
Progress in Neurobiology xxx (2017) xxx–xxx

G Model
PRONEU 1500 No. of Pages 25
Review article

Uncertainty and stress: Why it causes diseases and how it is mastered
by the brain

Achim Petersa,*, Bruce S. McEwenb, Karl Fristonc

aMedical Clinic 1, Endocrinology & Diabetes, University of Luebeck, Luebeck, Germany
bHarold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
c The Wellcome Trust Centre for Neuroimaging, University College London, London, UK

A R T I C L E I N F O

Article history:
Received 13 March 2017
Received in revised form 22 May 2017
Accepted 24 May 2017
Available online xxx

Keywords:
Allostatic load
Atherosclerosis
Attention
Bayesian Brain
Brain energy metabolism
Learning
mortality
Selfish Brain
Stress definition
Stress habituation
Uncertainty
Variational free energy

A B S T R A C T

The term ‘stress’ – coined in 1936 – has many definitions, but until now has lacked a theoretical
foundation. Here we present an information-theoretic approach – based on the ‘free energy principle’ –

defining the essence of stress; namely, uncertainty. We address three questions: What is uncertainty?
What does it do to us? What are our resources to master it? Mathematically speaking, uncertainty is
entropy or ‘expected surprise’. The ‘free energy principle’ rests upon the fact that self-organizing
biological agents resist a tendency to disorder and must therefore minimize the entropy of their sensory
states. Applied to our everyday life, this means that we feel uncertain, when we anticipate that outcomes
will turn out to be something other than expected – and that we are unable to avoid surprise. As all
cognitive systems strive to reduce their uncertainty about future outcomes, they face a critical constraint:
Reducing uncertainty requires cerebral energy. The characteristic of the vertebrate brain to prioritize its
own high energy is captured by the notion of the ‘selfish brain’. Accordingly, in times of uncertainty, the
selfish brain demands extra energy from the body. If, despite all this, the brain cannot reduce uncertainty,
a persistent cerebral energy crisis may develop, burdening the individual by ‘allostatic load’ that
contributes to systemic and brain malfunction (impaired memory, atherogenesis, diabetes and
subsequent cardio- and cerebrovascular events). Based on the basic tenet that stress originates from
uncertainty, we discuss the strategies our brain uses to avoid surprise and thereby resolve uncertainty.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Individuals, who feel threatened by changes in the external
environment or their internal body milieu, may find themselves
confronted with the question

‘What strategy should I select to safeguard my future physical,
mental and social wellbeing? (Question 1)

“Stress” arises in those people who are uncertain about the
answer. Thus, stressed individuals lack control. By placing
emphasis on the notion of ‘uncertainty’, we have recently proposed
this novel definition of the term ‘stress’ (Peters and McEwen,
2015).

How does our brain make predictions about the world when it
only has access to small fragments of it? Apparently, the brain
makes use of sophisticated statistical methods. By operating with
probabilities, the brain is able to make predictions of future
outcomes even under conditions of uncertainty. How exactly these
procedures are executed is one of the most fascinating questions in
neuroscience (Friston, 2010).

1.1. What is uncertainty?

We begin with a brief summary of how mathematicians deal
with the problem of uncertainty. In the 1740’s, the Reverend
Thomas Bayes had an ingenious idea, which led him to the simple
mathematical rule that carries his name – but then puzzlingly he
gave it up. Seventy years later, Pierre-Simon Laplace rediscovered it
independently and gave it its modern mathematical form. Bayes’
rule says: ‘By updating our initial beliefs with new evidence we
obtain a novel and improved belief’. Bayes’ theorem is particularly
interesting, because it allows inferring from an effect to its probable
cause. Such causal inference works better as more observational
evidence comes available. Current brain research makes use of the
very same principle in the so-called Bayesian Brain concept,
according to which the brain uses effects – that is, the sensory data
(or input), which is all the brain has access to – to figure out their
probable causes. Obviously, this is a fairly brief summary of the
application of the Bayesian vernacular to the brain. Underlying it is
a more substantial view based on the rather uncontroversial idea
that the brain engages with information processing, and that
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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information theory is cast in terms of the probability theory from
which Bayes' rule is derived. In 1948, the mathematician, electrical
engineer, and cryptographer Claude Shannon founded information
theory in his seminal work (Shannon, 1948). It was he who stated
that ‘information’ is ‘reduction of uncertainty’.

The Bayesian Brain is essentially a theoretical construct that can
be traced back to the students of Plato through to the philosophy of
Kant. It inherits much from the writings of people like Helmholtz in
the 19th century and people like Richard Gregory in the 20th
century. Geoffrey Hinton and colleagues formalized these ideas in
the 1980s. One of us has imported these ideas into the biological
sciences in the form of a ‘free energy principle’ (Friston et al.,
2006). According to that concept, all cognitive or biological
systems are driven to minimize an information-theoretic quantity
known as ‘free energy’. More precisely, this quantity is ‘variational
free energy’ and differs from ‘thermodynamic free energy’, though
the two are mathematically equivalent. Free energy, defined in the
current article as the information-theoretic quantity, bounds
surprise, and is conceived as the difference between an organism’s
predictions about its sensory inputs (embodied in its internal
model of the world) and the sensations it actually encounters.

To put it concisely, reducing ‘free energy’ inevitably reduces
‘surprise’ – as measured by a violation of predictions. In exactly the
same vein, reducing ‘expected free energy’ inevitably reduces
‘expected surprise’ – known as entropy or uncertainty. Thus, in the
long-term, we are all compelled to avoid surprises and resolve
uncertainty. Intriguingly, we found ‘variational free energy’ (in
bits) and ‘thermodynamic energy’ (in Joules) closely coupled, a
finding that emerged first when analyzing their interrelation
mathematically (Sengupta et al., 2013, 2016), and second when
studying experimentally how the brain responds to stress (Harris
et al., 2012; Hitze et al., 2010).

1.2. What are our resources to master uncertainty?

Let us take a quick look at how neuroscientists regard our
resources to master uncertainty. In the middle of the 20th century,
Hans Selye identified a set of reactions, which he termed the
‘general adaptation syndrome’ (Selye, 1956). This uniform pattern
of responses that he described included the enlargement of the
adrenal cortex, atrophy of the thymus, and gastro-intestinal ulcers.
s: Why it causes diseases and how it is mastered by the brain, Prog.
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Fig. 1. Repeated stress responses in times of uncertainty. Stress responses are
elicited, when the environment changes and the individual becomes uncertain
about which strategy to select in order to safeguard his/her future wellbeing. In this
situation, the brain computes the probabilities for each available strategy (S1, S2, S3)
that it will safeguard future wellbeing (upper insert). If all available strategies
display equal probabilities, then uncertainty (entropy) is maximal. Novel
information is needed to resolve uncertainty. To get novel information energy is
required. Thus, the stress responses contain a key component, namely, the
procurement of additional energy for the brain. With the help of the extra cerebral
energy, information processing is enhanced. If uncertainty is resolved, the
individual may certainly select a suitable strategy from a repertoire (T1, T2, T3)
(lower insert). In this case, the certainty has been regained, and stress reactions
have subsided (*). Non-habituators are people who show full neuroenergetic,
neuroendocrine, emotional and cardiovascular responses when repeatedly exposed
to an inhospitable environment. Chronically activated stress responses also exert
adverse effects that lead to damage of the body and the brain-referred to as
allostatic load (**).
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Selye focused on physical, chemical, and microbiological noxae
that caused changes in the external environment and in the
internal body milieu: the lack of oxygen, nutrition or water; heat or
cold; toxins; microorganisms, etcetera. John W. Mason, however,
has criticized that Selye had underestimated the role of
psychosocial influences (Mason, 1959). He emphasized that
novelty, unpredictability, and uncontrollability of a condition
and expectation of adverse sequels are key triggers of a stress
reaction (Mason,1968). Over the past forty years, many researchers
have defined stressful situations – from a bio-psychological
perspective – as characterized by ‘no information, no control,
uncertainty with a sense of threat’ (Koolhaas et al., 2011; Lyons and
Levine, 1994; Monat et al., 1972). More recently, experiments have
confirmed that humans are capable of computing environmental
uncertainty, and that their beliefs about uncertainty mediate the
strength of their stress responses (de Berker et al., 2016). Moreover,
the better people tune their beliefs about uncertainty, the better
they were able to predict future outcomes – suggesting that the
stress response has an adaptive function (de Berker et al., 2016).
According to these ‘Masonian’ notions, family conflicts at home,
mobbing at work, or highly disordered neighborhoods also
indicate an inhospitable environment. In any case, as suggested
above, the uncertainty about how to deal with such changes in the
internal body milieu or the external environment causes ‘stress’.

The approach to stress proposed here entails a well-defined
question (i.e., Question 1), where we have in mind a set of answers
without necessarily knowing which is correct. This means that we
can treat Mason's aspects of stress – novelty, unpredictability and
uncontrollability – more precisely and formally by using Shannon's
uncertainty (entropy). A second aspect of this novel stress
definition is that a ‘sense of threat’ is required. A third feature is
the inclusion of optional behavioral responses.

To resolve uncertainty, three processes play a crucial role:
attention, learning and habituation. When persons feel uncertain
and threatened, because of a changing internal or external
environment, their brains enter a hypervigilant status to decrease
uncertainty (about strategy selection) as fast as possible. To garner
the required information, extra cerebral energy is needed. From the
physical point of view, the following applies: Obtaining any
information costs energy, erasing information produces energy
(Berut et al., 2012; Brillouin, 1953; Toyabe et al., 2014; Tribus and
McIrvine, 1972). With respect to the brain, this means: Reducing
uncertainty and providing the brain with the necessary energy
entails neuroendocrine and neuroenergetic responses that consti-
tute the stress response (Fig. 1). The Selfish Brain theory – founded
by one of us in 1998 – describes this characteristic of the vertebrate
brain to cover its own, relatively high, energy requirements with
the highest priority when controlling energy fluxes within the
organism (Peters et al., 2004). In this respect, the brain behaves
‘selfishly’ – as has been confirmed experimentally (Hitze et al.,
2010; Kubera et al., 2012b; Oltmanns et al., 2008; Peters et al.,
2011). Such a prioritization of brain energy metabolism is an
inherent feature in vertebrates – a feature that is evident on short
and long time-scales for preserving cerebral function, energy and
mass during stress or food deprivation (Gong et al., 1998; Kind
et al., 2005; Miller et al., 2002; Muhlau et al., 2007).

The key mechanisms of the acute stress response – that have
been disclosed so far – are as follows: The anterior cingulate cortex
(ACC) assesses the degree of uncertainty about whether future
outcomes are uncertain (Fig. 2) (Behrens et al., 2007; Feinstein
et al., 2006; Karlsson et al., 2012; Liljeholm et al., 2013; Paulus et al.,
2002; Sarinopoulos et al., 2010). The amygdala (by exchanging
information with the orbitofrontal cortex) may play a key role in
responding to threats to wellbeing (Schulkin et al., 1994). People
who are not certain about their future wellbeing exhibit correlated
activity in the ACC and amygdala (Sarinopoulos et al., 2010). The
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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descending pathways from the ACC are numerous and include the
amygdala, as well as midbrain (e.g., periaqueductal grey) and
brainstem nuclei, which contribute to multiple elements of the
‘stress’ response (Barrett and Simmons, 2015). The ACC-amygdala
complex can stimulate two important descending projections:
first, the pathway to the locus coeruleus (LC); this activation causes
a hypervigilant state (Hermans et al., 2011; Reyes et al., 2011;
Valentino and Van Bockstaele, 2008), which has been linked to an
augmented brain energy consumption (Hitze et al., 2010; Kubera
et al., 2012b); second, the pathway to the ventromedial hypothal-
amus and the paraventricular nucleus, thereby stimulating the
sympathetic nervous system (SNS) and the hypothalamus pituitary
adrenal (HPA) axis, which in turn provide the additional energy
required for the brain (Fig. 3) (Hitze et al., 2010; Kubera et al.,
2012b; Peters et al., 2004).
s: Why it causes diseases and how it is mastered by the brain, Prog.
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Fig. 2. Generating a stress response. The brain receives sensory and viscerosensory data about the hidden states of the world and the body. In turn, the brain acts on the
world and the body through its behavioral responses and stress responses. Both perception and action aim at minimizing prediction errors (free energy). Beliefs about the
current states of the world/body, about the attainable states, and about the goal states are proposed to be represented in the lateral PFC, the pre-SMA and the vmPFC/OFC,
respectively. The anterior cingulate cortex (ACC) compares attainable states with goal states. From that comparison, the risks for alternative strategies can be assessed. Based
on the risk assessment the ACC may select the best strategy for safeguarding future wellbeing: If strategy selection is certain, the pre-SMA and the primary motor cortex
initiate the respective behavioral response. If action selection is uncertain and threatening, the amygdala initiates a stress response.
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Activated by the first path, the LC in the brain stem feeds back to
the cerebral hemispheres, where norepinephrine (NE) acts at
cortical synapses (Aston-Jones and Cohen, 2005; Berridge and
Waterhouse, 2003). In this way, norepinephrine increases attention
and enhances information transmission at neuronal synapses.
Crucially, enhanced information transmission at synapses is itself
particularly expensive in terms of energy (Harris et al., 2012).
Activated by the second path, the HPA-axis releases cortisol into
the general circulation. Cortisol passes the blood-brain-barrier
easily and binds to mineralocorticoid receptors (MR) and
glucocorticoid receptors (GR) located in and on neurons of the
hippocampus, the amygdala, and the cerebral cortex (Arriza et al.,
1988; McEwen et al., 1968; Patel et al., 2000; Sanchez et al., 2000).
Here, cortisol regulates synaptic plasticity (long-term potentiation
and long-term depression) and in this way gates learning (Maggio
and Segal, 2007, 2009; Pavlides et al., 1995). Learning after stress
can be interpreted as updating flawed beliefs about the world,
thereby furnishing better predictions of future outcomes (Fig. 3).
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
Neurobiol. (2017), http://dx.doi.org/10.1016/j.pneurobio.2017.05.004
Some people – but not all – adapt to chronic stress by
habituating. Stress habituation can be regarded as a form of
adaptation when living under uncertainty. We define ‘habituators’
as those who display attenuated autonomic, endocrine and
metabolic reactions, when being repeatedly exposed to the same
hostile environment. As we shall see later on, stress habituation
reduces the uncertainty about what strategy to select.

1.3. What happens when uncertainty cannot be resolved?

Next, we look at how neuroscientists and physicians are
concerned with the health effects that arise from the failure to
resolve uncertainty. When the acute stress responses turn out to be
insufficient for resolving uncertainty, the critical situation may
become chronic, and the organism is burdened by ‘allostatic load’.
According to the concept of ‘allostatic load’ – developed by one of us
(McEwen and Stellar, 1993) – the neuroendocrine, cardiovascular,
neuroenergetic, and emotional responses become persistently
s: Why it causes diseases and how it is mastered by the brain, Prog.
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Fig. 3. Three stress responses for reducing uncertainty. During uncertainty about what to do next, the ACC-amygdala complex activates three subsystems that feed back to
the brain: the LC, SNS and HPA-axis. First, LC-drive leads to cortical NE release, which enhances cortical information transmission. Second, the SNS allocates the required extra
energy to the brain that is necessary to support enhanced and more precise neuronal message passing. Third, the HPA-axis releases glucocorticoids, which suspend cortical
plasticity.
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activated so that blood flow turbulences in the coronary and
cerebral arteries, high blood pressure, atherogenesis, cognitive
dysfunction and depressed mood accelerate disease progression.
All of these long-lasting effects of persistently activated stress
reactions are called ‘allostatic load’ (McEwen, 1998). When serious
damage manifests, the effects are referred to as ‘allostatic overload’
(McEwen and Wingfield, 2003). Uncertainty can lead to a vicious
cycle of altered brain architecture and systemic pathophysiology,
which further damages the capability of the subject to cope with
uncertainty. People living in a volatile and insecure environment
(e.g., an insecure job, unhappy relationship, poverty, etc) have a
high risk of depression, cognitive impairment, myocardial infarc-
tion, and stroke (McEwen, 1998; Peters and McEwen, 2015).

In the current paper, the mathematical, neurobiological and
medical aspects of uncertainty are combined. On this background,
stress is regarded as a form of uncertainty: We often make false
predictions about the world, and our prediction errors are
therefore large. When stressed, we find ourselves unable to avoid
prediction errors or resolve uncertainty. In short, brains in distress
do not work at their minimum of ‘free energy’. Again and again
there are surprises. Although relating the Bayesian Brain concept to
‘stress’ appears plausible, the underlying neuroendocrine mecha-
nisms of such a link have yet to be established. The aim of the
current paper is to disclose those neuroendocrine mechanisms
that could fulfill Bayesian functions in regulating attention,
learning, and habituation. In brief, we will consider the resources
the Bayesian brain has at its disposal to master uncertainty – but
also what happens when uncertainty cannot be resolved.
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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2. The Bayesian brain

The Bayesian brain casts neuronal processing as the process of
inferring the causes of sensations (e.g., this pattern of visual input
is caused by someone smiling at me). This inference conforms to
Bayes rule, which says that (sensory) evidence is used to update
‘prior beliefs’ into more informed, evidence-based ‘posterior
beliefs’. Accordingly, the Bayesian Brain iteratively updates its
prior beliefs based on emerging evidence. All past experiences over
the life course have ultimately formed the current prior beliefs,
which form the basis for how the Bayesian Brain makes predictions
or decisions. Thus, early life adversity and failed attachment to
parental, but also any strong positive or negative experience in
school, work and personal life influence the way the Bayesian Brain
selects its strategy for securing the future wellbeing.

To understand the Bayesian Brain, two key processes have to be
considered in relation to each other: perceptual and active
inference. We begin with the first process, which focuses on
how we perceive. This perceptual aspect of the Bayesian Brain is
often referred to as ‘predictive coding’.

2.1. Perceptual inference

Our senses are bombarded with information about objects in
the world. On the basis of that sensory input, we perceive what is
out there. The problem that will concern us is how the brain
accomplishes this feat of perception – turning sensations into
percepts.
s: Why it causes diseases and how it is mastered by the brain, Prog.
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A basic and useful formulation of the problem of perceptual
inference is in terms of cause and effect. States of affairs in the
world have effects on the brain – objects and processes in the world
are the causes of the sensory input. The problem of perception is
the problem of using the effects – that is the sensory data that the
brain has access to – to figure out the causes. This represents a
problem of causal inference for the brain, analogous in many
respects to our everyday reasoning about cause and effect, and to
scientific methods of causal inference (Hohwy, 2013). The problem
of perception is a problem because it is not easy to reason from
only the known effects back to their hidden causes. This is because
the same effect can arise from many different causes. In other
words, in many situations we face an ill posed problem that can
only be solved using prior expectations. Inferring the causes of
sensations – and making that inference easier by resolving
uncertainty – is essential for navigating our world and, on some
views, a necessary prequel for action.

2.1.1. Two modalities of Bayesian updating
We will illustrate Bayesian inference using the example of a

medical doctor, who infers the diagnosis (cause) of the uncon-
sciousness (effect) seen in a young patient (Box 1): the doctor has
to choose between three possible diagnoses. Although a current
textbook of medicine could extend the list of possible diagnoses, it
is typical for humans to consider a limited number of options
(Ortega and Braun, 2015). The examples used in Box 1 and Box 2
describe two distinct formulations of Bayesian inference in easily
understandable terms. The first is exact Bayesian inference (Box 1),
using the explicit formula of the Bayes theorem, in which a prior
belief is directly updated into a posterior belief. The second is
Box 1. Exact Bayesian approach to medical diagnosis

Here, we give an example of how a clinician could use the Bayesian

In this first example, the doctor is mathematically talented and mak

physician, she has been called because an occasional passer-by fou

the young patient lying unconscious (what the doctor sees is a

underlying disease. Three possible diagnoses come to her mind: i

brain energy deficiency) or cerebral bleeding. Based on her previou

of her three potential diagnoses (see table). By the way, the brief v

three prior probabilities add up to 1.0. First of all, the doctor leaves o

‘intoxication’ is her favorite diagnosis, because it has highest prior 

physical examination is followed by a blood glucose check, which in

also be regarded as an effect (Y) of the underlying disease (X). After
likely it is that the disease (cause) fits the blood glucose measureme

cause described in the diagnosis would actually cause that particu

that patient, then the probability is high that a life-threatening bloo

for the diagnosis ‘neuroglycopenic coma’ is 0.9. The other two diag

In Bayesian belief updating, the ‘prior probability’ is multiplied by

‘posterior probability’ P(X|Y).

Bayesian belief updating : PðX jY Þ ¼ PðXÞ� PðY jXÞ
P Yð Þ

� �

We call the factor in brackets ‘update factor’, since the prior multipli

leads to a new favorite diagnosis, which is ‘neuroglycopenic com

diagnoses become less likely. Of note, the posterior probabilities 

posterior becomes the new prior, which can be used in the next 

17-year old patient in coma

Cause Effect 

X Y 

Intoxication Blood glucose measurement sho

Neuroglycopenic coma 

Cerebral Bleeding 
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approximate Bayesian inference (Box 2), which is typically used in
‘predictive coding’ and has been extensively studied in the field of
machine learning. The latter approach describes how a ‘generative
model’ is used to infer from an effect to its probable cause. The
generative model consists of a ‘prior’ belief and the ‘likelihood’ (for
details see Box 2). With the help of the generative model one can
predict an effect given the cause that one considers as most likely.
In other words, one can generate an effect from a cause.
Accordingly, generative models in the brain are capable of
predicting sensory data. The predicted effect is then compared
to the observed effect, and the difference between the two
constitutes the so called ‘prediction error’. The prediction error is
used in turn to update the prior belief to transform it into an
approximate posterior belief. Unlike the mathematical procedure
in exact Bayesian updating, the procedure used in predictive
coding prescribes a particular process that gets the same results.

Furthermore, both forms of Bayesian inference can be cast as a
process that minimizes variational free energy, where free energy
is, effectively, the overall amount of prediction error. It has been
shown that both perceptual inference and learning can be
described as a minimization of free energy or the suppression of
prediction errors (Friston, 2005; Rao and Ballard, 1999). The
concept of free energy originates from statistical mechanics; it is
often used to convert difficult integration problems – inherent in
the direct application of Bayes rules – into an easier optimization
problem (e.g., the minimization of prediction error). ‘Free energy’
can be regarded as the information a person is lacking, and which
he/she could use to make his/her internal model as close as
possible to reality. Thus, free energy minimization corresponds to
prediction error minimization in predictive coding. By minimizing
 approach to estimate the probability of an underlying disease.

es use the explicit formula of Bayes (Eq. (1)). As an emergency

nd a 17-year-old comatose patient at the roadside. When seeing

n effect), she is uncertain about the probable cause, i.e. the

ntoxication (e.g. alcohol or drugs), neuroglycopenic coma (i.e.

s experience she assigns so-called ‘prior probabilities’ to each

ersion of the term ‘prior probability’ is ‘prior’. Note, that these

ther possible diagnoses out of consideration. At this time point,

probability P(X) = 0.5. However, she still remains uncertain. The

dicates 25 mg/dl (normal 70–110 mg/dl). The measurement can

 the blood glucose value is obtained, the doctor considers ‘how

nt (effect)’. This is the ‘likelihood’ P(Y|X): the probability that the

lar effect. If ‘neuroglycopenic coma’ is the underlying cause in

d glucose measurement of 25 mg/dl is obtained. The likelihood

noses display a particularly small likelihood (0.1 in both cases).

 the ‘likelihood’, and the result is proportional to the so-called

ð1Þ

ed with this update factor equals the posterior. Bayes’ inference

a’ with a posterior probability P(X|Y) = 0.857. The other two

for all diagnoses again add up to 1.0 (see table). After all, the

diagnostic step that involves further diagnostic evidence.

Prior Likelihood Posterior
P(X) P(Y|X) P(X|Y)

ws 25 mg/dl 0.5 0.1 0.119

0.4 0.9 0.857

0.1 0.1 0.024
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Box 2. Approximate Bayesian approach to medical diagnosis

‘Perceptual inference’ – as it is believed to be implemented in the brain – differs from a methodological point of view from the

explicit (‘exact’) Bayesian updating described in Box 1. To illustrate the way ‘perceptual inference’ works, we give a second

example: A different doctor is also confronted with a comatose 17-year old patient. In contrast to the doctor in the first example

(Box 1), he does not use the explicit Bayes formula, but in his case the process of Bayesian inference is rather based on

subconscious intuition. In fact, ‘perceptual inference’ works in such an unconscious way. The second doctor also has his favorite

diagnosis, which is ‘intoxication’, i.e., the diagnosis with the highest prior probability. The prior probabilities are again as shown in

the table (Box 1). Before the blood glucose measurement is obtained, the doctor would use his favorite diagnosis together with the

likelihood P(Y|X) to predict, which blood glucose measurement is most likely to be observed (given his favorite diagnosis is true).

This means, generally speaking, that the ‘prior distribution over the causes’ together with the ‘likelihood of the effect given the

causes’ is used for predicting observable data values. In probability theory and statistics, such a model used for predicting

observable data values is referred to as a ‘generative model’. In case the favorite diagnosis ‘intoxication’ is true, the doctor would

predict a blood glucose value of Y = 90 mg/dl. When the doctor sees the actually obtained blood glucose value of Y* = 25 mg/dl, it is

different from what he had expected. He is surprised. The difference between the predicted 90 mg/dl (Y) and the actually observed

25 mg/dl (Y*) is called ‘prediction error’. Thereon, the doctor uses the prediction error to estimate a new posterior probability. The

technical problem is that the precise calculation of the new posterior cannot be performed easily. Instead, he may use an

approximation of the true posterior Q(X), which can still be very useful. Put simply, he successively adjusts his values of Q(X) to

minimize (blood glucose and prior) prediction errors. In perceptual inference, the ‘approximate true posterior’ lies close to 0.857 for

the diagnosis of a ‘neuroglycopenic coma’, indicating that this is now the best choice. It should be mentioned that the process of

‘predictive coding’ is a little more complex than illustrated here, since it deals with continuous states while the example with the

doctor deals with discrete states. Although different in mathematical terms, ‘exact Bayesian inference’ and ‘approximate Bayesian

inference’ (used in predictive coding) follow the same line of thought: inferring from the effect to its probable cause. The key utility

of predictive coding is that it prescribes a process theory for doing Bayesian inference (by suppressing prediction errors or

variational free energy) that could be implemented in the brain.
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prediction error, the internal model is improved step-by-step
updating posterior beliefs, given the prior beliefs and the
likelihood of sensory observations.

In conclusion, Bayesian inference, as used in perception, reduces
our uncertainty about the states of affairs in the world that have
caused our sensations.

2.1.2. Precision and attention
A key concept – that we will develop later – is the notion of

‘precision’ in predictive coding. In brief, the predictive coding
formulation of the Bayesian Brain says that prediction errors
represent the newsworthy information that has yet to be
explained. Clearly, the brain also has to select the ‘news’ channels
it should attend to. This process of selection corresponds to
increasing the volume or ‘gain’ of precise or reliable prediction
errors. ‘Gain modulation’ is a phenomenon commonly observed in
neuroscience that alters the amplitude of a neuronal response, but
not its selectivity. Computationally, the increase in the gain of
neurons encoding prediction errors ensures that precise informa-
tion is used to revise internal models. Psychologically, it provides a
nice metaphor for attentional selection. Finally, from a physiologi-
cal perspective it places neuromodulation and cortical gain control
in a key position to influence perceptual synthesis. This follows
from the fact that increasing the influence of prediction errors rests
on increasing the responsivity of the neuronal populations, which
report them.

Put simply, the higher the precision of prediction errors, the greater
their influence on belief updating. During stress, neuromodulation
amplifies the precision of sensory prediction errors, endowing sensory
information with greater weight, in relation to prior expectations.

2.1.3. The anatomical correlates of hierarchical predictive coding
The brain’s architecture is hierarchically organized (Felleman

and Van, 1991). This organization has been intensively investigated
in the visual system: the lower cortical areas are located closer to
primary sensory input, while the higher areas play an associational
role. The hierarchical architecture enables the brain to learn its
own priors as well as the intrinsic causal structure of the world that
creates the sensory input. In hierarchical Bayesian inference (or
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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predictive coding) the priors at intermediate levels now become
‘empirical priors’. This follows because they become accountable
to empirical (sensory) data and can therefore be optimized to
minimize prediction errors at each hierarchal level.

Neuroanatomically, the notion of a hierarchy is based on the
distinction between bottom-up and top-down connections (Salin
and Bullier, 1995). The notion of top-down connections provided a
better explanation of experimental data than the idea that only
bottom-up connections are necessary (Garrido et al., 2007). Top-
down connections arise largely from layer-5-pyramidal cells and
target layer-2-pyramidal cells of lower cortical areas (Fig. 4).
Conversely, bottom-up connections arise largely in layer-2-
pyramidal cells and project to the spiny layer-4-neurons of a
higher cortical area.

Fig. 4 illustrates our simplified model of the hierarchical
organization of the brain. In agreement with neuroanatomical
studies (Feldmeyer et al., 2005; Harris and Shepherd, 2015; Lubke
et al., 2000; Ramaswamy and Markram, 2015; Thomson and Lamy,
2007) and neurocomputational analyses (Bastos et al., 2012;
Haeusler and Maass, 2007; Shipp, 2016; Shipp et al., 2013), we
propose the following assignment of empirical prior beliefs, the
likelihood, the sensory data, and the prediction errors to their
anatomical substrates. Accordingly, empirical prior beliefs are
located in layer 3 of the cortex, and the likelihoods or predictions
are represented in layer 5. The empirical prior expectation encodes
the most likely cause of sensory inputs. The combination of
empirical prior and likelihood furnishes a prediction that is
conveyed to layer-2-pyramidal cells at the level below. Here, the
prediction is compared to the sensory data, and in this way, a
prediction error is calculated. In return, this prediction error is
conveyed upwards, through layer-4-stellate cells to layer-3-
pyramidal cells, where it can update the empirical priors. This
brief description has been simplified for clarity; for a more detailed
account, see legend of Fig. 4. The computational architecture
depicted in Fig. 4 enables continuous updating of prior beliefs in a
hierarchical fashion, in response to fluctuating sensory input at the
lowest level.

In perceptual inference, the brain makes use of an internal
hierarchical model where top-down predictions are continuously
s: Why it causes diseases and how it is mastered by the brain, Prog.
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Fig. 4. Simplified model of the hierarchical organization of the brain. Here, posterior or empirical prior beliefs P(X), likelihoods P(Y|X), sensory data (Y*), and prediction
errors are associated with anatomical structures. Superficial L3-pyramidal cells encode the sufficient statistics (i.e., the mean) of the empirical prior probability distribution;
deep L5-pyranidal cells encode the sufficient statistics of the likelihood probability distribution. The updating of the empirical prior involves two processes: First, the
empirical prior (L3) and the likelihood (L5) generate a top-down prediction. This prediction is compared to the sensory data (Y*), thereby generating a first prediction error in
L2-pyramidal cell of the lower level (Y*-Y). This lower-level prediction error is conveyed further upwards via L4-stellate cells to L3-pyramidal cells. It contributes to the update
of the empirical prior. Second, a current-level-prediction error is calculated in layer-2-pyramidal cells. This second prediction error results from the comparison between the
higher-level predictions and the current-level-empirical prior. The relative influence of the first and second prediction error on empirical priors is determined by their
precision or reliability. Technically speaking, the precision of a prediction error corresponds to its inverse variability. Physiologically, precision is thought to be encoded by the
responsiveness or gain of cells encoding prediction error while, psychologically, it can be associated with attentional gain that selects precise sources of prediction error;
namely, reliable information that is yet to be explained. The ultimate aim of the belief propagation or neuronal message passing it implied by this circuitry is to minimize
(precision weighted) prediction error or free energy, and thereby optimizing the generative model. For simplicity, we have only shown the lowest sensory level and the first
level of the hierarchy. A similar architecture can be imagined for subsequent levels, where the data become empirical priors at the lower level.
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updated by bottom-up prediction errors (Friston et al., 2006). The
reciprocal top-down/bottom-up-message passing in this hierarchy
seems able to accommodate the context sensitive and invariant
aspects of perception, while at the same time explaining many
neuroanatomical and neurophysiological facts about cortical
hierarchies (Hohwy, 2013).

In summary, perceptual inference reduces our uncertainty about
what caused our sensory observations. Next, we consider the
important fact that we can choose which sensations to sample.

2.2. Active inference

The second process that is important for understanding the
Bayesian Brain is ‘active inference’. ‘Perceptual inference’ and
‘active inference’ represent the two ways in which we can
minimize prediction errors. In perceptual inference, individuals
strive to update their internal model of the world, while in active
inference individuals change their environment (or their sampling
of the environment) with the aim of better informing their beliefs
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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about the world (Adams et al., 2013; Friston et al., 2006). Put
simply, one can either change empirical prior beliefs (through
perception) to make predictions more like sensations or one can
change sensations (through action) to make them more like
predictions. The second is ‘active inference’. Experimental
evidence supports the notion that the principles of active inference
underlie the functioning of the visual and auditory systems
(Chennu et al., 2013; Kok and de Lange, 2014). In the here and now,
minimizing certain forms of prediction errors (e.g., proprioceptive
prediction errors) through action can be very simple. For example,
motor reflexes can be described as quenching proprioceptive
prediction errors (Adams et al., 2013). Another example concerns
the allostatic (predictive) regulation of the internal body milieu
(Sterling, 2012), where viscerosensory prediction errors are
reduced (Barrett and Simmons, 2015).

There appears to be a dialectic regarding action and uncertainty.
Both exploratory behavior and avoidance behavior show biphasic
effects on uncertainty. Exploratory behavior is costly because it
involves a variety of risks, leading to ‘short-term uncertainty' (e.g.,
s: Why it causes diseases and how it is mastered by the brain, Prog.
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the voyages of Christopher Columbus); but the possible (episte-
mic) benefit of exploratory behavior is the reduction of ‘long-term
uncertainty’ (filling in the white areas on the maps). In contrast,
avoidance behavior can reduce ‘short-term uncertainty’ (retreat
may indeed have a relaxing, uncertainty reducing effect); but
people who have suspended appropriate belief-updating during an
avoidance episode might be very surprised by a world that has
changed profoundly in the meantime. As avoidance behavior
impairs epistemic foraging, it can promote adherence to outdated
beliefs, thereby causing ‘long-term uncertainty’. In short, there is
an optimum balance between approach and avoidance behavior
that rests upon environmental volatility and, more importantly,
the ability of an agent to estimate volatility and use it to minimize
long-term uncertainty (Friston, 2009). By analogy, the exploration
for energy faces the same dialectic: Although foraging behavior
itself is an energy-consuming process, it serves to access energy
resources (Peters et al., 2007b).

The same notion of minimizing expected prediction errors in
the future (i.e., uncertainty) underlies extension of active inference
into the domain of goal-directed-decision making and planning
(Friston et al., 2015). The implicit action selection is the endpoint of
active inference and has particular relevance to our treatment of
stress. We now take a closer look at how the brain infers the best
strategy.

2.2.1. Goal-directed-decision making
Recently, goal-directed-decision making has been considered in

terms of active inference (Friston et al., 2013, 2014). In other words,
the problem of selecting behavioral strategies can be treated as an
inference problem. For such a decision-making process three kinds
of probability distributions are relevant: Probability distributions
over the

� current states of the world/body,
� states that can be reached, i.e., attainable states,
� states that the agent believes he/she should occupy, i.e., goal
states.

Strategy selection occurs under the prior belief that it will
minimize the difference between the probability distribution over
‘attainable states’ (given beliefs about the current state) and the
probability distribution over ‘goal states’. Or, put another way,
choices are based upon beliefs about alternative strategies, where
the most likely strategy minimizes the difference between
attainable and desired outcomes (repertoire versus goal) (Friston
et al., 2013, 2014).

The beliefs about the ‘current states of the world’ are
continuously updated during perceptual inference. The lateral
prefrontal cortex (PFC) is a key brain region where current
environmental states are thought to be encoded (Panagiotaro-
poulos et al., 2012). Thus, this brain region represents updated
empirical priors or posterior beliefs about the ‘current states of the
world’. The lateral PFC occupies a high hierarchical position in the
brain. It sends predictions to the sensory cortex, which is located at
a lower level, and in turn the lateral PFC receives prediction errors
from the sensory cortex. The viscerosensory cortex evaluates
interoceptive signals (e.g. pain, cutaneous light ‘sensual’ touch and
thermal sensations) that result from changes in the internal body
milieu (viscera, muscles and skin) (Barrett and Simmons, 2015;
Chanes and Barrett, 2016).

The beliefs about the ‘states that can be reached’ may be
represented in the pre-supplementary motor area (pre-SMA)
(Fig. 2) (Nguyen et al., 2014; Rushworth et al., 2004). On this view,
the pre-SMA comprises a generative model that predicts outcomes
that can be reached by the use of alternative strategies (strategy1,
strategy2, . . . , strategyn) taken from a given repertoire (Friston
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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et al., 2013). Past experiences – such as early life adversity and
failed attachment to parental – have a strong impact on what
future events are foreseen when considering the respective
strategy. In a long-lasting iterative process, the amygdala- and
hippocampus-dependent emotional and declarative memories
shape the generative model, which allows the prediction of the
attainable states. In this regard, no person or animal is free from
such biographical biases towards the prediction of new events.
Technically speaking, the beliefs about the ‘states that can be
reached’ are represented by a probability distribution over – or
expectations about – (counterfactual) states (Fig. 6A; blue).

The ‘states that agents believe they should occupy’ are
represented in regions like the ventromedial prefrontal cortex
prefrontal cortex (vmPFC) and the orbitofrontal cortex (OFC)
(Barron et al., 2015; Bechara et al., 2000; Gottfried et al., 2003;
O'Doherty et al., 2003; Roesch and Olson, 2004). These regions
occupy the highest hierarchical position in the Bayesian Brain.
They play a key role in defining the expected value (i.e. free energy)
of future states. These goal or prior preferences provide a point of
reference for goal directed behavior but can also be updated. The
beliefs about the goal states are also represented as a probability
distribution over states of the world (Fig. 6A; red).

The ACC is a central region that is in a position to integrate
beliefs about attainable states and goal states (Lee et al., 2007;
Nguyen et al., 2014). From a theoretical perspective, the difference
between attainable states and goal states can be formalized by the
so-called ‘Kullback Leibler (KL) divergence’ (Kullback and Leibler,
1951). In information theory, the KL divergence measures the
difference between two probability distributions. Although it is
often intuited as a way of measuring the distance between
probability distributions, the KL divergence is not a true metric. It is
often used as a measure of the information gained when one
revises one’s beliefs from a prior to a posterior probability
distribution. In the case of the ACC, the KL divergence can be
considered as a measure of how much the attainable states differ
from the goal states (Fig. 6A and B). In engineering and optimal
control theory, the process of minimizing the divergence between
predicted and preferred states is called KL control. In economics,
the KL divergence is known as risk; leading to a formal description
of risk sensitive behavior.

In summary, an important aspect of resolving uncertainty is the
selection of actions or strategies that reduce expected surprise, in
relation to prior preferences or goals.

2.2.2. The degree of uncertainty about what to do next
The principle of how the brain resolves uncertainty about which

action or strategy to select is also found in the most basic forms of
life. In the chemotaxis, for example, a bacterium changes its
strategy (i.e., the direction of swimming) until it reaches a
nutrient-rich environment (goal state). This itinerant strategy is
based on the prior expectation that the agent will only change its
direction of movement if it is facing unexpected states (Friston,
2011). Likewise, the (ideal) Bayesian Brain entertains alternative
strategies when it cannot reach goal states. Figuratively speaking,
the nutrient-deprived bacterium shows the same restless behavior
– which is an indication of ‘uncertainty’ where it should go – as
many stressed humans who are uncertain about what to do next.

Among the various brain regions, the ACC is in a prime position
to integrate information from the pre-SMA and the vmPFC/OFC and
evaluate the relative risk (KL divergence) (Fig. 2). Action selection
is based upon these divergence measures, where the most likely
strategy minimizes the KL divergence or relative risk (Fig. 6C). In
this way, the ACC plays a central role in selecting a strategy.

If an individual feels certain about the answer to question 1
(‘What strategy should be selected to safeguard future wellbe-
ing?’), strategies are available for achieving the desired goals (i.e.,
s: Why it causes diseases and how it is mastered by the brain, Prog.
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strategies with small KL divergences), and the strategy that
produces best approximates the desired outcome (smallest KL
divergence) can be selected and conveyed from the pre-SMA to the
primary motor cortex. In turn, the primary motor cortex generates
proprioceptive ‘predictions’, which are fulfilled by transforming
peripheral proprioceptive ‘prediction errors’ into movement
(Adams et al., 2013; Shipp et al., 2013). In this way, the selected
behavior is instantiated (Fig. 2). The certainty about what to do
next manifests itself through a strong sense of control.

Clearly, it is possible that none of the strategies in the game will
achieve the desired goal with a sufficiently high probability (i.e., no
strategies in play are likely to reach the desired goal). We suggest
that in such a risky and uncertain state of affairs, the ACC initiates
an emergency program comprising a set of coordinated stress
responses (Fig. 2). Accordingly, the ACC issues visceromotor
‘predictions’ to the brainstem and spinal cord via connections
that cascade through the amygdala. Such visceromotor ‘predic-
tions’ are fulfilled by converting visceromotor ‘prediction errors’
into neuromodulatory, autonomic and hormonal action (Barrett
and Simmons, 2015). In this way, the allostatic network is
activated. The ‘visceromotor regions’ controlling the allostatic
processes (the amygdala, ventral striatum, insula, orbitofrontal
cortex, anterior cingulate cortex, medial prefrontal cortex) are
commonly regarded as the ‘circuits for emotions’ (Barrett, 2017).
With such an emergency activation of the ACC-amygdala complex,
the individual experiences feelings of threat, uncertainty and lack
of control. As has been shown experimentally, persons who display
the largest stress responses exhibit lowest levels of self-esteem
and locus of control, i.e. self-concept of own competence
(Kirschbaum et al., 1995; Pruessner et al., 2005, 1999). In extreme
cases, however, when it appears precluded that any of the available
strategies can achieve the goal state (i.e., every strategy exhibits an
extremely large KL divergence), the individual may despair and
abandon his/her goal.

In the following, we will focus on the risky state of affairs – in
which the individual experiences feelings of threat, uncertainty,
and loss of control. The associated risk is twofold: first, there is the
risk of surprising outcomes (e.g., physical injury, loss of social
position, financial loss, separation from life partner, etc.). Secondly,
there is a risk that the lack control associated with ‘toxic stress’ and
allostatic overload might progress to disease. Once exposed to
threatening changes in the external or internal environment, the
individual is confronted with three possible outcomes: The first
outcome indicates ‘good stress’; it represents a satisfying result;
certainty could be regained and the individual experiences a sense
of mastery and good self-esteem; wellbeing is restored completely
(Fig. 1; asterisk) (McEwen and Gianaros, 2010). The second
outcome specifies ‘tolerable stress’; in this case, the individual
could not undo the changes in the inhospitable environment;
however, uncertainty could be reduced through buffering mecha-
nisms such as habituation. These people show only low stress
responses and intermediate levels of self-esteem and locus of
control (Kirschbaum et al., 1995; Pruessner et al., 2005, 1999). This
second outcome is discussed later on in the chapter ‘Habituation –

updating of goal states’. The third outcome characterizes ‘toxic
stress’; in this case, the buffering mechanisms failed, and the
individuals remain trapped in the inhospitable environment; their
stress responses are maximal whereas their levels of self-esteem
and locus of control are minimal (Kirschbaum et al., 1995;
Pruessner et al., 2005, 1999); these persons are at high risk for
physical and mental morbidity and mortality (Fig. 1; two asterisks)
(McEwen, 2012).

In conclusion, if we feel confident that we can reach our goal states
(i.e., one course of action has a particularly low risk), the ACC informs
the motor system about the best action. However, if we feel uncertain
about what to do next (all strategies are equally risky) then the ACC
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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initiates an emergency program to ensure inferences about the state of
the world are properly informed.

To prevent all these short- and long-term risks associated with
uncertainty, the brain starts its emergency program as soon as a
person gets into such a precarious situation. Pivotal to this
formulation is the activation of the amygdalae. These brain regions
– located within the temporal lobes – organize the stress responses
that are ultimately aimed at resolving the risk and uncertainty
portended by the ACC. The reduction of uncertainty in such states
of emergency involves the beneficial actions of the stress
hormones. Both cortisol and catecholamines are important in
determining memory of significant things to avoid danger in the
future. Stress hormones are necessary to update our beliefs about
the world (and our plans), which are no longer fit for purpose.

3. Mastering uncertainty

As mentioned, the brain uses of three processes to master
uncertainty: attention, learning, and habituation. Crucially, this
repertoire of uncertainty resolving processes is closely intertwined
with cerebral and systemic energy metabolism.

3.1. Attention – the procurement of more precise sensory information
for Bayesian updating

The first and immediate response to a stressful challenge is
arousal. Arousal includes an increase of attention and vigilance. In
an uncertain situation, the brain switches from the normal vigilant
state during wakefulness into a hypervigilant state. Here, we
review evidence that speaks to how the neuroendocrine mecha-
nisms that lead to hypervigilance procure more precise sensory
information. As mentioned above, information is required to
reduce uncertainty (Shannon, 1948). To get the more precise
information, extra cerebral energy is needed. The relation between
information and thermodynamic cost follows from the fact that
energy is required to change the information encoded in any
system. From a neuronal perspective, the increase in the gain of
neurons encoding prediction errors is metabolically costly. From
the point of view of predictive coding, an increase in precision or
attentional gain necessarily entails an increase in neuronal energy
supply.

During a psychosocial challenge (e.g., oral examination,
dispute), the amygdala and the bed nucleus of the stria terminalis
provide input to the LC, the SNS and the HPA axis (Fig. 3) (Swanson,
2000). As a result, corticotrophin-releasing factor is released from
nerve terminals targeting LC neurons, thereby regulating their
firing patterns (Valentino and Van Bockstaele, 2008). This
neuropeptide leads to an increase in tonic and a decrease in
phasic discharge of LC neurons. Phasic discharge involves only a
limited number of LC neurons and characterizes the mode of
‘focused attention’. In this mode, LC projections to cortical areas
lead to enhancement of only the few parts of the cortex involved in
a specific task (Aston-Jones and Cohen, 2005; Berridge and
Waterhouse, 2003). In contrast, tonic discharges of locus coeruleus
neurons involve large number of these neurons. This mode leads to
widespread activation of cortical areas (Aston-Jones and Cohen,
2005; Berridge and Waterhouse, 2003). The tonic mode is activated
during acute stress and facilitates the interaction of many cortical
areas (i.e., by increasing the influence of ascending prediction
errors), which – in concert – aim at revising beliefs in order to
reduce uncertainty.

In the following, we will look at how attention optimizes the
processing of precise sensory information. Specifically, we consider
how norepinephrine increases cortical synaptic information trans-
mission, how particular information flows are augmented, what
energy costs arise, and how the extra energy required is provided.
s: Why it causes diseases and how it is mastered by the brain, Prog.
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3.1.1. Noradrenergic regulation of presynaptic glutamate release
LC projections target cortical synapses, where they release

norepinephrine in a paracrine manner (Fig. 3) (Berridge and
Waterhouse, 2003). Here, norepinephrine modulates the release
probability of glutamate and GABA from presynaptic nerve
terminals. We focus on the modulation of inputs arriving at the
basal dendrites of layer-2-error-units-pyramidal cells (Fig. 5). Mara
Mather and coworkers have described a positive feedback loop and
have coined the term ‘hot spot’, describing the coincidence of a
‘high-frequency-arriving-spike train’ with a ‘high LC-drive’
(Mather et al., 2015). Upon such a coincidence, a ‘hot spot’ can
be observed where glutamate release probability is enhanced (for
details see Box 3).

The concept of NE hot spots (Mather et al., 2015) nicely explains
two experimental observations: First, increasing the frequency of
LC stimulation either leads to facilitation or suppression of sensory
evoked neuronal responses (Devilbiss and Waterhouse, 2004). For,
according to Mather’s concept, a NE hot spot facilitates synaptic
transmission of a high-frequency-spike train, while it suppresses
synaptic transmission of a low-frequency-spike train. Second, high
LC activation increases the likelihood that an action potential
results in the release of glutamate, while low LC activation
decreases that likelihood (Chiu et al., 2011; Kobayashi et al., 2009).

These neuromodulatory hotspots appear to offer the perfect
mechanism for the gain control implicit in predictive coding
Fig. 5. LC activity enhances synaptic information transmission at multiple release sit
synapses. In the case of multiple release sites from one axon onto a postsynaptic cell, the e
hotspots at multiple release sites, NE increases the share of action potentials that release 

of synaptic transmission, and increase total synaptic energy consumption. By expending 

thereby endowing them with greater precision.
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accounts of perceptual inference. In other words, selecting certain
streams of ascending prediction errors (arising in hotspots) affords
precision and influence to those prediction errors – so that they
exert a greater effect higher in the cortical hierarchy. In this way,
NE-mediated presynaptic gain control is in a prime position to
selectively procure unexplained or newsworthy sensory informa-
tion that is necessary to revise empirical prior beliefs about the
world.

In summary, stress ignites multiple NE hotspots, thereby selectively
enhancing the transmission of precise sensory information.

3.1.2. Energetic constrains on information transmission
Neural information transfer incurs an exceptional amount of

energy (Harris et al., 2012). The brain uses 20% of the total energy
that is available in the human organism, although its mass
contributes only 2% to the total body mass (Peters et al., 2004).
Thus, the brain occupies a privileged metabolic position. Its
primary fuel is glucose. It takes up more than 60% of the circulating
glucose at rest (Reinmuth et al., 1965). Remarkably, an experimen-
tal mental or psychosocial challenge increases whole-brain-
glucose uptake by more than 10% (Hitze et al., 2010; Madsen
et al., 1995). So-called ‘brain pull mechanisms’ – a term which
originates from logistics – allow such a rapid systemic (re-)
allocation of energy resources within the human organism (Peters
and Langemann, 2009). Even on the cell-to-cell level, it has been
es. Upon high LC activity, hotspots are ignited both at glutamatergic and GABAergic
nergetically optimal release probability of neurotransmitters is 25%–50%. By igniting
neurotransmitter vesicles (glutamate or GABA). Hotspots decrease energy efficiency
extra energy, hotspots allow for a selection or boosting of specific prediction errors;

s: Why it causes diseases and how it is mastered by the brain, Prog.

http://dx.doi.org/10.1016/j.pneurobio.2017.05.004


Fig. 6. Selecting the best strategy. Panel A. During stress, the ACC monitors the
divergence between the probability distribution over ‘attainable states’ and ‘goal
states’ for plausible strategies that constitute a repertoire. Such divergences are
called Kullback-Leibler divergence (DKL). The greater the divergences or relative
risk, the greater the uncertainty about which strategy to select – and the stronger is
the activation of amygdala. Panel B. Each strategy displays a different relative risk
(DKL). Panel C. Based upon the risk distribution, the ACC assesses for each strategyi
(i = 1,2, . . . ,n) the probability that it will ensure wellbeing. In the example depicted
here, none of these probabilities is high. Thus, the individual remains uncertain
about the answer to question 1. Because of the high degree of uncertainty or

Box 3. Norepinephrine ignites local ‘hot spots’ of neuronal excitation

If a high LC activity leads to NE-release at a glutamatergic synapse, NE binds to adrenergic receptors located on the presynaptic

glutamatergic neuron: it binds to the high-affine a2-adrenoreceptors and the low-affine a1- and b-adrenoreceptors (Fig. 5)(Ramos

and Arnsten, 2007). At the presynaptic site of cortical neurons, high-affinity and low-affinity adrenoreceptors have been shown to

exert opposing actions. While low-affine a1- and b-adrenoreceptors increase the glutamate release probability (Ferrero et al., 2013;

Kobayashi et al., 2009), high-affine a2-adrenoreceptors receptors decrease it (Chiu et al., 2011). Furthermore, at low NE

concentrations the actions of high-affine a2-adrenoreceptors prevail, while at high NE concentrations the actions of low-affine a1-

and b-adrenoreceptors prevail (Nai et al., 2009, 2010). These findings are in line with the biphasic NE-dose-response curves on

patch clamp recordings (Linster et al., 2011).

Once glutamate has been released from the presynaptic site into the synaptic cleft, it binds on the one hand to postsynaptic AMPA

and NMDA receptors and on the other hand – as glutamate spillover – to NMDA-receptors located on the norepinephrine release

sites. In this way, we find a modulatory loop with NE regulating glutamate release probability, and glutamate spillover regulating

NE release (Mather et al., 2015). This modulatory loop acts in a positive feedback manner, and has been termed ‘hot spot’ (Mather

et al., 2015).

Thus, high LC-drive leads to high concentrations of NE at the presynaptic site, which lead to an increase of glutamate release

probability. If coincidently there is a high-frequency-spike train arriving at the presynaptic site, a particularly high amount of

glutamate is released into the synaptic cleft. A high glutamate spillover in turn amplifies further NE release, resulting in maximal

glutamate release probabilities. In contrast, in case of a low LC-drive and spontaneous glutamate release, the low concentrations of

the glutamate spillover are insufficient to promote further release of NE – the glutamate release probability is even more reduced.

High LC activity also ignites hotspots at GABAergic release sites. NE enhances GABA-release probabilities by low-affine a1-

adrenoreceptors, whereas NE suppresses GABA-release probabilities by high-affine a2-adrenoreceptors (Hirono and Obata, 2006;

Salgado et al., 2012). In summary, from among the action potentials arriving at the synapse, only a few actually elicit the release of

the neurotransmitter vesicles (glutamate or GABA). Only in the case of high LC activity do hotspots occur, where most of the

incoming action potentials of a high-frequency train actually produce a neurotransmitter release (glutamate or GABA).

Noteworthy, NE also affects postsynaptic excitability of cortical neurons (by suppressing excitatory and inhibitory postsynaptic

potentials) (Kobayashi et al., 2009; Salgado et al., 2011), but the facilitatory NE effects on presynaptic neurotransmitter release

(glutamate and GABA) have been shown to override the less effective NE-effects on postsynaptic excitability (Salgado et al., 2011).

In summary, NE ignites hotspots at neurotransmitter release sites, thus increasing the transmitted information (bits per second).
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demonstrated that neurons take up energy ‘on demand’ (Magis-
tretti et al., 1999; Pellerin and Magistretti, 1994). This demand
process is caused by other ‘brain pull mechanisms’, which allow a
rapid local (re)allocation of energy resources within the brain itself
(Peters and Langemann, 2009). Most brain energy is spent on
synaptic transmission (Harris et al., 2012).

Not every action potential arriving at the synapse leads to the
release of a glutamate vesicle. Levy and Baxter used an informa-
tion-theoretical approach to show that the brain optimizes the
quotient of ‘information transmitted to energy expended’, rather
than optimizing its ‘coding capacity’ (Levy and Baxter, 1996). In
other words, the brain is, in principle, able to transmit information
at a much higher rate than it actually does, because operating at a
lower transmission capacity is more economical; i.e. energy
efficient (for details see Box 4).

Under non-stress conditions, LC-activation is low and the brain
operates in an economic energy-efficient mode, abstaining from
the [mis]use of its potentially higher information processing
capacity. Under stress conditions, however, LC-activation is high
and the brain operates in an energetically expensive mode,
exploiting its full information processing capacity, while forsaking
optimal energy efficiency.

In short, the use of the energetically expensive mode is restricted to
times of stress and uncertainty.

3.1.3. Prediction errors are encoded with higher precision during stress
Now the question arises, for which task is extra energy actually

needed. On the predictive coding view, uncertainty or loss of
confidence about the top-down predictions calls for an increase in
the precision of sensory prediction errors – that induce Bayesian
belief updating. Prediction error units assess how much bottom-up
information about sensory evidence differs from top-down
information on expectations (Fig. 5). But what neurobiological
mechanisms help layer-2-error-unit-pyramidal cells to evaluate a
mismatch between descending predictions and the expected state
of affairs at the current level?
entropy, a stress response is initiated.
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Box 4. Energetic costs limit presynaptic release probabilities

In neurons with a maximal firing rate of 400 Hz, transmission capacity is maximal, if they fire at half of their maximum rate; i.e.

200 Hz. Yet in practice, the mean firing rates of neurons in vivo is much lower – around 4 Hz (Harris et al., 2012). Against this

background, it seems plausible that such a low basal glutamate release probability could be enhanced on demand. An action

potential is much more likely to result in the release of glutamate, if locus coeruleus output is high. According to the calculations of

Levy and Baxter, such a high glutamate release probability – that is induced by high LC activation – is energetically much more

expensive than synaptic transmission occurring with low LC activation, which constitutes the economically optimal mode (Levy

and Baxter, 1996).

With respect to energetic constrains, the number of release sites from an axon onto a postsynaptic cell is also important. This

number is larger than 6 for cortical pyramidal to interneuron synapses, larger than 4 for pyramidal cell to pyramidal cell synapses in

cortex, and 6 for excitatory synapses onto pyramidal cells in hippocampal area CA1 (Deuchars and Thomson, 1995; Larkman et al.,

1997; Markram et al., 1997). Julia Harris and David Attwell showed that in case of multiple release sites – from one axon onto a

postsynaptic cell – the optimal release probability is 25%–50%; optimal with respect to the quotient of information transmitted to

energy expended (in bits per joule) (Harris et al., 2012).
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It has long been recognized that cortical neurons collectively
exhibit synchronous activity patterns (Salinas and Sejnowski,
2001). Correlated (i.e., coherent) fluctuations play a crucial role in
many cortical processes. If one neuron fires, and the other one is
more (or less) likely to fire, we call their activity ‘temporarily
correlated’. Many neurons are able to sense temporarily correlated
input patterns. A neuron can detect coincident firing patterns, if
spikes from two inputs arrive within a short time interval. But
neurons can also can sum up their inputs to elicit an action
potential (Konig et al., 1996; Shadlen and Newsome, 1994). A
neuron is called ‘balanced’, if both excitatory and inhibitory inputs
are strong and cancel each other out. In this way, the mean input
current approximates zero, and the average steady-state voltage is
insufficient to generate an action potential. Yet, such a balanced
neuron might still generate an action potential, since stochastic
voltage fluctuations always occur that are large enough to cross the
necessary threshold. Balanced neurons are more sensitive to
coherent (i.e. correlated) presynaptic input than unbalanced
neurons (Salinas and Sejnowski, 2001).

A few years ago, it was shown that if the input from an excitatory
neuron A and the input from an inhibitory neuron B are correlated,
then the fluctuations of the postsynaptic neuron decrease (Salinas
and Sejnowski, 2001). Let us assume that L2-error-unit-pyramidal
cells receive inhibitory input (conveying predictions from the level
above) and excitatory input (encoding the empirical priors from
the current level). If predictions from the level above and priors
from the current level are highly correlated, then fluctuations of
L2-error units will be attenuated. Conversely, if there is a
mismatch, then synaptic fluctuations will ensue, and the L2-error
unit will start firing. In this way, the L2-error units are capable of
encoding and conveying prediction errors.

The mechanisms described here for the detection of non-
correlated inputs can explain how superficial pyramidal cells
extract newsworthy prediction errors for broadcasting deeper into
the brains hierarchy. However, the precision of these prediction
errors depends upon how L2-error units respond to their opposing
presynaptic inputs (Brown and Friston, 2012). It is here that NE
(and other neuromodulators) comes into play in a very special way.

3.1.4. NE increases the precision with which prediction errors induce
Bayesian updating

If the brain is in the business of inferring what its body should
do next, it has to encode – at some level – probability distributions
(Richmond and Wiener, 2007). Several probabilistic neuronal
codes are mathematically possible, but most of the available
evidence points to predictive coding, in which the activity of single
units or populations encodes the mean of a Gaussian probability
distribution (Friston, 2009). When assuming that neurons encode a
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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Gaussian posterior distribution (the so-called ‘Laplace approxima-
tion’), their firing rate is taken to represent the posterior mean or
expectation. However, if neuronal firing encodes a mean what
encodes the standard deviation; i.e. uncertainty? The premise of
predictive coding is that precision is encoded by the response
amplitude or gain of the neurons encoding prediction errors. The
key point here is that the noradrenergic modulation affects
presynaptic gain control – and therefore contributes encoding of
precision: NE increases the probability of presynaptic neurotrans-
mitter release onto L2-neurons, and in so doing renders the
postsynaptic L2-neuron more responsive to non-correlated inputs.
Thus, NE increases the number of action potentials that the L2-
error unit generates when it receives non-correlated input signals.
Such an increase in the number of action potentials of the L2 error
unit forwards more weight to the ascending prediction error; i.e.,
to the bottom-up sensory information flow.

In summary, NE enhances information transmission at the
synapses, and in so doing enables the L2-error-unit-pyramidal
populations to endow prediction errors with higher precision. In this
way, NE acting on the sensory cortex – that occurs in situations of
uncertainty – adds value and weight to the bottom-up-information
flow. Therefore, during stress, the sensory evidence becomes more
influential than (relatively imprecise) prior expectations. Such
selective increases in precision are key for updating beliefs about
the world that engender uncertainty and stress.

3.1.5. The ‘selfish brain’ provides the energy for increasing precision
Where does the extra brain energy needed during uncertainty

and stress come from? In many people – but not in habituators (see
below) – the brain demands supplementary cerebral energy from
the body stores (Peters and McEwen, 2015). The ACC-amygdala
complex not only stimulates LC neurons, but in parallel stimulates
the SNS and the HPA-axis (Fig. 3). SNS and HPA-axis activations
immediately suppress insulin secretion from the pancreatic b-cells
(Ahren, 2000; Chan et al., 2007; Frühwald-Schultes et al., 2000;
Tong et al., 2007). Consequently, insulin-dependent GLUT4-
mediated glucose uptake in muscle and fat is prevented,
rebalancing energy consumption in favor of the insulin-indepen-
dent GLUT1-mediated glucose uptake at the blood-brain barrier
(Hasselbalch et al., 1999). In this way, the brain foreshadows its
own increased cerebral energy need induced by stress.

In conclusion: During arousal, noradrenergic regulation of
presynaptic neurotransmitter release probabilities leads to precise,
high gain transmission of sensory evidence required to update deep,
hierarchical beliefs about changes in the external and internal milieu.
At the same time, the selfish brain supplies itself with the extra energy
required for precision-engineered belief updating.
s: Why it causes diseases and how it is mastered by the brain, Prog.
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Fig. 7. Glucocorticoids enable or preclude cortical plasticity. Panel A. In case the
ACC fails to select among plausible strategies, uncertainty arises about which
strategy to pursue, leading to amygdala activation, which results in the increase of
glucocorticoid concentrations in blood and brain. Panel B. Glucocorticoids bind with
high affinity to intracellular MR and with a low affinity to intracellular GR.
Intracellular MR and GR exert opposing actions on the expressions of a subset of
genes involved in long-term plasticity, e.g. the gene encoding the TrkB receptor
(Schaaf et al., 1997). Thus, the combined effect of MR and GR on gene expression
corresponds to the difference between the MR-dose-response curve and the GR-
dose-response curve. Panel C. The combined effect of MR and GR is represented by a
‘bell-shaped’ curve. For instance, the production rate of TrkB receptors follows such
a bell-shaped function. Since protein production is necessary for maintaining long-
term plasticity, the dependency of LTP-probability on glucocorticoid concentrations
also shows a bell-shaped form. Of note, the bell-shaped curve depicted here can be
interpreted as a probability over consolidation of experience dependent plasticity.
The mode m indicates the glucocorticoid concentration, where probability of LTP
has its peak.

14 A. Peters et al. / Progress in Neurobiology xxx (2017) xxx–xxx

G Model
PRONEU 1500 No. of Pages 25
3.2. Learning – updating during and after stress

The second key process for mastering uncertainty is learning.
Glucocorticoids control functional and structural plasticity in
many brain regions (Fig. 3).

3.2.1. Glucocorticoids gate the time window for cortical plasticity
In the case of uncertainty about what to do next (i.e., large

divergences between the beliefs about ‘attainable states’ and ‘goal
states’ under all available strategies), the ACC-amygdala complex
stimulates the HPA-axis and – in so doing – increases the
concentration of glucocorticoids in both blood and brain
(Fig. 7A). In the hippocampus, amygdala, and cerebral cortex,
glucocorticoids bind to MR and GR receptors that are located both
within neurons (cytosol, nucleus) and on neuronal surfaces
(membranes) (Arriza et al., 1988; Patel et al., 2000; Sanchez
et al., 2000).

Here, we focus on intracellular MRs and GRs. These two
intracellular receptors differ in their affinity for cortisol: MR binds
cortisol with high affinity, GR with low affinity (Arriza et al., 1988).
Once cortisol has activated these receptors in the cytosol, MR and
GR enter the cell nucleus where they exert differential effects on
gene expression (de Kloet et al.,1998). Fig. 7B shows the MR and GR
binding characteristics of glucocorticoids in a pyramidal cell. With
respect to synaptic plasticity; i.e., long-term potentiation (LTP) and
long-term depression (LTD), MR and GR have been shown to act in
an opposing manner on gene expression (Diamond et al., 1992;
Pavlides et al., 1994, 1996). Here, we focus on how declarative
memories are formed under stress, which is distinct from the way
emotional memories are conserved (Maggio and Segal, 2012;
Quirarte et al., 1997; Zhou et al., 2010).

At low cortisol concentrations, the facilitatory effect of MRs on
plasticity prevails, while at high cortisol concentrations, the
inhibitory effect of GRs prevails. Due to the opposing actions of MR
and GR, the difference in effects on gene expression becomes
paramount (Datson et al., 2001). The MR-GR difference depends on
the glucocorticoid concentration and shows a ‘bell-shaped’ (or
‘inverted U-shaped’) dependency (Fig. 7C) (de Kloet et al., 1998;
Joels, 2006). A bell-shaped dependence on glucocorticoids is
evident, for example, for the probability occurrence of LTP (Fig. 7C)
(Diamond et al., 1992; Joels, 2006; Pavlides et al., 1994, 1996).
Consolidation of declarative memories is most likely when
glucocorticoid concentrations are low in the normal range (where
the bell-shaped curve has its peak). In contrast, consolidation is
unlikely when glucocorticoids are absent (left-hand side of the
bell-shaped curve) (Wagner et al., 2005) or when glucocorticoid
concentrations are high (right-hand side of the bell-shaped curve)
(Plihal et al., 1999). Likewise, retrieval of memories also shows a
bell-shaped dependency on glucocorticoids, i.e. retrieval is optimal
at low (normal range) glucocorticoid concentrations, but impaired
at very low and very high glucocorticoid concentrations (Rimmele
et al., 2013).

For an inclusive understanding of the role of glucocorticoids in
updating the ‘internal model of the world’, we have to consider
learning in the context of predictive coding. Previously, we have
talked about inferring states of the world in terms of neuronal
activity and how this depends on the precision of prediction errors
encoded by activity dependent changes synaptic efficacy mediated,
in this setting, by NE. However, this inference depends upon having
a good model of the world encoded in the hierarchical connections
that convey descending predictions. This model is learned over
long timescales through experience dependent plasticity; such as
LTP and LTD. On this view, the MR-GR difference is therefore in a
prime position to control the rate of learning – in the same way that
NE controls the rate of inference and evidence accumulation by
boosting the precision of prediction errors. This learning rate has
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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itself to be optimized to produce the best generative models.
Clearly, if we experience the world as uncertain or ambiguous, we
want to suspend learning. Conversely, if we experience it as
predictable and lucid, we want to consolidate what we have
learned. Given that LTP is selectively enabled over a carefully
controlled window of MR-GR difference (Fig. 7), glucocorticoids
open and close the time windows for ‘learning’ (Joels, 2006;
McEwen, 2015). They are therefore in a key strategic position to
selectively consolidate when and what we learn.

In conclusion: High glucocorticoid concentrations create a ‘phase
of change’, revising the current model of the world (including its
strategies). Low glucocorticoid concentrations create a ‘phase of
conservation’, stabilizing the current model of the world.

As mentioned, LTP shows a bell-shaped dependency on
glucocorticoids. The crucial insight now lies in the fact that TrkB
signaling is required for the production of proteins that maintain
LTP (Langemann et al., 2008; Minichiello et al., 1999; Zhang and
Poo, 2002), and that TrkB receptor production rate displays a bell-
shaped-dose-response dependency on glucocorticoids (Schaaf
et al., 1997; Shi and Mocchetti, 2000). Consequently, TrkB
constitutes a link that mediates the bell-shaped-dose-response
s: Why it causes diseases and how it is mastered by the brain, Prog.
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dependency of LTP probability on glucocorticoids – and deter-
mines when changes to our internal models should or can be
consolidated.

Many other biological functions also show a bell-shaped
dependency on glucocorticoids (de Kloet et al., 1998). In the
current paper, we regard this bell-shaped dependency on
glucocorticoids as embodying a reference point for the optimal
level of experience-dependent plasticity. As uncertainty or stress
is, by definition, a sign that our generative models are not fit for
purpose (i.e., have a high free energy), we should not endorse
anything learned under these models by consolidating associative
plasticity. This is consistent with a suspension of (maintenance of)
LTP during high glucocorticoid and stress levels. Turning this
argument on its head, the minimum free energy state must be
associated with low glucocorticoid levels that permit learning.
These optimal levels therefore reflect a reference signal or setpoint
to which our bodies (and brains) must aspire. In short,
glucocorticoid levels can be interpreted as a correlate of
Fig. 8. Learning the prediction error precision. Panel A. The apical tuft of an L2-pyram
inhibitory input from layer 1 that modulates the postsynaptic gain of the pyramidal neu
modulation input decreases it. Panel B. The output of the L2-neuron, which is the preci
inhibitory inputs. Modulatory input onto the apical tuft increases or decreases the slope o
encoding prediction error. LTP occurring at glutamatergic input synapses of the apical tu
error is encoded with a high precision, i.e. it gets more weight as compared to the corres
the apical tuft fixes a decreased slope of the input output function. In this case, the pr
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uncertainty over the timescales of experience-dependent plastici-
ty.

Heuristically, this means that we strive to achieve states that go
along with low (i.e., normal) glucocorticoid concentrations (i.e., the
reference level m in Fig. 7C). A special and interesting case presents
itself, where the glucocorticoid-dependent biological function is
the ‘glucocorticoid release into the blood circulation’. In this case,
the glucocorticoid concentration itself depends on the glucocorti-
coid-dependent bell-shaped relationship. Thus, a setpoint is
generated that depends primarily on the functioning of the MR
in coordination with GR (de Kloet et al., 1998; Peters et al., 2007a).
As a result, the HPA-axis always strives to retain a low blood
concentration of cortisol. Therefore, those states with low (normal)
glucocorticoid concentration are the most probable states that we
find ourselves in. It works like this: Decreased glucocorticoid
concentrations stimulate the HPA-axis, while increased glucocor-
ticoid concentrations (circadian or stress-induced) inhibit it
(Akana et al., 1988; Fehm et al., 1977; Jacobson et al., 1988; Peters
idal neuron is involved in precision control. The apical tuft receives excitatory and
ron. Excitatory modulation input increases the postsynaptic gain, while inhibitory
sion weighted prediction error, depends on the difference between excitatory and
f the input-output function; therefore, controlling the gain of postsynaptic responses
ft fixes an increased slope of the input-output function. In this case, the prediction
ponding higher-level prediction error. LTP occurring at GABAergic input synapses of
ediction error is endowed with low precision, i.e., is weighted lower.
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et al., 2007a). In this way, an equilibrium cortisol concentration is
reached (typically during deep sleep) that represents the mode of
the reference distribution shown in Fig. 7C. In contrast, states with
high glucocorticoid concentrations are to be avoided (e.g., when
learning to drive a car).

In addition to the self-stabilizing MR/GR feedback, the HPA-axis
receives input from the cerebral cortex. A substantial input derives
from the ACC, which is in a position to convey messages about
rising uncertainty (i.e., expected free energy), and in so doing
stimulates the HPA-axis. Under the assumption that our choices
are informed by biological and prosocial goals (e.g., satiety,
affiliative touch, pleasant temperature, etc.), then glucocorticoid
concentrations will remain low if these goal states are attainable.
Conversely, if these goals are deemed unattainable, then the
glucocorticoid concentrations rise. In short, glucocorticoid con-
centration is a direct reflection of whether the world is unfolding
according to expectations or not.
Fig. 9. Learning the generative model. Panel A. Triple pathways control the updating of t
neuron: the driving-input path, the excitatory-modulation-input path, and the inhibito
glucocorticoid concentrations are high (during stress), LTP at glutamatergic and GABAe
concentrations fall (after stress) and can ensue either in the excitatory or in the inhibito
slope of the input-output function of the layer-5 neuron represents functional gain 

postsynaptic gain, while inhibitory modulatory input decreases it. Once the generative 

slope of the input-output function into a neutral ‘default slope’.
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In conclusion, the probability that a synapse undergoes LTP shows
a bell-shaped dependency on the glucocorticoid concentration. There
is an optimal glucocorticoid concentration that favors LTP. This
optimum reflects the absence of prediction errors, or in other words,
the free energy minimum.

3.2.2. Stress and surprisal
In information theory, the term ‘surprisal’ – coined by Myron

Tribus – is used to describe the deviation from one’s expectations
(Tribus,1961). For a given probability distribution over outcomes Y,
surprisal is defined as the negative logarithm of P(Y): i.e., �log(P
(Y)). Thus, surprisal represents the improbability or ‘surprise’ of
observing an outcome; for example, reaching into your pocket for
your phone and finding it is not there. Crucially, the ‘expected
surprisal’ is ‘entropy’. Entropy is the mathematical measure of
uncertainty, which is approximated by expected free energy. This
means that glucocorticoid levels may not only underwrite the
he generative model. The prior-L3 neuron sends three pathways to the likelihood-L5
ry-modulation-input path (which includes an inhibitory interneuron). As long as
rgic synapses is prevented. LTP occurs at the L5 neuron’s tuft only if glucocorticoid
ry path. Panel B. The generative model consists of the prior and the likelihood. The
between expectation and prediction. Excitatory modulatory input increases the
model is updated it can be conserved through LTP. In contrast, LTD would reset the
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expected metabolic free energy associated with stressful (e.g.,
flight or fight) responses, it may also reflect changes in
informational or variational free energy. The above analysis also
suggests that levels of high free energy preclude a consolidation of
experience dependent plasticity – until the world becomes more
predictable and glucocorticoid levels return to their equilibrium
levels.

In uncertain and threatening situations, descending predictions
of stress-related responses are broadcast by the ACC to the anterior
insular and onto autonomic centers to elicit autonomic reflexes
(Barrett and Simmons, 2015; Behrens et al., 2007; Feinstein et al.,
2006; Karlsson et al., 2012; Liljeholm et al., 2013; Paulus et al.,
2002; Sarinopoulos et al., 2010). The ACC-amygdala complex
activates the HPA-axis, cortisol concentrations increase, cortisol
binds primarily to cerebral GRs. Only if the glucocorticoid
concentrations return to low concentrations, which bind primarily
to cerebral MRs, will long-term plasticity in cortical neurons (e.g.
layer-5-pyramidal cells) be induced and maintained. Thus, learning
of our internal model of the world can only occur at a low
glucocorticoid concentration, when our models are fit for purpose
– according to our ACC.

In conclusion, if the internal model of the world makes false
predictions, high glucocorticoid values indicate a high free energy (i.e.,
uncertainty); the model is changed and functional plasticity is
precluded. Once the updated model succeeds in making correct
predictions, low glucocorticoid values indicate a low free energy (i.e.,
predictability); the model is consolidated and functional plasticity re-
emerges.

3.2.3. Functional plasticity at the apical tuft
In the preceding treatment, we distinguished between infer-

ence and learning; where the former entails optimizing expect-
ations about states of the world through synaptic activity and the
latter entails optimizing expectations about parameters of the
model through synaptic plasticity. In the following, we will focus on
the specific mechanisms that the glucocorticoids use to optimize
long-term synaptic efficacy.

Glucocorticoids act, among other things, on synapses that are
located in the apical tuft of pyramidal cells. A layer-1-input axon
excites either the dendrites of apical tuft or inhibits them using
axonal collaterals with an interposed GABA interneuron (Figs. 8 A
and 9 A ) (Jiang et al., 2013). Glucocorticoids control the
maintenance of LTP or LTD at these glutamatergic and GABAergic
synapses. The excitatory and inhibitory inputs arriving at the apical
tuft play an important role in regulating the postsynaptic gain of
the pyramidal neurons. Thus, glucocorticoids are in an ideal
position to modulate the synaptic gain of pyramidal neurons in the
long term.

By controlling the postsynaptic gain of pyramidal neurons, the
glucocorticoids may play a key role in learning the ‘precision of
prediction errors’ (encoded by L2 neurons) and the ‘generative
model’ (encoded by L5 neurons) (Figs. 8 A and 9 A). Dendritic gain
modulation at the apical tuft has been shown to increase the gain
of layer-5-pyramidal neurons (Larkum et al., 2004, 1999). The
combination of input to basal dendrites or soma with distal input
into the apical tuft increases the slope of the input-output function
of the neuron. This increase in gain is due to the fact that the back-
propagating Na+ action potentials interact with the weak distal
synaptic input; such an interaction generates forward propagated
Ca++ action potentials that in turn elicit a burst of multiple action
potentials originating from the axonal spike initiation zone
(Larkum, 2013; Larkum et al., 2004). Excitatory input to the apical
tuft increases the postsynaptic gain of the pyramidal neuron, while
inhibitory input to the apical tuft reduces it (Figs. 8 B and 9 B).

Whether LTP or LTD occurs at a synapse depends on two factors:
first, correlated activity between the pre- and postsynaptic neuron
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and the glucocorticoid concentrations. LTP is consolidated if there
is highly correlated activity between the pre- and postsynaptic
neuron and the glucocorticoid concentrations remain in the low
(normal) range (Maggio and Segal, 2007, 2009). In all other cases,
LTP is attenuated or even LTD occurs (Maggio and Segal, 2007,
2009).

The consolidation of a generative model through LTP or LTD
occurring at the apical tuft of pyramidal neurons is selectively enabled
when the world is learnable; i.e. when expected surprise, uncertainty
and glucocorticoid levels are low. In what follows, we consider this
learning in more detail.

3.2.4. Glucocorticoids gate learning of prediction-error precision
Why would the brain learn the precision of prediction errors? It

is often difficult to decide whether one should rely on sensory
input or prior expectations. At dusk, for example, it is better to rely
on prior expectations than on sensory input (the latter provides
imprecise information due to the low levels of illumination).
However, in bright daylight, it may be better to trust reliable and
precise sensory input than prior expectations. Thus, the precision
of prediction errors encoded at lower and higher levels of the
cortical hierarchy allow the optimal weighting of the bottom-up
and top-down information flow. Depending on what is more
precise, either the sensory input or the prior expectation is
afforded greater weight. The key point here is that precision can be
learned on the basis of past experiences that enable the brain to
predict when sensory input will be precise or imprecise.

As mentioned above, NE increases the probability of presynap-
tic neurotransmitter release at basal dendrites, making the L2
neuron more sensitive to non-correlated presynaptic inputs. In this
way, NE effectively increases the precision of the reported
prediction error, which manifests itself as increased attention. In
contrast, glucocorticoids alter the efficacy of synapses located on
the apical tuft of pyramidal neurons, resulting in long-term
changes in the way that prediction error is evaluated – and the way
that it is weighted according its precision. LTP at glutamatergic
synapses of layer-1 inputs increases the precision of the prediction
error (Fig. 8B). LTP at GABAergic synapses of layer-1 inputs
decreases the prediction-error precision. However, if LTD is
involved in glutamatergic or GABAergic synapses on the apical
tuft, such a long-term depression returns the input-output
function to a default mode with a ‘neutral default slope’
(Fig. 8B). Therefore, high glucocorticoid concentrations may lead
to ‘unlearning’ of the precision of prediction errors, while low
concentrations of glucocorticoids may facilitate the learning of
precision weighting (Liston et al., 2013; Liston and Gan, 2011). This
may sound complicated; however, the brain has to (i) optimize the
precision of ascending prediction errors (e.g., through creating NE
hotspots), it has to (ii) learn the right predictions (e.g., through
synaptic plasticity that is selectively consolidated during low
(normal) levels of glucocorticoid) and, finally, it has to (iii) learn
how to optimize the precision of prediction errors (e.g., through
the interaction between NE and glucocorticoid levels described
above).

In conclusion, glucocorticoids govern how the brain learns the
precision of prediction errors. Such a learning process allows us to
discriminate between trustworthy and imprecise sources of informa-
tion.

3.2.5. Glucocorticoids gate learning of the generative model
We can also optimize and learn the way we translate an

expectation into a prediction. As noted above an empirical prior is
encoded by an expectation (i.e., the firing rates in layer-3-pyramidal
cells), and the likelihood by a prediction (represented in layer-5-
pyramidal cells). The L3-‘empirical prior’ neuron provides the
input to the L5-‘likelihood’ neuron, which in turn responds with
s: Why it causes diseases and how it is mastered by the brain, Prog.
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the prediction. It has been shown experimentally that three input
paths can influence the output of the pyramidal cell: driving input,
excitatory modulation input and inhibitory modulation input
(Mehaffey et al., 2005; Silver, 2010). The driving input targets the
basal dendrites or the soma of the pyramidal cell. The excitatory
modulation input targets the apical tuft of the pyramidal cells that
is located in layer 1. The inhibitory modulation input – which
consists of an interposed GABAergic elongated neuroglia form cell
(Jiang et al., 2013) – also targets the apical tuft. These modulation
input pathways allow modifying the slope of the input-output
function or postsynaptic gain of the pyramidal cell (Mehaffey et al.,
2005; Silver, 2010).

Here, we apply this triple input concept to the connections
between L3 empirical prior neurons and L5 prediction neurons
(Fig. 9) (Jiang et al., 2013; Thomson and Lamy, 2007). The excitatory
and inhibitory modulation paths increase or decrease the slope of
the L5-input-output function. Low (normal) glucocorticoid con-
centrations facilitate LTP at glutamatergic and GABAergic synapses
on the apical tuft, thereby fixing an increased or decreased slope of
the input-output function (Fig. 9B). An increase in the slope means
that a given expectation (encoded by the L3-driving input) results
in a larger value of the prediction (encoded by the L5-output rate).
Thus, the functional relationship between expectation and
prediction can be learned. In contrast, LTD, which occurs at high
glucocorticoid concentrations, resets the slope of the input-output
function to a default mode. Such a long-term depression may
correspond to an ‘unlearning’ of the functional relationship
between expectation and prediction (Bennett et al., 1964).

In summary, glucocorticoids also govern expectations generating
predictions. A beneficial effect of glucocorticoids is that they enable us
to learn how to make optimal predictions in a particular situation.

3.2.6. Structural plasticity at the apical tuft
In pyramid cells, the glucocorticoids also influence how the

structure of the dendritic tree is shaped. Brain circuitry can be
remodeled by experience (Bennett et al., 1964), and stressful
experiences have functionally relevant effects on synapse number,
dendritic spine formation, and dendritic arbor shaping in many
brain regions, including the hippocampus, amygdala, and the PFC
(Liston et al., 2013; McEwen and Gianaros, 2011). Plasticity and
remodeling are processes that consume a considerable amount of
energy (Placais and Preat, 2013).

In dendritic spine remodeling, learning leads to the induction of
spine formation, and successively, a portion of novel spines is
stabilized and a portion of existing spines is pruned (Hubener and
Bonhoeffer, 2010; Yang et al., 2009). Spine stabilization shows a
bell-shaped dependency on glucocorticoids. High glucocorticoid
concentrations have been shown to favor postsynaptic dendritic
spine formation (GRs exert trophic effects via TrkB signaling)
(Ikeda et al., 2015; Jeanneteau et al., 2008), whereas low
glucocorticoid concentrations are required for the stabilization
of freshly formed spines, the latter process being essential for
memory consolidation (Liston et al., 2013).

Dendritic arbor shaping also depends on stress exposure. In the
PFC of young animals, chronic stress leads to shrinkage of the distal
apical dendrites; after cessation of chronic stress, dendritic trees
regrow (McEwen and Morrison, 2013). When animals recovered
from stress, distal dendrites were not fully rebuilt, but proximal
dendrites showed hyperextension and spine growth, and deficits in
synaptic plasticity were complete restored (Goldwater et al.,
2009). Such recovery after stress cessation is blunted by middle age
and disappears in aged animals (McEwen and Morrison, 2013).
Long-term glucocorticoid treatment mimics the effects of chronic
stress; it leads to retraction of apical dendrites in the PFC
(Cerqueira et al., 2005). If uncertainty and stress persist, diverse
processes like LTD, suspended spine stabilization, and the
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shrinkage of the apical dendrites prevent dendritic gain modula-
tion (Liston and Gan, 2011; McEwen and Gianaros, 2011). In this
way, the specification of both the generative model and the
precision of prediction errors are suspended. Thus, chronic stress
results in functional and structural alterations, which can be
regarded as the deconstruction of the ‘internal representation of
the world’ – that was no longer appropriate. Such a deconstruction
seems to be a prerequisite for rebuilding a new model of a world
that is more fit for purpose.

In summary, both functional and structural plasticity of pyramidal
neurons show a bell-shaped dependency on glucocorticoids. Thus, the
high concentrations of glucocorticoids during stress and uncertainty
allow the synaptic efficacy of apical tuft inputs to change over time.
Moreover, stress and uncertainty lead to the shrinkage of the distal
apical dendrites. In this way, both the generative model and the
synaptic mechanisms of precision or gain control are disassembled.
When stress is resolved and the situation is eased, the glucocorticoid
concentrations fall: Then the (synaptic efficacy) parameters that learn
the precision of prediction errors and the generative model are
consolidated – enabling the learning of an internal model when, and
only when, they are capable of resolving uncertainty and stress.

3.3. Habituation – updating of goal states

3.3.1. Habituation
The third process for coping with uncertainty is stress

habituation. How individuals react during stressful episodes
may change during the life course. When exposed to threatening
changes in the external environment or the body milieu, people
show two distinct genetically predisposed response patterns
(Kirschbaum et al., 1995). Non-habituators maintain their high
stress responses when the stressful episodes recur. In contrast,
habituators show attenuation of their autonomic and endocrine
responses over time. Stress habituation can be viewed as a special
form of learning, in which not only the glucocorticoids, but also the
endocannabinoids play a central role (Hill et al., 2010; Patel and
Hillard, 2008). Crucially, habituation enables us to better
discriminate between conditions that should be avoided and
conditions that could be tolerated. Habituation not only occurs in
the stress system but also in many other biological processes at the
cellular and systemic level. With respect to habituation, the
question arises whether the typical repetition-induced attenuation
is caused by inhibitory mechanisms or by more sophisticated
(central) processes like ‘predictive coding’. In fact, there is
experimental evidence supporting the view that habituation has
all the hallmarks of predictive coding (Ramaswami, 2014;
Wacongne et al., 2012).

3.3.2. Habituators can tolerate stress
Problems occur, if we cannot appropriately update of our beliefs

about current states and attainable states of the world. As a final
resort, we can alleviate uncertainty by updating the beliefs about
our goal states. This option can be regarded as a last option, because
it entails revising our primary preferences or goals (that are usually
held with high confidence or precision).

If habituators revise their prior preferences by broadening the
probability distribution over goal states (i.e., attenuating their
precision), KL divergences will decrease. As the goal state
probability distribution is broadened, beliefs about the attainable
states and the goal states start to overlap more. As can be seen from
Fig. 10, a less precise prior preference enables a greater overlap
between the beliefs about ‘attainable states’ and ‘goal states’
(compare Fig. 10A and B). Thus, habituation reduces the relative
risk (KL divergence) of one or more strategies (Fig. 10C). These
changes in relative risk also ensure that one or more strategy can
secure future wellbeing; thereby reducing uncertainty about
s: Why it causes diseases and how it is mastered by the brain, Prog.
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future outcomes (Fig. 10D). Through these adaptive changes in the
probability distribution over strategies, the habituated individual
becomes more confident about which strategy to select (Fig. 11).
Because a broadening of the beliefs about goal states reduces
uncertainty in many situations, habituators exhibit smaller
glucocorticoid and cardiovascular responses than non-habituators.
Accordingly, the glucocorticoid and cardiovascular responses are
lower in habituators as compared to non-habituators (Fig.11; three
asterisk) (Kirschbaum et al., 1995). In parallel, stress habituation
improves the levels of self-esteem and locus of control; i.e. the self-
concept of own competence (Pruessner et al., 2005, 1999). In the
context of habituators there is another tangible long-term benefit;
namely, escape from the tyranny of allostatic load.

In short, allostatic load can be averted – at a subpersonal level – by
reducing the precision of one's prior preferences; heuristically,
adopting more realistic expectations about what can be achieved.
Fig. 10. Habituation as ‘updating of goal states’. Panel A. In non-habituators the
goal states are fixed and remain unchanged. Panel B. In habituators the precision of
goal states is relaxed. Even though, for a given strategy, the habituators’ beliefs
about attainable states and the beliefs about goal states do not completely overlap,
they still exhibit more overlap than non-habituators. Panel C. The KL divergences for
each strategy are is smaller in habituators than in non-habituators. Thus,
habituation decreases the risk. Panel D. Because a broadening of the beliefs about
‘goal states’ reduces KL divergences, it changes the probability of each strategy that
it may secure wellbeing. These changes in the probability distribution over
strategies mean that habituators become more confident about what strategy to
select. This explains why habituators exhibit smaller glucocorticoid responses than
non-habituators.
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4. Allostatic load

4.1. The plasticity and vulnerability of the brain

Uncertainty about our responses to situations can be resolved
by updating our beliefs about current states, attainable states, and
goal states. A major problem arises if Bayesian belief updating fails
to resolve uncertainty, leading to surprising or aversive outcomes.
A successful update would require a reorganization of the brain
architecture and neuronal circuits that includes synaptic plasticity
(LTP) and structural plasticity (spine remodeling; rebuilding of the
dendritic trees) (McEwen et al., 2016). However, when updates
cannot avoid surprise, learning processes on different levels are
suspended. Evidence accumulated that learning is suspended
when glucocorticoids are persistently secreted during chronic
stress (Bangasser and Shors, 2007; De Quervain et al., 1998; Lupien
et al., 1998). With high glucocorticoid concentrations, postsynaptic
dendritic spines are lost and dendritic branches shrink in various
parts of the cortex and the hippocampus (Dias-Ferreira et al., 2009;
Liston and Gan, 2011; Liston et al., 2006; Radley et al., 2006;
Watanabe et al., 1992; Wellman, 2001). Fluctuating concentrations
of glucocorticoids support a fine-tuned interplay between spine
formation, pruning and maintenance, whereas states of prolonged
glucocorticoid exposure interrupt this interplay (Liston et al.,
2013).

Thus, inappropriate updates of our internal model lead to high
glucocorticoid concentrations, and high glucocorticoid concen-
trations in turn prevent the conservation of such inappropriate
updates. Likewise, inappropriate updates can lead to disturbed
sleep or bad dreams (Antonijevic, 2008; Rodenbeck and Hajak,
2001). While sleep normally serves to optimize and conserve our
generative models (Hobson and Friston, 2012), poor sleep is likely
to preclude the revision of inappropriate models (Wagner and
Born, 2008). Similarly, if someone is on therapeutic or recreational
drugs that interfere with the cerebral mechanisms for mastering
Fig. 11. Stress habituation. We define habituators as those who show repetition-
induced-response attenuation (neuroenergetic, neuroendocrine, emotional and
cardiovascular), when being chronically exposed to an inhospitable environment.
When habituators are repeatedly exposed to the same homotypic stressor, they can
reduce their uncertainty about which strategy they should select by redefining their
goal states (***).

s: Why it causes diseases and how it is mastered by the brain, Prog.

http://dx.doi.org/10.1016/j.pneurobio.2017.05.004


20 A. Peters et al. / Progress in Neurobiology xxx (2017) xxx–xxx

G Model
PRONEU 1500 No. of Pages 25
uncertainty, a temporary well-being may be achieved by relieving
the allostatic network, but a successful Bayesian updating of his/
her internal model is suspended.

As mentioned above, high glucocorticoid concentrations create
a ‘phase of change’ revising the current model of the world
(including its strategies). If no appropriate update can be found, the
ACC continues to report high uncertainty (or entropy) about which
strategy to select. We suggest that the ACC-amygdala complex then
sustains a hypervigilant state and hyperactivity of the allostatic
network; in particular, the key components SNS and the HPA axis –

the latter maintaining high glucocorticoid concentrations. The
recurrent or persistent activation of the allostatic network then
leads to damaging adverse effects that lead to systemic and brain
pathology. This is allostatic load (McEwen and Stellar, 1993).

The healthy brain is resilient in the face of stressors and
epigenetic cellular and molecular mechanisms produce continu-
ous changes in gene expression. Thus, one cannot ‘roll back the
clock’ after stress is over, so that we must speak of ‘resilience’ and
‘recovery’ rather than ‘reversal’ even though the alterations in
neuronal structure and function may appear to have been
‘reversed’; yet they are not the same as before (McEwen et al.,
2015a,b; McEwen and Morrison, 2013). Acute and chronic stress
interferes with cognition, decision making, anxiety and mood, and
in so doing affects systemic physiology through neuroendocrine,
autonomic, immune and metabolic mediators and multi-morbidi-
ty of disorders frequently occurs (McEwen, 2007; McEwen et al.,
2015b; Rasgon and McEwen, 2016). In the short run, increased
vigilance or anxiety in a hostile environment may be adaptive;
however, when the danger passes and the behavioral state and the
changes in neural circuitry become chronic, which get ‘stuck’, such
maladaptation may require an external intervention to get it
‘unstuck’, as is the case for chronic anxiety or depressive disorders
(McEwen, 2007; McEwen et al., 2015b).

Structural and functional allostatic plasticity is particularly
evident in the hippocampus, a key structure for episodic and
spatial memory and mood regulation (McEwen, 2007; McEwen
et al., 2015a). The hippocampus was the first brain structure
outside of the hypothalamus found to possess stress and sex
hormone receptors and it provided a gateway into the hormone
sensitivity of the rest of the brain (McEwen et al., 2015b).

The amygdala involved in fear, anxiety and aggression and the
prefrontal cortex, important for working memory and executive
function, both show functional and structural allostatic plasticity.
In the amygdala, overlapping waves of excessively high concen-
trations of glucocorticoids and norepinephrine cause an extended
window of excitability (Karst and Joels, 2016). Such a prolonged
window of excitability is thought to contribute to the development
of pathological conditions; e.g., posttraumatic stress disorder
(Karst and Joels, 2016). Basolateral amygdala neurons expand
dendrites from chronic stress (Chattarji et al., 2015) while, as noted
earlier, medial PFC neurons, as well as hippocampal neurons, show
dendritic shrinkage from the same stress (McEwen and Morrison,
2013).

4.2. Non-habituators are fully exposed to toxic stress

Because of continued uncertainty, the brain is constantly
demanding for extra energy. Such an energy crisis with lack of
habituation leads to allostatic load contributing to systemic and
brain pathology. This energy crisis has two consequences: first,
SNS/HPA-axis hyperactivity and second, metabolic alterations and
stress-related health damaging behaviors (tobacco smoking,
drinking alcohol, sleep deprivation). SNS/HPA-axis hyperactivity
increases the risk of arterial blood flow turbulences, leading to
atherosclerosis, thereby causing systemic and brain pathology
(Peters and McEwen, 2015). Metabolic alterations and poor health
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behaviors lead to inefficient mitochondrial metabolism, resulting
in reactive oxygen species (ROS) and inflammation and worsen
systemic and brain pathology (Picard et al., 2014). These
pathologies include memory impairment, depression, myocardial
infarction, stroke, visceral fat accumulation, type 2 diabetes,
muscle loss, osteoporosis, disturbed growth and reproduction
(McEwen, 1998).

On the one hand, a long-lasting energy crisis of the brain
damages the vascular system. To safeguard its high-energy
demand, the brain (via the amygdalae) sends a sympathetic
message to the heart, thereby increasing heart rate, and in so doing
increases cardiac output in order to procure extra energy for itself.
As stress-induced tachycardia increases flow velocity in the arterial
vascular system, high flow speed in turn increases the risk of
arterial turbulences (Falsetti et al., 1983) – particularly at
branching sites of the blood vessel system (Malek et al., 1999).
‘Adaptive vascular remodeling’ describes processes in the vascula-
ture that ameliorate such turbulences (Chatzizisis et al., 2007).
However, if the capacity of ‘adaptive vascular remodeling’ is
overwhelmed, turbulences are likely to persist. In this case, there is
an increased risk that turbulences occur at predilection sites,
thereby leading to atherosclerosis (Stone et al., 2012). Atheroscle-
rosis in turn often causes myocardial infarction or stroke � and
thus leads to an increased cardiovascular mortality. Just recently, a
team of cardiologists, psychiatrists and psychologists showed that
resting amygdala activity independently and robustly predicted
cardiovascular disease events (Tawakol et al., 2017).

On the other hand, a long-lasting energy crisis of the brain may
damage the mitochondria, and in this way toxic products may
accumulate, which can lead to systemic inflammation and
accelerated cellular ageing (Du et al., 2009; Picard et al., 2014).
Mitochondrial allostatic load can be brought about by elevated
glucocorticoid levels, even though low (i.e., normal) levels cause
translocation of glucocorticoid receptors into mitochondria to
promote Ca++ sequestration and maintain low levels of free
radicals (Du et al., 2009).

4.3. Comparison of mortality among habituators and non-habituators

Randomized controlled trials have shown that psychosocial
stress is a factor that causes cardiovascular mortality, and that
decreasing allostatic load through stress-relief programs reduces
cortisol responses and cardiovascular mortality (Gaab et al., 2003;
Gulliksson et al., 2011; Hammerfald et al., 2006; Orth-Gomer et al.,
2009; Storch et al., 2007). The special feature of these stress-relief
programs is that participants can learn, among other things, to
update their outdated models of the world in a cognitive manner,
while the Bayesian Brain often updates its beliefs at a subpersonal
level. There are also observational studies supporting the notion
that people who respond strongly to stressful challenges display a
high risk of atherosclerosis and cardiovascular mortality (Carroll
et al., 2012; Everson et al., 1997; Hamer et al., 2010; Lynch et al.,
1998; Seldenrijk et al., 2012). Conversely, people who respond
weakly to stressful challenges exhibit a lower cardiovascular
mortality, even if they stay in an inhospitable environment. In this
way, habituators can alleviate their allostatic load when repeatedly
exposed to the same stressor. As a consequence of an alleviated
allostatic load, habituators can tolerate an inhospitable environ-
ment and are sheltered against cerebro- and cardiovascular events
(Carroll et al., 2012; Everson et al., 1997; Hamer et al., 2010; Lynch
et al., 1998; Seldenrijk et al., 2012). Such a tolerance leads to side
effects on the systemic energy metabolism of the individual, which
we will report elsewhere. Non-habituators, however, are fully
exposed to toxic stress and thus are at increased risk of
cardiovascular death.
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Box 5. Open Questions

There are still gaps in our knowledge of the neurobiological underpinnings of the Bayesian Brain concept. Future research may

address the following open questions:

� What is the functional role of fast-acting membrane MR and GR in the Bayesian Brain concept?

� How does the Bayesian Brain control the encoding and retrieval of emotional memories?

� What happens in the Bayesian Brain when posttraumatic stress disorder develops?

� How do alterations/adaptations of the Bayesian Brain affect systemic energy metabolism, i.e. promote the development of

anorexia or obesity?
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In summary, habituators can update their ‘goal states’; as a
consequence, they show attenuated responses when recurrently
challenged, and in this way – although they continue to live in the
inhospitable environment – they show a barely limited life expectancy.
In contrast, non-habituators display a drastically shortened life
expectancy; but they are the individuals who would benefit most from
stress-relief programs that include cognitive restructuring, social skills
development, and mindfulness (Gulliksson et al., 2011; Orth-Gomer
et al., 2009).

5. Updating the ‘stress definition’

As suggested in the current paper, stress occurs, if we are
surprised by our sensations and we are uncertain about what to do
to safeguard our physical, mental or social wellbeing. Surprises can
be manifold and can concern our internal body milieu (lack of
energy, lack of oxygen, loss of blood, infection, toxins, trauma,
myocardial infarction, etc.) or our external environment (social
conflicts, overload/underload, disordered neighborhood, mobbing,
discrimination, social defeat, etc.). Activation of the SNS or the HPA
axis is typical in all these situations, but is not considered here to
be a sufficient criterion for ‘stress’.

Two examples illustrate the principle how we react upon
changes in the internal and external environment: fasting and
marital dispute. Fasting – as referred to as the metabolic state
achieved after complete digestion and absorption of a meal – goes
along with the activation of the SNS and HPA-axis. Such SNS- and
HPA-axis activations serve to adequately supply the brain with
energy (glucose, ketones, or lactate) (Kubera et al., 2012a, 2014).
Since the brain-energy concentrations are tightly regulated
(Oltmanns et al., 2008), such increases in SNS and HPA-axis
activity are common in everyday life (Peters and Langemann,
2009). The Selfish Brain procures itself with energy (Peters et al.,
2007b). After a few hours of fasting, we feel hunger and perceive
SNS-induced interoceptive signals like nervousness, weakness,
tremor, tachycardia, dizziness, and sweating. The (Selfish) Bayesian
Brain uses perceptual inference to infer the cause (lack of
thermodynamic energy) from the effect (the interoceptive signals).
Then it uses active inference (food seeking behavior) to minimize
variational free energy; i.e., to eliminate the prediction errors
(hunger, autonomic symptoms). If we are certain that food would
be available soon, the appropriate action is selected and ‘no stress’
occurs. However, if we are uncertain about whether we might get
food at all, stress occurs – as is the case in ‘food insecurity’
(Bhattacharya et al., 2004). In such a case, uncertainty (entropy)
monitored by the ACC stimulates the amygdala, and in so doing
increases LC, SNS and HPA-axis activity; in this way, stress
facilitates the search for a novel strategy (Figs. 2 and 3).

In a marital dispute, surprising external sensations may
immediately evoke a state of uncertainty, in which one does not
know how to resolve the situation. This is also ‘stress’. The
uncertainty monitored by the ACC stimulates the amygdala, and
Please cite this article in press as: A. Peters, et al., Uncertainty and stres
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consequently the LC, SNS and HPA-axis; also in this case, stress
facilitates a shift in strategy (Figs. 2 and 3). The Selfish Bayesian
Brain procures itself with extra thermodynamic energy (enhanced
glucose allocation to the brain) in order to minimize variational
free energy (prediction errors) by searching for a novel strategy.

In light of the foregoing, we define ‘stress’ as the individual state of
uncertainty about what needs to be done to safeguard physical,
mental or social well-being.

6. Conclusions

We have introduced an information-theoretic account of stress
and allostatic load based upon recent developments in theoretical
neurobiology. In particular, we have established the link between
the Bayesian Brain and the Selfish Brain in terms of minimizing
variational and metabolic free energy respectively. When
unpacked, the theoretical considerations provide a remarkable
level of explanatory detail; particularly in relation to the role of
norepinephrine in nuancing perceptual inference (and action)
through its effects on presynaptic gain control – and implicit
effects on the ability of sensory evidence to revise beliefs about
hidden causes in the world or the body. Having established the
close relationship between the roles of synaptic activity and
efficacy (i.e., precision) in optimizing perceptual inference in
situations of uncertainty, we then went on to look at the permissive
role of glucocorticoids in learning. This analysis suggests that there
is an optimum glucocorticoid level that enables the consolidation
of activity-dependent plasticity (where the ‘bell-shaped’ glucocor-
ticoid-dependency curve has its peak) (Joels, 2006) that mediates
experience-dependent learning – when and only when, our
generative models are sufficient to resolve uncertainty, stress
and elevated glucocorticoid levels.

Finally, we considered long-term processes that could minimize
variational free energy and stress by looking at the ultimate cause;
namely, the discrepancy between states that we can attain by
acting on the world and the states we a priori expect to occupy (i.e.,
interoceptive, proprioceptive, emotional and prosocial goals). Our
key observation is that exposure to chronic stress – and the
allostatic load that this entails – can be remediated by revising our
highest-level prior beliefs; namely, prior expectations about the
states we aspire to. This provides a nice metaphor that
distinguishes between habituators and non-habituators in re-
sponse to chronic stress.

Functional and structural remodeling of the neural architecture
often makes it possible to avoid or master states of uncertainty,
anxiety, and hypervigilance. ‘Good Stress’ denotes an episode of
uncertainty in which the beneficial effects of stress responses
support a successful Bayesian updating and learning of the internal
model of the world. As a result, uncertainty is resolved. ‘Tolerable
stress’ characterizes a situation in which habituation leads to a
partial reduction in uncertainty; this reduction is achieved by the
adjustment of the primary goals. In this case, the damaging effects
s: Why it causes diseases and how it is mastered by the brain, Prog.
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of persistent stress reactions can be kept at bay. Of note, individuals
cannot always resolve uncertainty by reconstructing their internal
model of the world. The inhospitable environment may also limit
such a resolution, e.g. when the individuals live in poverty, in war-
afflicted areas, are long-term unemployed or victims of discrimi-
nation (Kubera et al., 2016; Ludwig et al., 2012; Puhl and Heuer,
2009). If the resolution of uncertainty is achieved too late or is not
possible at all, the adverse effects of the futile and brain-energy-
consuming efforts for the resolution come to the fore, and the
ongoing brain-energy crisis leads to allostatic load that contributes
to systemic and brain pathology. ‘Toxic stress’ refers to such a
chronic condition in which the damaging effects of the stress
responses prevail and the uncertainty can neither be resolved by a
successful Bayesian update nor reduced by habituation. If, in such a
situation, the brain ‘gets stuck’ and does not recover, external
intervention is required.

The potential utility of formulating stress and allostatic load in
terms of a Selfish Bayesian Brain is that one might use the
principles afforded by theoretical neurobiology to organize
existing and future empirical results (Box 5; ‘Open questions’).
Furthermore, the interrelationships brain function and physiology
are laid bare in the sense that everything appears to be the game of
reducing uncertainty, variational free energy, surprise, or more
simply stress. Conceptual principles of this sort may be useful, not
just from a scientific perspective, but as organizing frameworks for
cognitive behavioral therapy in stress disorders.
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