dispersion of ages and a younger mean age (50 Ma) than other samples in the western Grand
Canyon and therefore should not be used for inversion modeling. In contrast, we see no reason to
reject this analysis as similar ages are found in several other samples and we have accounted for
unknown kinetic controls by increasing the estimated error for each age to achieve acceptable t-T
paths using the RDAAM. Our preferred best-fit path shows a single cooling episode to ~40 ℃by
40-50 Ma from burial temperatures of 90-130 ℃during the Laramide and cooling to near-surface
temperatures after ~20 Ma, similar to other thermal histories in this area. The thermal history
generated by modeling the three AHe ages alone for this sample without the AFT data remain
hotter, at ~70 ℃, until after 20-30 Ma, when they cool to near-surface temperatures
(Supplementary Figure 3A). In this case, the addition of AFT to the AHe changes the modeled
thermal history for this sample from a “young” Canyon path to closer to an “old” Canyon path,
although neither path reaches near surface temperatures until after 20-30 Ma.
4.2.2 Sample # 4 (10GC164, RM 245); Spencer Canyon pluton

Figure 5B shows our preferred t-T path for the combined AFT and AHe data (5/6 grains) for sample #4, which is at the same location as sample #S1 (CP06-71A from Flowers et al., 2008; Supplementary Figure 4A). The AFT age for sample #4 is 72.2±5.9 Ma while the AHe ages range from 66.9-94.6 Ma. HeFTy generated acceptable t-T paths only after the age error was increased to 8x the analytical error. The best fit t-T path shows 100 °C peak burial temperatures during the Laramide followed by cooling to ~40 °C by 60 Ma and no second stage cooling. The model using AHe data alone for this sample (Supplementary Figure 3B) shows a different t-T path using 3x the analytical error. These paths have a single stage of cooling from ~80 °C during the Laramide to near surface temperatures of 20 °C, compatible with an “old” Canyon. Thus, the AHe data alone predict an “old” Canyon whereas the combined AFT and AHe t-T paths are not compatible with an “old” Canyon because near-surface temperatures are not reached until after 20 Ma.

4.2.3 Sample # 5 (01GC87, RM 252); Surprise Canyon pluton

Figure 5C shows our preferred thermal history for this sample from Lee et al. (2013), which is at the same location as sample #S2 (GC863 from Flowers and Farley, 2012; Supplementary Figure 4B). Six AHe ages range from 69.5-90.1 Ma with a generally positive age-eU slope; the AFT age is 68.7±3.8 Ma. The combined datasets are best predicted by a t-T path showing a period of rapid cooling from ~90°C to ~60 °C during the Laramide, mid-Tertiary slow cooling from 70 to 50 °C, and cooling to surface temperatures after 20 Ma. This suggests ~1.4 km of burial after the Laramide and favors a “young” Canyon. AHe data modeled alone (Supplementary Figure 3C) return a poorly constrained swath of t-T paths that in general show
cooling from 90-100 °C to ~40 °C during the Laramide before cooling gradually to surface temperatures, also favoring a “young” Canyon.

4.2.4 Sample #6 (MH10-260, RM 260); Quartermaster pluton

Figure 5D shows our preferred t-T path for this sample generated with combined AFT and AHe data. The AFT age is 63.2±7 Ma and four AHe ages range from 15-71 Ma with a strongly positive age-eU slope. This model generated acceptable GOF paths only after relaxing the estimated errors to 15x the reported analytical uncertainties. The best-fit path has a two-stage cooling history that reaches a maximum burial temperature of ~ 100 °C in the Laramide, cools between 85 and 70 Ma, and resides at ~50 °C through 70-10 Ma. The inflection showing onset of young cooling takes place after about 5 Ma. Similar thermal history models are generated by jointly modeling the 4 AHe analyses without the AFT data (Supplementary Figure 3D). The AHe t-T paths reach a slightly lower maximum burial temperature of ~80°C during the Laramide, cool and reside at ~60°C, and then reach surface temperatures after 10 Ma. Thermal histories for both the combined datasets and the AHe data alone support a “young” Canyon in that rocks remained at 50-60 °C until after 10 Ma, suggesting a minimum depth estimate of ~1km.

4.3 Samples #7 and #8 from Diamond Creek: proof of concept for the paleocanyon hypothesis

The above data from westernmost Grand Canyon show that the combined thermochronologic data of ³He/⁴He (2 samples), AHe ages (6 samples) and apatite fission-track analyses (5 samples) are best predicted by t-T paths compatible with a “young” Canyon. The “old” Canyon hypothesis, which predicts cooling to within 200 m of the surface (30 °C) by 50 Ma, can be compatible with individual datasets but is not compatible with multi-method analyses.
from any of the samples. Consequently, the westernmost Grand Canyon is a “young” segment, carved in its present position in the past 5 Ma.

To test whether any segments of Grand Canyon are “old” as proposed by Karlstrom et al., 2014, we analyzed samples #7 (04GC138) and #S3 (04GC139) from Diamond Creek at RM 225 using AFT analysis. Diamond Creek a tributary to the Colorado River (Figure 1) where outcrops of the 55-65 Ma Music Mountain Formation occur at relatively low elevations and Karlstrom et al. (2014) and others (Young, 2001; Young and Hartman, 2014) have proposed that a ~60 Ma N-flowing Paleocene river followed the Hurricane fault system. These samples are located near each other (within 60 m) with minimal elevation difference, and were collected near river level from the Diamond Creek pluton, at a similar location as sample #8 (CP06-65) from Flowers et al. (2008). If the paleocanyon hypothesis of Karlstrom et al. (2014) is correct, these samples represent an important proof-of-concept via their comparison to the westernmost Grand Canyon and should have an “old” Canyon thermal history. Sample #7 (04GC138) has detailed Cl wt.% and more track length measurements than sample #S3 (04GC139) and they are near enough to each other that a similar thermal history is required, so only sample #7 was modeled although data from both are presented in the data repository. The AFT age for sample #7 is 114.0±6.5, older than the AFT ages for other samples considered in this study, and high uranium rims are common in the analyzed apatites indicating some zonation. Figure 6A shows that AFT data for sample #7 are predicted by a narrow suite of good GOF t-T paths that cool from ~90 °C to surface temperatures by ~70 Ma. This single-stage cooling to surface temperatures supports that an “old” ~60 Ma paleocanyon was present at this location, but based on comparison with the westernmost Grand Canyon data it was the northern extension of the Music Mountain paleoriver system and not carved by a paleo-Colorado River. Further support of low peak burial
temperatures in this region comes from the bimodal peak of AFT track lengths in Figure 6A and 6C.

Sample #8 (CP06-65) is a previously published sample from Flowers et al. (2008). This sample is also from the Diamond Creek pluton at the same location near RM 225. Figure 6B shows that all AHe ages from sample #8 can be predicted by t-T paths that cool rapidly from 80-100 °C in the Laramide to temperatures of 30-60 °C before cooling gradually to reach surface temperatures throughout the Cenozoic, a single-stage cooling history that is compatible with a “young” Canyon at this location.

Figure 6C shows t-T paths that combine AHe ages from sample #8 with AFT data from sample #7. Both are from the same location and must have had the same cooling history. Predicted ages in the age-eU plot for this combined data thermal history model are much better behaved than any other set of combined data in this region; the AFT age is significantly older than the AHe ages and therefore can be accurately predicted by the RDAAM. The t-T paths that result show a single stage of cooling in the Laramide, between 80 and 60 Ma, with rocks reaching about 30 °C by 60 Ma, compatible with an “old” Canyon. For comparison, Figure 6D shows t-T paths that predict AFT data from sample #9 (MH10-230.5, this study). The AFT age for sample #9 is 69.0±6.2 Ma, similar to other AFT ages in the westernmost Grand Canyon but much younger than the AFT ages for samples 7 and S3 at Diamond Creek. Sample #9’s AFT t-T paths cool gradually from peak temperatures of 90-140 °C during the Laramide over the entire Cenozoic and reach surface temperatures after 20 Ma, compatible with a “young” Canyon.

5. Discussion: reconciling dataset inconsistencies
Figure 7 takes the weighted mean t-T paths from different samples and analytical methods in order to compare modeling results. The results of the new analyses and new modeling using uniform geologic constraints back to the Precambrian show that a preponderance of these thermal histories, especially those that include combined datasets, support a “young” westernmost Grand Canyon (yellow envelope). Four thermal histories constrained by AHe data alone are best predicted by an “old” Canyon in Figure 7 but these paths are discordant relative to all other paths, including paths from the same sample generated when the AHe data are integrated with $^{4}\text{He}/^{3}\text{He}$ and/or AFT data from the same samples and same locations. These disparate “old” and “young” Canyon t-T paths cannot both be geologically correct and must result from limitations of the thermal history modeling; i.e. assumptions within the most current model of apatite thermochronology systems behavior (the RDAAM) must not account for important variables in an area of low-temperature burial reheating such as the westernmost Grand Canyon.

In order to reconcile these discordant “old” Canyon AHe-only paths with the multi-dataset “young” Canyon paths and the geologic data, we varied the value of r_{mr0} in the RDAAM. The default value for the r_{mr0} parameter in the RDAAM assumes that alpha-recoil radiation damage anneals at the same rate as fission track damage for a specific temperature. By decreasing r_{mr0} within the range of its uncertainty (Ketcham et al., 2007), we assume that the rate of annealing alpha-recoil damage is somewhat lower than fission track annealing in apatite (as supported empirically; Ritter and Märk, 1986), which effectively increases the He retentivity of each apatite grain after burial heating (Fox and Shuster, 2014). Since Laramide burial depths and resulting temperatures (75-140 °C based on t-T paths from this study) may not have been sufficiently high enough or endured for a sufficient time to completely anneal radiation damage
that accumulated during long-term surface residence, this assumed rate of radiation damage annealing is an especially important source of uncertainty in our analysis. This is partly addressed by requiring t-T paths to begin in the Proterozoic so the pre-Laramide thermal history can be accounted for, but cannot be totally reconciled between samples in this region using our current understanding of He diffusion in apatite.

During the modeling process, we noticed that the subset of t-T paths that reached higher temperatures during the Laramide (>110 °C) tended to reach cooler temperatures (<30 °C) more quickly than paths that stayed at lower temperatures, demonstrating the difference between starting modeled t-T paths at high temperatures in the Laramide such as those Flowers and Farley (2012) employed versus starting these paths in the Proterozoic to account for the entire thermal history and allowing the data to determine maximum burial temperatures. Fox and Shuster (2014) emphasized that when using the RDAAM, the t-T paths that represent AHe data are sensitive to the range of temperatures reached during maximum burial. These maximum burial temperatures are best constrained by AFT data and provide a valuable co-constraint that directly influence the t-T paths allowed by the AHe and 4He/3He data. The wide range allowed by our Laramide constraint box allows the AFT data to determine maximum burial temperatures and therefore pick the most representative low-T cooling paths following burial for the AHe data using the RDAAM; these t-T paths almost invariably support a “young” Canyon.

Figure 8 shows weighted mean paths for samples, color coded by river mile, to help evaluate whether different thermal history model results may reflect real variation in cooling histories. We interpret the “old” Canyon t-T paths at Diamond Creek to be real and to indicate that the Hurricane segment had cooled to 20-30 °C by 65-55 Ma and was carved by the Music Mountain and Hindu paleocanyon system (Karlstrom et al., 2014). Samples at river mile 240
samples #1 and #2) reside at ~50 °C after the Laramide. Samples #3, #4, and #S1 in the
westernmost Grand Canyon have similar low-T post-Laramide residence of ~40 °C at river mile
243-246. Samples at river miles 250-260 (samples #5 and #6) reside at 60-80 °C after the
Laramide. These temperature differences could plausibly represent real differences in burial
depth. A geologic hypothesis capable of explaining different t-T paths in these locations involves
ragged cliff retreat of the Kaibab escarpment (Karlstrom et al., 2014). Figure 9 shows the
present-day position and an approximate 50 Ma position of this escarpment that could explain
different post-Laramide residence temperatures in westernmost Grand Canyon samples.

6. Conclusions
A diverse set of geologic studies continue to strongly support a 5-6 Ma integration of the
Colorado River from the Colorado Plateau to the Gulf of California and carving of the
westernmost Grand Canyon in the last 6 million years. The thermochronology of the
westernmost Grand Canyon has been controversial, but this paper demonstrates that the
thermochronology can be reconciled with compelling geologic field evidence. The application
of multiple thermochronology methods, especially new precise 3He/4He data, applied to the same
source rocks at Separation Canyon, resolves the debate about the age of westernmost Grand
Canyon. The combined data from this location cannot be explained by an “old” Canyon that was
carved to within 200 m of its modern depth by 50 Ma; indeed, the new 3He/4He data alone
precludes an “old” Canyon (see companion paper Fox et al., in press). Instead, our best t-T path
for this location involves two-stage cooling with both Laramide and < 10 Ma pulses. New t-T
paths generated by modeling other samples from this study, spanning river mile 230 to 260, also
argue strongly for a “young” westernmost Grand Canyon. In contrast, samples at RM 225 within
the Hurricane segment of Grand Canyon, are consistent with an “old” 55-65 Ma (Music Mountain age) paleocanyon system that flowed north across the present path of the Grand Canyon as proposed by Karlstrom et al. (2014).

Our best-fitting ‘young’ Canyon thermal history for westernmost Grand Canyon involves: 1) a history of long term, low temperature residence since the Proterozoic (a key difference between our models and previous models; e.g. Flowers and Farley, 2012); 2) peak pre-Laramide burial temperatures of about 80-110 °C, compatible with burial by about 3 km of Paleozoic and Mesozoic strata; 3) a Laramide cooling episode that took place from 90-70 Ma and resulted in cooling to temperatures of 40-60 °C, compatible with erosional beveling of the Hualapai Plateau to the level of the Esplanade Sandstone by the northward cliff retreat of a ~ 2 km section of upper Paleozoic and Mesozoic rocks; 4) a period of long-term (70 to 10 Ma) residence at temperatures of 40-60 °C, compatible with burial of samples by about 1 km (600 m to 1.4 km) of lower Paleozoic strata; this is consistent with the observed temporally persistent fluvial base level observed on the Hualapai Plateau, and the absence of a westernmost Grand Canyon; and 5) cooling to near-surface temperatures in the last 5-6 Ma, compatible with the Muddy Creek constraint and the arrival of the Colorado River to the Gulf of California at about 5.3 Ma (Dorsey et al., 2007).

The westernmost Grand Canyon should continue to be an excellent field laboratory for advancing understanding of low-temperature apatite thermochronology and He diffusion in apatite with a complex thermal history. This study highlights a range of continued uncertainties due to relatively low-temperature burial reheating where radiation damage may not be completely annealed and involving complex He diffusion kinetics related to the rate and temperature sensitivity of alpha-recoil damage annealing in apatite. Understanding possible
variables that control the retentivity of apatite crystals and variation in r_{mr0}, such as previously unrecognized radiation damage effects, and better understanding of age dispersion in apatite datasets are current challenges for modeling apatite thermochronology datasets.

Acknowledgements

Research was funded in part by NSF grant EAR-1348007 and EAR-1347990 (to Karlstrom and Shuster) from the Tectonics Program. We acknowledge laboratory assistance provided by Nick Fylstra. We thank two anonymous reviewers whose comments helped improve the paper.

Figure captions

Figure 1. A) Regional map showing geologic constraints and thermochronology sample locations in westernmost Grand Canyon and the extent of Tertiary gravels and volcanic deposits across the Hualapai Plateau, modified from Billingsley et al. (2006) and Karlstrom et al. (2014). Inset map shows sections of the Grand Canyon. Pink star is the location of north-derived key Hindu Fanglomerate exposure at head of Bridge Canyon. B) Google Earth image, looking SE, highlighting the incision surrounding the Separation Point Basalt (SPb) and its source flow. Geographic features are: BC= Bridge Canyon, CR= Colorado River, DC= Diamond Creek, GWFZ= Grand Wash Fault Zone, GWC= Grand Wash Cliffs, HC= Old man-Hindu Canyon, HFZ= Hurricane Fault Zone, HP= Hualapai Plateau, MF= Meriwhitica monocline and fault, PSC= Peach Springs Canyon, SeC= Separation Canyon, ShP= Shivwits Plateau, SpC= Spencer Canyon.
Figure 2. Constraint boxes imposed on models (using HeFTy v. 1.8.3) for all samples and their geologic justifications. The long period of time that samples resided in and below the partial retention zone between Precambrian and Laramide times may have resulted in extensive radiation damage that was not fully annealed in the Laramide and hence produced complex and variable He diffusion behavior in apatite.

Figure 3: New and previously published $^4\text{He}/^3\text{He}$ data from sample #1 (this paper) and #2 (Flowers and Farley, 2012) from the same location at Separation Canyon. A) New data (sample #1) are more precise than prior data (#2) and are best predicted by the “young” Canyon t-T path shown in black. B) Flowers and Farley (2012) data as modeled in this paper are also best predicted by a “young” Canyon. C) Inverse thermal history model of apatite A from sample #1, using the measured age of this grain (93.4 Ma) and assuming no zonation, returned a tightly constrained “young” Canyon thermal history shown in black. D) Inverse thermal history model of the Flowers and Farley (2012) data using the same AHe age and error that they used; note that the ages for apatites C and D were not measured but were based on the mean AHe age (85.6 ± 6.8 Ma) and eU (12 ppm) from other AHe analyses for this sample (Flowers et al., 2008). The good and best-fit paths support a “young” Canyon for both samples, but paths reside at ~40 °C (#2) instead of 50-60 °C (#1).

Figure 4: Reconciling the disagreement between Separation Canyon t-T paths. A) Best-fit t-T paths from different analysis methods and samples (Sup. Fig. 1, Fig. 3) from the same location at Separation Canyon show marked disagreement when modeled separately. B) To reconcile data, we adjust the r_{mr0} value (a proxy for grain retentivity) in RDAAM using data from Flowers and
Farley (2012) to test a “young” Canyon reference path and find that assuming higher grain
retentivity by decreasing the r_{mr0} values to 0.6- 0.45 (red and blue curves) predicts the 4He/3He
data with an acceptable GOF of 0.55- 0.97, respectively. C) Reference “young” Canyon path
used in B for varying r_{mr0}; inset of C shows blow up of the forward model after 120 Ma, the time
of interest for this study. D) By adjusting r_{mr0} values (different amounts for different samples, see
Supplementary data), RDAAM was able to predict all datasets together to return a suite of
acceptable t-T paths that reside at 40-50 °C after 70 Ma and reach surface temperatures after 5
Ma.

Figure 5: Samples with combined AFT and AHe data; age-eU plots and AFT track length GOF
are shown for each sample. A) Data from sample #3 are best predicted by a t-T path that cools to
~40 °C during the Laramide. B) Data from sample #4 follow a similar cooling path as sample #3,
but are slightly warmer after the Laramide. C) Data from sample #5 have a 2-stage cooling
history; these paths stay at high temperatures (~60 °C) after slight cooling during the Laramide
and reach surface temperatures after 20 Ma. D) Data from sample #6 share a similar t-T path
with #5, but reside at ~50 °C and reach surface temperatures after 10 Ma.

Figure 6: The paleocanyon hypothesis of Karlstrom et al. (2014) suggests that samples from
Diamond Creek, because they are in the Hurricane segment, should give “old” Canyon t-T paths.
A) New sample (#7) from the same location as a key sample from Kelley et al. (2001) where
AFT data are best predicted by an “old” Canyon t-T path, consistent with this segment having
been carved by the ~ 55-65 Ma Music Mountain Formation system. B) Previously published
AHe data from Flowers (2008) from the same location as #7 that are best predicted by a “young”
Canyon t-T path. C) Combining our AFT (sample 7) with AHe data from sample #8 yields t-T paths that reach surface temperatures by 60 Ma, compatible with the existence of a Music Mountain paleocanyon. D) New AFT data from river mile 230.5, best predicted by a “young” Canyon t-T path. Note the significant difference between this sample (#9) and sample #7.

Figure 7: A weighted mean t-T path comparison for all samples shows inconsistent paths. Models using our new $^4\text{He}/^3\text{He}$ data, the $^4\text{He}/^3\text{He}$ data from Flowers and Farley (2012), all models involving combined AFT and AHe, and about half the AHe-only t-T paths show post-Laramide residence time at 40-60 °C from 70 to after 20 Ma, consistent with a “young” Canyon. Four AHe-only best-fit paths are best predicted by t-T paths involving rapid cooling at 70 Ma, consistent with an “old” Canyon (gray band). This range of t-T paths is not physically possible because many of the conflicting t-T paths are from the same location. Our preferred path is the jointly inverted multi-data set path from sample #1 (blue) suggesting that Separation Canyon rocks reached maximum Laramide burial temperatures of 80-110 °C, resided at post-Laramide temperatures between 40-60 °C from 70 to 6 Ma, and cooled to near-surface temperatures after 5 Ma.

Figure 8: Synthesis of weighted mean t-T paths by river mile that shows preferred t-T paths based on the combination of multiple analytical techniques. Our preferred path for each sample is shown, including those with adjusted r_{mr0} values (RM 240). Most t-T paths support a “young” Canyon, but post-Laramide residence T varies from 40-70 °C. The black path is from samples #7 and #8 at Diamond Creek and suggests a paleocanyon carved by the Music Mountain paleoriver.
along the Hurricane segment by \(~60\) Ma. Our preferred explanation for the varied post-Laramide residence temperatures is ragged northward cliff retreat of the Kaibab escarpment.

Figure 9: A) Hypothesis that irregular scarp retreat of the Kaibab escarpment may explain different post-Laramide (\(~50\) Ma) residence temperatures of western Grand Canyon basement samples. Paleocanyons at Diamond Creek and along the Hurricane segment of Grand Canyon explain the cool temperatures of \(~25\) °C for the combined AFT and AHe data from samples 7 and 8 at \(~50\) Ma. In contrast, temperatures are \(~50\) °C at river mile 240 for samples #1 and #2, \(~40\) °C for samples 3 and 4 at river miles 243-245, and \(~60\) °C at river miles 252-260, suggesting variable cover by at least \(~600\) m of upper Paleozoic strata (assuming a \(25\) °C surface temperature and \(25\) °C/km geothermal gradient). Red outcrops are a shallowly emplaced Late Cretaceous pluton, indicating appreciable cover at this location. Pink star is key exposure of Hindu Fanglomerate sourced from northern exposures of Pennsylvanian-Permian strata. Paleochannel flow directions and mapping are by Young and Crow (2014). B) N-S cross-section along line A-A’, using our preferred t-T path from sample #1 based on combined AFT, AHe, and \(^{4}\)He/\(^{3}\)He data and assuming a \(25\) °C surface temperature and \(25\) °C/km geothermal gradient to reconstruct possible paleosurfaces above the Colorado River. This cross section includes surficial constraints such as the Separation Point Basalt, Buck and Doe Conglomerate, north-derived Hindu Fanglomerate, and Music Mountain Formation within the 55-65 Ma Hindu paleocanyon.

Supplementary and data repository items

DR-1 AFT summary, ages, and lengths
DR-2 New $^4\text{He}/^3\text{He}$ data

DR-3 Published apatite helium data

DR-4 New (U-Th)/He data

DR-5 Goodness-of-fit for the best-fit path in each model presented here relative to the data entered.

DR-6 Supplementary figures

DR-7 Detailed methodology and results

References cited

doi:10.1130/GSAB-45-551

Huntoon, P.W., Billingsley, G.H., Clark, M.D., 1981. Geologic map of the Hurricane Fault Zone
and Vicinity, Western Grand Canyon, Arizona.

McDermott, Jacob J., 2011. Microstructural, U-Th-Pb geochronologic and $^{40}\text{Ar}^{39}\text{Ar}$ thermochronologic evidence for both Paleoproterozoic and Mesoproterozoic displacement across the Gneiss Canyon shear zone: Lower Granite Gorge, Grand Canyon, Arizona [Master's thesis]: University of New Mexico, 34 p.

Mexico, 69 p.

Young, R.A., 1966, Cenozoic geology along the edge of the Colorado Plateau in northwestern Arizona [PhD thesis]: Washington University, St. Louis, 167p.

Geologic constraints and thermochronology sample locations of the Westernmost Grand Canyon

Gravels and basalts
- Coyote Springs Formation (Pliocene)
- Volcanic and intrusive rocks (Miocene)
- Buck and Doe Formation (Miocene)
- Paleozoic-clast conglomerate (Miocene)
- Hindu Fanglomerate (Paleocene-Eocene)
- Music Mountain Formation (Paleocene-Eocene)
- Quartz Monzanite pluton (Upper Cretaceous)

Thermochronology data
- AFT data
- AHe data
- \(^{4}\)He/\(^{3}\)He data

(1) New sample (this study)
(2) Published and re-modeled sample

Eastern Grand Canyon
- Westernmost Grand Canyon
- Muav Gorge Fault Zone
- Hurricane Fault Zone
- Hurricane Cliffs
- SeC
- SpC
- SPC
- BC
- HP
- HC
- S3
- S2
- S1
- 5
- 250 km
- 200 km
- 150 km
- 205
- 210
- -215
- 220
- 225
- 230
- 235
- 240
- 245
- 250
- 255
- 260
- 265
- 270
- 275
- 0 5 10 15 20 25 30 km
- N
- 0 25 50 km
- N

Click here to download Figure: WGCfigures FINAL 170417small.pdf
Winn et al. Figure 1
Initial K-spar $^{39}\text{Ar}/^{39}\text{Ar}$-based constraints

Great Unconformity/Tapeats deposition

Devonian disconformity/Temple Butte deposition

Buck and Doe conglomerate/Separation Point basalt deposition (optional constraint)

Laramide burial

Temporary burial

Winn et al. Figure 2
Sample #1 (RM 240): $^{4}\text{He}/^{3}\text{He}$

Time (Ma)

120 100 80 60 40 20 0

Temperature (°C)

'old' Canyon t-T path (Flowers and Farley, 2012)

'young' Canyon best-fit t-T path (from 3C)

Sample #1, apatite A

Cumulative Fraction ^{3}He

Rstep/Rbulk

Best-fit predicted age: 93.4

Good: 0
Acceptable: 24
Total paths: 9,577,934
Corrected age: 92.4 ± 1.7

Sample #2, apatite C

GOF: 0.0

GOF: 0.73

Sample #2, apatite D

GOF: 0.0

GOF: 0.36

Sample #2 (RM 240): $^{4}\text{He}/^{3}\text{He}$

Time (Ma)

120 100 80 60 40 20 0

Temperature (°C)

Good: 50
Acceptable: 2,271
Total paths: 1,050,595
Corrected age (assumed): 85.6 ± 6.8
Best-fit predicted age: 85.4

Winn et al. Figure 3
A Comparison of t-T paths by method

B Sample #2, apatite C

C Reference “young” Canyon t-T path

D \(^4\)He/\(^3\)He, AHe, and AFT from sample #1

Winn et al. Figure 4
Sample #7 (RM 225): AFT

A

Sample #7 Track Length Distribution

Length (µm) 20 15 10 5 0

Frequency

0.40 0.30 0.20 0.10 0.00

Age: 113+20/-17 Ma
Age GOF: 0.99
Length GOF: 0.39

Good paths: 25
Acceptable: 18,913
Total paths: 576,101,008

Sample #8 (RM 225): AHe (4/4)

B

Sample #8 Track Length Distribution

Length (µm) 20 15 10 5 0

Frequency

0.40 0.30 0.20 0.10 0.00

Age: 69+16.5/-13.3
Age GOF: 0.99
Length GOF: 0.99

Good paths: 0
Acceptable: 100
Total paths: 165,051
AHe age error: 5%
Mean GOF: 0.20

Sample #7, #8: AFT, AHe (4/4)

C

Sample #7, #8 age-eU

Winn et al. Figure 6

Sample #9 (RM 230.5): AFT

D

Sample #9 Track Length Distribution

Length (µm) 20 15 10 5 0

Frequency

0.40 0.30 0.20 0.10 0.00

Age: 69+16.5/-13.3
Age GOF: 0.99
Length GOF: 0.99

Good paths: 100
Acceptable: 187
Total paths: 1,602

Winn et al. Figure 6
Weighted mean path comparison

Time (Ma)
120 100 80 60 40 20 0
70 Ma
5 Ma
AFT and AHe
$^4\text{He}/^3\text{He}$ only
AHe only
AFT, AHe, and $^4\text{He}/^3\text{He}$

Temperature (°C)
140
120
100
80
60
40
20
0

Winn et al. Figure 7
Weighted mean paths by river mile

Time (Ma)
120 100 80 60 40 20 0

Temperature (°C)

Hurricane segment
RM 225 (7, 8)

Westernmost segment
RM 240 (1, 2)
RM 243 (3)
RM 245 (4)
RM 252 (5)
RM 260 (6)

Winn et al. Figure 8
Proposed ~50 Ma landscape:
Summarizing geologic and thermochronologic constraints

(1) New sample (this study)
(2) Published and re-modeled sample

- Buck and Doe Formation (Oligocene-Miocene)
- Hindu Fanglomerate (Paleocene-Eocene)
- Music Mountain Formation (Paleocene-Eocene)
- Quartz Monzomite pluton (Upper Cretaceous)

Sample site (color-coded by RM in Fig. 8)
Key site of Hindu Fanglomerate

~55˚C at 50 Ma

~50 Ma Kaibab paleoescarpment

~50 Ma Kaibab paleoescarpment

~40˚C at 50 Ma

~25˚C at 50 Ma

A-A': Approximate paleosurface reconstruction

- Surface at ~90 Ma (maximum burial)
- Surface at ~60 Ma
- Surface at ~20 Ma
- Modern topography (since ~5 Ma)
- Separation Point Basalt (19 Ma) on Buck and Doe Fm (24 Ma)
- Tonto Group
- Basement Rocks
- Triassic strata
- Jurassic strata
- Shivwits Plateau
- Colorado River
- Separation Point Basalt (19 Ma) on Buck and Doe Fm (24 Ma)
- Hindu Fanglomerate (~60 Ma)
- Music Mt Fm (~60 Ma)

Winn et al. Figure 9
Figure 1. A) Regional map showing geologic constraints and thermochronology sample locations in westernmost Grand Canyon and the extent of Tertiary gravels and volcanic deposits across the Hualapai Plateau, taken from Billingsley et al. (2006). Miocene-Paleocene gravels are undifferentiated. Inset map shows sections of the Grand Canyon. Blue star is the location of the Hindu Fanglomerates.
Figure 1, continued. B) Schematic cross section showing the relationships between the beveled surface of the Hualapai Plateau, the Music Mountain Formation in the Old Man Hindu paleocanyon, the Buck and Doe conglomerate, and the Separation Point Basalt. Location of cross section line A-A’ is shown in Figure 1. Paleosurfaces were estimated from the best t-T path derived from 4He/3He data for sample 10GC161 at Separation Canyon assuming a 25°C surface T and 25 °C/km geothermal gradient. Cliff retreat of lower Paleozoic strata to their present position on the north rim plus canyon carving resulted in ~35-50 °C of cooling in the last 5-6 Ma.
Figure 2. Constraint boxes imposed on the HeFTy modeling for all samples and their geologic justifications.

The long period of time that samples resided in and below the partial retention zone between Precambrian and Laramide times may have resulted in extensive radiation damage to crystal lattices that was not fully annealed and hence produced complex and variable He diffusion behavior in apatite.
Figure 3. New and previously published 4He/3He data from 10GC161 and CP06-69, in the same location at Separation Canyon. A) New data are best predicted by the “young” canyon hypothesis. B) Flowers and Farley (2012) data are also best predicted by a “young” Canyon hypothesis. C) Inverse modeling of 10GC161-a using the measured age of this grain and assuming no zoning returned a tightly constrained “young” Canyon thermal history. D) Inverse modeling of the Flowers and Farley (2012) data using the same AHe age and error they used, which were not measured for this grain but were based on the mean AHe age and eU from other AHe analyses for this sample (Flowers et al., 2008). Note that good paths support a “young” canyon but reside at ~40 °C instead of 50-60 °C.
Figure 4. Reconciling the disagreement between Separation Canyon samples. A) t-T best-fit paths and envelopes from different samples (Sup. Fig. 1), all from the same locality at Separation Canyon, are geologically incompatible. B) To reconcile data, we adjust the rmr0 value (hence grain retentivity) in HeFTy for the Flowers and Farley (2012) samples to test the “young” canyon hypothesis and find that assuming higher grain retentivity (rmr0=0.60) better predicts the $^4\text{He}/^3\text{He}$ data. C) Reference “young” Canyon t-T path for the predicted spectra in C. Inset shows a zoomed in area of the forward model after 120 Ma and above 150˚C, the time of interest for this study. D) t-T paths from all samples (and methods) from the Separation Canyon location can be brought into agreement with the “young” Canyon hypothesis (except the 10GC161 AHe t-T path) by using an assumed rmr0 of 0.60. Dotted line is the weighted mean path for $^4\text{He}/^3\text{He}$ data from CP06-69.
Figure 5. New samples for which AFT and AHe analyses are combined. A) AHe data from Quartermaster Canyon pluton (RM 260) are best predicted by a "young" Canyon t-T path. B) Combined AFT plus AHe data from the same samples predict a similar t-T path, but with higher Laramide peak T and cooler post-Laramide long-term residence T. C) AHe data from the 245-mile granodiorite are initially best predicted by an "old" Canyon t-T path. D) Combined modeling of AFT and AHe for the same sample as C are best predicted by a t-T path that resides at ~35 °C from 60-20 Ma compatible with 0.4-1.0 km of burial depending on assumed surface T of 10-25 °C (and geothermal gradient of 25 °C/km).
Figure 6. Previously published samples with combined AHe and AFT data. A) AHe data from the Surprise pluton are best predicted by a poorly constrained “young” Canyon t-T path. B) Combined AFT and AHe from the same sample as E are best predicted by a tightly constrained “young” Canyon t-T path. C) AHe data from the 245-mile granodiorite are best predicted by a “young” Canyon t-T path. D) Combined AHe and AFT data are best predicted by cooler post-Laramide residence but still a “young” Canyon path.
Figure 7: A “proof of concept” for samples from Diamond Creek would suggest that, because they are in the Hurricane segment, they should give “old” Canyon t-T paths (Karlstrom et al., 2014): A) New sample from the same location as a key sample from Kelley et al. (2001), where AFT data are best predicted by an “old” Canyon t-T path, consistent with this segment having been carved by the ~ 55-65 Ma Music Mountain Formation system. B) Previously published AHe data from Flowers (2008) that are best predicted by a “young” Canyon t-T path. C) Combined AFT and AHe data from A and B, respectively, are best predicted by t-T paths that reach surface temperatures by 60 Ma, compatible with the existence of a paleocanyon. D) New AFT data from river mile 230.5, best predicted by a “young” Canyon t-T path. Note the significant difference between this and A.
Figure 8. Best-fit path comparison for all samples shows inconsistent t-T paths. Our new 4He/3He data, the 4He/3He data from Flowers and Farley (2012), all combination models involving AFT and AHe, and about half the AHe-only analyses show post-Laramide residence time at 40-60 °C from 70 to after 20 Ma, consistent with the “young” Canyon hypothesis. Five AHe-only best-fit paths are best predicted by t-T paths involving rapid cooling at 70 Ma, consistent with the “old” Canyon hypothesis (gray band). This range of t-T paths is not physically possible because many of the conflicting t-T paths are from the same location.
Figure 9. Synthesis of weighted mean t-T paths by river mile that shows preferred t-T paths based on the combination of multiple analytical techniques. The ‘best’ path for each sample was taken, including those with rmr0 values adjusted to 0.6 (dashed lines). Most t-T paths are more compatible with the “young” Canyon hypothesis, but post-Laramide residence T is varied. We have no good explanation for the AHe-only path at river mile 240 that is in conflict with AFT and \(^{4}\text{He}/^{3}\text{He}\) best-fit paths even after setting rmr0 values to 0.6 (or even 0).
Figure 10. Summary figure showing irregular scarp retreat of the Kaibab escarpment. Paleorivers at Diamond Creek explain the cool temperatures of the combined AFT and AHe data there, while the extra 500m of material covering thermochronology samples at river mile 240, 252, and 260 explain the 10-20˚C higher temperatures observed in Figure 11 compared to samples located at river miles 243 and 245.