UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture

Chancellor, N; Zohren, S; Warburton, PA; (2017) Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture. npj Quantum Information , 3 , Article 21. 10.1038/s41534-017-0022-6. Green open access

[img]
Preview
Text
s41534-017-0022-6.pdf - ["content_typename_Published version" not defined]

Download (921kB) | Preview

Abstract

Quantum annealing provides a way of solving optimization problems by encoding them as Ising spin models which are implemented using physical qubits. The solution of the optimization problem then corresponds to the ground state of the system. Quantum tunneling is harnessed to enable the system to move to the ground state in a potentially high non-convex energy landscape. A major difficulty in encoding optimization problems in physical quantum annealing devices is the fact that many real world optimization problems require interactions of higher connectivity, as well as multi-body terms beyond the limitations of the physical hardware. In this work we address the question of how to implement multi-body interactions using hardware which natively only provides two-body interactions. The main result is an efficient circuit design of such multi-body terms using superconducting flux qubits in which effective N-body interactions are implemented using N ancilla qubits and only two inductive couplers. It is then shown how this circuit can be used as the unit cell of a scalable architecture by applying it to a recently proposed embedding technique for constructing an architecture of logical qubits with arbitrary connectivity using physical qubits which have nearest-neighbor four-body interactions. It is further shown that this design is robust to non-linear effects in the coupling loops, as well as mismatches in some of the circuit parameters.

Type: Article
Title: Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41534-017-0022-6
Publisher version: http://doi.org/10.1038/s41534-017-0022-6
Language: English
Additional information: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons. org/licenses/by/4.0/.
Keywords: Science & Technology, Physical Sciences, Physics, Applied, Physics, Atomic, Molecular & Chemical, Physics, Condensed Matter, Physics, QUBITS
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > London Centre for Nanotechnology
URI: http://discovery.ucl.ac.uk/id/eprint/1559560
Downloads since deposit
88Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item