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Abstract: A generally applicable metadynamics scheme for predicting the free-energy profile of 

ligand binding to G-protein coupled receptors (GPCRs) is described. A common and effective 

collective variable (CV) has been defined using the ideally placed and highly conserved Trp6.48 

as a reference point for ligand-GPCR distance measurement and the common orientation of 

GPCRs in the cell membrane. Using this single CV together with well-tempered multiple-walker 
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metadynamics with a funnel-like boundary allows an efficient exploration of the entire ligand-

binding path from the extracellular medium to the orthosteric binding site, including vestibule 

and intermediate sites. The protocol can be used with X-ray structures or high-quality homology 

models for the receptor and is universally applicable to agonists, antagonists, partial and reverse 

agonists. The root mean square error (RMSE) in predicted binding free energies for 12 diverse 

ligands in five receptors (a total of 23 data points) is surprisingly small (less than 1 kcal mol−1). 

The RMSEs for simulations that use receptor X-ray structures and homology models are very 

similar.     

Introduction 

G-protein coupled receptors (GPCRs) represent the largest family of drug targets in drug 

discovery.1 In the last decade, a number of GPCR crystal structures have been solved, greatly 

helping structure-based drug design (SBDD) for GPCRs, which was previously largely 

speculative or ligand-based.2 Although it is now possible to use accurate explicit-solvent free-

energy methods and enhanced-sampling (ES) atomistic simulations to predict the affinity and 

occasionally kinetics of ligand binding,3,4 the computational expense involved has hindered the 

use of such methods for routine SBDD in GPCRs. Docking, although sometimes successful in 

predicting protein-ligand complex geometries and despite its widespread use in drug design,5 

suffers from simplified scoring functions6 and cannot model significant target conformational 

changes and accurate binding affinities and kinetics, which are important aspects for drug 

efficacy.7 Recent advances in hardware and force fields8 have made molecular-dynamics (MD) 

simulations an increasingly relevant tool for medicinal chemistry,8,9 although typical simulation 

times are not able to sample binding and unbinding events sufficiently.9,10 Enhanced sampling 

and free energy methods are intended to fill this gap. Free-energy perturbation11 and 
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thermodynamic integration12 have been successful in predicting relative, and sometimes even 

absolute, binding free energies but, due to their end-point approach, give no information about 

transition states and binding mechanisms. The metadynamics technique can be used to compute 

the binding free energy along physically meaningful pathways, predicting both the 

thermodynamics and kinetics of binding, and has established itself as the method of choice for 

free-energy prediction in complex molecular processes.3,13-24 However, metadynamics (and 

similar approaches) require the definition of one or more collective variables (CVs) that 

approximate the reaction coordinate, which must be chosen carefully.21,25,26 The time needed to 

converge a free energy profile increases significantly when poorly suited or too many CVs are 

selected. Using two or three CVs has so far proven to be an effective solution for studying 

protein-ligand interactions. Yet, even using metadynamics, several hundreds of nanoseconds, if 

not microseconds, of sampling are necessary to converge a free-energy profile fully.15-17,27 For 

GPCRs in particular, a recently published metadynamics protocol28 requires 3-5 μs average 

simulation time to converge one GPCR-ligand binding free-energy profile. What is more, when 

the ligand-binding mechanism requires complex target conformational changes, the use of 

multiple replica approaches (such as Parallel-Tempering Metadynamics or Hamiltonian-Replica 

Exchange Metadynamics) is necessary to converge the free energy landscape, making the 

calculation even more computationally expensive.29-31 Thus, there is a clear need for 

computationally efficient metadynamics protocols for ligand binding to GPCRs. Ideally, such 

protocols should be accurate and inexpensive, so that turnaround times for binding free-energy 

profiles become suitable for routine SBDD-applications.  To this end, optimal CVs that 

distinguish the bound, unbound and metastable states along the binding coordinate, while 

minimizing the exploration of unbound and weakly-bound states are very helpful.23,26,27,32 
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Here, we report a simple, general and effective protocol that uses a smart and general CV 

together with recent advances in metadynamics to predict binding mechanisms and affinities 

accurately. We find these goals to be generally achievable in approximately 750 ns sampling 

time, which is now easily accessible on modern clusters and GPU machines.  

A General and Effective Collective Variable  

To define a general and effective CV, we selected a well-conserved extracellular residue, 

Trp6.48 and took the z-projection of its distance from the ligands (see Fig. 1). Trp6.48 is 

conserved in 90% of GPCRs and, unlike intracellular conserved residues in the NPxxY and DRY 

motifs, it is usually found lining the bottom of the binding pocket and its position does not vary 

much with the functional state of the GPCR. The highly conserved nature of the Trp6.48, 

previously believed to act as a rotameric switch,33 allows the proposed CV to be used for 

different receptors and subtypes.18 This residue, is used to define a distance, as shown 

schematically in Figure 1. As the membrane is generally aligned to the xy-plane in MD 

simulations of GPCRs,34 the projection on the z-axis of the distance between the relatively fixed 

Cα of Trp6.48 and the ammonium nitrogen of aminergic ligands (or an equivalent 

pharmacophore element), can be sufficient to describe the binding process (see Figure 1). 

Selecting a single, geometry-based CV that can be used with different ligands and different 

GPCRs is far from easy. The question of what is the minimum number of CVs needed to 

describe complex biological events, such as binding, is an open one.  The intrinsic 

dimensionality of such events has been determined in a number of cases and the consensus is that 

for specific binding events a single effective CV can be devised. The problem is that in principle 

for each system and each ligand, a different CV might be needed. Increasing the number of 

reaction coordinates allows the exploration of binding events in different systems as it resolves 
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the problem of different states sharing the same reaction coordinate value and improves sampling 

of other slow degrees of freedom along the process investigated. However, increasing the 

dimensionality of the space to be explored through the addition of CVs comes at a large 

computational cost. 

In the present case, we were able to define a simple and effective CV and have greatly reduced 

the number of states to be explored by implementing a funnel-shaped boundary. Extensive tests 

also showed that adding a second CV plays a negligible role in resolving overlapping states, 

since the ligands tend to be pre-oriented in the GPCR vestibule. The presence of the membrane, 

and the  

alignment of the system, allow a bell-shaped funnel restraint to be applied to restrict the ligand 

to sampling relevant regions,17 instead of sampling the entirety of the bulk solvent. The funnel is 

applied as circular radii in the xy-plane centered on an axis in the z-direction over the relatively 

fixed Cα of Trp6.48 (see Figure 1). This approach is similar to “funnel metadynamics”,32 

however, as in the case of the Path Collective Variables,27 the boundary is defined in the 

target/membrane  frame. Being rotationally invariant, it does not need any constraint on the 

rotation or translation of the system. We have found this simple setup to perform surprisingly 

well for all the GPCRs and ligands investigated in this work. 
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Recent simulations on a variety of GPCRs have shown that the extracellular vestibule of the 

receptor can pre-orient the ligand34-39  and thus provide a well-defined extracellular end-point for 

docking pathways, and thus simplifying the path-sampling task, often by a form of electrostatic 

focusing40 but also by a simple mechanical effect in which part of the ligand is anchored, 

Figure 1. Scheme showing the definition of the CV and the of the funnel-shaped restraint 

with respect to the membrane and the GPCR (in blue) in the simulations. The membrane 

structure is used to define the xy-plane (gray circle), so that the z-component of the distance 

(black arrow) from the conserved Trp6.48 can be used effectively to describe the ligand 

binding. A bell-shaped funnel restraint, shown in translucent gray is used to speed up the 

convergence of the unbound-states exploration. 
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decreasing the number of degrees of freedom to be sampled. This property of the extracellular 

region renders our simple CV quite effective; only a few pathways for GPCR-ligand binding are 

possible, the ligands find the right orientation during the sampling and binding sites along the 

path are identified and characterized reliably. As highly conserved residues lining the binding 

pocket might be identified in other membrane proteins, we believe that a similar simple approach 

might be used in other target families, beyond GPCRs.32 

 

 

 

 

 

 

 

 

 

Figure 2. Binding free energy profiles of carvedilol reconstructed at increasing Metadynamics 

sampling times up to a maximum of 1250 ns (stars and circles in the top panel indicate the 

positions of minima and barriers monitored in the bottom panel). The change in the reconstructed 

free-energy profile is already < 1 kcal mol-1 after 500 ns. The free-energy differences between 

minima and between the minima and the barrier are fully converged after approximately 750 ns 

and 1 µs, respectively. 
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Additionally, to speed up the sampling, this approach can be easily combined with multiple-

replica metadynamics approaches, such as parallel tempering29 or the multiple-walker 

technique,39 which uses several "walkers” to converge one free-energy profile. In our case, we 

found the trivially parallelizable (and asynchronous) multiple-walker approach more suitable as 

it is very flexible (the number of replicas can be dynamically changed to use the available 

resources) and ensures maximum computational efficiency even on non-homogenous clusters.  

Computational Protocol 

A preliminary metadynamics simulation is used to refine the poses and determine the one with 

the highest binding free energy, as described previously.40 The ligand is first unbound using a 

faster protocol (see the Methods section for details). The position on the reaction coordinate at 

which the ligand is completely hydrated and unbound is determined and representative structures 

are extracted from the simulation for each 2Å window along the reaction coordinate from the 

docked pose to the unbound state. A multiple-walker funnel-metadynamics simulation with an 

appropriate bias factor of 20, Gaussian hills of 0.48 kcal mol−1 and hill-width of 1 Å, is then 

started using the geometries extracted from the preliminary metadynamics run. A full free-

energy profile is usually converged in 0.5 to 1 µs of collective simulation time, depending on the 

number of replicas, approximately 30-50 ns per replica (see Figures 2 and S3). The slow filling 

of the energy basins together with the funnel-shaped boundary and self-healing nature of the 

free-energy landscapes reconstructed by metadynamics19 helps explore the relevant poses along 

the (un)binding coordinate. This was also demonstrated by the ability of the metadynamics 

scheme to predict the crystallographic binding modes of BI-167107 and alprenolol in inactive 

ADRB2 starting with both ligands in the extracellular solvent phase (see Supplementary Movies 

M1 and M2). 
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Figure 2 shows the overall change in the free-energy profiles as a function of increasing 

sampling time for carvedilol. The first three curves (250, 350 and 500 ns) deviate significantly 

from one another and from the later curves. From 500 ns of sampling onwards the reconstructed 

profiles start to converge, attaining constant ΔG for the minima after 750 ns and 1 µs for the 

barriers. The convergence behavior of the other systems is similar, as can be seen from Fig. S3. 

This convergence is due to multiple re-crossing events (Fig. S4) and the enhancement of 

sampling by multiple walkers (Fig. S5). 

Results 

We have tested the above protocol on a set of 23 GPCR-ligand pairs consisting of five 

receptors in three different conformational states (G-protein stabilized, nanobody stabilized and 

binary complex) and 12 ligands that bind to three different sites (orthosteric, intermediate and 

vestibule, i.e. allosteric).18 The results are summarized in Table 1 and Figure 3 (full profiles are 

shown in supplementary Figure S2). Among all ligands, 10 act on the respective receptors as 

agonist, 11 as antagonist and 2 as partial agonist. The initial receptor geometries were taken from 

X-ray geometries for the β2-adrenergic receptor (ADRB2),41-44 muscarinic M2 receptor 

(M2R)36,45 and μ-opioid receptor (μOR)46,47 and are based on homology models18 for the 

vasopressin receptors V1aR and V2R. The ADRB2, M2R and μOR receptors were added to our 

existing data for the vasopressin receptor, as they were the only receptors crystalized in both the 

active and inactive states, and for which agonist-affinities to both the active (G-protein stabilized 

and nanobody stabilized) and inactive states were available when the study was conceived. 

Additionally, ligands with a broad range of intrinsic activity have been co-crystalized with 

ADRB2 and affinities determined in different functional states of the receptor.41-44 
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  Figure 2 shows a representative reconstructed binding free-energy profile. The profile is for 

carvedilol, which is considered a partial agonist on the arrestin pathway and inverse agonist on 

the G-protein pathway. We have previously shown in reference 18 that ligands with partial 

agonistic efficacy can occupy minima energetically close to the global minimum. The results in 

the table include the global minimum for the most stable binding state determined from the free-

energy profiles shown in Supplementary Figure S2. 

 

Table 1. List of the complexes used for the metadynamics simulations and their experimental 

and calculated binding free energies (in kcal mol−1). Experimental free energies are obtained from 

the relation ∆G=−RT ln(Ki) at T=298 K and the computed ones as described in the Methods 

section. All values are corrected for standard volume and funnel potential used as described in 

reference 27. The receptors whose structures were based on homology models are indicated by 

asterisks. 

Ligand	 Receptor	 Effect	 System	 Binding	site	 Ki(nM)	 ΔGexp.	 ΔGcalc.	

Conivaptan V1aR*  Antagonist Binary Intermediate 0.4349 -13.0 -11.5±0.9 

Lixivaptan V1aR*  Antagonist Binary Intermediate 4450 -10.1 -9.5±1.7 

MCF18 V1aR*  Partial 
agonist 

Binary Intermediate/ 
orthosteric 10651 -9.6 -9.1±1.2 

Conivaptan V2R* Antagonist Binary Vestibule 0.3649 -12.9 -11.4±0.5 

Lixivaptan V2R* Antagonist Binary Vestibule 2.350 -11.9 -10.7±0.2 

Satavaptan V2R* Antagonist Binary Vestibule 0.5452 -12.7 -11.0±0.7 

MCF18 V2R* Partial 
agonist 

Binary Vestibule/ 
orthosteric 2051 -10.5 -10.0±2.3 

Satavaptan V1aR* Antagonist Binary Orthosteric 46052 -8.7 -9.1±1.1 

Iperoxo M2R Agonist Ternary-Gαi Orthosteric 0.0136 -15.1 -15.7±0.8 

Iperoxo M2R Agonist Ternary- Orthosteric 0.136 -13.7 -13.4±0.8 
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nanobody 

Iperoxo M2R Agonist Binary Orthosteric 1036 -11.0 -11.5±0.7 

BU72 μOR Agonist Ternary-Gαi Orthosteric 0.02147 -14.8 -14.6±0.6 

BU72 μOR Agonist Ternary-
nanobody 

Orthosteric 0.01647 -15.1 -15.5±0.9 

BU72 μOR Agonist Binary Orthosteric 0.4747 -12.8 -13.7±1.1 

ICI-188551 ADRB2 Antagonist Binary Orthosteric 153 -12.8 -13.5±0.2 

Alprenolol ADRB2 Antagonist Binary Orthosteric 1.253 -12.7 -14.1±0.3 

Carvedilol ADRB2 Antagonist Binary Orthosteric 1.154 -12.7 -13.9±0.8 

Isoprenaline ADRB2 Agonist Binary Orthosteric 10743 -9.9 -11.1±0.4 

BI-167107 ADRB2 Agonist Binary Orthosteric 0.08443 -14.3 -14.9±0.6 

Adrenaline ADRB2 Agonist Binary Orthosteric 12455 -9.8 -11.4±0.1 

Isoprenaline ADRB2 Agonist Ternary-Gαs Orthosteric 1.0743 -12.7 -13.3±0.8 

Adrenaline ADRB2 Agonist Ternary-Gαs Orthosteric 0.24655 -13.6 -15.1±0.3 

ICI-188551 ADRB2 Antagonist Ternary-Gαs Orthosteric 1053 -11.3 -12±1.3 

 

Table 2. Error metrics for the comparison between experimental and calculated binding free 

energies (kcal mol−1) shown in Table 1 and Figure 2. “Homology” and “X-ray” define the source 

of the initial structure for the receptor. 

 All Homology X-ray 

Mean signed error, MUE 0.2 -0.8 0.8 

Mean unsigned error, MUE 0.9 1.0 0.8 

Root mean square error, 
RMSE 1.0 1.1 1.0 

Most positive error 1.7 0.4 1.7 

Most negative error -1.7 -1.7 -0.3 
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The calculated binding free energies show good agreement with experiment with a maximum 

absolute error of 2 kcal mol−1 and an overall root mean square error (RMSE) of less than 1 kcal 

mol−1. The regression between the experimental and calculated binding free energies (without a 

constant term) exhibits a coefficient of determination (R2) of 0.749 for the entire dataset with a 

slope of 1.02, reassuringly close to unity. The statistics of the fit between experiment and 

simulations is shown in Table 2 for the entire dataset, and for the data points based on X-ray 

Figure 3. Correlation between the experimental and calculated binding free energies for the 

data shown in Table 1. 
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structures and homology models of the receptors separately. The errors for simulations using X-

ray receptor structures are very similar to those calculated using homology models (RMSE 1.0 

vs. 1.1 kcal mol−1). We thus conclude that the metadynamics protocol described here is able to 

reproduce the binding thermodynamics of GPCR-ligands accurately, irrespective of whether the 

receptor structure is based on X-ray crystallography or a well-equilibrated homology model 

(based on a highly homologous template, in this case 31% sequence similarity). Quite 

remarkably, this conclusion applies to all types of ligand (agonist, antagonist, inverse agonist) 

and multiple binding sites. While other enhanced sampling methods, as Gaussian-accelerated 

MD, which allows the simultaneous biasing of a large number of CVs, have been successful in 

simulating spontaneous binding of ligands to GPCRs,56 they are generally less efficient in 

sampling the full dissociation of strongly bound ligands.  

 

Conclusions 

We have described a robust metadynamics protocol that performs well in reproducing the free 

energies of binding of a variety of ligands with different effects on five different GPCRs. The 

metadynamics protocol performs similarly for agonists (11 data points), antagonists (10) and 

partial agonists (2), even though antagonists bind to two alternative sites and the partial agonists 

bind in equilibrium between the orthosteric and one other site. Three different types of binding 

site are considered for the five receptors. The data shown in Tables 1 and 2 and Figure 3 provide 

convincing evidence that the protocol described can predict free energies of binding for all types 

of GPCR ligand with an accuracy of approximately ±1 kcal mol−1, regardless of whether an X-ray 

structure or a homology model is used as the original structure source for the receptor and 

provided that this model has been equilibrated by µs-scale MD simulations. 
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Materials and Methods:  

General set up of MD simulations 

Topologies for the receptors were generated using the AMBER99SB-ILDN force field57 and 

inserted into a pre-equilibrated dioleoylphosphatidylcholine (DOPC) bilayer58 according to the 

orientation in the OPM database59 using the GROMACS tool g_membed.60 Ligands were 

parameterized using the generalized AMBER force field (GAFF)61,62 together with AM1-BCC 

partial charges.62 The appropriate number of sodium and chloride ions was added to the systems 

to simulate a physiological salt concentration of 100mM. Particle-mesh Ewald (PME)63 was used 

to treat electrostatic interactions, using a cut-off distance of 10 Å. The resulting system was 

geometry-optimized and then equilibrated for 10 ns followed by a production run.  All 

simulations used the SPC/E water model.64 All simulations were performed using GROMACS65 

with the PLUMED plug-in66 for the metadynamics simulations. The simulations of the ternary 

complexes used a box size of 95×95×160 Å with 37,000 water molecules, and 239 DOPC 

molecules, whereas the binary systems compromised a box of 95×95×115 Å with 21,000 water 

molecules and 239 DOPC molecules. 

β2-adrenergic receptor (ADRB2) 

The inactive β2 receptor was modeled based on the high-resolution crystal structure (PDB 

access code 2RH141). The model was then equilibrated for 10 ns at constant pressure (NPT) and 

simulated for 500 ns of production MD simulation. A ternary complex model for ADRB2 with 

the BI-167107 agonist and the Gαs subunit of the G-protein after 500ns MD simulation,67 based 

on the ternary complex structure of ADRB2 (PDB access code 3SN643) was used.67 The active-
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state structure of the ADRB2-adrenaline complex stabilized by a nanobody,55 was aligned to our 

first ternary model and the adrenaline coordinates were transferred to obtain an adrenaline pose 

consistent with the ternary complex. The adrenaline-ADRB2-Gαs ternary complex was 

equilibrated and simulated for one μs. The stabilizing NB6B9 nanobody was transferred from the 

adrenaline-stabilized active-state ADBR2 to our ADBR2 structure and the Gαs was deleted. The 

model was then equilibrated for 500 ns MD simulation. 

The crystal structures of ADRB2 bound to the inverse agonist ICI 118,551 (PDB access code 

3NY842), ADRB2 bound to the antagonist alprenolol (PDB access code 3NYA42), ADRB1 bound 

to the agonist isoprenaline (PDB access code 2Y0368) and ADRB1 bound to the biased agonist 

carvedilol (PDB access code 4AMJ69), were aligned to the inactive, binary and active, ternary-

Gαs models of ADRB2 after 500ns MD equilibration based on the Cα atoms of the residues 

within 5 Å of the binding pocket of each ligand. The ligand coordinates were transferred to the 

inactive models, which were then equilibrated for 500 ns of MD simulation. 

M2 Muscarinic acetylcholine receptor 

A ternary iperoxo-M2R-nanobody9-8 (Nb9-8) complex model was based on the crystal 

structure of active-state M2R (PDB access code 4MQS36). A model for the Gαi-protein was 

constructed, using a previously published model for nucleotide-free Gi in complex with the D2 

dopaminergic receptor.67 The D2-Gαi ternary complex was aligned to the ADRB2-Gαs complex 

and the M2-iperoxo complex, followed by substituting the Nb9-8 with the Gαi. The final models 

were then aligned in the membrane according to the orientation in the OPM database.59 All the 

models were then equilibrated and simulated for one μs. 
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μ-opioid receptor  

A ternary BU72-μOR-nanobody39 (Nb39) complex model was based on the crystal structure 

of active-state μOR (PDB access code 5C1M47). A model for the Gαi-protein was constructed, 

using a previously published model for active-state Gi in complex with the D2 dopaminergic 

receptor.67 The D2-Gαi ternary complex was aligned to the ADRB2-Gαs complex and the BU72-

μOR complex, followed by substituting the Nb9-8 with the Gαi. 

The two crystal structures (PDB access codes 4DKL46 and 5C1M47), are complementary with 

respect to missing substructures. The missing N-terminal and ICL3 substructures in the inactive 

model and the missing helix 8 of the active model were modeled using the resolved structure in 

the other partner. The final models were then aligned in the membrane according to the 

orientation in the OPM database.59 All the models were then equilibrated and simulated for one 

μs. 

Vasopressin V2 receptor 

Details of the homology modeling, simulations and methods are given in reference 18. The 

homology model was based on the NTS1 structure (PDB accession code: 4GRV,71 sequence 

similarity 31%), built using the Modeller software and ranked based on the their DOPE score.72,73  

Its quality was found to be good by two different tools (Verify3D and Eval23D).74,75 

 

Metadynamics simulations of ligand binding to μ-opioid, muscarinic M2 and β2 adrenergic 

receptors. 

Metadynamics simulations were performed in order to obtain estimates of the binding free-

energy profiles. We used a combination of the well-tempered metadynamics (WT)21,70 and 

funnel-shaped walls in the spirit of Path collective Variables (PCV) and funnel metadynamics 
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(FM).32 A metadynamics history-dependent bias was applied along the component of the z-

distance between the relatively fixed Cα of Trp6.48 deep in the binding region and the center 

ammonium nitrogen of the ligands. This distance was used as the single collective variable. The 

funnel restraint was then applied to the relative position on the xy-plane (restrained to 8 Å radius 

when fully unbound and allowing 13 Å radius if around the vestibule or deeper) to ensure better 

sampling for the relevant region of the free energy, as the ligand can otherwise move extensively 

in the extracellular solvent without affecting the free energy. Gaussian hills with initial height of 

0.48 kcal mol−1 applied every 1 ps were used. The hill width was chosen to be 1 Å. The Gaussian 

functions were rescaled in the WT scheme using a bias factor of 20. Initial metadynamics 

simulations were performed with the same parameters, except for a higher bias factor of 30. 

Representative structures were extracted from the simulation for each 2 Å window, and used as 

starting coordinates for the multiple walker technique.39 This ensured faster convergence of the 

free-energy surface and enhanced the parallelization. The free energies were calculated using the 

sum_hills function of the PLUMED plug-in66 and corrected for the loss of translational and 

rotational freedom of the unbound ligand due to the funnel-like boundaries according to the 

following equations: 

( )

( )

binding meta

meta

 Funnel/standard Volume Correction

 exp
G log

 exp

BBound
B

BUnbound

G G

F s
ds

K T
K T

F s
ds

K T

Δ = Δ +
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⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟Δ = ⎜ ⎟−⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

∫

    

, where the bound states were defined by the position of the global minimum and the unbound 

states by values of the distance CV greater than 28 Å. An upper-limit for the CV was set at 35 Å, 

based on the box size and available solvent phase and to avoid interactions with the intracellular 
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side of the receptor. The correction for the standard volume and funnel restraint was computed as 

described in references 76 and 77 according to the formula: 

0

Funnel/standard Volume Correction ln
8

meta meta
bulk bulk box

bulk

V VRT
V V

ξ
π

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
    

ξbulk is the fraction of the total possible orientations explored by the ligand in the unbound 

state. V0 is the standard volume accessible to a ligand at 1 mol L−1 concentration, and Vbulk is the 

bulk volume (i.e., Vbox – Vprotein+membrane). The correction was found to range from ~ 0.4 to ~0.6 kcal 

mol−1 for the binary and ternary systems.  

Error estimation 

Error estimates were calculated using a script implementing a variant of Ref. 48 reweight 

algorithm (available here https://www.ucl.ac.uk/chemistry/research/research-groups/group-

folder/protein-dynamics-francesco-gervasio/software). The script uses the time dependent 1) 

free-energy profiles calculated every 50 ns after the initial exploration phase and 2) the time-

independent free-energy profile obtained from the reweighting procedure. The error estimate is 

then determined as the average difference of the two. 

The sampling/convergence errors for the calculated values were also estimated in the classical 

manner by comparing the free-energy differences obtained after different sampling times. The 

two estimates are in good agreement. 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website.  

Supplementary figures referred to in the main text.  
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