Range and heterogeneity of outcomes in randomized trials of pediatric chronic kidney disease

Lauren SH Chong 1,2, Benedicte Sautenet, PhD 1,2,3,4,5, Allison Tong, PhD 1,2, Camilla S Hanson, BPynch (Hons) 1,2, Susan Samuel, MD 6, Michael Zappitelli, MD 7, Allison Dart, MD 8, Susan Furth, PhD 9, Allison A Eddy, MD 10, Jaap Groothoff, PhD 11, Nicholas JA Webb, MD 12, Hui-Kim Yap, MD 13, Detlef Bockenhauer, PhD 14, Aditi Sinha, MD 15, Stephen I Alexander, PhD 16, Stuart L Goldstein, MD 16, Debbie S Gipson, MD 17, Gayathri Raman, MBBS 1, Jonathan C Craig, PhD 1,2

Author affiliations:
1Sydney School of Public Health, The University of Sydney, Sydney, Australia
2Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, Sydney, Australia
3University Francois Rabelais, Tours, France
4Department of Nephrology and Clinical Immunology, Tours Hospital, Tours, France
5INSERM, U1153, Paris, France
6Department of Pediatrics, Section of Nephrology, University of Calgary, Calgary, Canada
7Department of Pediatrics, Division of Pediatric Nephrology, Montreal Children’s Hospital, McGill University Health Centre, McGill University, Montreal, Canada
8Department of Pediatrics and Child Health, The Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
9Departments of Pediatrics and Epidemiology, Perelman School of Medicine and Division of Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
10Department of Pediatrics, University of British Columbia and the British Columbia Children's Hospital, Vancouver, Canada
11Department of Pediatric Nephrology, Emma Children's Hospital AMC Academic Medical Center, Amsterdam, The Netherlands
12Department of Pediatric Nephrology and NIHR/Wellcome Trust Clinical Research Facility, University of Manchester, Manchester Academic Health Science Centre, Royal Manchester Children’s Hospital, Manchester, UK
13Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
14UCL Centre for Nephrology and Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
15Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, India
16Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
17Department of Pediatrics, School of Medicine, University of Michigan, Ann Arbor, United States

Corresponding author/reprint request author: Allison Tong, Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead NSW 2145, Australia
Tel: +61 2 9845 1467 Fax: +61 2 9845 1491 Email: allison.tong@sydney.edu.au

Short title: Outcomes in trials in children with CKD

Keywords: Children, systematic review, chronic kidney disease, outcomes

Funding source: No funding was secured for this study. AT is supported by the National Health and Medical Research Council Fellowship (1106716)

Conflict of interest: The authors have no conflicts of interest relevant to this article to disclose
Abstract

Objective: To determine the range and heterogeneity of outcomes reported in randomized controlled trials (RCTs) of interventions for children with chronic kidney disease (CKD).

Study Design: The Cochrane Kidney and Transplant Specialized Register was searched to March 2016. Randomized trials involving children across all stages of CKD were selected. All outcome domains and measurements were extracted from included trials. The frequency and characteristics of the outcome domains and measures were evaluated.

Results: From 205 trials included, 6158 different measurements of 100 different outcome domains were reported, with a median of 22 domains per trial (interquartile range [IQR] 13 to 41). Overall, 52 domains (52%) were surrogate, 38 (38%) were clinical, and 10 (10%) were patient-reported. The five most commonly reported domains were blood pressure (76 [37%] trials), relapse/remission (70 [34%]), kidney function (66 [32%]), infection (61 [30%]), and height/pubertal development (51 [25%]). Mortality (14%), cardiovascular disease (4%) and quality of life (QOL) (1%) were reported infrequently. The two most frequently reported outcomes, blood pressure and relapse/remission, had 56 and 81 different outcome measures, respectively.

Conclusions: The outcomes reported in clinical trials involving children with CKD are extremely heterogeneous and are most often surrogate outcomes, rather than clinical and patient-centered outcomes such as cardiovascular disease and QOL. Efforts to ensure consistent reporting of outcomes that are important to patients and clinicians will improve the value of trials to guide clinical decision-making. In our study, non-English articles were excluded.
Introduction

Since the recognition of children as “therapeutic orphans” in the 1960s,(1) there has been a wave of international efforts to improve trial-based evidence to support the use of health interventions in the pediatric setting.(1-12) The past two decades has seen an increase in the number of trials conducted in children since the United States and Europe revised legislation on labelling of medicines to mandate pediatric data.3 Also, major pediatric trial networks have been established globally, including the US National Institute of Child Health and Human Development Pediatric Trial Network and the Network of Pediatric Research at the European Medicines Agency, to improve infrastructure and capacity for pediatric trials.(13, 14)

Despite this upsurge in pediatric clinical trials, the relevance and value of trials may be limited by problems in the prioritization, design, reporting and dissemination of research, including outcomes measured and reported.(15-21) Trials are only as informative as their outcomes,(22) yet many report outcomes that may not be directly relevant to patients and clinicians, and do not involve children and caregivers in the selection of outcomes.(23-25) Analyses of pediatric trials within specific health conditions have shown that the outcomes reported are extremely variable, including the definitions and measures used(23-27), which limits comparability of the effectiveness of interventions across studies.(16) Initiatives to establish core outcomes, to be reported at a minimum in all trials with specific health condition, such as The Outcome Measures in Rheumatology (OMERACT), have demonstrated improvement in the relevance and reporting of outcomes in trials,(22, 23, 28-30) though core outcome sets are generally lacking in the pediatric setting.

Children with chronic kidney disease (CKD) have a mortality rate up to 30-times higher than the age-matched general population, and those who progress to end-stage kidney disease depend on
dialysis or a kidney transplant for survival. Although many trials have been conducted in children with CKD, the risk and prevalence of comorbid conditions, treatment complications, developmental problems, debilitating symptoms, such as fatigue, and impaired quality of life (QOL) remain high. Improvements in health care and outcomes through research rely on the relevance and consistency of outcomes reported in trials in this vulnerable population. Affected children depend on their caregivers and clinicians to provide long-term, complex, and highly technical treatments that have profound implications for their development and well-being. We aimed to describe the scope and consistency of outcome domains and measures in trials involving children with all stage of CKD, to inform strategies for establishing core outcomes that are important to children, families and clinicians to be reported in trials, to inform clinical decision making and ultimately to improve the outcomes for children with CKD.

Methods

Selection criteria

We searched the Cochrane Kidney and Transplant Specialized Register for all randomized controlled trials (RCT) involving children aged up to 21 years or less (the upper age limit to define the pediatric population is up to 21 years in the United States) with any CKD diagnosis and at treatment stage (CKD Stage 1-5 [not on renal replacement therapy], 5D [hemodialysis or peritoneal dialysis] and 5T [kidney transplant]) up to March 2016 (Figure 1 (online)). We used search terms relating to children and pediatrics. Trials that included more than 50% of patients aged above 21 years were excluded. Trials that included children with chronic conditions, but did not report data from the CKD population, were not eligible.

Data extraction
We extracted the following trial characteristics from each trial: publication year, setting (participating countries), sample size, mean age of participants, study duration, intervention type, and all outcomes. We defined outcome measures as any measures reported separately for all trial arms. We extracted all specifications of the outcome measures, if reported, including the: outcome domain (e.g. blood pressure), specific measurement (e.g. percentage of hypertensive patients), method of aggregation (e.g. percentage change), specific metric (between commencement and end of the trial), and time point of measurement (defined as the time frame from trial commencement to when the outcome was measured).(46)

Analysis

We categorized all the outcome measures from all the included trials into outcome domains. The first author (LC) drafted the initial list of outcome domains. This was cross-checked by four reviewers and revised until consensus was achieved (AT, BS, GR, JCC). The outcome measures were then grouped according to the final list of outcome domains, which was re-reviewed by the same four reviewers. All outcome domains were further categorized as surrogate (biochemical or physiological outcomes i.e. pathophysiological manifestations of health conditions, including such as blood pressure(47)), clinical (medical outcome of a condition or treatment), and patient-reported (outcomes reported on by patients and caregivers, typically related to how the patients function or feel in relations to a health condition or therapy), based on standard nomenclature.(48)(49) Some outcome domains included measures that straddled several categories – surrogate, clinical and patient-reported. Thus, classification of the domains was based on the largest proportion of outcome measures. The number of trials, and dialysis- and transplantation-specific trials that reported each outcome domain were calculated.
We conducted a detailed analysis of outcome measures of the three outcome domains in each category that were reported most frequently across trials, as well as the three pediatric-specific domains (height and pubertal development, weight/BMI/body composition and school performance). The measurement, aggregation, metric and timing as reported in the primary studies were analyzed. We retained the original term if studies did not further define or provide details on the outcome measure. Statistical analyses of frequency were conducted using R version 3.2.3 (R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/).

Results

Characteristics of trials

Our search yielded 1266 trials, of which 205 included 2174 children with CKD (Table 1). The trial characteristics are shown in Table 1. Overall about half of trials involved children with CKD Stage 1 to 5 (123 [52.1%] trials), 32 [13.6%]) trials involved patients on hemodialysis, 40 [16.9%] involved peritoneal dialysis, and 41 (17.4%) involved kidney transplant recipients. The setting of the trials spanned 43 countries, including the United States (51 [25%] trials), India (18 [9%]), Japan (15 [7%]), Germany (14 [7%]), and England (14 [7%]); and 28 (14%) trials were multinational. The trials were published from 1970 to 2015. The median trial duration was 12 months (interquartile range [IQR] 6 to 24 months), and the median sample size was 40 patients (IQR 22 to 76 patients), with only six (2.9%) larger than 200.

Outcome measures and outcome domains

Across 205 trials, 6158 outcome measures were reported. The number of outcome measures per trial (including time points of measurement) ranged from 1 to 145, with a median of 22 per trial (IQR 13 to 41). The number of unique outcome measures per trial (excluding time points) ranged
from 1 to 64, with a median of 15 (IQR 9 to 26). We excluded 382 outcome measures because they were not a direct health outcome measured in patients (e.g. “mean cold ischemia time,” and “medication dose/use/duration”) or were specific to a single intervention within a trial (e.g. “number of patients monitored and educated”). The remaining 5776 were classified into 100 outcome domains and these were grouped into: surrogate (52 [52%]), clinical (38 [38%]) and patient-reported outcomes (10 [10%]) (Table 2, 3, 4; online). Nine outcome domains were specific to transplantation, and four were specific to dialysis.

Frequency of outcome domains reported in trials

Figure 2 depicts the proportion of trials that reported each outcome domain. The six most commonly reported outcome domains were: blood pressure (76 [37.1%] trials), relapse/ remission (70 [34.1%]), kidney function (66 [32.2%]), infection (61 [29.8%]), height/pubertal development (51 [24.9%]) and weight/body mass index/body composition (50 [24.4%]). Mortality and cardiovascular disease were reported in 28 (13.7%) and 8 (3.9%) of trials, respectively. Depression and QoL (global) were reported in 2 (1.0%) of trials, and school performance was reported in 1 (0.5%) of trial. Table 5 details the proportion of trials that reported the 10 most frequent outcome domains, and the proportion of trials reporting each outcome domain.

The number of trials that reported a minimum of one surrogate outcome domain was 180 (87.8%), and 164 (80.0%) and 49 (23.9%) reported at least one clinical and one patient-reported domain, respectively. From the 30 (30%) outcomes reported by at least 10% of trials, 17 were surrogate, 12 were clinical and one was patient-reported.

Outcome measures and time points
Figure 3 shows the number of outcome measures and time points of measurement for 10 outcome domains (the three most frequently reported surrogate and clinical outcome domains, two most frequently reported patient-reported domains, and two pediatric-specific domains). The outcome measures and time points of measurement for each outcome domain listed in Figure 3, excluding “school performance” are shown in Figure 4a-i; online.

The three most frequently reported surrogate outcomes were “blood pressure” (56 outcome measures [168 including different time points]; Figure 4b; online), “relapse/remission (82 [240 including time points]; Figure 4c; online) and “kidney function” (47 outcome measures [173 including time points]; Figure 4a; online). The clinical outcomes of “infection”, “height and pubertal development” and “dermatologic disorder” had 114 (165 including time points), 34 (137 including time points) and 24 (52 including time points) different outcome measures, respectively (Figure 4d-f; online). For patient-reported outcomes, “pain” (Figure 4g; online) and “psychological impact” (Figure 4h; online) had 27 (50 including time points) and 10 (15 including time points) measures, respectively. There were two pediatric-specific outcomes, “weight/body mass index/body composition” and “school performance”. The former had 40 (114 including time points) (Figure 4i; online), and the latter had only one outcome measure, at one time point.

Characteristics of primary outcomes

Across the 205 trials, 109 (53.2%) did not specify the primary outcome, 68 (33.2%) specified several outcomes as primary outcomes, and 28 (13.6%) specified one unique primary outcome. The outcomes specified as primary outcomes corresponded to 36 different outcome domains: 24 (66.7%) were surrogate outcomes, 10 (27.8%) were clinical outcomes and 2 (5.6%) were patient reported outcomes. The 6 most frequently reported primary outcomes were “relapse/ remission” (43 [44.8%] trials), “proteinuria, albuminuria” (22 [22.9%] trials), “kidney function” (18 [18.8%] trials), “height and pubertal development” (15 [15.6%] trials), “anemia/hemoglobin/iron” (9
Biochemical surrogate outcomes comprised over half of the outcome domains reported in clinical trials involving children with CKD with blood pressure, kidney function, weight and urine protein being the most frequently reported. These were much more common compared with clinical and patient-centered outcomes such as mortality (14%), cardiovascular disease (4%), and QOL (1% of trials). In terms of pediatric-specific outcomes, physical development (height and pubertal development, weight/BMI/body composition) were reported in more than 25% of trials, but school performance was assessed in only one trial. Thus, the relevance of current trials to guide treatment decisions based on outcomes that are important to children with CKD and their caregivers may be disputable. Also, there is wide heterogeneity of outcome domains reported across trials and, within each outcome domain, large variability in the definitions, time points, and measures used. Such inconsistencies in outcome reporting obscure assessments about the comparative effectiveness of interventions across trials.

Surrogate outcomes, such as serum biomarkers, are frequently used in trials because they require a smaller sample size, shorter time-frame, and fewer resources to evaluate treatment effectiveness. These may be key considerations given the relatively small population of children with CKD, and the additional ethical and logistical requirements to conduct trials in children. However, surrogate outcomes have not been robustly validated in this setting and do not bear direct relevance to patients and their families. Serum phosphate, serum calcium, parathyroid hormone and anemia/hemoglobin/iron were reported in more than 15% of trials but there is no evidence to indicate that they predict mortality and cardiovascular events in patients with CKD. (49-55) While some physiological markers may be appropriate measures of short-term disease activity for acute
conditions,(56) they are arguably less informative in chronic conditions. Further studies are needed to validate surrogate outcomes such as parathyroid hormone, serum phosphate and serum calcium.

Many outcomes that have been identified as important and clinically relevant to children with CKD were absent in most trials. Studies that have directly elicited perspectives from children living with CKD have identified their priorities as school attendance and performance, anxiety, social participation, ability to participate in physical activity, hospitalization, and fatigue.(42, 56-61) However, patient-reported outcomes constituted only 10% of all outcome domains reported, and were infrequently reported. Psychological problems, including depression, were reported in less than 10% of trials. School performance, fatigue, physical function and QOL were reported in just 1% of trials. No trials reported on social participation. The omission of outcomes important to children with CKD can hamper efforts to implement interventions and strategies to optimize outcomes that are meaningful to patients themselves. Further work is needed to identify dimensions of QOL that are important to patients and subsequently develop feasible and validated measures to use in trials.

There was also a paucity of outcomes identified as important to parents, who have a central role in monitoring and managing the health and treatment of their child with CKD. Physical, cognitive, and social-emotional development have been identified as a major parental concern.(56, 61) Linear growth (height and pubertal development and weight/BMI/body composition) were both reported in more than 25% of trials. However, no trials reported on neurocognitive development. Furthermore, parents share their children’s concerns regarding school performance, social participation and mortality, all of which were underreported.(56, 61) We acknowledge that mortality rates are low in the pediatric population. However, the omission of outcomes that are of explicit importance to children and parents can diminish the relevance of trials.
Some outcomes were specific to certain stages of treatment. For example, graft function, graft loss, chronic graft rejection, graft histology/pathology, malignancy were specific to transplantation, while dialysis adequacy and vascular access complications were specific to dialysis. Many outcomes identified as clinically relevant to children undergoing dialysis or with a kidney transplant were also absent in most trials. In the 55 dialysis-specific trials, four of the five most commonly reported outcomes were surrogate markers (phosphate (21 [38.2%] dialysis specific trials), parathyroid hormone (18 [32.7%]), calcium (18 [32.7%]), bone density/markers (17 [31.0%]), and one was clinical (infection (17 [31.0%]). However, the primary concerns of children undergoing dialysis have been identified to be related to social participation, fatigue, school performance and exercise capacity and height. Height/pubertal development was reported in only 7 (16%) dialysis-specific trials, and school performance and exercise capacity were reported in only one. Social participation and fatigue were not reported at all in dialysis-specific trials.

Among the 41 transplant-specific trials, the five most commonly reported outcomes were all surrogate outcomes: graft function (30 [73.2%] transplant-specific trials), acute graft rejection (20 [48.8%]), graft loss (19 [46.3%]), height and pubertal development (18 [44.0%]) and blood pressure (17 [41.5%]). Graft survival and physical side effects (e.g. changes in appearance) have been identified by pediatric kidney transplant recipients as important. However, mortality was reported in only 14 [38%] transplant-specific studies, and physical side-effects and symptoms including weight gain (11 [30%]), pain (4 [10.8%]), and hyperhydrosis (1 [0.5%]) were rarely reported.

We have also demonstrated substantial multiplicity and inconsistency in outcome domains and measures across trials in children with CKD, with 6158 outcome measures and time points reported across the 100 outcome domains. Blood pressure (the most frequently reported outcome) was measured in 37% of trials, however had 56 different outcome measures. Without consistency
in the way outcomes are measured and reported, it is difficult to assess the relative effect of interventions across studies. (63) Furthermore, the majority of trials had a duration less than 24 months (63.4%) and a small sample size of 1-50 patients (62%), leading to considerable imprecision regarding treatment effects and uncertainty on the long-term impact of any treatment decisions.

A number of other studies have systematically evaluated the reporting of outcome domains in trials of pediatric conditions such as asthma, (56) autism, (64) appendicitis, (65) acute diarrheal illness, (26) neurodisability, (66) cerebral palsy (67) and otitis media. (68) These reviews have identified similar problems in outcome reporting. There is a dominance of clinical and physiological markers of short-term disease activity, and in contrast limited focus of QOL, functional status and long-term outcomes. Previous studies have also demonstrated a marked inconsistency across trials in the way that outcomes are measured and reported, non-uniformity in the definitions of clinical events used as endpoints, a lack of clarity in reporting methods, and problems with reporting bias. (24-26, 56, 64, 65)

This work provides a comprehensive and detailed analysis of the range and consistency of outcome domains and measures reported in trials in children across all stages of CKD. However, this review has some potential limitations. We used Cochrane reviews as a sampling frame as it was not feasible to include all trials, however the reviews cover the topics of importance in the field. We did not appraise the risk of bias in the included trials given our focus on the reporting of outcomes – not the results. Non-English trials were excluded and most studies were conducted in high-income countries.

Our findings emphasize the importance of developing a minimum set of core outcomes to be measured and reported in RCTs. Core outcome sets increase the likelihood that important outcomes will be measured, improve evidence synthesis by reducing heterogeneity between
studies, and reduce outcome reporting bias. Core outcome sets have been developed for other medical conditions and the Core Outcome Measures in Effectiveness Trials (COMET) database contains over 120 studies on the development of core outcome sets. However, studies in the pediatric setting are scarce although work has been done in the areas of otitis media, asthma, neurodisability, autism and cerebral palsy. No core outcome set exists in pediatric CKD.

The Standardized Outcomes in Nephrology (SONG) Initiative, which commenced in 2014, aims to establish a core outcome set across the spectrum of CKD that is based on the shared priorities of all stakeholders. SONG-Kids is now underway, engaging children, parents and health professionals in a process to develop a core outcome set for trials in children and adolescents across all stages of CKD.

There is a clear dominance of surrogate outcomes reported in trials in children with CKD, whilst outcomes that have direct relevance for children, their parents and clinicians are relatively rare. Furthermore, the heterogeneity and inconsistency in the way outcomes are defined, assessed and measured also limits ability to synthesize results across studies, including those assessing similar interventions. This reiterates an urgent need to improve the relevance and reliability of trials in decision making through the development of a core outcomes set to be reported as a minimum in trials in children with CKD. A core outcome set can be expected to improve outcome reporting in trials and subsequently lead to enhanced QOL, treatment satisfaction, and health outcomes of children and adolescents with CKD.
References

List of abbreviations

Chronic kidney disease (CKD)
Randomized controlled trial (RCT)
Quality of life (QOL)
Figure legends

Figure 1; online. Search results

Figure 2. Number of trials reporting each outcome domain (total 205 trials, 100 outcome domains)

Figure 3. Number of outcomes measures (definitions and time points) for the most frequently reported and pediatric-specific outcome domains among trials

Figure 4a; online. Frequency of outcomes measures (definitions and time points) among trials reporting blood pressure (76 trials, 56 outcomes measures)

Figure 4b; online. Frequency of outcomes measures (definitions and time points) among trials reporting relapse/remission (67 trials, 82 outcomes measures)

Figure 4c; online. Frequency of outcomes measures (definitions and time points) among trials reporting kidney function (66 trials, 47 outcomes measures)

Figure 4d; online. Frequency of outcomes measures (definitions and time points) among trials reporting infection (61 trials, 114 outcomes measures)

Figure 4e; online. Frequency of outcomes measures (definitions and time points) among trials reporting height and pubertal development (52 trials, 34 outcomes measures)

Figure 4f; online. Frequency of outcomes measures (definitions and time points) among trials reporting dermatologic disorder (46 trials, 24 outcomes measures)
Figure 4g; online. Frequency of outcomes measures (definitions and time points) among trials reporting pain (34 trials, 27 outcomes measures)

Figure 4h; online. Frequency of outcomes measures (definitions and time points) among trials reporting psychological impact (15 trials, 10 outcomes measures)

Figure 4i; online. Frequency of outcomes measures (definitions and time points) among trials reporting weight/BMI/body composition (50 trials, 40 outcomes measures)
Table 1. Characteristics of included trials (n=205)

<table>
<thead>
<tr>
<th>Trial characteristic</th>
<th>Number of trials (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of publication</td>
<td></td>
</tr>
<tr>
<td><1980</td>
<td>13 (6.3)</td>
</tr>
<tr>
<td>1980-1989</td>
<td>18 (8.8)</td>
</tr>
<tr>
<td>1990-1999</td>
<td>54 (26.3)</td>
</tr>
<tr>
<td>2000-2009</td>
<td>77 (37.6)</td>
</tr>
<tr>
<td>≥2010</td>
<td>43 (21.0)</td>
</tr>
<tr>
<td>Duration of trial (months)</td>
<td></td>
</tr>
<tr>
<td>< 3</td>
<td>24 (11.7)</td>
</tr>
<tr>
<td>3 – 5</td>
<td>26 (12.7)</td>
</tr>
<tr>
<td>6 – 11</td>
<td>32 (15.6)</td>
</tr>
<tr>
<td>12 – 23</td>
<td>48 (23.4)</td>
</tr>
<tr>
<td>≥ 24</td>
<td>75 (36.6)</td>
</tr>
<tr>
<td>Sample size (n)</td>
<td></td>
</tr>
<tr>
<td>1 to 50</td>
<td>127 (62.0)</td>
</tr>
<tr>
<td>51 to 100</td>
<td>39 (19.0)</td>
</tr>
<tr>
<td>101 to 150</td>
<td>19 (9.3)</td>
</tr>
<tr>
<td>151 to 200</td>
<td>11 (5.3)</td>
</tr>
<tr>
<td>>200</td>
<td>6 (2.9)</td>
</tr>
<tr>
<td>Unspecified</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>America</td>
<td>66 (32.2)</td>
</tr>
<tr>
<td>Europe</td>
<td>53 (25.9)</td>
</tr>
<tr>
<td>Asia</td>
<td>51 (24.9)</td>
</tr>
<tr>
<td>Africa</td>
<td>6 (2.9)</td>
</tr>
<tr>
<td>Oceania</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Multinational studies</td>
<td>28 (13.7)</td>
</tr>
</tbody>
</table>

CKD stage
<table>
<thead>
<tr>
<th>1 to 5</th>
<th>123 (52.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemodialysis</td>
<td>32 (13.6)</td>
</tr>
<tr>
<td>Peritoneal dialysis</td>
<td>40 (16.9)</td>
</tr>
<tr>
<td>Kidney transplantation</td>
<td>41 (17.4)</td>
</tr>
</tbody>
</table>

Primary kidney disease

<table>
<thead>
<tr>
<th>Nephrotic syndrome</th>
<th>31 (10.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital abnormalities of the kidney and urinary tract (CAKUT)</td>
<td>25 (8.3)</td>
</tr>
<tr>
<td>Focal segmental glomerulosclerosis (FSGS)</td>
<td>24 (8.0)</td>
</tr>
<tr>
<td>Obstructive uropathy</td>
<td>14 (4.7)</td>
</tr>
<tr>
<td>Hemolytic uraemic syndrome (HUS)</td>
<td>13 (4.3)</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>12 (4.0)</td>
</tr>
<tr>
<td>Other</td>
<td>121 (40.2)</td>
</tr>
<tr>
<td>Non-specified</td>
<td>61 (20.3)</td>
</tr>
</tbody>
</table>

Intervention type

<table>
<thead>
<tr>
<th>Immunomodulation</th>
<th>100 (48.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone health</td>
<td>40 (19.5)</td>
</tr>
<tr>
<td>Dietary/nutritional</td>
<td>15 (7.3)</td>
</tr>
<tr>
<td>Hematological</td>
<td>11 (6.0)</td>
</tr>
<tr>
<td>Anti-hypertensive agent</td>
<td>8 (3.9)</td>
</tr>
<tr>
<td>Lipid lowering agents</td>
<td>7 (3.4)</td>
</tr>
<tr>
<td>Dialysis-specific</td>
<td>6 (2.9)</td>
</tr>
<tr>
<td>Anti-infective agents</td>
<td>5 (2.4)</td>
</tr>
<tr>
<td>Diuretics</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Other</td>
<td>12 (5.9)</td>
</tr>
</tbody>
</table>

* Multiple categories possible
Table 2: online only. Proportion of trials reporting each surrogate outcome (205 trials, 51 outcome domains)

<table>
<thead>
<tr>
<th>Domains (surrogate outcomes)</th>
<th>All n=205 (%)</th>
<th>Dialysis n=55 (%)</th>
<th>Transplantation n=41 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure</td>
<td>76 (37.1)</td>
<td>14 (25.5)</td>
<td>17 (41.5)</td>
</tr>
<tr>
<td>Relapse/remission</td>
<td>70 (34.1)</td>
<td>1 (1.8)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Kidney function</td>
<td>66 (32.2)</td>
<td>5 (9.1)</td>
<td>3 (7.3)</td>
</tr>
<tr>
<td>Weight/BMI/body composition</td>
<td>50 (24.4)</td>
<td>7 (12.7)</td>
<td>12 (29.3)</td>
</tr>
<tr>
<td>Proteinuria, albuminuria</td>
<td>49 (23.9)</td>
<td>2 (3.6)</td>
<td>3 (7.3)</td>
</tr>
<tr>
<td>Blood protein, albumin</td>
<td>48 (23.4)</td>
<td>9 (16.4)</td>
<td>3 (7.3)</td>
</tr>
<tr>
<td>Lipids</td>
<td>47 (22.9)</td>
<td>6 (10.9)</td>
<td>16 (39.0)</td>
</tr>
<tr>
<td>Anemia/haemoglobin/iron</td>
<td>44 (21.5)</td>
<td>15 (27.3)</td>
<td>8 (20.0)</td>
</tr>
<tr>
<td>Phosphate</td>
<td>39 (19.0)</td>
<td>21 (38.2)</td>
<td>7 (17.1)</td>
</tr>
<tr>
<td>White blood cells</td>
<td>39 (19.0)</td>
<td>1 (1.8)</td>
<td>8 (19.5)</td>
</tr>
<tr>
<td>Bone density/markers</td>
<td>37 (18.0)</td>
<td>17 (30.9)</td>
<td>7 (17.1)</td>
</tr>
<tr>
<td>Calcium</td>
<td>34 (16.6)</td>
<td>18 (32.7)</td>
<td>6 (14.6)</td>
</tr>
<tr>
<td>Urea</td>
<td>31 (15.1)</td>
<td>8 (14.5)</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Glucose metabolism</td>
<td>31 (15.1)</td>
<td>9 (16.4)</td>
<td>16 (39.0)</td>
</tr>
<tr>
<td>Parathyroid hormone</td>
<td>31 (15.1)</td>
<td>18 (32.7)</td>
<td>6 (14.6)</td>
</tr>
<tr>
<td>Graft function</td>
<td>30 (14.6)</td>
<td></td>
<td>30 (73.2)</td>
</tr>
<tr>
<td>Electrolytes (other)</td>
<td>25 (12.2)</td>
<td>5 (9.1)</td>
<td>8 (19.5)</td>
</tr>
<tr>
<td>Liver function</td>
<td>24 (11.7)</td>
<td>3 (5.5)</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Potassium</td>
<td>22 (10.7)</td>
<td>6 (10.9)</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Acute graft rejection</td>
<td>20 (9.8)</td>
<td>2 (3.6)</td>
<td>20 (48.8)</td>
</tr>
<tr>
<td>Inflammatory markers/oxidative stress</td>
<td>19 (9.3)</td>
<td>6 (10.9)</td>
<td>6 (14.6)</td>
</tr>
<tr>
<td>Acid-base balance</td>
<td>25 (12.2)</td>
<td>11 (20.0)</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>15 (7.3)</td>
<td>9 (16.4)</td>
<td>2 (4.9)</td>
</tr>
<tr>
<td>Dialysis adequacy</td>
<td>13 (6.3)</td>
<td></td>
<td>13 (32.6)</td>
</tr>
<tr>
<td>Platelets, coagulation</td>
<td>14 (6.8)</td>
<td>3 (5.5)</td>
<td>2 (4.9)</td>
</tr>
<tr>
<td>Kidney disease progression/change</td>
<td>12 (5.9)</td>
<td>1 (1.8)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Graft rejection (unspecified)</td>
<td>11 (5.4)</td>
<td></td>
<td>11 (26.8)</td>
</tr>
<tr>
<td>Condition</td>
<td>Value 1 (SD)</td>
<td>Value 2 (SD)</td>
<td>Value 3 (SD)</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Growth hormone</td>
<td>11 (5.4)</td>
<td>5 (9.1)</td>
<td>5 (12.2)</td>
</tr>
<tr>
<td>Respiratory function</td>
<td>11 (5.4)</td>
<td>3 (5.5)</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Acute kidney injury</td>
<td>9 (4.4)</td>
<td>-</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Serum immunoglobulins</td>
<td>9 (4.4)</td>
<td>1 (1.8)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Calcium x Phosphate</td>
<td>9 (4.4)</td>
<td>6 (10.9)</td>
<td>-</td>
</tr>
<tr>
<td>Graft histology/ pathology (excl. rejection)</td>
<td>8 (3.9)</td>
<td>-</td>
<td>8 (19.5)</td>
</tr>
<tr>
<td>Uric acid</td>
<td>8 (3.9)</td>
<td>1 (1.8)</td>
<td>-</td>
</tr>
<tr>
<td>Caloric intake</td>
<td>8 (3.9)</td>
<td>4 (7.3)</td>
<td>-</td>
</tr>
<tr>
<td>Protein intake</td>
<td>7 (3.4)</td>
<td>3 (5.5)</td>
<td>-</td>
</tr>
<tr>
<td>Electrolyte intake</td>
<td>7 (3.4)</td>
<td>5 (9.1)</td>
<td>-</td>
</tr>
<tr>
<td>Renal tubular dysfunction</td>
<td>6 (2.9)</td>
<td>3 (5.5)</td>
<td>-</td>
</tr>
<tr>
<td>Fertility</td>
<td>5 (2.4)</td>
<td>2 (3.6)</td>
<td>-</td>
</tr>
<tr>
<td>Cardiac function</td>
<td>5 (2.4)</td>
<td>1 (1.8)</td>
<td>-</td>
</tr>
<tr>
<td>Rhabdomyolysis</td>
<td>5 (2.4)</td>
<td>1 (1.8)</td>
<td>2 (4.9)</td>
</tr>
<tr>
<td>Endocrine function</td>
<td>4 (2.0)</td>
<td>1 (1.8)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Nitrites</td>
<td>3 (1.5)</td>
<td>1 (1.8)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Thyroid function</td>
<td>3 (1.5)</td>
<td>1 (1.8)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Amino acids</td>
<td>3 (1.5)</td>
<td>2 (3.6)</td>
<td>-</td>
</tr>
<tr>
<td>Aluminium toxicity</td>
<td>2 (1.0)</td>
<td>1 (1.8)</td>
<td>-</td>
</tr>
<tr>
<td>Urine volume</td>
<td>2 (1.0)</td>
<td>1 (1.8)</td>
<td>-</td>
</tr>
<tr>
<td>Blood pressure regulating hormone</td>
<td>2 (1.0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carnitine</td>
<td>2 (1.0)</td>
<td>2 (3.6)</td>
<td>-</td>
</tr>
<tr>
<td>Chronic graft rejection</td>
<td>2 (1.0)</td>
<td>-</td>
<td>2 (4.9)</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>1 (0.5)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Donor-specific anti-HLA antibody</td>
<td>1 (0.5)</td>
<td>-</td>
<td>1 (2.4)</td>
</tr>
</tbody>
</table>

-, no trials reported
Table 3: online only. Proportion of trials reporting each clinical outcome (205 trials, 38 outcome domains)

<table>
<thead>
<tr>
<th>Domains (clinical outcomes)</th>
<th>Number of trials</th>
<th>All n=205 (%)</th>
<th>Dialysis n=55 (%)</th>
<th>Transplantation n=41 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td></td>
<td>61 (29.8)</td>
<td>17 (30.9)</td>
<td>16 (39.0)</td>
</tr>
<tr>
<td>Height and pubertal development</td>
<td></td>
<td>51 (24.9)</td>
<td>12 (21.8)</td>
<td>18 (43.9)</td>
</tr>
<tr>
<td>Dermatologic disorder</td>
<td></td>
<td>46 (22.4)</td>
<td>5 (9.1)</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Gastrointestinal effects</td>
<td></td>
<td>43 (21.0)</td>
<td>7 (12.7)</td>
<td>8 (19.5)</td>
</tr>
<tr>
<td>Adverse events (non-specified)</td>
<td></td>
<td>36 (17.6)</td>
<td>6 (10.9)</td>
<td>10 (24.4)</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td>28 (13.7)</td>
<td>3 (5.5)</td>
<td>15 (36.6)</td>
</tr>
<tr>
<td>Neurologic disorders</td>
<td></td>
<td>26 (12.7)</td>
<td>3 (5.5)</td>
<td>6 (14.6)</td>
</tr>
<tr>
<td>Urologic complication</td>
<td></td>
<td>23 (11.2)</td>
<td>2 (3.6)</td>
<td>6 (14.6)</td>
</tr>
<tr>
<td>Respiratory disease</td>
<td></td>
<td>22 (10.7)</td>
<td>4 (7.3)</td>
<td>6 (14.6)</td>
</tr>
<tr>
<td>Graft loss</td>
<td></td>
<td>19 (9.3)</td>
<td>-</td>
<td>19 (46.3)</td>
</tr>
<tr>
<td>Vision disorder</td>
<td></td>
<td>18 (8.8)</td>
<td>2 (3.6)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Mouth and gum disorders</td>
<td></td>
<td>14 (6.8)</td>
<td>-</td>
<td>3 (7.3)</td>
</tr>
<tr>
<td>Bone disease/fractures</td>
<td></td>
<td>14 (6.8)</td>
<td>4 (7.3)</td>
<td>5 (12.2)</td>
</tr>
<tr>
<td>Cushing syndrome</td>
<td></td>
<td>14 (6.8)</td>
<td>-</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td></td>
<td>8 (3.9)</td>
<td>4 (7.3)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Dialysis treatment complications</td>
<td></td>
<td>8 (3.9)</td>
<td>7 (12.7)</td>
<td>2 (4.9)</td>
</tr>
<tr>
<td>Malignancy – PTLD</td>
<td></td>
<td>8 (3.9)</td>
<td>-</td>
<td>8 (19.5)</td>
</tr>
<tr>
<td>Malignancy (unspecified)</td>
<td></td>
<td>6 (2.9)</td>
<td>1 (1.8)</td>
<td>3 (7.3)</td>
</tr>
<tr>
<td>Edema</td>
<td></td>
<td>6 (2.9)</td>
<td>2 (3.6)</td>
<td>-</td>
</tr>
<tr>
<td>Hospitalization</td>
<td></td>
<td>6 (2.9)</td>
<td>1 (1.8)</td>
<td>4 (9.8)</td>
</tr>
<tr>
<td>Procedural complication</td>
<td></td>
<td>5 (2.4)</td>
<td>-</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Allergic reaction</td>
<td></td>
<td>5 (2.4)</td>
<td>3 (5.5)</td>
<td>-</td>
</tr>
<tr>
<td>Bleeding/hematoma</td>
<td></td>
<td>5 (2.4)</td>
<td>1 (1.8)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Muscular complications</td>
<td></td>
<td>5 (2.4)</td>
<td>1 (1.8)</td>
<td>3 (7.3)</td>
</tr>
<tr>
<td>Requirement of transplantation</td>
<td></td>
<td>4 (2.0)</td>
<td>2 (3.6)</td>
<td>-</td>
</tr>
<tr>
<td>Fever/chills</td>
<td></td>
<td>4 (2.0)</td>
<td>2 (3.6)</td>
<td>2 (4.9)</td>
</tr>
<tr>
<td>Compliance</td>
<td></td>
<td>4 (2.0)</td>
<td>3 (5.5)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Condition</td>
<td>Time on Dialysis</td>
<td>Metabolic and Nutritional Disorders</td>
<td>End Stage Kidney Disease</td>
<td>Dehydration</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------------------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Time on dialysis</td>
<td>3 (1.5)</td>
<td>-</td>
<td>-</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Metabolic and nutritional disorders</td>
<td>3 (1.5)</td>
<td>-</td>
<td>-</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>End stage kidney disease</td>
<td>3 (1.5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dehydration</td>
<td>2 (1.0)</td>
<td>-</td>
<td>-</td>
<td>2 (4.9)</td>
</tr>
<tr>
<td>Arthritis and joint pain</td>
<td>2 (1.0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hearing impairment</td>
<td>2 (1.0)</td>
<td>1 (1.8)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Physical injury</td>
<td>2 (1.0)</td>
<td>1 (1.8)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vascular access complications</td>
<td>1 (0.5)</td>
<td>1 (1.8)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Malignancy - skin</td>
<td>1 (0.5)</td>
<td>-</td>
<td>-</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Pulmonary embolus</td>
<td>1 (0.5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hyperhidrosis</td>
<td>1 (0.5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4; online only. Proportion of trials reporting each patient-reported outcome (205 trials, 10 outcome domains)

<table>
<thead>
<tr>
<th>Domains (patient-reported outcomes)</th>
<th>Number of trials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total trials, n=205 (%)</td>
</tr>
<tr>
<td>Pain</td>
<td>33 (16.1)</td>
</tr>
<tr>
<td>Psychological impact</td>
<td>15 (7.3)</td>
</tr>
<tr>
<td>Treatment satisfaction</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Sleep disorder</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Quality of life (global)</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Depression</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Food enjoyment/appetite</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>School performance</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Physical function/mobility/ disability</td>
<td>1 (0.5)</td>
</tr>
</tbody>
</table>
Table 5. Proportion of trials reporting the top 10 most frequently reported outcome domains

<table>
<thead>
<tr>
<th>Domains</th>
<th>Number of trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>(all outcomes)</td>
<td>All n=205 (%)</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>76 (37.1)</td>
</tr>
<tr>
<td>Relapse/remission</td>
<td>70 (34.1)</td>
</tr>
<tr>
<td>Kidney function</td>
<td>66 (32.2)</td>
</tr>
<tr>
<td>Infection</td>
<td>61 (29.8)</td>
</tr>
<tr>
<td>Height and pubertal development</td>
<td>51 (24.9)</td>
</tr>
<tr>
<td>Weight/BMI/body composition</td>
<td>50 (24.4)</td>
</tr>
<tr>
<td>Proteinuria, albuminuria</td>
<td>49 (23.9)</td>
</tr>
<tr>
<td>Blood protein, albumin</td>
<td>48 (23.4)</td>
</tr>
<tr>
<td>Lipids</td>
<td>47 (22.9)</td>
</tr>
<tr>
<td>Dermatologic disorder</td>
<td>46 (22.4)</td>
</tr>
</tbody>
</table>
Table 6; online only. Primary outcomes reported in trials conducted in children with CKD

<table>
<thead>
<tr>
<th>Domains of primary outcomes (96 trials*)</th>
<th>Number of trials (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relapse/remission</td>
<td>43 (44.8)</td>
</tr>
<tr>
<td>Proteinuria, albuminuria</td>
<td>22 (22.9)</td>
</tr>
<tr>
<td>Kidney function</td>
<td>18 (18.8)</td>
</tr>
<tr>
<td>Height and pubertal development</td>
<td>15 (15.6)</td>
</tr>
<tr>
<td>Anemia/haemoglobin/iron</td>
<td>9 (9.4)</td>
</tr>
<tr>
<td>Bone density/markers</td>
<td>6 (6.3)</td>
</tr>
<tr>
<td>Acute graft rejection</td>
<td>5 (5.2)</td>
</tr>
<tr>
<td>Adverse events</td>
<td>5 (5.2)</td>
</tr>
<tr>
<td>Glucose metabolism</td>
<td>5 (5.2)</td>
</tr>
<tr>
<td>Infection</td>
<td>5 (5.2)</td>
</tr>
<tr>
<td>Lipids</td>
<td>5 (5.2)</td>
</tr>
<tr>
<td>Parathyroid hormone</td>
<td>4 (4.2)</td>
</tr>
<tr>
<td>Pain</td>
<td>3 (3.1)</td>
</tr>
<tr>
<td>Kidney disease progression/change</td>
<td>3 (3.1)</td>
</tr>
<tr>
<td>Dialysis adequacy</td>
<td>3 (3.1)</td>
</tr>
<tr>
<td>Cardiac function</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Cushing’s syndrome</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Urologic complication</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Phosphate</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Graft rejection (unspecified)</td>
<td>2 (2.1)</td>
</tr>
<tr>
<td>Other</td>
<td>14 (14.6)</td>
</tr>
</tbody>
</table>

* 96 out of 205 trials reported primary outcomes
Records identified in Cochrane Kidney and Transplant Specialized Register (CKT) N=1266

Records excluded after title and abstract review N=936
Reasons for exclusion
- No CKD-related intervention 456
- Not a randomized controlled trial 446
- Excluded population 6
- Duplicate 1

Records screened N=1266

Records excluded after full-text review N=136
Reasons for exclusion
- Excluded population 55
- Not a randomized controlled trial 42
- Non English article 25
- Duplicate 11
- No CKD-related intervention 3

Full-text articles assessed for eligibility N=355

Studies included N=205
(219 trials; n=2174 participants*)

*Sample size not included in 3 studies
Outcomes domains (n=100)

% of trials

(X10 log scale)
Categories of outcome:
- Surrogate (n=52)
- Clinical (n=38)
- Patient reported, (n=10)

NB: Proportion are expressed in a x10 log scale to display proportion <1%
Figure 3
Click here to download Figure: SONG Kids SR - JPeds - Figure 3.docx

Number of measures and time points

- School performance (1 trial)
- Psychological impact (15 trials)
- Pain (34 trials)
- Kidney function (66 trials)
- Relapse, remission (67 trials)
- Blood pressure (76 trials)
- Dermatologic disorder (46 trials)
- Height and pubertal development (52 trials)
- Infection (61 trials)

Patient reported outcomes
Surrogate outcomes
Clinical outcomes
Figure Legend

- Number of measures
- Number of time points *
- Number of measures and time points **

* Number of unique time points
** Different measures can have the same time points
Outcomes measures for blood pressure

- Blood pressure >95mmHg
- Blood pressure, decrease
- Blood pressure, mean
- Blood pressure, mean, nightly decrease
- Blood pressure, mean, change
- Diastolic blood pressure (in office)
- Diastolic blood pressure, 24h mean
- Diastolic blood pressure, change <80mmHg
- Diastolic blood pressure, change >80mmHg
- Diastolic blood pressure, disappearance < 75.5
- Diastolic blood pressure, disappearance > 75.5
- Diastolic blood pressure, mean, change
- Hypertension, no. of relapse
- Hypertension, worsened
- Hypertensive crises
- Hypertensive patients, no.
- Hypotension, mild
- Mean arterial pressure, % of patients <50th
- Mean arterial pressure, 24h
- Mean arterial pressure, change
- Mean arterial pressure, change, <50th percentile
- Mean arterial pressure, change, <90th percentile
- Mean arterial pressure, change, >50th percentile
- Mean arterial pressure, change, >90th percentile
- Mean arterial pressure, daytime
- Mean arterial pressure, daytime, SDS
- Mean arterial pressure, night time
- Mean arterial pressure, night time, SDS
- Mean arterial pressure, no. <5th percentile
- Nondipping, %
- Supine blood pressure
- Symptomatic low blood pressure
- Systolic blood pressure, <120mmHg
- Systolic blood pressure, >120mmHg
- Systolic blood pressure, 24h mean
- Systolic blood pressure, change
- Systolic blood pressure, in office
- Systolic blood pressure, mean, SDS
- Systolic blood pressure, median
- Blood pressure, change
- Hypertension, intracranial
- Hypertension, mild
- Hypotension, incidence
- Mean arterial pressure
- Mean arterial pressure, 24h, SDS
- Systolic blood pressure, mean, change
- Diastolic blood pressure, change
- Diastolic blood pressure, mean, SDS
- Hypertension, incidence
- Hypotension
- Blood pressure
- Diastolic blood pressure, mean
- Diastolic blood pressure
- Systolic blood pressure
- Systolic blood pressure, mean
- Hypertension
- Proportion of trials
- Time points of measurement

* Outcome measures shown are as named in the trials
Proportion of trials

- Time points of measurement

* Outcome measures shown are as named in the trials
Figure 4c; online only

Outcome measures for kidney function

Creatinine clearance (calculated)
Creatinine clearance (endogenous)
Creatinine clearance (estimated)
Creatinine clearance, mean change
Creatinine clearance, median change
Cystatin C clearance
O-EDTA clearance, slope
Doubling serum creatinine
eGFR (<60 ml/min/1.73 m²)
eGFR, mean change, annualised
eGFR, median
GFR (Schwartz)
GFR (Schwartz), decrease
GFR, < 50% reduction free survival
GFR, > 50% reduction
GFR, annualised decrease
GFR, 106.8
Inulin clearance
Serum urea/creatinine ratio
Creatinine clearance (estimated)
Creatinine clearance, change
Creatinine serum, median
eGFR, mean
eGFR, change
GFR
GFR, mean
Creatinine serum increase, > 30%
Creatinine serum, median
eGFR
GFR
Creatinine clearance
Creatinine serum

Time points (months)

0 20 40 60 80 100 120 140

Creatinine clearance (calculated)
Creatinine clearance (endogenous)
Creatinine clearance (estimated)
Creatinine clearance, mean change
Creatinine clearance, median change
Cystatin C clearance
O-EDTA clearance, slope
Doubling serum creatinine
eGFR (<60 ml/min/1.73 m²)
eGFR, mean change, annualised
eGFR, median
GFR (Schwartz)
GFR (Schwartz), decrease
GFR, < 50% reduction free survival
GFR, > 50% reduction
GFR, annualised decrease
GFR, 106.8
Inulin clearance
Serum urea/creatinine ratio
Creatinine clearance (estimated)
Creatinine clearance, change
Creatinine serum, median
eGFR, mean
eGFR, change
GFR
GFR, mean
Creatinine serum increase, > 30%
Creatinine serum, median
eGFR
GFR
Creatinine clearance
Creatinine serum

% trials

0 5 10 15 20 25 30
* Outcome measures shown are as named in the trials

- Proportion of trials
 - Time points of measurement
Outcome measures for "Infection"
Proportion of trials
- Time points of measurement

* Outcome measures shown are as named in the trials
Proportion of trials
- Time points of measurement

* Outcome measures shown are as named in the trials
Figure 4f; online only
Click here to download Figure: SONG Kids SR - JPeds - Figure 4f (online).docx

Outcomes measures for "Dermatologic disorders"
Proportion of trials
- Time points of measurement

* Outcome measures shown are as named in the trials
Outcomes measures for "Pain"
<table>
<thead>
<tr>
<th>Proportion of trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time points of measurement</td>
</tr>
</tbody>
</table>

* Outcome measures shown are as named in the trials
Proportion of trials
- Time points of measurement

* Outcome measures shown are as named in the trials
Outcomes measures for "Weight, BMI, body composition"
- Proportion of trials
 - Time points of measurement

* Outcome measures shown are as named in the trials