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Abstract

Investigating the adaptive properties of neuronal circuits is central to understanding the
operations of the brain. The mouse olfactory bulb is a structure well suited for studying
these processes, since it is composed of relatively simple excitatory and inhibitory
networks. Recently, it has been shown that principal neurons (mitral cells) of the
olfactory bulb that participate in the same glomerular circuit exhibit similar biophysical
properties based on their I,-mediated membrane potential sag. In many cell types,
including mitral cells, I is known to profoundly influence excitability and thus impact

the input/output function of individual neurons and networks.

Like principal cells, inhibitory neurons are known to exhibit I, that influences their
integrative properties. In the olfactory bulb, interneurons of the glomerular layer can
receive input from one or more glomerular networks and are thought to mediate lateral
or centre-surround inhibition. The regulation of I, in these cells could thus be used as a

gain-control mechanism to facilitate contrast enhancement.

During my project, I therefore investigated the diversity of I in GAD65" and TH"
juxtaglomerular cells belonging to the same or different glomeruli to determine the
diversity of I,-mediated membrane potential sag within and across different inhibitory

circuits.

I found that the two juxtaglomerular populations differed substantially in their levels of
membrane potential sag. Contrary to TH' juxtaglomerular cells, the similarity in the
amount of sag recorded in GAD65" juxtaglomerular cells was high when two neurons
were found to participate in the same glomerular circuit. Furthermore, the sag amplitude
of interneurons affiliated to a specific glomerular circuit was upregulated when mice
were exposed to odour stimuli. This indicates that, at least for GAD65" juxtaglomerular
cells, the amount of I, membrane sag reflects local network processing of odour

information.
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Chapter 1 Introduction

Chapter 1. Introduction
1.1 Information Processing in the Brain

Neurons are the fundamental elements for information processing in the central nervous
system. They are electrically excitable cells that communicate largely via chemical
transmission. Most classes of neuron receive the vast majority of input onto their
dendritic tree, and send the resultant output via the axon, although there are exceptions
to this rule. The kind of computations performed by a neuron is dictated by the
combination of its intrinsic and synaptic properties (Turrigiano 2011), which in turn are
defined by morphological and biophysical properties and the synaptic connectivity and

strength, respectively.

1.1.1 Heterogeneity Between Cell Types

To achieve a comprehensive understanding of the nervous system, it is essential to
explore its cellular composition and biophysical diversity to relate that to connectivity
and ultimately network function. The general aim of cell classification is to define a
group of cells that serve a distinct function. Traditionally, neurons have been grouped in
classes or types based on their location, morphology, expression of proteins, firing
profiles and the make-up of the synaptic connections they receive (Markram et al. 2004;
Toledo-Rodriguez et al. 2004; Petilla Interneuron Nomenclature et al. 2008).
Classification of neurons is an ongoing field of research, in which new classification
methods are continuously being developed. For example, two groups recently began to
link the diversity of cell types based on electrophysiological properties with differential
gene expression (Cadwell et al. 2016; Fuzik et al. 2016).

Decades of research have identified many different types of neurons in the nervous
system and in some cases have demonstrated the functional importance of such
heterogeneity. For instance, various types of neocortical interneurons, differentiated by
molecular markers, have been suggested to have distinctly different functional roles
(Moore et al. 2010; Lee et al. 2012; Wilson et al. 2012).

It is generally thought that such diversity either reflects biological noise or the

functional complexity of a neuronal system, whereby normal network operation

13



Chapter 1 Introduction

requires large numbers of highly specialised neurons (Fishell and Heintz 2013). The
mammalian retina provides a good example for a highly complex neuronal network,
where more than 60 discrete cell types have been identified so far (Masland 2012).
Although the functional contribution of each of these cell types in not yet fully
understood, highly specialised cell types have been found to serve distinct functions

within visual perception, such as JamB cells responding to upward motion (Kim et al.

2008).

1.1.2 Heterogeneity Within Cell Types

Differences between cell types co-exist with molecular, epigenetic, morphological and
physiological heterogeneity within a given class of neurons. The functional role of these
within-class cell-to-cell differences has attracted increasing interest in many areas of
biology including developmental biology, genetics, cancer biology and infectious
disease research (Altschuler and Wu 2010; Paszek et al. 2010; Pelkmans 2012).

In many cases, cell-to-cell heterogeneity can probably be ascribed to the imperfection of
nature and may be ignored as functionally irrelevant (Altschuler and Wu 2010).
However, in several brain areas in which neurons were thought to be highly
homogeneous or even clonally identical, differences in properties from one neuron to
the next have been found to play a critical functional role. For instance, diversity in
biophysical properties within neuronal types has been observed to be functionally
relevant for principal cells of the cortex (Mason and Larkman 1990; Kumar and Ohana
2008), cerebellum (Kim et al. 2012) and olfactory bulb (Padmanabhan and Urban 2010;
Angelo and Margrie 2011).

It is thought that heterogeneity within cell types is, like the diversity between cell types,
a feature of complex neuronal systems. In neurons, the composition and localisation of
non-synaptic ion channels in the membrane significantly contribute to the unique
biophysical properties of each neuron (Zhang and Linden 2003), and in turn contribute
to within-class heterogeneity (Nusser 2009). This biophysical diversity can result in a
diverse firing pattern of neurons belonging to the same type (Padmanabhan and Urban
2010), which has been shown to substantially contribute to signal decorrelation
(Padmanabhan and Urban 2010) and reduction of signal redundancy (Marsat and Maler

2010). Therefore, biophysical diversity is becoming increasingly more recognised as

14



Chapter 1 Introduction

crucial for robust encoding of stimuli on a complex circuit level (Tripathy et al. 2013).
Population-based heterogeneity in the olfactory system can arise from differences
between local, functionally distinct networks of neurons (Angelo et al. 2012). In this
study, paired whole-cell recordings were conducted from mitral cells (MCs) affiliated
either to the same glomerulus or to two different glomeruli. MCs can be highly diverse
in their levels of membrane potential sag (Angelo and Margrie 2011), however the
amplitude of this sag was significantly more similar in sister-MCs innervating the same
glomerulus compared to MCs innervating different glomeruli. When repeating these
experiments in a “monoclonal nose” mouse model, in which the same odour receptor is
expressed in more than 95% of olfactory sensory neurons (OSNs), the MC population
exhibited a more homogenous distribution of sag amplitudes and were also more
homogeneous in their HCN2 expression levels. These findings clearly indicate that a
regulatory mechanism can underlie the diversity of intrinsic cellular properties, like I
levels. If such properties depend on local network membership, it follows that the
plasticity of these properties is not only regulated on a single-cell level, but could be

functionally relevant for the operation of neuronal microcircuits.

1.2 Mechanisms of Homeostatic Plasticity

Many different excitatory and inhibitory cell types with heterogeneous biophysical
properties are organised in neuronal microcircuits that functionally contribute to the
computations of a brain area. Homeostatic plasticity refers to all mechanisms in a circuit
that stabilise the excitability of neurons to keep them responsive in the context of
widely varying levels of synaptic input (Marder and Goaillard 2006; Turrigiano 2008;
Feldman 2009; Turrigiano 2011). Neuronal circuits rely on various, mostly slow acting
biophysical mechanisms to maintain the mean firing of their neurons at a stable level
and these mechanisms are thought to operate as a negative feedback loop, counteracting
Hebbian synaptic plasticity (Turrigiano 2011). These mechanisms can either
homeostatically regulate the synaptic strength (Burrone et al. 2002; Sammons and Keck
2015) or adapt the intrinsic excitability (Zhang and Linden 2003) of a neuron according

to synaptic input.
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Chapter 1 Introduction

1.2.1 Homeostatic Synaptic Plasticity

In the brain, neurons communicate information mostly by specialised connections,
termed synapses. At synapses, the activity of a presynaptically connected neuron can
cause the release of neurotransmitters from the presynaptic terminal, which diffuse
through the synaptic cleft to the postsynaptic membrane and activate neurotransmitter
receptors, causing postsynaptic current flow. Synapses can be excitatory or inhibitory
and there is evidence for tight regulation of excitation versus inhibition in local
neuronal networks (Shu et al. 2003; Xue et al. 2014).

The main excitatory neurotransmitter is glutamate, which activates metabotropic and
ionotropic glutamate receptors. Metabotropic receptors are coupled to G-proteins and
act on a much slower time scale than ionotropic receptors, as they initiate an
intracellular signalling cascade upon activation. Such second messenger systems have
been shown to impact on synaptic plasticity and neuronal excitability (Bashir et al.
1993; Gereau and Conn 1995; Pin and Duvoisin 1995; Anwyl 1999; Benquet et al.
2002). Ionotropic glutamate receptors (AMPA, kainite, NMDA) are cation channels,
gating Na®, K™ and Ca®" ions. In the presence of glutamate, AMPA and kainate
receptors exhibit fast gating properties and therefore mediate fast currents. NMDA
receptors activate upon binding to glutamate, their activation is voltage-dependent and
they exhibit slower gating properties. NMDA receptors are known to be important in
the induction of long-term plasticity (Coan et al. 1987; Collingridge and Bliss 1987).
The opening of these ionotropic glutamate receptors generates an excitatory
postsynaptic current (EPSC), usually with a fast exponentially rising phase
(predominately shaped by AMPA and kainate receptors) and a slow decaying phase
(predominately shaped by NMDA receptors). EPSCs cause a depolarisation of the
membrane potential in the form of an excitatory postsynaptic potential (EPSP; Hille
2001).

The main inhibitory neurotransmitters are y—aminobutyrate (GABA) and glycine,
however fast synaptic inhibition in the brain is primarily mediated by ionotropic
GABA, receptors (Hille 2001). These GABA-gated ion channels are permeable to
anions and the ion flow through these channels (inhibitory postsynaptic current; IPSC)
significantly contributes to the hyperpolarisation of the membrane potential (inhibitory

postsynaptic potential; IPSP) in a postsynaptically connected neuron. When the
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depolarisation of a neuron through excitatory synapses exceeds the hyperpolarisation of
inhibitory synapses, the membrane potential can be driven over the firing threshold of a
neuron, resulting in an action potential.

Depending on the strength or pattern of activation, the efficacy of transmission at
excitatory and inhibitory synapses can be up- or downregulated, a mechanism referred
to as synaptic plasticity. According to the timescale on which synaptic plasticity occurs,
it can be divided into short-term and long-term plasticity. Homeostatic synaptic
plasticity is seen as a form of long-term synaptic plasticity that keeps a neuron within a
target firing rate range, for instance by counteracting changes in synaptic strength
through mechanisms like long-term potentiation or long term depression (O'Brien et al.
1998; Turrigiano et al. 1998; Burrone et al. 2002; Desai et al. 2002; Turrigiano and
Nelson 2004). Homeostatic plasticity can scale all synapses of a neuron (Turrigiano
2008) or only affect a subset of synapses (Rabinowitch and Segev 2008; Yu and Goda
2009; Wefelmeyer et al. 2016) and it can occur presynaptically and postsynaptically
(Davis and Bezprozvanny 2001). Interestingly, these activity-dependent scaling
processes appear to be initiated intrinsically and can be seen as a form of self-tuning
(Turrigiano 2008; Turrigiano 2011).

Initially, homeostatic synaptic plasticity was observed in cultured cortical neurons that
have been pharmacologically blocked or activated over 48 hours (Turrigiano et al.
1998). This long-term block or activation resulted in a neuron-wide increase or decrease
of EPSC amplitudes; a negative feedback mechanism termed ‘synaptic scaling’. As a
result, homeostatic synaptic plasticity was first described as a multiplicative up- or
downregulation of the strength of all excitatory synapses upon reduction or increase of
network activity and was thought to preserve the ratios between synaptic weights in a
neuron (Thiagarajan et al. 2005; Ibata et al. 2008; Turrigiano 2008). Today, synaptic
scaling is among the best studied homeostatic plasticity mechanisms and has been
observed not only in cortical structures (Turrigiano et al. 1998), but also in spinal
neurons (O'Brien et al. 1998) and in the hippocampus (Lissin et al. 1998; Burrone et al.
2002; Thiagarajan et al. 2005).

However, homeostatic synaptic plasticity mechanisms do not necessarily affect neurons
as a whole, but can also be restricted to subcellular structures, or even single synapses

(Thiagarajan et al. 2005; Sutton et al. 2006; Hou et al. 2008). For example, Thiagarajan
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et al. (2005) showed that an activity blockade in hippocampal culture not only altered
the magnitude, but also the distribution of EPSCs, leading to a shift of the relative
weights of synapses. Furthermore, prolonged depolarisation of hippocampal pyramidal
cells has been shown to cause inactivation of only a subset of synapses (Moulder et al.
2006). Also, the AMPA receptor subunit GluR1 can be synthesised locally in dendrites
in an activity-dependent manner (Ju et al. 2004; Sutton et al. 2006) and upon chronic
inhibition of single synapses, AMPA receptors accumulate selectively at these synapses
(Hou et al. 2008).

Regarding the mechanisms underlying homeostatic synaptic plasticity evidence for both
changes in postsynaptic AMPA (Lissin et al. 1998; O'Brien et al. 1998; Turrigiano et al.
1998; Wierenga et al. 2005) and NMDA receptors (Rao and Craig 1997; Watt et al.
2000; Mu et al. 2003) exists. An increase in network activity can result postsynaptically
in a calcium-dependent reduction of AMPA receptors and thereby decrease the strength
of a synapse (O'Brien et al. 1998). Accordingly, the decrease of network activity can
result in reduced calcium influx, which leads to an increase in postsynaptic AMPA
receptors and thereby larger quantal transmission (Lissin et al. 1998; O'Brien et al.
1998; Thiagarajan et al. 2005; Wierenga et al. 2005; Ibata et al. 2008). The efficacy of
presynaptic transmitter release can also be affected by changes in postsynaptic
excitability, whereby presynaptic transmitter release is more efficient upon decreased
network activity (Petersen et al. 1997; Burrone et al. 2002; Desai et al. 2002;
Thiagarajan et al. 2005). Interestingly, a very recent publication showed that
presynaptically located HCN1 channels restrict the release of synaptic vesicles in
pyramidal neurons of layer III in the entorhinal cortex (Huang et al. 2017). Since the
gating probability and occurrence of HCN channels heavily depend on a neuron’s
activity (Biel et al. 2009), such a presynaptic mechanism might homeostatically regulate
the synaptic strength of these neurons.

Homeostatic scaling mechanisms in inhibitory synapses are less well studied, but appear
to work in an inverted way, with weakening of synapses upon chronically reduced
network activity (Rutherford et al. 1997; Hartman et al. 2006; Swanwick et al. 2006). In
cultured hippocampal neurons, a prolonged depolarisation increases the expression of
postsynaptic GABA 4 receptors, which correlates with an increased IPSC amplitude and

frequency and therefore an increased synaptic strength (Rannals and Kapur 2011).
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Inversely, a reduced visual input leads to a decreased expression of GABA, receptors in
primary visual cortex (Hendry et al. 1994). Presynaptically, neuronal activity has been
shown to regulate the amount of GABA released by individual vesicles (Hartman et al.
20006).

While the homeostatic regulation of neurons via changes in synaptic strength is a large
field of research, it is not the focus of this thesis. Rather, this project focuses on a much
less studied area of neuronal plasticity that occurs via regulation of a neuron’s intrinsic

biophysical properties.

1.2.2 Homeostatic Intrinsic Plasticity

Most efforts to understand network plasticity have focussed on synaptic mechanisms
(Turrigiano 2008; Feldman 2009; Turrigiano 2011; Wefelmeyer et al. 2016). However,
neurons respond to fluctuating input not only with a change in synaptic efficacy, but
also by adapting their intrinsic input/output curve and therefore altering how they
integrate the synaptic signals. More specifically, homeostasis of a neuron and network
stability is heavily influenced by the interplay of synaptic strength and various intrinsic
voltage-dependent currents (Marder and Goaillard 2006). The strength of a voltage-
dependent macroscopic current is defined by the number and location of the underlying
membrane channels (Desai et al. 1999; Schulz et al. 2006) as well as the gating
properties of these channels (Li et al. 1992) and can be sensitive to activity-dependent
intracellular signalling (Turrigiano et al. 1994; Bito et al. 1996). Such an activity-
dependent regulation of ion channels can occur by modulation of ion channel density
through changes in transcription and translation (Aptowicz et al. 2004; Campanac et al.
2013), channel endocytosis or channel trafficking along the membrane (Misonou et al.
2004; Kim et al. 2007), as well as changes of ion channel function by altered
posttranslational mechanisms such as phosphorylation (Gasparini and Magee 2002;
Frick et al. 2004; Misonou et al. 2004; Park et al. 2006) or binding of secondary
messengers (Baines 2003; Wang et al. 2007).

Activity-dependent regulation of intrinsic properties has been demonstrated in many
brain areas, including neocortex (Desai et al. 1999; Gibson et al. 2006; Bartley et al.
2008), hippocampus (Aptowicz et al. 2004; van Welie et al. 2004; O'Leary et al. 2010),
striatum (Azdad et al. 2009), and brainstem (Nelson et al. 2003). It has been observed in
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principal neurons (Desai et al. 1999; Aptowicz et al. 2004; van Welie et al. 2004; Azdad
et al. 2009; O'Leary et al. 2010) as well as in interneurons (Gibson et al. 2006; Bartley
et al. 2008). This type of plasticity depends on the plastic strength of several different
non-synaptic ion currents, including Na*, K™ and Ca®" currents (Desai 2003; Sun 2009;
Campanac et al. 2013), as well as the hyperpolarisation-activated current (I; van Welie
et al. 2004; Gibson et al. 2006). These currents are crucial for integration of synaptic
inputs and neuronal computations, since they determine the firing threshold and shape
of the action potential. Action potentials are the fundamental basis of signal
transmission and are predominately generated by the interplay of voltage-gated Na", K"
and Ca”" channels (Hille 2001). These voltage-gated ion channels open according to
changes in membrane potential. Most fast action potentials are the result of a Na" influx
through voltage-gated Na* channels (but can also be generated by voltage-gated Ca”*
channels), which activate upon synaptic depolarisation. However, voltage-gated Na"
channels exhibit an inactivating mechanism, causing a voltage-independent, rapid
closing of these channels. This state persists for several milliseconds even when the
membrane potential has returned to its resting state. Action potentials are shaped by the
interplay of these voltage-gated Na™ channels with another type of ion channel, the
voltage-gated K channels. Voltage-gated K' channels also activate upon depolarisation
of the membrane potential, but exhibit slower activation kinetics. The outward K" ion
flow gated by these channels counteracts the Na™ ion flow through voltage-gated Na"
channels with a delay, thereby terminating the rapid depolarisation of the membrane
potential and repolarising the potential back to the resting state. Depending on the
timing of the interplay between voltage-gated Na” and K' channels, many neurons
exhibit an afterhyperpolarisation, which refers to a hyperpolarisation of the membrane
potential directly after an action potential (Hille 2001). Afterhyperpolarisation is caused
by the persistent inactivation of Na" channels and delayed inactivation of K channels
and can be characteristic for a cell type, because its occurrence and shape depend on the
ion channel composition of a neuron (Saar et al. 2002). Depending on the cell type, this
afterhyperpolarisation can open hyperpolarisation-activated ion channels, like
hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels, that gate a cation
current (Ip) and thereby promote the repolarisation of the neuron (Robinson and

Siegelbaum 2003).
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It has been demonstrated in pyramidal cells that a prolonged up- or downregulation of
spontaneous firing resulted in decreased or increased intrinsic excitability, respectively
(Desai et al. 1999). Interestingly, the increased excitability in these neurons resulted not
from a homotypic, but diverging regulation of voltage-gated ion channels. Abolishing
spontaneous activity increased the voltage-dependent Na' currents whereas persistent
K" currents were reduced, in sum causing more rapid firing and lower spiking threshold
in these neurons. It appears that many neurons use intracellular Ca”" levels to regulate
synaptic efficacy and the density of non-synaptic ion channels in an activity-dependent
way (LeMasson et al. 1993; Liu et al. 1998; Desai 2003; Fan et al. 2005). Several
studies demonstrated an inhibition of homeostatic intrinsic plasticity by blocking
voltage-dependent calcium channels or calcium-related pathways (Fan et al. 2005; Frick
and Johnston 2005; O'Leary et al. 2010), however the precise mechanisms are not yet
fully understood.

I, mediated by HCN channels, has long been postulated to impact on homeostasis of
neuronal activity (van Welie et al. 2004). In hippocampal CA1 neurons, a prolonged
increase in activity causes an upregulation of I in the soma and dendrites (Fan et al.
2005; Campanac et al. 2008), which is mediated by an activity-dependent increase in
Ca®" entry, that activates CaMKII (Fan et al. 2005). Also, induction of long-term
depression in CA1 neurons, results in long-lasting downregulation of I, which
ultimately leads to an increased neuronal excitability (Brager and Johnston 2007). The
activity-dependent decrease of I, is mediated by activation of group 1 metabotropic
glutamate receptors, through the activation of protein kinase C and the release of Ca**
from internal storages (Brager and Johnston 2007). Interestingly, HCN channels can be
actively trafficked along the membrane by binding to TPR-containing Rab8b interacting
protein (TRIP8b; Santoro et al. 2004). TRIP8b appears to have a strong effect on Iy
density, whereby different TRIP8b isoforms can up- or downregulate surface expression
of HCN channels, and all isoforms negatively impact the channel’s gating probability
(Santoro et al. 2009). TRIP8b itself could be dynamically regulated through
phosphorylation according to neuronal activity (Shin et al. 2008). Thus, one could
imagine a homeostatic regulation of neuronal excitability through activity-dependent,
TRIP8b-mediated HCN channel trafficking, however a detailed mechanism remains to

be shown.
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Activity-dependent plasticity has also been shown to occur at the axon initial segment
(AIS). The AIS is located close to the soma and consists of a dense population of
voltage-gated cation channels. The density of these ion channels combined with passive
axonal properties leads to a low action potential threshold at the AIS. As a result, action
potentials are usually initiated at the AIS (Bender and Trussell 2012). The precise
location of the AIS (Grubb and Burrone 2010) as well as the length of the AIS and the
distribution of voltage-gated Na" channels (Kuba et al. 2010) depend on the history of a
particular neuron’s electric activity, and in turn impacts on the input/output function.

To summarise, voltage-dependent ion channels form the basis of intrinsic excitability,
however these channels exhibit a rather rapid turn-over rate of hours to days (Marder
and Goaillard 2006). Additionally, neurons, even of the same class, do not have
identical ion channel composition and therefore exhibit different electrical properties,
resulting in considerable heterogeneity (see section 1.1.1; Schulz et al. 2006). In this
context, the robustness of neuronal excitability and global activity levels throughout the
lifetime of an animal is remarkable and mechanisms must be in place to tightly regulate
the complex interplay between fluctuating synaptic strength and the levels of ion
channels (LeMasson et al. 1993; Liu et al. 1998).

In accordance with existing literature (Angelo et al. 2012), this thesis proposes that the
diversity of I in glomerular layer interneurons of the olfactory bulb may serve as a
network-based gain control mechanism. We hypothesise that the levels of I, depend on
the history of activation, not only in a single neuron, but also in the local network,
which in turn tune the excitability of neurons. The following chapter summarises how
HCN channels, the voltage-gated ion channels underlying I, work mechanistically and
gives an overview over the functional impact I, is known to have in several different

brain regions and cell types.
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1.3 The Role of I, in Neuronal Integration

1.3.1 Hyperpolarisation-Activated Cyclic Nucleotide-Gated Channels

A well-studied neuronal membrane ion channel, known to impact on neuronal
excitability and synaptic integration, is the HCN channel. In mammals, HCN channels
are encoded by at least four different genes (Santoro et al. 1997; Ludwig et al. 1998;
Santoro et al. 1998) and the four different protein isoforms (HCN 1 - 4) can form homo-
or heterotetramers around a central pore (Figure 1.1a; Chen et al. 2001; Ulens and
Tytgat 2001; Much et al. 2003; Zagotta et al. 2003). All four isoforms contain both a
core transmembrane segment domain and a carboxy-terminal cyclic nucleotide-binding
domain motif (Figure 1.1b). Each of the four subunits is thought to be independently
regulated by membrane voltage, and the opening probability of the channel as a whole
increases with the activation of each subunit (Altomare et al. 2001).

The channel structure is similar to that of the voltage-gated potassium channel,
including a number of positively charged residues on the fourth transmembrane domain
and the “GYG” motif of a K'-channel selectivity filter (Figure 1.1b), but lacks other K'-
channel specific sequences. As a result, HCN channels gate cations rather non-
specifically (Yanagihara and Irisawa 1980) with a preference for K* but also a
significant permeability for Na" (Pape 1996).

HCN channels exhibit the phenomenon of “dual channel activation”, whereby the
gating of the ion channels is regulated not only by voltage, but also the direct binding of
cyclic nucleotides (summarised by Wahl-Schott and Biel 2009). The channel’s activity
is modulated by direct binding of the second messenger cyclic adenosine 3°,5’-
monophosphate (cAMP) at the cytoplasmic cyclic nucleotide-binding domain (Figure
1.1a and b; DiFrancesco and Tortora 1991; Zagotta et al. 2003 ). The binding of cAMP
shifts the voltage relation of HCN channel gating, so that the channel opens at less
negative membrane potentials (DiFrancesco and Tortora 1991). The four channel
isoforms differ in their activation kinetics and sensitivity to the nucleotide cAMP (Chen
et al. 2001; Kaupp and Seifert 2001; Stieber et al. 2005). HCN1 has the fastest
activation kinetics, followed by HCN2 and HCN3, whereas activation of HCN4 is
distinctively slower (Santoro et al. 2000; Chen et al. 2001; Stieber et al. 2005).
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Figure 1.1 Molecular Structure of HCN Channels

(a) Crystal structure of four C-linker and CNBD constructs in a HCN2 homotetramer.
Each of the four subunits is labelled in a different colour and has a cAMP molecule
bound to the CNBD (modified from Zagotta et al. 2003).

(b) Schematic of a single HCN channel subunit transmembrane conformation with six
transmembrane regions (blue). Voltage sensing domains (indicated with +) are located
within the fourth transmembrane segment and the pore region is between the fifth and
sixth segment. A P-loop forms the pore and contains the “GYG” motif of a K'-channel
selectivity filter. On the intracellular C-terminal side is a cyclic nucleotide-binding
domain consisting of three a-helices (A-C) with a B-roll between the A- and B-helix
(modified from Robinson and Siegelbaum 2003).
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Furthermore, HCN channel gating properties, and therefore the time course of I, are
sensitive to the balance of a large variety of molecular and external factors, including
phosophatidylinositol-4,5-bisphosphate (PIP,; Zolles et al. 2006), phosphorylation
(Zong et al. 2005), chloride concentration (Wahl-Schott et al. 2005), pH (Zong et al.
2001) and temperature (Pignatelli et al. 2013). It is still unclear whether HCN channels
form heteromers in vivo. Several groups suggested that heteromers might contribute to
functional diversity of HCN channels (Chen et al. 2001; Ulens and Tytgat 2001; Much
et al. 2003), but HCN channel isoforms may also co-localise without forming
heteromers (Muller et al. 2003). In the brain, HCN channels show a rather ubiquitous
expression, occurring in nearly every principal neuron type (Pape 1996; Williams and
Stuart 2000; Berger et al. 2001; Nolan et al. 2003; Angelo et al. 2007; Nolan et al. 2007;
Angelo and Margrie 2011) and also in some interneurons (Aponte et al. 2006; Pignatelli
et al. 2013). The subcellular localisation of HCN channels can vary between different
types of neurons, including somatic, dendritic and axonal compartments and contributes
to the functional diversity of the ion channel across different brain areas (Nusser 2009).
For instance, somatic HCN channel expression is prominent in GABAergic
interneurons of the olfactory bulb, cerebellum and hippocampus, where the activity of
HCN channels influences the membrane properties of neurons (Notomi and Shigemoto
2004; Brewster et al. 2007b; Bender and Baram 2008; Pignatelli et al. 2013). HCN
channels have also been localised in the axonal regions of some interneurons (Notomi
and Shigemoto 2004; Aponte et al. 2006; Brewster et al. 2007a), where they may
regulate the release of neurotransmitters (Beaumont and Zucker 2000; Mellor et al.
2002). The dendritic distribution of HCN channels can vary greatly between pyramidal
neurons of different brain areas. In hippocampal, subicular and neocortical layer 5
pyramidal neurons, HCN channels exhibit a graded distribution with a 60-fold increase
in HCN channels from the soma to the apical dendrite (Lorincz et al. 2002; Poolos et al.
2002). HCN channels in distal dendrites can heavily influence the dendritic excitability
as well as temporal integration of synaptic input (Williams and Stuart 2000; Berger et al.
2001). In contrast, cerebellar purkinje cells regulate temporal summation of EPSPs
along their dendrites through a uniform distribution of HCN channels (Angelo et al.
2007).
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1.3.2 Properties of the Hyperpolarisation-Activated Cation Current

The membrane current mediated by HCN channels is referred to as I, and has been
shown to significantly impact the computational properties of a number of different
cells types (Robinson and Siegelbaum 2003; Wahl-Schott and Biel 2009). In the brain
the current was first observed in rod photoreceptors and pyramidal neurons of the
hippocampus (Bader et al. 1979; Halliwell and Adams 1982). As the name implies, Iy
activates at negative membrane potentials and inactivates at positive potentials, causing
neurons with hyperpolarised membrane potentials to slowly depolarise, driving their
membrane potential closer to the firing threshold (Yanagihara and Irisawa 1980).
Depending on the cell type, the activation range can be between -50 mV and -100 mV,
which is why in some cells, the channel can be open at resting membrane potential. The
half maximum of activation is around -80 mV. I is an inward current, with a sigmoidal
activation and deactivation time course (DiFrancesco et al. 1986; Spain et al. 1987). It
exhibits a nearly linear current-voltage relation and has a reversal potential around -30

mV (Yanagihara and Irisawa 1980; Mayer and Westbrook 1983; Pape 1996).

1.3.3 Physiological Functions of Hyperpolarisation-Activated Cation

Current

Several groups have shown that I} is involved in modulating the neuronal input/output
function as well as regulating various network properties (Magee et al. 1998; Williams
and Stuart 2000; Hu et al. 2002; Aponte et al. 2006; Angelo et al. 2007; Nolan et al.
2007; Giocomo and Hasselmo 2009) via mechanisms including the regulation of
excitability (Poolos et al. 2002; van Welie et al. 2004; Fan et al. 2005; Nolan et al.
2007), synaptic integration (Williams and Stuart 2000; Berger et al. 2001; Angelo et al.
2007) and generation of intrinsic oscillations and resonance (Pape 1996; Luthi and
McCormick 1998; Dickson et al. 2000; Santoro et al. 2000; Giocomo and Hasselmo
2007; Liu and Shipley 2008b).

For instance, I, can be activated at voltages close to the resting membrane potential
(RMP), resulting in the depolarisation of a neuron, which has been shown to enhance
auditory coincidence detection (Yamada et al. 2005). Also, HCN channels

characteristically exhibit both voltage-dependant activation and deactivation. This
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mechanism actively opposes any changes away from the RMP, thereby stabilising the
RMP (Mayer and Westbrook 1983; Pape 1996; Hu et al. 2002; Nolan et al. 2003; Nolan
et al. 2007). Iy-mediated stabilisation of the RMP has been associated with limiting
long-term potentiation in CA1 pyramidal neurons (Tsay et al. 2007).

In the dendrites of in CA1 pyramidal neurons and layer V pyramidal neurons HCN
channels are expressed in a gradient, with sparse HCN channel occurrence at the soma
and a high density at the distal end of the apical dendrite (Williams and Stuart 2000;
Berger et al. 2001; Lorincz et al. 2002; Poolos et al. 2002). This gradient is thought to
counterbalance dendritic filtering of EPSPs and therefore spatially normalises the
temporal integration of synaptic input along the dendrite. The mechanism underlying
this effect is the active opposition of deviation from the RMP, as described in section
1.3.1. When a dendrite is locally depolarised through an EPSP, HCN channels (that are
partly open during RMP) deactivate and cause a faster repolarisation of the membrane
potential and thereby reduce EPSP duration (Magee 1999; Williams and Stuart 2000).
Since HCN channels have rather slow gating properties, this deactivation of HCN
channels even causes membrane hyperpolarisation following the EPSP. Conversely, an
IPSP-dependent activation of HCN channels actively opposes the hyperpolarisation of
the membrane potential and shortens the IPSP duration, as well as causing a small
depolarisation directly after the IPSP (Williams and Stuart 2003). However, the
described dendritic HCN channel gradient does not seem to be a general feature of
pyramidal neurons. Purkinje cells generate location independence of EPSP summation
despite a uniform distribution of HCN channels along their dendrites (Angelo et al.
2007) and pyramidal-like principal neurons in the stratum radiatum of the hippocampus
exhibit a reverse HCN gradient with higher expression in the soma than in dendrites
(Bullis et al. 2007).

Additionally, the slow activation kinetics of HCN channels act as a high-pass filter,
supressing low frequency changes in the membrane potential. Such filter functions are
crucial for tuning neuronal activity to preferred frequencies (“membrane resonance”,
Hutcheon and Yarom 2000; Ulrich 2002; Wang et al. 2006). For instance, in rod
photoreceptors the interplay of I, with other ionic conductances creates a band pass
filter effect, thereby tuning the response in the retina to certain frequencies (Barrow and

Wu 2009). Finally, I; can be involved in the generation of intrinsic neuronal oscillations

27



Chapter 1 Introduction

like in the thalamus (Pape 1996) or entorhinal cortex (Dickson et al. 2000), where an
interplay of I, and a low threshold Ca®" current causes repetitive bursts of action
potentials. Intrinsic oscillations function as pacemakers and can thereby synchronise
neuronal circuits (Dickson et al. 2000).

Interestingly, expression levels of I, have been shown to be behaviourally relevant:
Along the dorso-ventral axis of the medial entorhinal cortex, neurons systematically
vary in their frequency of subthreshold membrane potential oscillations and membrane
resonance (Giocomo and Hasselmo 2007). Dorsal-ventral changes in neuronal firing
depend on HCNI1 channel expression (Giocomo and Hasselmo 2009) and in large areas
of medial entorhinal cortex the magnitude of I can be up- or downregulated by
chemically targeting the neuromodulatory systems which regulate I, (upregulation of
cAMP or muscarinic acetylcholine receptors; Heys and Hasselmo 2012). The Ii-
mediated topographic organisation in the cellular properties not only corresponds to the
gradient changes in the size and spacing of grid-cell firing fields (Giocomo and
Hasselmo 2007), but has recently been shown to alter grid field spacing and grid field
size (Giocomo et al. 2011). A similar I[;-mediated gradient in the distribution of intrinsic
biophysical properties has also been shown to exist in spiral ganglion neurons, the
sensory afferents in the cochlea (Liu et al. 2014).

In the olfactory bulb, expression levels of I, have been shown to be more similar in
principal neurons participating in the same microcircuit and processing similar odour-
related information. Therefore I, expression has been proposed to function as a network
based gain control mechanism (Angelo et al. 2012).

In addition to its significant impact on intrinsic properties of individual neurons and on
network regulation, I is an ideal membrane property to study for practical reasons.
When recording from intracellular using whole-cell patch clamp in current-clamp mode,
a hyperpolarisation-evoked membrane sag potential can be observed, the amplitude of
which strongly correlates with the amplitude of pharmacologically isolated I, recorded
in voltage-clamp mode (Robinson and Siegelbaum 2003; Wahl-Schott and Biel 2009;
Angelo and Margrie 2011). Therefore, the amount of sag in a recorded neuron can be
determined and plotted against other parameters, such as firing profile and synaptic
strength, under physiological conditions either in a slice preparation (without requiring

synaptic receptor channel blockers) or in vivo (Angelo and Margrie 2011).

28



Chapter 1 Introduction

1.4 The Olfactory System

The anatomical structures for odour detection are highly conserved between different
species (Ache and Young 2005). In mammals, odour sampling occurs by nasal
inhalation, causing odour molecules to be conveyed from the environment to receptor
cells in the epithelium of the nasal cavity. Odour information is processed by two
parallel pathways, namely the main olfactory system and the accessory olfactory system.
The main olfactory system, located at the roof of the nasal cavity, detects volatile
odours, while the vomeronasal organ of the accessory olfactory system at the base of
the nasal septum senses both, volatile and non-volatile stimuli, mostly pheromones
(Wysocki 1979). This thesis exclusively focuses on the main olfactory system.
Information about odour stimuli detected in the main olfactory epithelium is relayed to
the primary sensory area, the olfactory bulb (OB), where it is processed and afterwards
projected to higher brain areas belonging to the primary olfactory cortex, like amygdala,
piriform cortex or entorhinal cortex (Haberly and Price 1977; Nagayama et al. 2010;
Igarashi et al. 2012).

One advantage of studying the OB lies in the possibility to easily access, modulate and
observe functionally discrete and anatomically well-delineated neuronal networks in
vitro and in vivo. The OB, which is the first brain area to process olfactory information,
can be stimulated using naturalistic stimuli and activity can be recorded electrically or
visually (e.g. via calcium imaging methods; Wachowiak et al. 2004). The exposed
anatomical position of the OB facilitates physical manipulations without the risk of
damaging other brain areas. Furthermore, well-established olfactory training paradigms
exist (Slotnick and Katz 1974; Cleland et al. 2002; Abraham et al. 2004; Mandairon et
al. 2006b), which can be used to assess the relevance of these changes in the olfactory

circuit on behaviour.
1.4.1 Anatomy

1.4.1.1 Olfactory Epithelium

In the olfactory epithelium, odour molecules are detected by specialised neurons, the
olfactory sensory neurons (OSN), which transduce olfactory stimuli into electrical

activity, and transmit this information to the OB (Figure 1.2a). In the cilia of OSNs,
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odour molecules bind to specialised olfactory receptors (OR). To be able to detect the
nearly infinite amount of odour molecules, more than a thousand different types of ORs
exist in rodents (Zhang and Firestein 2002; Zhang et al. 2004). However, the molecular
receptive range of each OSN is determined by the expression of usually one OR gene in
each OSN (Vassar et al. 1993; Serizawa et al. 2000). Ors have a broad odour-quality
tuning, with one OR being able to bind to multiple odour molecules and one odour
molecule being recognised by several Ors (Duchamp-Viret et al. 1999; Malnic et al.
1999). This rather unspecific odour—receptor interaction enables each odour to activate

several different OSN types.

1.4.1.2 Olfactory Bulb

Sensory information from the OE is relayed to the OB, which consists of six layers:
Most superficially is the olfactory nerve layer, followed by glomerular layer, external
plexiform layer, mitral cell layer, internal plexiform layer and, as a core, the granule cell
layer.

Axons of OSNs project to glomeruli in the glomerular layer (Figure 1.2a, Mori and
Sakano 2011). A glomerulus is a synaptically dense, 30-100um neuropil encapsulated
structure, in which the axons of OSNs form synapses with dendrites of principal and
interneurons. It therefore acts as an information hub by processing and transmitting the
odour-related input. In general, each glomerulus receives input from a homogeneous
population of several thousand OSNs (Shepherd 2003) which all express the same OR
(Figure 1.2a; Mombaerts et al. 1996). Usually, all OSNs expressing the same OR
project to two glomeruli, one located more laterally in the OB and the other one more
medial (Mombaerts et al. 1996). Within each glomerulus, one individual OSN axon
branches multiple times (Klenoff and Greer 1998) and forms synapses onto the OB
principal neurons and JG interneurons (Figure 1.2b; Pinching and Powell 1971a;
Pinching and Powell 1971b; Kasowski et al. 1999). The bulbar neurons receiving and

processing OSN input are described in the following sections.
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Figure 1.2 Projections of the Olfactory Epithelium to the Olfactory Bulb and Major Cell
Types of the Olfactory Bulb (cont.)

(a) Schematic illustrating the pattern of axonal projections from OSNs in the olfactory
epithelium to the two Obs. All OSNs expressing the same OR (black) converge onto the
same one or two glomeruli in each OB. Therefore each glomerulus represents the
cumulated input of one OR type (modified from Mori et al. 2006).

(b) Schematic showing the location and innervation pattern of selected OB neurons.
top: Sub-classes of JG cells and principal neurons in the OB. PG cells are considered
part of the JG cell population and can be divided into two types. Type-I is
monosynaptically connected to OSNs and type-II only receives indirect OSN input
through ET cells. SA cells are also JG cells and two types of SA cells have been
described. The classic superficial SA cell does not innervate glomeruli, whereas the
TH" superficial SA cells can innervate several glomeruli. The last group of JG cells are
ET cells. They can be divided based on the occurrence of secondary dendrites.
bottom: Principal neurons typically innervate large areas of a single glomerulus with
their apical tuft. TCs can be found in the external plexiform layer and are subdivided by
their soma location into middle TCs and internal TCs. Subtypes of MCs are classified
based on the innervation pattern of their basal dendrites, with type-I MCs extending
their basal dendrites into deeper layers of the external plexiform layer than type-II MCs
(modified from Nagayama et al. 2014). ET cell = external tufted cell, GL = glomerular
layer, s-EPL/i-EPL/d-EPL = superficial/intermediate/deep external plexiform layer, JG
= juxtaglomerular cell, MC = mitral cell, MCL = mitral cell layer, ONL = olfactory
nerve layer, PG cell = periglomerular cell, SA cell = short axon cell, TC = tufted cell.

1.4.1.3 Cell Types of the Olfactory Bulb

Principal Neurons

In mammals, the principal output neurons of the OB are referred to as mitral cells
(MCs) and tufted cells (TCs) and they transmit olfactory information into higher brain
areas via the lateral olfactory tract. Approximately 60 MC and TC ramify an apical
dendritic tuft within one glomerulus (Figure 1.2b, bottom; Royet et al. 1998), whereby
the number of affiliated principal neurons depend on the activation history of the
glomerular network (Liu et al. 2016).

The somata of MCs (15 — 30 um in diameter) are located in the mitral cell layer and
their dendritic tuft ramifies throughout most of the targeted glomerulus (Figure 1.2b,
bottom). Within the glomerulus, MCs receive excitatory input from OSNs (Berkowicz
et al. 1994; Ennis et al. 1996) and ETs (De Saint Jan et al. 2009). They have reciprocal
dendro-dendritic synapses with inhibitory interneurons (Pinching and Powell 1971b),
perform recurrent self-excitation (Friedman and Strowbridge 2000; Margrie et al. 2001;

Salin et al. 2001) and lateral excitation of neighbour MCs via gap junctions (Christie
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and Westbrook 2006) as well as chemical transmission (Urban and Sakmann 2002;
Pimentel and Margrie 2008). MCs also possess lateral dendrites and can be subdivided
into type-I and type-II depending on their location in the external plexiform layer
(Orona et al. 1984). With these basal dendrites they may perform additional recurrent
self-excitation (Salin et al. 2001) and form extensive dendro-dendritic synapses with
granule cells, a type of inhibitory interneuron (Rall et al. 1966). Several studies revealed
that the axons of MCs target nearly all regions of the olfactory cortex (Haberly and
Price 1977; Nagayama et al. 2010; Igarashi et al. 2012).

The morphology of TCs is similar to MCs, with a smaller soma (15 — 20 pm) usually
located in the external plexiform layer. Already in early studies from Cajal (1909), TCs
have been distinguished into three types, based on their soma position within the OB:
internal-, middle- and external tufted cell (Figure 1.2b). External tufted cells
morphologically differ from middle and internal tufted cells and since they are
considered to be part of the juxtaglomerular (JG) cell population, they will be discussed
later in further detail. The apical dendritic tuft of middle- and internal tufted cells
innervates a slightly smaller area of a single glomerulus than the tuft of MCs and they
extend lateral dendrites within the superficial external plexiform layer (Figure 1.2b,
bottom; Haberly and Price 1977; Orona et al. 1984). The axonal projections of TCs are
much more restricted to anterior and rostral parts of the olfactory cortex than MC
projections (Nagayama et al. 2010; Igarashi et al. 2012). Several studies indicate that
even if MCs and TCs have similar morphologies and receive similar sensory input, they
process odour information differently and relay it to different brain areas (Nagayama et

al. 2010; Fukunaga et al. 2012; Manabe and Mori 2013).

Granule Cells

Granule cells are the major inhibitory interneurons in the OB (Mori 1987). Their small
somata are located in the granule cell layer and their dendrites innervate the external
plexiform layer. Here they form dendro-dendritic synapses with the lateral dendrites of
MCs and TCs. Since granule cells lack axons (Golgi 1886), they only receive local
input and send output via dendro-dendritic synapses. At these synapses, MCs excite
granule cells by releasing glutamate onto AMPA and NMDA receptors located on
granule cell dendrites (Wellis and Kauer 1993), which can evoke a recurrent GABA
release from the granule cells back onto the MC dendrite (Ribak et al. 1977). Since
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several MCs can converge onto the same granule cell, MCs can inhibit each other via

granule cell-mediated lateral inhibition (Isaacson and Strowbridge 1998).

Juxtaglomerular Cells

A less well-studied group of OB interneurons are the inhibitory JG cells, located in the
glomerular layer. Each glomerulus is innervated by as many as 1500-2000 inhibitory
and excitatory JG cells (Shipley et al. 1996). Despite JG cells being morphologically
heterogeneous, they are classically divided into three morphologically identified types
(Pinching and Powell 1971a): excitatory external tufted (ET) cells, inhibitory
periglomerular (PG) cells and inhibitory short axon (SA) cells (Figure 1.2b).

External Tufted Cells

In contrast to the other TCs, the ET cell somata lie in the periglomerular region and not
in the external plexiform layer (Pinching and Powell 1971a). Because of their location
in proximity to the glomeruli, they can be considered a class of JG cells together with
inhibitory glomerular interneurons. ET cells exhibit several properties making them
distinctly different from MCs and other TC subclasses. They have a rather small soma
(around 15 pm in diameter) and a primary dendrite with an elaborate arborisation,
ramifying throughout the whole area of a single glomerulus (Figure 1.2b, top; Hayar et
al. 2004b). Interestingly, they do not seem to form dendro-dendritic synapses with
granule cells in the external plexiform layer (Wachowiak and Shipley 2006). All ET
cells appear to receive monosynaptic excitatory input from OSNs within a single
glomerulus (Hayar et al. 2004a). ET cells in turn excite inhibitory interneurons of the
same glomerulus (Hayar et al. 2004a; Shao et al. 2009; Kiyokage et al. 2010). They also
excite local MCs and other TCs (Hayar et al. 2004a; De Saint Jan et al. 2009; Gire et al.
2012), potentially via gap junctions or glutamatergic spillover, as has been observed
between MCs. ET cells might form dendro-dendritic synapses with MCs (De Saint Jan
et al. 2009). Most prominently, ET cells possess intrinsic membrane properties,
generating spontaneous rhythmical bursts of action potentials (Hayar et al. 2004b). Like
MC and other TC axons, the ET cell axon appears to project out of the OB to higher
brain areas, although the downstream target of this projection remains unknown

(Wachowiak and Shipley 2006).
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Periglomerular Cells

The two classes of inhibitory interneurons in the glomerular network can be clearly
distinguished from the excitatory ET cells. The most abundant type of neuron in the
glomerular network is the PG cell (70-85%, Wachowiak and Shipley 2006; Parrish-
Aungst et al. 2007). With a soma of only 5-8 um in diameter, they are among the
smallest neurons in the brain (Pinching and Powell 1971a; Hayar et al. 2004a). The
innervation pattern of a PG cell dendrite is typically restricted to only one or two
glomeruli and the dendrites cover a much smaller volume of a glomerulus than the
dendrites of principal neurons or ET cells (Figure 1.2b, top; Pinching and Powell 1971a;
Pinching and Powell 1971b). Therefore, these neurons are generally thought to mediate
inhibition within single glomerular networks. PG cells form inhibitory synapses onto
OSNs (Aroniadou-Anderjaska et al. 2000; Murphy et al. 2005; Shao et al. 2009) and
other PG cells in close proximity (Murphy et al. 2005; Panzanelli et al. 2007). They are
also known to form reciprocal dendro-dendritic synapses with MCs (Pinching and
Powell 1971b; Ribak et al. 1977) and ET cells (Hayar et al. 2005; Shao et al. 2012). If a
PG cell has an axon, it projects laterally and extends over several glomeruli (around 600
pm; Pinching and Powell 1971a; Pinching and Powell 1971b; Kosaka and Kosaka
2011).

Glomeruli have been anatomically divided into two areas, one innervated by OSNs and
one which is exclusively targeted by the processes of secondary sensory neurons
(Kasowski et al. 1999). Based on their glomerulus innervation pattern, PG cells can be
classified into two sub-populations. Dendrites of type-I PG cells innervate all areas of a
glomerulus, whereas dendrites of type-II PG cells do not project to the glomerular zone
containing OSNs (Figure 1.2b, top; Kosaka et al. 1998). Furthermore, 70-80 % of PG
cells receive indirect OSN input via ET cells (Hayar et al. 2004a; Shao et al. 2009;
Kiyokage et al. 2010), a population that could theoretically relate to type-II PG cells.
Only 20-30 % of PG cells receive monosynaptic excitatory input from OSNs, however
it remains to be shown how this synaptic organisation relates to the subtypes defined by

glomerular innervation patterns.
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Short Axon Cells

The second class of inhibitory interneurons participating in glomerular circuits are
superficial short axon cells, which will from now on be referred to as SA cells (Figure
1.2b, top). SA cells have a slightly larger soma than PG cells (around 10um in diameter,
Hayar et al. 2004a). Initially they were reported to extend their dendritic tree
exclusively within the interglomerular space and possess a short axon, terminating 1-2
glomeruli away from the soma (Figure 1.2b, top; Pinching and Powell 1971a; Pinching
and Powell 1971b). However in this thesis the focus lies on a more recently described
type of SA cell, which ramifies with its dendritic tree in several closely located
glomeruli and exhibits an axon that can project up to 1 mm away from the soma (Figure
1.2b, top; Aungst et al. 2003; Kiyokage et al. 2010; Banerjee et al. 2015). These SA
cells receive monosynaptic input from ET cells (Hayar et al. 2004a; Kiyokage et al.
2010) and OSNs (Kiyokage et al. 2010). In their axonal target glomeruli they form
inhibitory synapses onto ET cells and potentially PG cells (Aungst et al. 2003; Liu et al.
2013; Whitesell et al. 2013) and are therefore considered to provide inter-glomerular
inhibition. They may mediate dopaminergic inhibition onto D2 receptors of OSN
terminals, but no direct connection has thus far been demonstrated (Maher and
Westbrook 2008) and a potential mechanism for such a presynaptic inhibition remains
unclear (as discussed in McGann 2013).

Neuronal connections within a glomerulus are fundamental for the work in this thesis

and will be discussed in detail in the following section.
1.4.2 The Glomerular Microcircuits

1.4.2.1 Intra-Glomerular Connections

The most studied connection within the glomerulus is the excitatory input from OSNs
onto MCs and TCs (Figure 1.3a, arrows 1). This input can be monosynaptic or
polysynaptic, which results in a biphasic excitatory-inhibitory response in principal
neurons (Najac et al. 2011; Gire et al. 2012). In a monosynaptic connection, axonal
glutamate release from the OSN nerve terminals activates AMPA and NMDA receptors
in the apical dendrites of MCs and TCs, leading to a short latency and a delayed
excitatory response in these postsynaptic neurons (Berkowicz et al. 1994; Ennis et al.

1996; Najac et al. 2011; Gire et al. 2012). OSN synapses generally have a high release
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probability that rapidly depresses with increasing number of OSN action potentials
(Murphy et al. 2004).

Within the glomerulus, chemical transmission between dendrites of MC — MC,
MC — TC and TC — TC pairs mediate lateral excitation (Figure 1.3a, arrows 2; Urban
and Sakmann 2002; Hayar et al. 2005; Christie and Westbrook 2006; Pimentel and
Margrie 2008). Glutamate released at these dendrites activates both AMPA and NMDA
receptors and excitation can be unidirectional or bidirectional (Aroniadou-Anderjaska et
al. 1999; Schoppa and Westbrook 2002; Urban and Sakmann 2002; Pimentel and
Margrie 2008). Glutamate release from the primary MC and TC dendrites has also been
shown to cause recurrent self-excitation, again mediated by AMPA and NMDA
receptors (Figure 1.3a, arrow 3; Aroniadou-Anderjaska et al. 1999; Friedman and
Strowbridge 2000; Salin et al. 2001).

More recent studies provide evidence that ET cells, rather than MCs, are the primary
target of monosynaptic OSN input, providing an intraglomerular feedforward pathway
that prominently shapes the response of principal neurons (Hayar et al. 2004a; Najac et
al. 2011; Gire et al. 2012). Biphasic excitation of MCs is composed of fast
monosynaptic OSN input as well as a slower polysynaptic response that is thought to be
mediated by dendritic release from ET cells and other MCs (De Saint Jan et al. 2009;
Najac et al. 2011; Gire et al. 2012). Supporting this hypothesis, all ET cells are thought
to receive monosynaptic input from OSNs (Hayar et al. 2004a) and ET cell activity can
unidirectionally excite MCs (De Saint Jan et al. 2009), suggesting ET cells might play a
key role in the amplification and coordination of sensory integration in the glomerulus.
In addition to chemical transmission, MCs and TCs sharing the same glomerulus are
known to be coupled via gap junctions (Figure 1.3a, connection 4; Christie and
Westbrook 2006; Pimentel and Margrie 2008; Ma and Lowe 2010). Paired recordings
from MCs indicated that all MCs within a glomerular circuit might be electrically
coupled (Schoppa and Westbrook 2002; Christie and Westbrook 2006; Pimentel and
Margrie 2008) and therefore laterally excite and inhibit each other. This property of
intraglomerular electrical transmission likely facilitates synchronisation of principal

neuron activity.
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Figure 1.3 Intra- and Interglomerular Connections in the Glomerular Microcircuit

(a) 1. Glutamatergic axo-dendritic transmission onto dendrites of principal neurons. 2.
Lateral glutamatergic transmission between principal neuron dendrites. 3. Self-
excitation of principal neurons via AMPA and NMDA receptors. 4. Electrical gap
junctions between principal neuron apical dendrites.

(b) 5. Glutamatergic axo-dendritic transmission onto interneuron dendrites. 6. Lateral
glutamatergic transmission onto interneuron dendrites. 7. Presynaptic GABAergic
inhibition of OSN terminals. 8. Lateral GABAergic inhibition of principal neurons. 9.
Self-inhibition of interneurons via GABA, receptors. 10. Lateral GABAergic inhibition
between interneurons. 11. Interglomerular GABAergic inhibition of principal cells. 12.
Interglomerular dopaminergic transmission from interneurons onto principal cells.

(c) Electron-microscopy picture of a dendro-dendritic synapse between a principal
neuron and a PG cell. Arrows indicate direction of transmitter release (adapted from
Higashi et al. 2001). AMPAR = AMPA receptor, ET = external tufted cell, GABAR =
GABA receptor, MC = mitral cell, NMDAR = NMDA receptor, OSN = olfactory
sensory neurons, PG = periglomerular cell, SA = short axon cell, TC = tufted cell.
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In general, MCs and TCs exhibit long lasting depolarisations after OSN stimulation
(Carlson et al. 2000) that is attenuated by intraglomerular inhibition (Shao et al. 2012).
Both MCs and TCs provide excitatory input to inhibitory interneurons via glutamate
release onto AMPA and NMDA receptors at symmetrical, dendro-dendritic synapses
with interneurons (Figure 1.3c; Pinching and Powell 1971b; Ribak et al. 1977; Hayar et
al. 2005). In close proximity to these glutamatergic synapses, the local inhibitory
interneurons release GABA onto GABA, receptors of MCs and GABA and GABAg
receptors of TCs (Aroniadou-Anderjaska et al. 1997; Shepherd 2003; Hayar et al. 2005;
Shao et al. 2012), thereby providing the first level of inhibition to the principal neurons.
Only 20-30% of PG cells are thought to receive monosynaptic input from OSNs (Figure
1.3b, arrow 5), but 70-80% receive indirect input via excitatory synapses from ET cells
in the same glomerulus (Figure 1.3b, arrows 6; Hayar et al. 2004a; Shao et al. 2009),
providing additional evidence for ET cells being the major gatekeepers of glomerular
output. Based on their spontaneous and OSN-evoked activity, PG cells can also be
physiologically divided into two groups. PG cells receiving input from ET cells exhibit
characteristic rhythmical bursts of EPSPs and EPSCs, whereas PG cells
monosynaptically connected to OSNs receive invariant, short latency post synaptic
potentials following OSN stimulation (Hayar et al. 2004a; Shao et al. 2009).

PG cells have been shown to play a key role in the presynaptic inhibition of OSN
terminals, as well as the interglomerular inhibition of principal neurons (Wachowiak
and Shipley 2006). In general, PG cells form dendro-axonic synapses back onto OSN
terminals (Figure 1.3b, arrow 7a and 7b). At these synapses, monosynaptically or
polysynaptically excited PG cells release GABA back onto presynaptic GABAg
receptors located on the OSN terminal (Bonino et al. 1999; Panzanelli et al. 2004),
mediating presynaptic inhibition of OSN glutamate release (Aroniadou-Anderjaska et al.
2000; Murphy et al. 2005; Wachowiak et al. 2005; Pirez and Wachowiak 2008).
Furthermore, GABA-mediated presynaptic OSN inhibition by PG cells consists of a
feedback and a tonic component (Shao et al. 2009). It has been proposed that feedback
inhibition of OSNs is specifically mediated by PG cells receiving monosynaptic OSN
input (Figure 1.3b, arrow 7a; Shao et al. 2009). In contrast, the tonic OSN inhibition
potentially arises from the spontaneously bursting ET cells, causing enough GABA

release at the PG cell dendrites to tonically inhibit OSN terminals within one
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glomerulus (Figure 1.3b, arrows 6 and 7b). Potentially, PG cells belonging to both
functional groups also form inhibitory connections with MCs, TCs and other PG cells of
the same glomerulus (Figure 1.3b, arrow 8; Aungst et al. 2003; Hayar et al. 2005;
Murphy et al. 2005; Panzanelli et al. 2007). However, monosynaptically driven PGs
might provide inhibition that is more tightly coupled to the sensory input than
polysynaptically driven PG cells (Shao et al. 2009).

PG cells also express GABA, receptors (Laurie et al. 1992) that potentially mediate
self-inhibition (Figure 1.3b, arrow 9) as well as lateral inhibition from neighbouring PG
cells (Figure 1.3b, arrow 10; Puopolo and Belluzzi 1998b; Smith and Jahr 2002). Since
the synapses between dendrites of PG cells and MCs are reciprocal, PG cells are likely
to provide GABA-mediated recurrent inhibition onto the MCs that activated them
(Aroniadou-Anderjaska et al. 1997; Shepherd 2003). Furthermore, interposed PG cells
mediate disynaptic lateral inhibition between MCs (Urban and Sakmann 2002). Similar
inhibitory mechanisms have been found between PG cells and ET cells, whereby a
single ET cell can excite numerous PG cells within the same glomerulus and PG cells in
turn release GABA on the presynaptic ET cell, other ET cells and MCs (Hayar et al.
2005; Shao et al. 2012).

1.4.2.2 Inter-Glomerular Connections

Since SA cell dendrites ramify in three to four glomeruli, they potentially integrate
inputs from OSNs expressing different ORs (Aungst et al. 2003; Cleland et al. 2007).
Although some SA cells might not be monosynaptically driven by OSNs (Hayar et al.
2004a; Kiyokage et al. 2010), they can receive sensory information via ET cell
mediated pathways (Figure 1.3b, arrow 6; Aungst et al. 2003; Hayar et al. 2004a;
Cleland et al. 2007; Banerjee et al. 2015). The extensive inter-glomerular projections of
SA cell axons can target ET cells and PG cells in glomeruli up to several hundred
micrometres away (Aungst et al. 2003; Kiyokage et al. 2010; Liu et al. 2013; Whitesell
et al. 2013; Banerjee et al. 2015). This suggests that SA cells, in contrast to PG cells,
mediate long-range interglomerular interactions (Kiyokage et al. 2010; Banerjee et al.
2015). The nature and purpose of those interactions is still not entirely clear, but a
potential role in centre-surround inhibition (Aungst et al. 2003) and gain control

(Banerjee et al. 2015) has been proposed. At least a subpopulation of SA cells co-
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expresses tyrosine hydroxylase (TH) and GAD67, but not GAD65 (Aungst et al. 2003;
Maher and Westbrook 2008; Kiyokage et al. 2010; Whitesell et al. 2013). A recent
study showed the co-release of both GABA and dopamine from SA cells onto GABAA
and DI1-like receptors located on ET cells in other glomeruli (Figure 1.3b, arrows 11
and 12; Maher and Westbrook 2008; Liu et al. 2013). Interestingly, the release of the
inhibitory transmitters GABA and dopamine can cause a net excitation of ET cells (Liu
et al. 2013). High levels of I in ET cells can explain ET cell excitation, because Ij
causes rebound excitation after GABA-mediated hyperpolarisation (Hayar et al. 2004b;
Liu and Shipley 2008a). The rebound depolarisation can trigger bursts of action
potentials in ET cells (Liu and Shipley 2008a), which in turn are thought to activate
local PG cells mediating intraglomerular inhibition onto OSN terminals, MCs and TCs.
Furthermore, it has been shown that the dopamine release from SA cells enhances Ij, in
ET cells by targeting D1-like receptors, which increases depolarisation and leads to a
stronger rebound spike burst (Liu et al. 2013). Thus, while SA cells initially inhibit ET
cells using GABA, dopamine-enhanced I, can mediate a delayed but dominant
excitation. Such a bi-phasic, inhibitory-excitatory connection onto ET cells likely
impacts the processing in the target glomerular network, but the effect of this

phenomenon remains to be fully characterised.

1.4.3 Odour Coding in the Olfactory Bulb

As described above, a single type of odour molecule can bind to several ORs with
varying affinity, leading to differential activation of OSN types (Duchamp-Viret et al.
1999; Malnic et al. 1999). Since OSNs that express the same OR subtype converge onto
the same glomerulus (Mombaerts et al. 1996), one odour molecule activates several
glomeruli (Meister and Bonhoeffer 2001; Wachowiak and Cohen 2003). This produces
an odour specific spatial pattern of glomerular activity in the OB (Guthrie and Gall
1995; Johnson et al. 1998; Rubin and Katz 1999; Johnson and Leon 2000; Belluscio and
Katz 2001).

Glomeruli activated by structurally similar odours tend to cluster in the OB (Uchida et
al. 2000; Mori et al. 2006). Therefore, odour binding often causes activation of co-
localised glomeruli, resulting in a chemotopic map of odour representation (Johnson et

al. 1998; Rubin and Katz 1999; Belluscio and Katz 2001; Mori et al. 2006). Compared
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to other sensory maps, this chemotopy seems to be rather loosely organised with a
robust coarse chemotopic layout (Wachowiak and Cohen 2001; Takahashi et al. 2004),
but variability in precise glomerulus placement across animals and rodent species
(Soucy et al. 2009). Increasing concentrations of an odour molecule also recruit ORs
with lower affinities to the particular odour (Malnic et al. 1999; Hamana et al. 2003),
leading to widespread glomerular activation and thus concentration-dependent changes
in the pattern of glomerular activity (Duchamp-Viret et al. 1999; Meister and
Bonhoeffer 2001; Fried et al. 2002; Spors and Grinvald 2002; Vincis et al. 2012). Also,
glomeruli that only activate at high odour concentrations tend to be less spatially
clustered (Wachowiak and Cohen 2001; Bozza et al. 2004).

OB activity is modulated by the animal’s rhythm of breathing (Spors and Grinvald
2002; Buonviso et al. 2003; Cang and Isaacson 2003; Margrie and Schaefer 2003).
Rodents sniff at frequencies between 2 and 12 Hz (Welker 1964), odour sampling
occurs between 6 and 9 Hz (Kepecs et al. 2007) and glomerular activity maps evolve
over time within a single “sniff” cycle (Schaefer and Margrie 2007; Wachowiak 2011).
Increasing evidence suggests that odour identity may actually be encoded by the relative
timing of spikes within a sniff-cycle (Buonviso et al. 2003; Margrie and Schaefer 2003;
Shusterman et al. 2011). Taken together, odour stimuli are most likely represented as
spatiotemporal patterns of glomerular activity maps in the OB (Schaefer and Margrie
2007).

This activity map is not only determined by quality, quantity and timing of odour
stimuli, but also modulated by the excitatory and inhibitory interconnections of
principal neurons and interneurons within the OB (section 1.4.2). The first level of
sensory processing in the olfactory system occurs in the glomeruli. Glomerular mono-
and polysynaptic microcircuits were proposed to perform fundamental information
processing in the form of odour pattern decorrelation (Arevian et al. 2008; Wiechert et
al. 2010; Cleland and Linster 2012), stimulus synchronisation (Kashiwadani et al. 1999;
Dhawale et al. 2010) and response normalisation (Cleland et al. 2007; Banerjee et al.
2015).

In rodents, olfactory processing in the OB is fast and can occur within less than 200ms
(Abraham et al. 2004; Kepecs et al. 2006). Discrimination times are independent of

similarity in glomerular representation (Uchida and Mainen 2003). However, for
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accurate discrimination of highly similar binary odour mixtures, animals require more
time (Abraham et al. 2004). Furthermore, due to OB processing, the initial chemotopic
activity pattern caused by an odour stimulus becomes more sparse and odour-specific
over time (Yaksi et al. 2007). A potential mechanism for the slightly delayed
discrimination of similar odours is pattern decorrelation (Yaksi et al. 2007). Pattern
decorrelation is a mechanism occurring in multiple sensory systems to reduce the
overlap in neuronal representation in similar sensory stimuli, by inhibitory
interconnections between neighbour neurons processing topographically organised
sensory information (Wick et al. 2010; Cleland and Linster 2012). Inhibition between
neighbouring glomeruli could result in decorrelation of odour representation in the OB,
a mechanism potentially mediated by interglomerular connections of SA cells as
described in section 1.4.2.2 (Arevian et al. 2008; Wiechert et al. 2010; Banerjee et al.
2015). However, the loose topographic organisation of sensory input in the glomerular
layer (Soucy et al. 2009) may require a more complex inhibition mechanism than just
lateral inhibition between neighbouring neurons and glomeruli. Pattern decorrelation in
the OB might also be a result of intraglomerular non-topographical contrast
enhancement (Cleland and Sethupathy 2006) or a selective, non-random interglomerular
inhibition, as recently demonstrated across glomeruli of the dorsal OB (Economo et al.
2016).

A notable feature of MCs and TCs is the intra- and interglomerular synchrony of their
firing pattern (Kashiwadani et al. 1999; Dhawale et al. 2010). A substantial amount of
firing pattern synchronisation in MCs and TCs is caused by the tight coupling of OB
activity to the respiration cycle (Margrie and Schaefer 2003; Fukunaga et al. 2012;
Gerkin et al. 2013). However, neighbouring MCs and TCs exhibit stronger synchrony in
their firing patterns, indicating stimulus correlation must occur on a local scale (Gerkin
et al. 2013). This might be due to common synaptic input, but also due to the previously
described local connections (section 1.4.2.1): On the level of glomeruli, principal
neurons receive feedforward, feedback and lateral excitation from other principal
neurons, mediated via gap junctions and dendro-dendritic synapses. Additionally,
similar inhibitory mechanisms can be mediated locally via PG cells and, more globally,
via SA cells. Furthermore, the spontaneous rhythmic activity of ET cells has been

shown to synchronise spontaneous activity of MCs (De Saint Jan et al. 2009). Therefore,
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ET cells have been proposed to locally synchronise principal neurons (Hayar et al.
2004b) and to act as a pacemaker within the OB circuit (De Saint Jan et al. 2009).

Normalisation in the OB refers to the equalisation of responses to variable
concentrations of sensory stimuli in order to preserve the information about odour
identity. The continuous adjustment of sensitivity to input is crucial in order to maintain
stable concentration-independent odour-evoked activity (Cleland et al. 2007). The
activity of neurons mediating lateral inhibition and lateral excitation between glomeruli
as well as the spread of activity have been shown to scale with odour concentration
(Banerjee et al. 2015) and therefore been proposed to implement gain control (Zhu et al.

2013; Banerjee et al. 2015).

1.4.4 Plasticity in the Olfactory Bulb

Most brain areas exhibit substantial plasticity during early developmental stages,
however the OB appears to maintain plasticity of its neuronal circuits throughout
adulthood at nearly all stages of processing, from OSNs to cortex (Mouly and Sullivan
2009; Lledo and Valley 2016). Various early behavioural plasticity studies have already
suggested that olfactory learning and memory does occur within the olfactory bulb
(Bruce and Parrott 1960; Rosser and Keverne 1985; Wilson et al. 1985; Levy et al.
1990; Kendrick et al. 1992; Brennan and Keverne 1997; Sullivan et al. 2000). Today we
know that that olfactory learning and memory via neurons of the olfactory system
highly depends on the intrinsic state of these neurons as well as the context of the task
and the animal’s experience. To perform this task, the olfactory system employs a wide
range of plasticity mechanisms, including classic mechanisms affecting the synaptic
efficacy, such as long- and short term plasticity, but also adult neurogenesis and

experience-dependent apoptosis (Wilson et al. 2004).

1.4.4.1 Hebbian Plasticity Mechanisms in the Olfactory Bulb

Already at the first synapse of the olfactory system, the OSN — MC synapse, paired-
pulse depression has been demonstrated, whereby the reduced glutamate release from
OSN terminals is mostly caused by GABAg receptor-mediated inhibition of voltage-
gated Ca’* channels (Delaney et al. 2009). The same form of short-term plasticity has
been shown at the OSN — PG cell and OSN — TC synapse (Murphy et al. 2004). The
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OSN terminals express dopamine D2 receptors and the activation of these receptors can
result in reduced transmitter release from the OSN terminals (Wachowiak and Cohen
2001). The level of D2 receptors at the OSNs is dynamically regulated and stimulus
depression (for instance through naris occlusion) induces a fast, NMDA receptor-
dependent decrease of dopamine receptors, which ultimately increases the gain of this
synapse (Wilson and Sullivan 1995; Puche and Shipley 1999). Dopaminergic
juxtaglomerular cells may also mediate feedback inhibition onto OSNs through D2
receptors (Shipley and Ennis 1996), however no functional connection has thus far been
demonstrated (Maher and Westbrook 2008; McGann 2013). In juxtaglomerular
neurons, GABA, receptor-mediated IPSCs exhibit several patterns of short-term
plasticity, including depressing and combined facilitating/depressing patterns (Nusser
2002). Further downstream, the reciprocal MC — GC synapse also exhibits
heterogeneous short-term plasticity. Paired-pulse stimulation of the excitatory MC — GC
synapse resulted in moderate paired-pulse facilitation, whereas a strong paired-pulse
depression can be observed at the inhibitory GC — MC synapse (Dietz and Murthy
2005). This constellation might weaken the auto-inhibition of MCs during strong
sensory stimulation. Finally, synapses of the MC axons show short-term depression
upon prolonged odour stimulation, a form of plasticity mediated by presynaptic
metabotropic glutamate receptors (Best and Wilson 2004). Short-term plasticity occurs
in the OB and is thought to be necessary for a quick adaptation to altered odour
stimulation, but also for optimisation of sensory processing during the fast odour
sampling of animals (Wilson et al. 2004).

The OSN — MC synapse has also been the focus of several long-term plasticity studies.
Long-term potentiation of NMDA receptor-dependent spiking after high frequency
stimulation of OSNs has been shown at this synapse (Ennis et al. 1998), as well as
metabotropic glutamate receptor-dependent long-term depression after brief low-
frequency stimulation (Mutoh et al. 2005). It has been suggested that long-term
plasticity at this synapse might act as a gain mechanism by shifting the
excitation/inhibition homeostasis of the glomerulus, and potentially make previously
strongly activated MCs more sensitive to incoming stimuli (Wilson et al. 2004).

Interestingly, lateral excitation between MC dendrites has also been shown to be plastic,
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with theta burst stimulations causing enhanced or depressed lateral excitation through a
unknown presynaptic mechanism (Pimentel and Margrie 2008).

The MC — GC synapse is seen as a key synapse for long-term potentiation and olfactory
memory (Satou et al. 2005). In rodents, theta-burst stimulation of the glomerular
network mimicking olfactory input at a respiratory rhythm has been demonstrated to
elicit long-term depression in the MC — GC synapse (Ma et al. 2012; Chatterjee et al.
2016). However, stimulation with single bursts mimicking a single sniff can cause
either long-term potentiation or depression, indicating that long-term potentiation of this
synapse requires short bursts of activity (Chatterjee et al. 2016). This very recent study
also suggests a NMDA receptor-dependent change in presynaptic release sites
underlying this form of long-term plasticity. Since short bursts of activity presumably
correspond to new, physiologically relevant sensory inputs, it is conceivable that long-
term potentiation at this synapse results in sensitivity for new, weak or distant odours,
while at the same time a desensitization occurs for repeatedly presented odours. Also, a
study by Brennan et al. (1998) showed that after olfactory learning through a
conditioning protocol, rodents exhibit a decrease in the ratio of glutamate to GABA in
the OB when presented with the conditioned odour, but not when presented with a
novel odour. These experiments show that olfactory learning and memory is at least
partly due to a gain function of reciprocal synapses between principal neurons (like
MCs) and interneurons (like GCs). To summarise, it appears that a fine balance of short
and long-term plasticity at the MC — GC synapse (based on the history of MC

activation) is a key determent of the OB output and olfactory memory formation.

1.4.4.2 Adult-Born Interneurons in Local Networks of the Olfactory Bulb

A remarkable plasticity feature of the olfactory system is the continuous renewal of
neurons throughout the lifetime of an individual, also termed adult neurogenesis. This
form of neurogenesis exists only in two areas of the adult brain, the OB and the dentate
gyrus (Lledo et al. 2006). Because of this continuous neurogenesis, OB glomeruli are
composed of processes forming some of the most plastic synapses in the brain.
Presynaptically, OSNs undergo a continuous activity-dependent turnover and are, on
average, replaced every 30 - 60 days (Watt et al. 2004; Lledo and Valley 2016).
Postsynaptically, PG cells, SA cells and GCs are generated predominately in the
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postnatal period (Altman 1969; Baker et al. 2001; Belluzzi et al. 2003; Carleton et al.
2003; Whitman and Greer 2007). Throughout adulthood, a continuous supply of newly
generated interneurons migrate from the subventricular zone through the rostral
migratory stream to the OB (Coskun and Luskin 2002), where they differentiate and
synaptically integrate into the OB circuitry (Belluzzi et al. 2003; Carleton et al. 2003;
Ming and Song 2005; Livneh et al. 2014). This constant circuit remodelling might
underpin experience-induced, structural plasticity, which enables the olfactory system
to adapt to changing odour environments (Livneh et al. 2014). Most of the newly
generated OB interneurons become granule cells (94%) and a small subset develops into
JG cells (Altman 1969; Lledo and Valley 2016).

One interesting subpopulation of these adult-born JG cells are TH-expressing
interneurons. TH" JG cells can be divided into two subpopulations, based on soma size
(Halasz et al. 1981; McLean and Shipley 1988), prenatal development (McLean and
Shipley 1988) and occurrence of an axon (Chand et al. 2015). Only the smaller, axon-
less type of TH" JG cells appears to undergo the lifelong continuous turnover (Kosaka
and Kosaka 2009). TH expression in these migrating neuroblasts is attenuated by
histone deacetylase until the interneurons fully mature in their target layer (Akiba et al.
2010; Banerjee et al. 2013). The integration of these neurons into local glomerular
microcircuits has recently been shown to be activity-dependent (Sawada et al. 2011;
Bonzano et al. 2014) and sensory input appears to be crucial for the survival of adult-
born JG cells (Baker et al. 1983; Bovetti et al. 2009; Sawada et al. 2011). Even in
mature neurons (pre-existing and adult-born) the TH expression levels depend on the
strength of sensory input and therefore exhibit significant activity-dependent plasticity
(Baker et al. 1983; Cigola et al. 1998; Parrish-Aungst et al. 2011; Banerjee et al. 2013).
It has also been shown that GABAergic inhibitory interneurons (PG cells and granule
cells) are continuously renewed throughout adult life (De Marchis et al. 2004; Lledo et
al. 2008). In contrast to TH, glutamate decarboxylase is already expressed in migrating
neuroblasts, and in mature neurons the expression levels of Gadl (encoded by the
GADg; gene), but not Gad?2 (encoded by the GADgs gene) are regulated via an activity-
dependent mechanism (Parrish-Aungst et al. 2011). These differences between TH" and
GAD65" neurons strongly suggest that the network of TH' neurons, which mediates

interglomerular inhibition, might be more plastic and underlies stronger adaptive
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regulation by sensory input than the network of GAD65" interneurons, which mediates

intraglomerular inhibition.

1.4.4.3 Homeostatic Plasticity and Hyperpolarisation-Activated Cation

Current in the Olfactory Bulb

Homeostatic plasticity is a less well-studied form of plasticity in the OB. The activity-
dependent integration and survival of newly born TH™ (Baker et al. 1983; Bovetti et al.
2009; Sawada et al. 2011; Bonzano et al. 2014) and GAD65" neurons (Parrish-Aungst
et al. 2011), as well as activity-dependent TH expression (Baker et al. 1983; Cigola et al.
1998; Parrish-Aungst et al. 2011; Banerjee et al. 2013), as described in the previous
section, can be seen as a form of homeostatic plasticity. Furthermore, naris occlusion
experiments in adult rodents have demonstrated homeostatic plasticity mechanisms
exist already at the first synapse in the olfactory system. In a study from Tyler et al.
(2007), odour deprivation triggered plastic regulation of synaptic strength by increased
release probability of glutamate from OSN terminals, as well as increase of glutamate
receptors in the glomerular layer. Additionally, the study demonstrated a deprivation-
dependent increase in the amplitude of AMPA- and NMDA-dependent quantal synaptic
currents. Taken together, homeostatic modulations at the OSN synapse occur pre - and
postsynaptically and are at least one mechanism underlying the increased odour
sensitivity reported under these experimental conditions (Guthrie et al. 1990; Wilson
and Sullivan 1995; Leon 1998).

A recent study from Chand et al. (2015) described homeostatic plasticity of the AIS in a
subset of cultured dopaminergic interneurons. Action potentials are usually initiated at
the AIS and location and size of the AIS on the axon can have an impact on neuronal
excitability (Bender and Trussell 2012). Interestingly, after depolarising the
dopaminergic OB interneurons for 24 hours, the AIS were longer and closer to the soma.
This effect is unusual in a way since the reverse can be observed in non-GABAergic
neurons of the OB and in excitatory neurons of the hippocampus, here the AIS gets
shorter and located further distal on the axon after prolonged depolarisation (Grubb and
Burrone 2010; Chand et al. 2015). However, since the depolarised dopaminergic

interneurons in the study from Chand et al. (2015) only exhibited a trend towards
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decreased excitability, the functional implications of this effect are not entirely clear and
need further investigation.

As stated above, I, mediated by HCN channels, has repeatedly been shown to impact
on homeostasis of neuronal activity in various brain areas (section 1.3.3). In the OB,
neurons express the HCN channel isoforms HCN1, HCN2 and HCN4, with high
expression levels of HCN2 in the glomerular layer (Moosmang et al. 1999; Santoro et al.
2000; Angelo et al. 2012) and high variability of HCNI1 expression between
juxtaglomerular cells. However, most studies investigating I; in the olfactory system do
not research on potential homeostatic properties of this channel in the OB.

A tonically active I has been found in principal and interneurons of the OB (Cadetti
and Belluzzi 2001; Hayar et al. 2004b; Angelo and Margrie 2011). ET cells exhibit
substantial hyperpolarisation-evoked sag and therefore I;, (Hayar et al. 2004b; Liu and
Shipley 2008a; Liu and Shipley 2008b). I, plays a key role in pacemaking in many auto-
rhythmic neurons (Wahl-Schott and Biel 2009) and also contributes to the intrinsic
neuronal oscillations of ET cells (Liu and Shipley 2008b) and the generation of
spontaneous rhythmical bursts of action potentials (Hayar et al. 2004b). Furthermore,
the current has been proposed to play a key role in synchronising ET cells and shaping
interglomerular inhibition of postsynaptic principal neurons by reducing EPSP
durations in ET cells (Liu and Shipley 2008a). Little is known about the functional
relevance of I in inhibitory glomerular interneurons. In visually identified PG cells, a
small I (around 10pA) has been described and is suspected to influence slow
oscillatory network rhythms (Cadetti and Belluzzi 2001). The same group also
identified a small, tonically active I, in TH™ interneurons, which had an influence on
their RMP, but could not be shown to impact on any pacemaking activity (Pignatelli et
al. 2013). Except for these two specific interneuron types, the expression levels of the I
across different classes of glomerular interneurons have not yet been systematically
described and the underlying function of the small I levels in these cells remains
elusive. Since PG and SA cells can have high input resistances (Puopolo and Belluzzi
1998a; Hayar et al. 2004a; Shao et al. 2009), even a modest amount of the I; could have
a substantial impact on the neuron’s integrative properties (Cadetti and Belluzzi 2001).
Interestingly, in MCs I, has been shown to substantially influence the cells’

computational properties (Angelo and Margrie 2011). Furthermore, the level of I has
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been shown to depend on a MC’s affiliation to a glomerular network and this
dependence has been proposed to function as an activity-dependent gain control
mechanism, specific for each glomerular micro-circuit (Angelo et al. 2012). Such a
homeostatic mechanism might also serve to homogenise the output of principal neurons
receiving the same sensory stimuli.

Based on these results from experiments in MCs, this thesis aims to quantify Ij-
mediated sag in at least two types of JG cells with a view to understanding its cellular
function and its relation (if any) to the history of activity within neurons affiliated to a
microcircuit of the glomerular layer. By combining morphological reconstructions with
simultaneous recordings, the extent to which I-mediated sag relates to glomerular

membership and synaptic activity will be assessed.
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1.5 Hypothesis and Aim of My Project

Several recent papers have highlighted the importance of within-class biophysical
heterogeneity to brain function (Altschuler and Wu 2010; Paszek et al. 2010; Pelkmans
2012). These studies suggest that analysis of the bulk or average properties of large
populations of cells may mask the complexity of real cell populations or tissues and
may lead to difficulty in addressing complex functional questions concerning the
modulation of biophysical properties.

My project focuses on understanding the diversity in expression of I, in interneuronal

circuits in the glomerular layer. Specifically, I aimed to:

1: Quantify the diversity of membrane potential sag (I) expression within and be-
tween two chemically defined classes of JG cells.

2: Establish whether the amount of membrane potential sag (I,) within specific
inhibitory types of JG cells is dependent on the affiliation of individual neurons to local
microcircuits.

3: Assess the extent to which membrane potential sag (I) in different classes of JG cells

is dependent on odour experience.
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Chapter 2. Materials & Methods
2.1 Mouse Lines

All animals were maintained on 12h:12h light/dark cycle with free access to food and
water. All experiments were carried out on acute brain slices of transgenic male and
female mice (three to seven weeks old), expressing a red fluorescent protein under the
control of the promoter for either glutamic acid decarboxylase (Gad2-IRES-Cre-
tdTomato) or tyrosine hydroxylase (TH(9.0)tagRFP; Table 2-1). Fluorescent neurons
recorded in these two mouse lines are from now on referred to as GAD65" and TH"
neurons. GAD65" and TH™ neurons exhibited morphologies (section 3.2.3) and

electrophysiological properties (section 3.2.4) similar to previously published data.

Table 2-1 List of Genetically Modified Mouse Lines

Name Type Promoter | Fluorophore | Source
Gad2-IRES-Cre-tdTomato | Targeted | Gad2 tdTomato Cross of lines from
knock-in Jackson Laboratory
TH(9.0)tagRFP Random TH(9.0kb) | tagRFP Molly Strom, SWC
insertion
transgenic
M72-IRES-ChR2-YFP Targeted | Olfr160 EYFP Jackson Laboratory
knock-in

2.1.1 Gad2-IRES-Cre-tdTomato

For fluorescent labelling of a subset of GABAergic neurons, a cross between a Gad2-
IRES-Cre knock-in mouse line (Gad2™ ™ 4"J stock no.: 010802, The Jackson
Laboratory) and the tdTomato reporter line Ail4 (B6.Cg—Gt(ROSA)26Sortm14(CAG'
wTomato)lfize ' stock no: 007914, The Jackson Laboratory) was established.

The neurotransmitter y—aminobutyrate (GABA) is synthesised from L-glutamic acid by
two isoforms of the enzyme glutamic acid decarboxylase (GAD), GADg7; and GADsgs,
encoded by two genes, Gadl and Gad2 respectively. The Gad2-IRES-Cre line, targets
GABAergic neurons via the Cre/loxP binary gene expression system (Sternberg and
Hamilton 1981; Dymecki and Kim 2007) and was initially produced and published by
Taniguchi et al. (2011). The co-expression of Cre with Gad2, has a 92.2 % specificity in
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the neocortex and the line targets “most or all GABA neurons” in the olfactory bulb
(OB), based on visual observation (Taniguchi et al. 2011). GABAergic interneurons in
the OB are known to undergo continuous turnover throughout development and adult
life (De Marchis et al. 2004; Lledo et al. 2008) and migrating neuroblasts express
GADgs protein before reaching their destination (De Marchis et al. 2004).

On average, Gad2-IRES-Cre animals discriminated two odours in a go/no go operant
conditioning task equally well compared to wild type animals. They reached criterion
(first block when an animal reaches at least 80% discrimination accuracy for five blocks
consecutively) on average after 11.4 = 6.5 blocks (n = 5), with each block being ten S+
and ten S- presentations. This learning duration was not significantly different from

wild type animals (8.9 + 3.6, n =9, p = 0.363, t-test; unpublished data, Edward Bracey).

2.1.2 TH(9.0)tagRFP

Transgenic mice were generated according to a previously published protocol (Min et al.
1994) resulting in the expression of tagRFP under the control of rat tyrosine
hydroxylase (TH) promoter (9.0kb). Transgenic animals crossed to C57BL/6 animals
exhibited normal breeding behaviour, with 51% of the offspring being transgenic
(Niransgenic = 99 VS. Npon-transgenic = 97) and a normal male/female ratio (nmale = 92 vSs. Nfemale
=104).

TH 1is the rate-limiting enzyme in the biosynthesis of the catecholamine
neurotransmitters dopamine, norepinephrine, and epinephrine. The expression of a
fluorescent marker molecule from the TH promoter results in the labelling of
dopaminergic cells in the OB, which are nearly exclusively located in the glomerular
layer (Jaffe and Cuello 1980; Nadi et al. 1981). TH expression has been shown to be
activity-dependent, decreasing with sensory deprivation (Baker et al. 1983; Cigola et al.
1998; Parrish-Aungst et al. 2011; Banerjee et al. 2013) and is attenuated by histone
deacetylase enzymes in migrating neuroblasts until the interneurons fully mature in

their target layer (Akiba et al. 2010).

2.1.3 M72-IRES-ChR2-YFP

M72-IRES-ChR2-YFP knock-in mice (Olfr160™! - (COP4/EYERITboz /1 "gt0ck no: 021206,
The Jackson Laboratory) express a ChR2(H134R)-EYFP fusion gene from the locus of

the olfactory receptor 160. The H134R substitution is a gain-of-function mutation,
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which enhances the photocurrent. The axons of each olfactory sensory neuron (OSN)
expressing the odour receptor 160 (OR160) project onto one of the two M72 glomeruli,
which are located medial and lateral on the dorsal surface of both OBs. Since the ChR2-
YFP expression is specific to OSNs projecting to the M72 glomeruli, it is possible to
evoke activity in neurons connected to a single glomerular network by stimulation with
blue light (450-490 nm). To identify and record from GABAergic and dopaminergic
neurons affiliated to the M72 network, M72-IRES-ChR2-YFP mice were crossed with
animals from either the TH(9.0)tagRFP or the Gad2-IRES-Cre-tdTomato mouse line. In
these crosses, the M72 glomerulus is fluorescently labelled with enhanced yellow
fluorescent protein (EYFP) and a subset of interneurons express either tdTomato or

tagRFP (Figure 2.1).

OSN axons

Glomerular
Layer

Figure 2.1 Confocal Image of an M72 Glomerulus in a TH(9.0)tagRFP Animal

A cross between M72-IRES-ChR2-YFP and TH(9.0)tagRFP animals result in
fluorescent labelling of the M72 glomerulus and dopaminergic interneurons in the
glomerular layer. Yellow channel: Axons of OSNs expressing a ChR2-EYFP fusion
gene converge onto the M72 glomerulus. Red channel: tagRFP labelled TH'
interneurons,  surrounding  the  glomeruli in the  glomerular layer.
Maximum projection, 40x objective. EPL = external plexiform layer,
OSN = olfactory sensory neurons.
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2.2 Quantification of Genetic Labelling Specificity Using

Immunohistochemistry

For assessing the specificity of genetic labelling in TH(9.0)tagRFP mice, animals were
terminally anesthetised via intraperitoneal application of ketamine (200-300 mg/kg;
Vetalar®, Zoetis) and xylazine (20-30 mg/kg; Rompun® 2 %, Bayer) and transcardially
perfused with phosphate-buffered saline (PBS), followed by 4 % paraformaldehyde
(PFA) in ddH,O. The dissected brains were post-fixed in 4 % PFA overnight at 4°C and
embedded in 3 % Agarose. The OBs were cut in serial horizontal sections of 50 um
thickness using a vibratome (HM 650 V, Microm International GmbH). After two hours
of permeabilization with 0.1 % Triton X-100 and 5 % normal goat serum in PBS, the
sections were stained with anti-TH antibody (1:1000 dilution with 0.1 % Triton X-100
and 0.5 % normal goat serum, overnight at room temperature (RT), rabbit anti-tyrosine
hydroxylase, Pelfreez) or anti-Gad2 antibody (1:50 dilution, overnight at 4°C, GAD2
(D5G2) XP® Rabbit mAb, Cell Signalling) as primary and goat anti rabbit 488 (1:500
dilution, for two hours at RT, Goat anti-Rabbit IgG (H+L) Alexa Fluor® 488, Life
Technologies) as secondary antibody. For easier identification of cells and cell layers,
all sections were additionally stained with 4’°,6-diamidino-2-phenylindole (DAPI;
1:10000 dilution, 10 min at RT, Santa Cruz Biotechnology). Sections were mounted in
Mowiol and imaged with a Leica SP5 microscope (Leica Microsystems) and a 40x/1.25
oil objective (HCX PL APO lambda blue, Leica Microsystems).

To analyse the specificity of cell labelling, red and green fluorescent cells were counted
in subregions of the glomerular layer with the Cell Counter Image J plugin
(https://imagej.nih.gov/ij/plugins/cell-counter.html, Kurt De Vos, University of
Sheffield).

2.3 In vitro Electrophysiological Recordings

2.3.1 Solutions for Electrophysiological Recordings

2.3.1.1 External Solutions

All extracellular solutions were prepared from a stock solution on the day of the
experiment. The stock solution was freshly made every week and kept at 4°C. External

solutions had a final osmolality of 305-310 mOsm, which was measured with a vapour
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osmometer (Vapro 5520, Wecor). All solutions were perfused with 95 % O, and 5 %
CO; and contained (in mM):

*  Slicing solution (high MgCl,, low CaCl,): 125 NaCl, 26 NaHCOs, 25 D-glucose, 2.5
KCl, 2 MgCl,, 1.5 NaH,PO4, 1 CaCl, and 0.5 ascorbic acid

*  External recording solution (low MgCl,, high CaCly): 125 NaCl, 26 NaHCOs, 25
D-glucose, 2.5 KCl, 2 CaCl,, 1.25 NaH,PO4, 1 MgCl, and 0.5 ascorbic acid

* Synaptic blocker cocktail 125 NaCl, 26 NaHCOs, 25 D-glucose, 2.5 KCl, 2 MgCl,,
1.25 NaH;POy4, 1 CaCl; and 0.5 ascorbic acid, 0.05 D-APS, 0.05 picrotoxin and 0.01
NBQX

* Synaptic and ion channel blocker cocktail for voltage-clamp recordings (without
NaH;PO4and CaCly): 105 NaCl, 26 NaHCOs3, 20 D-glucose, 12.5 KCl, 10 TEA-CI,
5 4-AP, 1 MgCl,, 1 CoCl,, 1 BaCly, 0.05 D-APS, 0.05 picrotoxin, 0.01 NBQX and
0.001 TTX

* Synaptic and ion channel blocker cocktail + ZD7288: Synaptic and ion channel
blocker cocktail (see above) + 0.04 ZD7288

2.3.1.2 Internal Solution

A double concentrated internal solution was prepared, adjusted with KOH to
pH 7.28 £ 0.1 and filtered with a 0.2 pum syringe filter. This stock solution was split into
200 pl aliquots and frozen at -20°C. Similarly, a 1 % (w/v) biocytin stock solution in
ddH,0 and a 2 mM Alexa F luor® 488 stock solution in ddH,O were prepared, filtered
and frozen in aliquots at -20°C.

On the day of the experiment the internal stock solution was diluted with the biocytin

and Alexa Fluor® 488 stock solution to an infernal solution containing (in mM):

* 10 KMeSO3, 6 NaCl, 3 MgCl2, 40 HEPES, 2 Na2-ATP, 2 Mg-ATP, 0.5 Na2-GTP,
0.05 EGTA, 0.02 CaCl2, 0.05 Alexa Fluor® 488 and 0.5% biocytin

The solution was filtered with a 0.2 um centrifugal filter and had a final osmolality of

286 = 4 mOsm.
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2.3.2 Preparation of Acute Olfactory Bulb Brain Slices

All procedures were performed in compliance with Home Office regulations and in
accordance with the project and personal license. Animals were killed via cervical
dislocation and decapitation; the skin was cut from neck to nose and pulled to both sides
to expose the skull. The occipital, interparietal and parietal parts of the skull were
carefully cut with scissors (Iris scissors ToughCut, F.S.T.) up to the coronal suture. In
most cases this resulted in a cracking of the skull along the midline of the frontal area
up to the nasal bone without any damage of the OBs underneath. Next, the skull was cut
laterally along both sides from posterior to anterior up to the eye socket. To avoid any
damage to the OBs, the skull was not cut in the area of the eye socket, but a spring
scissor (Student Vannas Spring Scissors, F.S.T.) was carefully inserted into the optic
canal. Then a final cut was made towards the front of the nasal bone allowing removal
of the dorsal part of the skull with a fine pair of forceps. The brain was then cut with a
scalpel blade inside the remaining skull along the medial-lateral axis, leaving roughly 2
mm of the forebrain attached to the OBs. After removing the posterior parts of cortex
and the cerebellum, the OBs were transferred into ice cold slicing solution. The OBs
were then removed from the slicing solution, dried with a filter paper and glued on a
metal tissue holder using cyanoacrylate. 350 um thick horizontal or coronal (for M72
glomerulus experiments) sections of mouse OB were obtained in ice-cold slicing
solution using a vibratome (Leica VT1200 S, Leica Biosystems, 0.16 mm/s, 1.0 mm
amplitude). All brains were cut from anterior to posterior (horizontal sections) or dorsal
to ventral (coronal sections). Subsequently, the OB slices were separated with a scalpel
blade into the two individual OBs, incubated in continuously perfused slicing solution
for 30 - 35 minutes at 36°C and then left to equilibrate at RT in the same solution. The
process from cervical dislocation to incubation of the slices at 36°C was normally

completed within 8 to 12 minutes.

2.3.3 Visualisation of Genetically Labelled Neurons

For electrophysiological recordings, individual slices were transferred to a custom-made
chamber which was continuously perfused with external recording solution at a flow
rate of 2.5 - 3 ml/min at 35 + 1.5°C (heater with integrated temperature sensor, Sigmann

Elektronik GmbH). To provide mechanical stability for electrophysiological recordings,
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brain slices were fixed in the chamber with a custom made platinum harp. A Zeiss Axio
Examiner microscope with a 10x (W N-Achroplan 10x/0.3, Zeiss) and 40x water
immersion objective (W Plan-Apochromat 40x/1.0 DIC, Zeiss) was used in infrared
differential interference contrast mode to visualise the slices. For electrophysiological
recordings, GAD65" and TH' neurons were chosen based on the location of their soma
within the glomerular layer and the expression of red fluorescent protein (RFP),
visualised with a RFP filter set (Zeiss filter set 64 HE; excitation: BP 587/25; emission:
BP 647/70, beam splitter: FT 605).

In order to confirm the successful targeting of a neuron, all cells were filled with Alexa
Fluor® 488 during the recording and were visualised with a GFP filter set (Zeiss filter
set 38 HE, Zeiss; excitation: BP 470/40; emission: BP 525/50, beam splitter: FT 495) or,
in channelrhodopsin experiments, a YFP filter set (excitation: 510/10; emission: 542/27,

beam splitter: HP 520).

2.3.4 Whole-Cell Recordings and Data Acquisition

Whole-cell recordings were carried out under controlled temperature conditions at 35 +
1.5°C. Electrodes were prepared from borosilicate glass capillaries (outer diameter: 2.0
mm, inner diameter 1.5 mm, Hilgenberg) using a DMZ-Universal-Puller (Zeitz
Instruments). Pipettes were pulled to a tip diameter of 1 - 2 um with a resistance of
4-8 MQ when filled with internal solution while dipped in recording solution. Pipettes
were mounted in pipette holders (DB-S Electrode Holder, G23 Instruments UCL)
attached to headstages (CV-7B Cat I, Channel A and B, Axon Instruments), which
could be moved independently via two manipulators (LN Junior RE/LE (3 axes), Luigs
& Neumann).

Recordings were performed using a dual channel Multiclamp 700B amplifier (Axon
Instruments) and visualised online with an analog/digital oscilloscope (HM507, Hameg
Instruments). Starting in voltage-clamp mode, a test square pulse of 10 mV (at 100 Hz
and 0 mV holding potential) was applied and the pipettes were lowered into the bath
and visualised under the 40x objective. Both pipettes were placed above the OB slice
and then moved towards their target cells one pipette at a time while applying strong
positive pressure. Several um before reaching the target neuron with the first pipette the
pressure on this pipette was reduced and the process was repeated with the second

pipette. Once both pipettes were placed closely above their target neurons the pipette
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offsets were adjusted and each pipette was positioned next to the target neuron, so that
the positive pressure created a dimple in the membrane of the neurons. Rapid release of
positive pressure and gentle application of negative pressure resulted in formation of a
gigaseal (series resistance > 1 GQ).

At a holding potential of -75 mV, the test square pulse was increased to -40 mV at
100 Hz and the fast capacitive current transients of the pipette were compensated with
the automatic pipette capacitance compensation mode. Electrical access to the neurons
was gained one cell at a time by application of an increasing negative pressure until the
neuron’s membrane ruptured, as indicated by a sudden, slow capacitive transient.
Shortly after breaking into a neuron, gentle positive pressure was applied and the pipette
was slowly pulled back by 1 - 2 um, which often improved the access resistance to the
neuron.

Current-clamp recordings were filtered at 6 kHz using a low pass Bessel filter. For
adjusting the pipette capacitance compensation and bridge balance, a tuning pulse of
-100 pA at 100 Hz was briefly injected into the neuron. Series resistance and resting
membrane potential (RMP) were regularly monitored throughout the recording. All
recordings with a series resistance larger than 20 MQ, a RMP outside the range of
-48 mV to -75 mV or a RMP change bigger than 10 mV were not used for any analysis.
For voltage-clamp recordings, currents were filtered at 2 kHz and series resistance
errors were compensated online by 40 - 50 %. The membrane voltage was not corrected
for the liquid junction potential.

Data was digitised at 20 kHz using an ITC-18 A-D interface (InstruTECH, Heka
Elektronik). A 'HumBug' line noise eliminator (Quest Scientific) was interposed to filter
50Hz electrical noise. For data acquisition, the Neuromatic package (v2.00, J. Rothman,
http://www.neuromatic.thinkrandom.com/) was used with Igor Pro 6.34A software

(Wavemetrics).

2.3.5 Pharmacology

In all experiments using the synaptic blocker cocktail or the synaptic and ion channel
blocker cocktail, whole-cell access was established as described in Section 2.3.4 while
the slice was perfused with normal external recording solution. If more than one
blocker cocktail was applied during an experiment (for example synaptic and ion

channel blocker cocktail followed by synaptic and ion channel blocker cocktail +
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ZD7288), each cocktail was introduced through separate tubing, which were joined
together in a Teflon manifold (MP-3 chamber manifold, Warner Instruments) directly
before the heater element. In order to guarantee a similar flow rate (2.5 - 3 ml/min), all
solutions were perfused using the same peristaltic pump (Minipulse 2, Gilson). The bath
was perfused with each pharmacological solution for a minimum of five minutes before
any recordings of the sag potential amplitude (SPA) or I, were made. Between two
different recordings the empty recording chamber was washed for at least 15 minutes

with external recording solution.
2.3.6 Stimulus Protocols

2.3.6.1 Current-Clamp

Dependent on the current-clamp experiment, each cell was subjected to one or several
different stimulus protocols. The parameters of the stimulus protocols are listed in Table
2-2. When two neurons were recorded simultaneously, current injections were
alternated between the two cells and never applied simultaneously. Generally, the
I-V protocol was applied shortly after breaking into a neuron, followed by varying
numbers of repetitions of the hyperpolarisation step protocol (Figure 2.2). Due to the
dilution of second messengers in the whole-cell configuration and the sensitivity of
hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels to these second
messengers, the SPA of neurons decreases over the time course of a recording
(DiFrancesco et al. 1986; Wahl-Schott and Biel 2009). It was therefore the aim to
complete any SPA recording within five minutes after establishing whole-cell access to
a neuron. The hyperpolarisation step protocol was followed by a brief passive
recording of the membrane potential without any current injection and, depending on
the experiment, either a depolarisation step (to test for gap junctions) or ChR2 stim

protocol (to test for connectivity to the M72 glomerulus).

2.3.6.2 Voltage-Clamp

A single VC-I, protocol was used in all voltage-clamp experiments. During the protocol
the neurons were held at -55 mV and hyperpolarised to -105 mV for 2000 ms (Figure
2.3a). The hyperpolarisation was repeated five times with an inter-stimulus-interval of

1000 ms. The VC-I;, protocol was first applied to a neuron perfused with normal
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Table 2-2 Properties of Stimulus Protocols

Protocol -V Hyperpolarisation | Depolarisation | ChR2 stim
Property step step
Target membrane - 53.5+45 70 +2 702
potential [mV]
Start current step [pA] | -70 variable variable -
End current step [pA] +130 variable variable -
No. of steps 20 3 1 -
Step increments [pA] 10 5 - -
Stimulus length [ms] 250 500 2 2
Inter stim interval [ms] | 750 800 1125 1000
Stimulus repeats 1 5 40 20 or 50

extracellular solution, followed by one or several recordings in synaptic and ion

channel blocker cocktail and synaptic and ion channel blocker cocktail + ZD7288 (see

section 2.3.1.1).

2.4 Analysis of Electrophysiological Data

Data analysis was performed in MATLAB (Version R2015b, MathWorks).

2.41 Quantification of Sag Potential Amplitude

In current-clamp recordings the SPA was determined by maintaining the membrane

potential with constant current injection at 53.5 = 4.5 mV and repeatedly

hyperpolarising the neuron for 500 ms with three negative current steps at -5 mV

increments (see hyperpolarisation step protocol Table 2-2 and Figure 2.2). The

amplitudes of the injected current steps were adjusted for each neuron to reach a steady-

state membrane potential of -95 £ 5 mV (Figure 2.2, lower grey dashed box). All

recordings with an initial membrane potential or steady-state membrane potential

outside the given ranges were discarded. The SPA was quantified as the difference

between the minimum peak membrane potential recorded at the first 250 ms of the

hyperpolarisation step and the average steady-state voltage recorded during the last 100

ms of the current step injection (Figure 2.2, blue bars and black arrow).
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For simultaneous whole-cell current-clamp recordings of two neurons, SPAs were
recorded separately in each neuron. Otherwise, stimulation protocol and analysis criteria

were identical to those used in single whole-cell current-clamp recordings.

20 mV

6.9 mV 5mV

o)

I 20 pA

100 ms

Figure 2.2 Recording and Calculation of Sag Potential Amplitude

Example of hyperpolarisation-induced SPA in a GAD65" neuron. The neuron was
hyperpolarised five times with three different current steps (5 pA increment, bottom).
Black membrane voltage traces displayed (top) are the average of five repetitions (grey
traces). The membrane potential was held at -53.5 = 4.5 mV (upper grey dashed box)
and the injected current steps were adjusted for the neuron to reach a steady-state
membrane potential at the end of the current step of -95 + 5 mV (lower grey dashed
box). Only recording traces within these ranges were used to calculate the SPA. Insert
shows a magnification of the neurons membrane potential in response to the most
hyperpolarising current injection. The SPA (black arrow) was calculated as the
difference between the minimum peak voltage potential in the first 250 ms of the
hyperpolarisation step (left blue box) and the average steady-state voltage recorded
during the last 100 ms of the current step (right blue box).
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2.4.2 Quantification of Hyperpolarisation-Activated Cation Current

To quantify the amplitude of the hyperpolarisation-activated current (I,) in voltage-
clamp recordings, a hyperpolarising voltage step from -55 mV to -105 mV was applied
five times for 2000 ms in the presence of synaptic and ion channel blocker cocktail
(VC-I, protocol; Figure 2.3a, black trace). Afterwards the VC-I;, protocol was repeated
in the presence of synaptic and ion channel blocker cocktail + ZD7288 (Figure 2.3a,
blue trace). ZD7288 acts as a selective blocker of HCN channels, whereby the block is
time and concentration dependent with a half maximum blocking concentration of 0.02
mM (Harris and Constanti 1995). It has been suggested to allow for a perfusion time of
10 - 15 minutes before any electrophysiological recording (Harris and Constanti 1995).
However, with a concentration of 0.04 mM no further change in the I block was
observed after five minutes of perfusion. As the synaptic and ion channel blocker
solution had a detrimental impact on recording quality, recordings of I, or SPA were
started after five minutes of blocker perfusion. The I, amplitude was determined by
post-hoc digital subtraction of the mean currents at -105 mV, recorded in the absence
and presence of ZD7288 (Figure 2.3b). In the resulting trace the difference between the
last 140 ms of the hyperpolarising step and the last 300 ms after the end of the current

step was defined as the I, amplitude.

d |
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blocker cocktail
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®
| 50 pA
| 20mV

500 ms 500 ms

Figure 2.3 Pharmacological Isolation and Determination of I, Amplitude

(a) Voltage-clamp recordings of a neuron perfused with synaptic and ion channel
blocker solution in black and the recording of the same neuron perfused with synaptic
and ion channel blocker solution+ZD7288 in blue. Current traces (fop) are the average
response to five consecutive hyperpolarising (55mV to -105 mV) current steps (bottom).
(b) I;, amplitude of the neuron in (a), determined by subtracting the blue current trace
under ZD7288 block from the black trace recorded in synaptic and ion channel blocker
isolation cocktail. The amplitude (black arrow) was calculated as the mean difference
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between the last 140 ms during the hyperpolarising step and the last 300 ms after the
end of the hyperpolarising step (blue bars).

2.4.3 Quantification of Other Biophysical Properties

By analysing the responses of each neuron to the I-V protocol (Table 2-2), biophysical

parameters could be compared between GAD65" and TH' neurons.

Action Potential Detection and Action Potential Clipping

The action potential detection algorithm was written by Alexander Brown in MATLAB.
This algorithm detects local peaks in the first derivative of a voltage trace, whereby a
peak is defined as a change larger than five times the standard deviation of a baseline
measure. For the baseline, the 10™ to 90™ percentile of the first 100ms of a recording
were averaged. For the analysis of input resistance and RMP all action potentials in the
recording traces were clipped by deleting the data points in a range of 1 ms before to
10 ms after the detected event and interpolating between the remaining points.

The spiking threshold was defined as the membrane potential at the peak of the second
derivative in a 4 ms window before the detected spike. The spiking threshold was
measured and averaged from all action potentials, occurring during the step of the /-V

protocol (Table 2-2) where the first action potential was detected.

Detection of Excitatory Post-Synaptic Potentials
All single and coincident excitatory post-synaptic potential (EPSP) detection was
conducted with the Igor Pro plugin “SpAcAn” (http://www.spacan.net/). The plugin

uses a modified threshold-crossing detection algorithm (Vincent and Marty 1993;
Dugue et al. 2005). The algorithm detects when the difference between two rolling
averages exceeds a set threshold. EPSPs were considered to occur coincidentally when

the onset of two events was less than 2ms apart.

Input Resistance
Input resistance was calculated by fitting a linear function to the mean voltage
responses of a neuron to current injections of 0 pA, -10pA and -20pA during the last

50 ms of the hyperpolarising steps in the I-V protocol (Table 2-2).

Resting Membrane Potential
The RMP was determined from the mean membrane potential of a neuron during the

zero current step condition (I-V protocol, Table 2-2).
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2.4.4 Analysis of Membrane Voltage in Simultaneous Recordings

Simultaneous recordings were performed in neurons with somata located directly next
to each other if possible, but never more than the equivalent of one glomerulus apart
(approximately 50 pm). For correlating the spontaneous synaptic activity in
simultaneously recorded neurons, the membrane potential in each neuron was kept at
-70 = 2 mV using constant current injection. The spontaneous synaptic activity was
recorded and a continuous cross-correlation with a + 1000 ms lag was performed
(“xCorr” function, MATLAB). This algorithm normalises the trace before correlation.
The peak value was calculated in the resulting cross-correlogram as the difference
between the highest point at 0 £ 5 ms and a baseline measure. The baseline measure was
taken between -1000 ms to -500 ms and 500 ms to 1000 ms. The significance of the
correlated activity was tested by comparing simultaneously recorded neurons to ‘pseudo
pairs’. Pseudo pairs were generated by systematically assigning two neurons from the
dataset of simultaneous recordings such that all possible combinations (except for the
original simultaneously recorded ‘pairs’) were represented. A simultaneously recorded
pair of neurons was considered to be ‘synchronised’ when its cross-correlation value
was larger than the highest pseudo pair cross-correlation value of each chemotype. A
nonparametric test was performed to determine whether SPAs were more similar in
synchronised simultaneously recorded neurons versus pseudo pairs from the same

dataset.

2.4.5 Identification and Exclusion of External Tufted Cells

As shown by Tatti et al. 2014, the population of GABAergic interneurons in the
glomerular layer not only consists of inhibitory interneurons, but also contains a small
population of excitatory, glutamatergic external tufted (ET) cells, that co-express
GABA. ET cells have comparably low input resistances (161 MQ (55-490), n = 59),
RMPs at -56.8 £ 6.2 mV (n =59) and large SPAs (23.2 £ 10.6 mV, n = 59; Hayar et al.
2004a), as well as characteristic intrinsic bursting (McQuiston and Katz 2001; Hayar et
al. 2004a). An intrinsic burst is composed of a characteristic cluster of two or more
action potentials on top of a slow depolarising envelope. In order to exclude the ET cell
population from the GAD65" dataset, neurons that exhibited intrinsic bursting were

removed from the analysis.
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2.5 Light Stimulation in M72-IRES-ChR2-YFP Mice

For all channelrhodopsin experiments the M72-IRES-ChR2-YFP mouse line, described
in section 2.1.3. was used (Smear et al. 2013). In this line, a ChR2-EYFP protein is
selectively expressed under the odour receptor 160 (OR160) promoter, resulting in a
restriction of channelrhodopsin-2 (ChR2) to all OR160 OSNs. These OSNs converge
onto only two, bilaterally symmetrical M72 glomeruli per OB. A cross between this line
and either Gad2-IRES-Cre-tdtomato or TH(9.0)tagRFP provides a way of targeting
distinct subpopulations of juxtaglomerular interneurons that can be tested for their

affiliation to the M72 network via ChR2 activation (Figure 2.4).

0) g /OL OR 160 Olfactory Sensory Neurons

J—

@ Channelrhodopsin

. Glutamate

(] nvoAR
W ~vear

)

Post-Synaptic Activity

Figure 2.4 M72-IRES-ChR2-YFP Mice as a Model to Test Local Network Affiliation

In the M72-IRES-ChR2-YFP line ChR2 (bright blue) is specifically expressed in
OR160 OSNSs that converge onto the M72 glomeruli (grey). After slice preparation, the
ChR2 in the remaining OSN axons is activated by focussing a blue LED light (476 nm)
onto the area around the M72 glomerulus. The light activates ChR2, which depolarises
OSN axons, triggers release of the synaptic transmitter glutamate (black) from the OSN
terminals and excites neurons, postsynaptically connected to the M72 OSNs. This light-
evoked, postsynaptic activity was used as evidence for affiliation of the recorded neuron
to the M72 glomerulus. AMPAR = AMPA receptor, ET = external tufted cell, NMDAR
= NMDA receptor, PG = periglomerular cell, SA = short axon cell.
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2.5.1 Properties of the ChR2(H134R) lon Channel

ChR2(H134R) expressed in the M72-IRES-ChR2-YFP line is a light-driven cation
channel and the first published gain-of-function mutation of the original ChR2 (Nagel et
al. 2005). ChR2(H134R), like other ChR2 variants, is non-selectively permeable to
cations and exhibits a reversal potential around 0 mV. The channel is activated by
targeted illumination with blue light, but in contrast to the original ChR2, the peak
response is shifted slightly towards lower wavelengths (450 nm instead of 470 nm) and

the channel exhibits reduced desensitisation to steady-state photocurrent (Nagel et al.

2005; Lin et al. 2009).

A feature of ChR2(H134R) is a YFP protein fused to the C-terminus, enabling easier
visualisation of expression levels. Evoked activity in M72-affiliated interneurons could
reliably be observed with the GFP filter set (Figure 2.5, green trace), but not with the
YFP filter set or the RFP filter set (Figure 2.5, yellow and red trace). Therefore, the
YFP filter set was used instead of the GFP filter set for visualisation of Alexa Fluor®

488 filled neurons and the M72 glomerulus in channelrhodopsin experiments.

REP 5mV

50 ms
Figure 2.5 Light-Evoked Responses of M72-Affiliated Neurons Dependent on Wavelength

Current-clamp recording of a TH™ neuron anatomically shown to be affiliated to the
M?72 glomerulus. The neuron responded to a 10 ms GFP light stimulation (green trace;
excitation: BP 470/40; emission: BP 525/50, beam splitter: FT 495), but not to light
stimulation with the YFP (yellow trace; excitation: BP 510/10; emission: BP 542/27,
beam splitter: HP 520) or RFP filter set (red trace; excitation: BP 587/25; emission: BP
647/70, beam splitter: FT 605). Displayed are the average voltage traces in response to
20 consecutive 10ms light stimulations.
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2.5.2 Photostimulation

In order to achieve reliable and comparable light stimulation across experiments, an
LED-based light stimulation device, called “Rhodolight”, was developed by Martyn
Stopps and Nicholas Burczyk as an addition for the Zeiss Axio Examiner microscope
(Figure 2.6). The device replaces the eyepieces of the microscope and emits a light
pulse into the microscope chamber through the optical path of the microscope (Figure
2.6a).

Rhodolight has a bright, blue LED (OSRAM LBW5AM-GYHY-25, High Brightness
LED, Golden DRAGON Plus Series, 476 nm, 170°) as a light source with a reflector at
the back. It is encased by a 3D printed polymer shell (printer: Objet 30, resin:
VeroGray) and connected to the microscope via a rotatable flange (Igubal®, flange
bearing KFSM-GT) and a 3D printed adapter (Figure 2.6b).

power supply and PWM‘Stimuh.'lS

Figure 2.6 Light Stimulation Device ""Rhodolight"

(a) The light stimulation device replaced the eyepieces of the Zeiss Axio Examiner
microscope and emitted light pulses up to a light density of 21 mW/mm?, which were
focussed on the specimen using the optical pathway of the microscope.

(b) The 3D printed shell contains a blue LED (476 nm, 170° radiation angle), aligned to
the centre hole of the rotatable flange and a reflector at the back of the LED. It was
driven by a pulse width modulator and cooled with a fan. PWM = pulse width
modulator.
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The blue LED is actively cooled with a fan, built into the shell, and pulse width
modulation is used to control the intensity of the LED. The brightness of the LED can
be regulated by the strength of the voltage input to an external control box (0.3-1.2 V),
triggered and modulated via a stimulus protocol created in Neuromatic (section 2.3.6.1.,
ChR2 stim protocol). A calibration curve (Figure 2.7) was established at the focal point
of the 40x objective (in air) using an optical power measurement system (X-Cite®,
Excelitas Technologies). The diameter of the objectives focal point can be calculated as

field of view
magnification

@ focal point =

The focal point was calculated as 0.785 mm?” based on a 20mm with a field of view and
a 40x magnification. When the LED was driven with the maximal stimulus intensity
(1.2 V), a light density of 21 mW/mm?® was estimated for the focal point area (Figure
2.7).

The linear relation between the output light intensity and the voltage of the control
stimulus allows to accurately evaluate different light densities for ChR2. Unless stated
otherwise, all ChR2 experiments were conducted with a 2 ms long light pulse, 20 ms
after onset of the recording, with a 1.2 V input to the LED and repeated 20 or 50 times
at a frequency of 1Hz (section 2.3.6.1., ChR2 stim protocol).
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Figure 2.7 Output Light Densities of “Rhodolight” Linearly Depend on Input Voltage

Calibration curve established with an optical power meter measuring at 480 nm. The
light beam of a 40x objective was focused on the lem? large sensor. The command
voltage was increased in increments of 0.1 V over the working range of the pulse width
modulator (0.3 - 1.2 V) and plotted against the detected light power.
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2.5.3 Event Detection for M72 Glomerulus Connectivity Analysis

In order to assess whether an interneuron responding to a light stimulus was
monosynaptically connected to the M72 OSNs, the latency between onset of the light
stimulus and onset of light-evoked events was calculated. Therefore, an average
response waveform was generated by aligning all light-evoked events to the onset of the
light stimulus. The baseline was calculated as the average of all trials during the 20 ms
before the light stimulus onset. The onset of the light-evoked event was defined as the
time at which membrane potential deviated by more than 2.5 times the standard
deviation (SD) of the baseline after the light stimulus onset. In order to only consider
high frequency noise for the SD calculation, the SD of the baseline was calculated via a

rolling SD with a window of 1 ms.
2.6 Sensory Deprivation and Enrichment

2.6.1 Sensory Stimulation of Mice with 2’-Hydroxyacetophenone

Animals were exposed for seven to ten days to 2’-hydroxyacetophenone (2-HAP), a
known ligand for M72 odour receptors (Feinstein et al. 2004). The odour was diluted in
mineral oil to a final concentration of 5 % and 1 ml of the 5 % 2-HAP solution was
dispersed on a clean paper tissue. The tissue was loosely rolled and inserted into a tube
in front of the air inlet of the animal cage, so air could flow through tube and tissue and
distribute the odour throughout the cage. The odour-soaked tissue was replaced every
12 hours. Mice were housed in groups of three to five animals in individually ventilated

cages with the odour source out of reach for the animals.

2.6.2 Sensory Deprivation via Chemical Lesion of the Olfactory

Epithelium

Chemical lesions of OSNs with ZnSO4 were performed according to a previously
published protocol (Bracey et al. 2013). Briefly, animals were anaesthetised in the
morning with a subcutaneous injection of fentanyl (0.05 mg/kg, Fentanyl citrate,
Antigen Pharmaceuticals), midazolam (5 mg/kg, Hypnovel®, Roche) and medetomidin
(0.5 mg/kg, Domitor”™, Pfizer). Depending on the weight of the animal, each naris was

irrigated three times with 1 - 3 pul of 8.4 % w/v ZnSOy4 in ddH,O solution (293 mOsm).
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In the five minutes interval between each irrigation the animals were placed supine in a
30°C warm recovery chamber. After the last irrigation, the animals were placed in the
recovery chamber for 10 minutes before inducing the recovery from anaesthesia by
subcutaneous injection of naloxone (1.2 mg/kg, Naloxone, CP Pharmaceuticals),
flumazenil (0.5 mg/kg, Anexate, Roche) and atipamezol (2.5 mg/kg, Antisedan®, Pfizer).
After regaining consciousness, the animals, were left to recover in the warm recovery
chamber for a maximum time period of 2 hours. In all but two animals, the treatment
was repeated in the afternoon of the same day. After recovery a phenotype in the
behaviour of all treated animals could be observed. The animals exhibited less
exploring behaviour, their nose was often lowered to the ground and they did not retract
the head from the experimenter’s hand. This protocol is known to result in a lack of
glomerular response to odour and anosmia as tested using go — no go olfaction
discrimination task (Bracey et al. 2013).

Since the intent was to chemically lesion OSNs in the olfactory epithelium while still
preserving ChR2 expression in axons of M72 OSNs, all electrophysiological

experiments were conducted one day post chemical lesion.

2.7 Visualisation and Anatomical Analysis of Biocytin-Filled

Recorded Neurons

2.71 Tissue Processing and Histology

For post-hoc morphological reconstruction, all neurons were filled with 0.5 % biocytin
(w/v) during the electrophysiological recording. After the recording, brain slices were
fixed in a 4 % PFA solution for at least two hours at RT and subsequently transferred to
phosphate buffer (PB).

For 3,3’-diaminobenzidine (DAB) staining (Vectastain ABC kit, Vector Laboratories
Inc.), endogenous peroxidase activity was blocked with 3 % (w/v) H,O, for 20 to 30
minutes, followed by incubation overnight in 1 % (v/v) avidin-biotinylated HRP
complex (ABC) solution. To amplify the DAB signal, DAB solution (0.66 mg/ml) was
added and the staining was developed with 3 % (w/v) H,O; afterwards. For an easier
reconstruction of cell layers, DAPI counterstaining (1:10000 dilution, 10 min at RT)

was performed on all brain slices.

71



Chapter 2 Material and Methods

2.7.2 Morphological Reconstruction

The stained neurons, their position and projections within the OB were manually
reconstructed with Neurolucida 11 (MicroBrightField Inc.) and a wide-field, inverted
microscope (Olympus BX61). For 2D reconstruction of the brain outlines, cell layers
and glomerular outlines, a 10x/0.25 air objective (Plan N 10x, Olympus) was used,
whereas soma (2D) and cell processes (3D) were reconstructed using a 100/1.25 oil

objective (Plan N 100x, Olympus).

2.7.3 Morphological Analysis

For a comparative morphological analysis between GAD65" and TH' neurons, all

parameters were calculated with the Neurolucida Explorer software.

Sholl Analysis

To assess the dendritic trees in GAD65" and TH' neurons, the maximum radius of each
neuron in a Sholl analysis was calculated and compared. In a Sholl analysis concentric
spheres with an increasing radius are drawn around the centre of a soma. For the present
analysis an increment of 10 um per sphere was chosen. The result of the analysis is the

smallest sphere that encompasses the whole dendritic tree.

Convex Hull Analysis

A Convex Hull analysis was performed on all reconstructions. Here, the algorithm
constructs a 3D convex polygon that connects the endings of all dendrites and calculates
the volume of the polygon, providing an estimate of the area innervated by the dendrites

of a neuron.

Crossing of Glomeruli by Dendritic Processes

Consistent with the morphological analyses in Kiyokage et al. 2010, the innervation
pattern of a neuron was assessed by quantification of the intersections between
dendrites and reconstructed glomerular spheres. Only reconstructions with full recovery
of all glomeruli in the area of interest were used for this analysis. The percentage of
dendritic tree intersecting the glomeruli was calculated, as well as how many glomeruli

were crossed by > 6 um of dendritic process.
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Dendritic Proximity Analysis

To determine the average distance between dendrites of two simultaneously recorded
neurons, a proximity analysis was performed using Neurolucida Explorer. Here, the
dendritic tree of one neuron was divided into segments of 1 pm and for each segment
the algorithm tested whether dendrites of the second neuron were within a vicinity of
5 um. This calculation was performed in both directions (neuron A in vicinity of B and
vice versa) and averaged. The percentage of dendritic segments where the two neurons’

dendrites were closer than 5 pm was used to quantify the degree of dendritic overlap.

Identifying Axons

An axon could only be identified for a limited number of GAD65" and TH"™ neurons.
Some juxtaglomerular cells do not have axons or their axons can depart from a dendrite
instead of the soma and some of their dendritic processes can resemble axons (Pinching
and Powell 1971a; Kiyokage et al. 2010; Kosaka and Kosaka 2011). Therefore, it was
challenging to clearly identify an axon in some reconstructions. Axonal characteristics
considered for axon identification were (1) long, lateral extension of the process within
the OB, (2) slender diameter at the origin of the process, (3) no tapering in the process’
diameter and volume, (4) little branching (5) natural terminals outside the glomerular

space.

2.8 Statistical Analyses

All statistical analyses were performed in MATLAB. All data groups were tested for
normality with a Lilliefors test (MATLAB function “lillietest”), and parametric tests
were used when appropriate in form of a two-sample t-test (“ttest2”) or two-sample F-
test (“vartest2”). Otherwise, a Wilcoxon rank sum test (“ranksum’) was used to
compare medians and a Brown-Forsythe test (“vartestn™) to compare variances. Anova
tests were used where appropriate to test for interaction effects and post-hoc tests were
corrected using the Holm-Bonferroni method. Significance values of p < 0.05 were
labelled with a single asterisk, values of p < 0.01 with two asterisks and values of p <
0.001 with three asterisks. According to the parametric or non-parametric nature of the
applied statistical test, results are presented as mean + standard deviation or median
(range). In all boxplots, the central mark indicates the median, the outline of the box

extend to the 25th and 75th percentiles and the whiskers indicate the most extreme data
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points not considered outliers. Outliers, denoted with ‘+’, are data points outside 1.5

times the interpercentile range.
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Chapter 3. Recordings in Molecularly Identified

Subpopulations of Juxtaglomerular Neurons
3.1 Introduction

This chapter classifies and describes the neuronal populations under investigation in this
thesis, in the context of already described subpopulations of inhibitory interneurons in
the glomerular layer. With roughly 100 GABAergic interneurons per excitatory neuron
(Shepherd 2004), the olfactory bulb (OB) has a considerably higher ratio of
interneurons than most other areas of the brain. This suggests that these cells are central
to computations performed in the OB. The interneuron population of the OB is known
to be highly heterogeneous and many attempts have been made to subdivide this
population based on location, expression of molecular markers, morphology or
biophysical properties. Some subclasses of OB interneurons have been researched
intensively and the functional contributions of distinct interneuron populations to the
computations of the OB network are beginning to be understood (Hayar et al. 2004a;
Shao et al. 2009; Liu et al. 2013). Despite this, a more complete understanding of
functional integration of most interneuron populations remains elusive.

Depending on the classification approach, subpopulations of bulbar interneurons can be
highly overlapping, resembling a continuum rather than discrete classes. This results in
controversial and on-going classification with publications regularly describing newly
discovered interneuron populations (Merkle et al. 2014). Furthermore, glomerular
interneurons are continuously generated, resulting in turnover throughout juvenile and
adult life (Belluzzi et al. 2003; Carleton et al. 2003; Ming and Song 2005; Livneh et al.
2014). Adult-born interneurons migrating from the subventricular zone through the
rostral migratory stream to the OB, where they mature and integrate into already
operating local OB networks. During migration, the neurons not only change their
location, but also develop morphological features, molecular expression profiles and
biophysical properties.

This chapter aims to provide a description of the molecular, morphological and

electrophysiological properties of the GAD65" and TH' interneuron populations, in
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order to facilitate the interpretation of the computational properties of these neurons,

which are described and discussed in later chapters.

3.1.1 Molecular Characterisation of Juxtaglomerular Cells

Classic Golgi staining reveals few morphologically defined neuronal classes within
distinct OB layers, with only two major types of inhibitory glomerular interneurons
(Pinching and Powell 1971a). However, immunohistochemical stainings against marker
molecules suggest the OB has a highly heterogeneous neuronal population, particularly
in the glomerular layer. In this layer, juxtaglomerular (JG) neurons have been shown to
express one or several molecular markers, including glutamic acid decarboxylase
(GAD), an enzyme catalysing the synthesis of the synaptic transmitters
y—aminobutyrate (GABA; Kosaka et al. 1995; Panzanelli et al. 2007; Parrish-Aungst et
al. 2007), dopamine (enzyme TH; Halasz et al. 1985; McLean and Shipley 1988;
Parrish-Aungst et al. 2007), and the calcium-binding proteins calretinin (Resibois and
Rogers 1992; Rogers and Resibois 1992; Kosaka et al. 1995), calbindin-D28k (Halasz
et al. 1985; Brinon et al. 1992; Rogers and Resibois 1992; Kosaka et al. 1995),
neurocalcin (Brinon et al. 1998; Brinon et al. 1999) and parvalbumin (Kosaka et al.
1994; Brinon et al. 1999) as well as peptides, like enkephalin and thyrotropin-releasing
hormone (Kosaka et al. 1995) and the GABA, receptor a5 subunit (Panzanelli et al.
2007).

Additionally, two isoforms of the GAD enzyme (GADgs and GADg7) are expressed in
only partly overlapping subpopulations of glomerular interneurons, in roughly equal
proportions in the OB (Parrish-Aungst et al. 2007). Both isoforms are known to actively
catalyse the synthesis of GABA from L-gutamic acid, but it has been suggested that
they vary in their distribution within a neuron and are involved differently in
information processing (Soghomonian and Martin 1998).

The ratios of molecular markers expressed in the JG cell population vary between
studies, most likely due to different estimations of the total number of cells in the
glomerular layer. One of the most comprehensive studies in mouse OB (Parrish-Aungst
et al. 2007) estimated the total number of glomerular neurons by combining the number
of histochemically labelled neurons in their experiments with numbers from previously

published stainings for different molecular markers. They concluded the following
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expression profiles: The largest proportion of JG cells in the glomerular layer is
GABAergic, with 37 % being GAD65" and 31 % being GAD67", whereby 52 % of
GAD67" cells co-express the GAD65 isoform. Nearly a third of all JG cells expressed

Calretinin

TH

GADG65

Calbindin

Neurocalcin

Figure 3.1 Expressional Overlap of Molecular Markers in the Glomerular Layer

Venn diagram visualising the overlap of marker molecules in neurons of the glomerular
layer. Around 53 % of all glomerular neurons are GABAergic (37 % GAD65", 31 %
GAD67"), 28 % are positive for calretinin, 11 % for TH, 10 % for calbindin, 10 % for
neurocalcin and less than 1 % for parvalbumin. Less than 20 % of TH'™ neurons co-
express GADgs, but at least 70 % co-express GADg7. Less than 15 % of all calretinin’
neurons are also GABAergic, and virtually all co-express the GADgs isoform.
Calbindin™ neurons exhibit a substantial overlap with the GABAergic population
(65 %), around 60 % co-express GADsg7 and 17 % GADgs. The neurocalcin™ population
only has a small (3 %) overlap with the GAD65" population and 38% of all
parvalbumin’ neurons were GADG65". The expression profiles of the marker proteins
TH, calretinin, calbindin, neurocalcin and parvalbumin are mutually exclusive in the
glomerular layer. Parv = parvalbumin. (Diagram generated based on data from Parrish-
Aungst et al. 2007).
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calretinin (28 %) and a significantly smaller fraction of neurons are dopaminergic
(11 %) or positive for the calcium-binding proteins calbindin (10 %), neurocalcin
(10 %) and parvalbumin (0.35 %). TH and the four calcium-binding proteins have
diverse co-expression levels of the GAD isoforms GADgs and GADg7 (Figure 3.1), but
exhibit only infrequent expressional overlap among one another (Kosaka et al. 1995;
Brinon et al. 1999; Parrish-Aungst et al. 2007).

Neurochemical classification could potentially define functional subpopulations within
the morphologically defined types of glomerular interneurons. However, several
publications indicate that neurons being positive for one of the calcium-binding proteins
lack a set of common morphological features, resulting in at least some periglomerular
(PG), short axon (SA) and external tufted (ET) cells expressing the same calcium-
binding molecules (calretinin: Kosaka et al. 1998; calbindin: Brinon et al. 1992, Philpot
et al. 1997; parvalbumin: Kosaka et al. 1994; neurocalcin: Brinon et al. 1998).

In contrast, it has been suggested that targeting inhibitory interneurons by their
expression profile of the neurotransmitter marker molecules GADgs and GADg;/TH
results in morphologically distinct groups, whereby the GAD65" class morphologically
resembles PG cells (Shao et al. 2009; Kiyokage et al. 2010) and the GAD67 /TH"
population exhibits the morphology of SA cells (Kiyokage et al. 2010; Liu et al. 2013).
Initially, TH" neurons were classified based on their soma size and location as either
small PG cells or large ET cells (Halasz et al. 1981; Baker et al. 1983; McLean and
Shipley 1988). However, more recent studies investigated the innervation pattern of
these neurons and found that TH" neurons more likely resemble the morphology of SA
cells, with processes targeting multiple glomeruli across large areas (Kosaka and
Kosaka 2008; Kiyokage et al. 2010). The assignment of the two molecular classes to the
morphologically discrete PG and SA cell population is still controversial and these
molecularly defined groups likely only comprise subpopulations of the PG and SA cells
(Nagayama et al. 2014).

Regardless, most if not all TH™ neurons co-express GADg; and only relatively few are
also GAD65" (Parrish-Aungst et al. 2007). Therefore, the marker proteins GADss and
TH provide a way of reliably targeting two distinctly different interneuron populations,

potentially exhibiting specific morphological and functional features.
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3.1.2 Morphological Characterisation of Juxtaglomerular Cells

Based on morphology, the heterogeneous population of glomerular neurons can be
distinguished into three major types of neurons: ET cells, PG cells and SA cells
(Pinching and Powell 1971a; Pinching and Powell 1971b). However, since ET cells
have been shown to provide feed-forward excitation onto principal neurons via
glutamatergic synaptic transmission (De Saint Jan et al. 2009; Najac et al. 2011; Gire et
al. 2012), they are not typically considered to be part of the inhibitory interneuron
network and were therefore excluded from all results in this thesis (see Material and
Methods, section 2.4.5).

Although the morphologies of PG and SA cells have been exhaustively described since
the seventies (see section 1.4.1.3), many of their features such as soma size, innervation
pattern, axonal projections, at least partly overlap within the parameter space and so a
classification purely based on morphological outlines can be error-prone. Also, the
distinction between axons and dendrites can be problematic in both populations, since
some neurons seem to completely lack an axon (Pinching and Powell 1971a) or can
have thin dendrites that resemble axons when using bright field microscopy (Kiyokage

et al. 2010).

3.1.3 Biophysical Characterisation of Juxtaglomerular Cells

In contrast to ET cells, which exhibit a distinct physiological profile (see Material and
Methods, section 2.4.5), the intrinsic physiological properties of SA and PG cells appear
generally similar, hampering a classification of these two cell types purely based on
biophysical properties.

PG cells exhibit a resting membrane potential (RMP) around -57 to -65 mV, a relatively
high input resistance around 600-1000 MQ and a small hyperpolarisation-activated
current (Iy; Puopolo and Belluzzi 1998a; McQuiston and Katz 2001; Hayar et al. 2004a;
Shao et al. 2009). Although SA cells have consistently been reported to exhibit a
slightly more hyperpolarised RMP and lower input resistance (Hayar et al. 2004a; Liu et
al. 2013), these intrinsic biophysical properties are highly overlapping in both
populations, making unambiguous classification of individual neurons impossible.

When depolarised, both PG cells and SA cells tend to discharge single action potentials,
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with further depolarisation resulting in regular firing and finally spike inactivation, but
in contrast to ET cells they never exhibit intrinsic bursting behaviour (Hayar et al.
2004a; Shao et al. 2009). At least some neurons in both populations exhibit infrequent
spontaneous spiking at RMP (Hayar et al. 2004a).

PG cells can be further divided into two populations, based on diverging firing patterns,
which are the result of diverging pre-synaptic connectivity. Around 70 % of PG cells
receive direct input from ET cells and therefore exhibit bursts of activity driven by
bursting ET cells. In contrast, around 30 % of PGs cells are monosynaptically
connected to OSNs and only display single invariant postsynaptic potentials (Hayar et al.
2004b; Shao et al. 2009). A similar difference in firing profiles has been shown for SA
cells (Kiyokage et al. 2010).

3.1.4 Classification Based on Multiple Approaches

Research over several decades has transformed our initial picture of the glomerular
layer as a simple structure for information relay from sensory neurons onto principal
neurons into a highly complex lateral and recurrent inhibitory network, performing
significant computation on sensory information as early as the first synapse (Kosaka et
al. 1998; Wachowiak and Shipley 2006; Lledo et al. 2008; Nagayama et al. 2014).

Despite the ongoing classification of new OB cell populations and the still fragmentary
links between morphological, electrophysiological, biochemical and functional
properties of the cell types in the glomerular layer, some populations have been widely
acknowledged to exhibit distinct features across several classification methods, making
them ideal candidates for targeted experimental investigation. Among these populations
are GAD65" cells and TH' cells. GAD65" neurons have small somata (6-11pm; Parrish-
Aungst et al. 2007; Shao et al. 2009) and mostly (> 90 %) project to a single glomerulus
(Aungst et al. 2003; Shao et al. 2009). Both morphological attributes have previously
been assigned to PG cells (Pinching and Powell 1971a). GAD65" neurons resemble PG
cells not only morphologically, but also in their intrinsic properties (compare Shao et al.
2009 with Hayar et al. 2004a and Murphy et al. 2005). Some GADG65" neurons exhibit
bursts of spontaneous EPSCs whereas others only exhibit single, isolated EPSCs. It has
been proposed that the GAD65" population includes both PG cells with input from
OSNs and PG cells with input from ET cells. GAD65" may therefore be involved in two

80



Chapter 3 Results

separate regulation mechanisms of presynaptic glutamate release from OSN terminals
(Shao et al. 2009). A recent study found a subpopulation of glutamatergic ET cells co-
expressing GABA (Tatti et al. 2014), however ET and PG cells can be reliably
distinguished based on their physiological profile (section 2.4.5, Hayar et al. 2004a).
Like SA cells, TH" neurons generally have larger somata than typical PG cells
(> 10 um; Parrish-Aungst et al. 2007) and exhibit SA cell-like dendritic and axonal
morphology and innervation pattern (Kiyokage et al. 2010), as well as SA cell-like
intrinsic biophysics (compare Liu et al. 2013 with Hayar et al. 2004a). As in the
GAD65" population, around 70 % of GAD67 /TH" neurons receive bursts of EPSCs
and 30 % exhibit only single EPSCs, which is why these neurons have also been
suggested to have diverging presynaptic connectivity (Kiyokage et al. 2010).

In summary, accumulating evidence suggests that neurons featuring the marker proteins
GADgs and TH correspond to the morphologically well-defined PG and SA cell
populations (Nagayama et al. 2014) and several researchers have used these molecular
markers to specifically target PG- and SA-cell-like populations in order to explore their

functional qualities (Aungst et al. 2003; Shao et al. 2009; Liu et al. 2013).

3.1.5 Hyperpolarisation-Evoked Sag Potentials in GAD65" and TH®

Neurons

Glomerular interneurons potentially mediate many of the integrative processes
underlying the computations performed by the OB (section 1.4) and the output of these
neurons is influenced by their passive and active membrane properties.

I)-mediated membrane potential sag has been found in principal and glomerular
interneurons in the OB (Cadetti and Belluzzi 2001; Hayar et al. 2004b; Angelo and
Margrie 2011), but while the impact of the current on excitatory OB neurons has been
well-described (Liu and Shipley 2008b; Angelo and Margrie 2011; Angelo et al. 2012;
Liu et al. 2013), little is known about its functional relevance in inhibitory glomerular
interneurons. In visually identified PG cells, a small I, (around 10 pA) has been
described and was suggested to influence slow oscillatory network rhythms (Cadetti and
Belluzzi 2001). The same research group also identified a small, tonically active I in
TH. neurons, which had an influence on RMP, but could not be shown to impact on any

pacemaking activity (Pignatelli et al. 2013). Except for these two interneuron types, the
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expression levels of the I across different classes of inhibitory glomerular interneurons
have not yet been systematically described and the underlying function of the consistent,
but small I, levels in these neurons remains elusive.

This chapter describes the quantification of I and the I;-mediated sag in GAD65" and
TH" interneurons, in order to explore underlying cellular functions. In later chapters, the
relationship between Iy-mediated sag and glomerular innervation, as well as synaptic
activity, is established with the aim of determining whether I, in glomerular
interneurons reflects local network activity, as has been shown for mitral cells (MCs;

Angelo et al. 2012).
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3.2 Results

3.2.1 Quantitative Analysis of the Specificity of Genetic Labelling in the
TH(9.0)tagRFP Mouse Line

To validate the TH(9.0)tagRFP line, the specificity of the fluorescent labelling was
assessed using antibody stainings in four mice. 50 um thick horizontal sections were cut
from different areas of the OB and stained with anti-TH as primary and Alexa Fluor®
488 as secondary antibody (Figure 3.2 a-c, Material and Methods 2.2). Because the OB
exhibits substantial non-specific auto-fluorescence, an additional nucleus staining was
performed with 4’,6-diamidino-2-phenylindole (DAPI), enabling easier identification of
cells (not shown). In both the genetic labelling and the TH-antibody staining, the
strength of fluorophore expression was heterogeneous in different neurons.
Classification of weakly labelled neurons can be subjective, therefore two raters
analysed all stainings independently and the results from over 2000 counted neurons
were averaged. Overall, 76 % of tagRFP" neurons were immuno-reactive to the anti-TH
antibody (Figure 3.2c, white arrowheads). Conversely, 31 % of all immuno-reactive

neurons did not show tagRFP expression in the TH(9.0)tagRFP mouse line.

3.2.2 Overlap between GAD65" and TH* Neurons in the Glomerular Layer

Although it has been shown that GADgs and TH marker proteins exhibit little
expressional overlap in the OB (Kiyokage et al. 2010; Parrish-Aungst et al. 2011), the
overlap between these markers was determined as a control: OBs of two Gad2-IRES-
Cre-tdTomato animals were sliced into 50 um sections, stained with anti-TH and Alexa
Fluor” 488 antibody (Figure 3.2 d-f), as well as DAPI, and all images were analysed
independently by two raters, as described above (see 3.2.1). With only 15 % of all
GADG65" neurons and 16 % of all immunoreactive TH' neurons exhibiting double
labelling, a reasonably clear separation of the two interneuron populations could be
confirmed. Distinctly different soma sizes were observed between GAD65" and TH"
neurons, with GAD65" neurons generally having smaller somata than TH' neurons
(Figure 3.2 a-f, bottom magnifications), however no further quantifications were

conducted.
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Figure 3.2 TH Antibody Staining in the Glomerular Layer of TH(9.0)tagRFP and
Gad2-IRES-Cre-tdTomato Animals

(a-c¢) top: Example anti-TH antibody staining in a TH(9.0)tagRFP animal, showing a
large overlap between antibody staining and RFP labelling in the transgenic animal.
White arrowheads indicate examples of double-labelled cells. Bottom: Magnification of
the area in the white box visualising soma sizes of fluorescent TH" neurons.
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(d-f) Top: Example anti-TH antibody staining in Gad2-IRES-Cre-tdTomato animal,
validating the distinct labelling of two different interneuron subpopulations by the
genetic markers TH and GADgs. Bottom: Magnification of the area in the white box
visualising soma sizes of fluorescent TH" and GAD65 " neurons.

(g-h) Anti-GAD?2 antibody staining in 10 pm thick cryosections of a TH(9.0)tagRFP
animal. Visual observation suggests little overlap between RFP expression and antibody
staining, but no quantitative analysis was performed- Arrowheads indicate clearly identified
antibody-stained GAD65" neurons. All rows from left to right: Intrinsic fluorescence of
genetic mouse line, antibody staining, composite image.

Images a-f: Maximum projections of 17 confocal images with a z-spacing of 1.5 pum.
Images g-i: Single confocal image. All images were taken using a 40x objective.

For assessing the reverse overlap, an anti-GAD2-antibody staining was performed in the
TH(9.0)tagRFP mouse line. However, since the staining resulted in a rather diffuse
labelling of cytosolic GAD2 protein and also strongly labelled the processes of
GABAergic neurons, the reliable identification of immunoreactive neurons was difficult,
even when the tissue was cut in 10 um thin cryosections. Visual inspection of the
stained tissue revealed little fluorescent overlap (Figure 3.2 g-i), but due to the diffuse
staining, no reliable counting or further analysis could be performed to assess the

number of double labelled neurons.

reconstruction

Figure 3.3 Example Process of Morphological Reconstruction for Two Simultaneously
Recorded GAD65" Neurons

(a) Simultaneous whole-cell recording of two GAD65" neurons. During recording,
neurons were filled with internal solution, containing biocytin and Alexa Fluor® 488
(Maximum projection, GFP filter set, 40x objective).

(b) Post-recording the brain slice was fixed in 4 % paraformaldehyde and stained with a
DAB staining (Minimum projection, brightfield illumination, 40x objective).

(¢) Morphological reconstruction of both neurons was conducted with Neurolucida
software. The axon of the blue neuron has been cropped for display purposes.
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3.2.3 Morphological Quantification of GAD65" and TH* Neurons

As noted in the introduction to this chapter, GABAergic and dopaminergic neurons of
the OB can have diverse morphologies, potentially contributing to distinctly different
functions of these two neuronal populations. This section aims to give insight into the
morphological differences between GAD65" and TH' interneurons, providing a
foundation for explaining the physiological differences described and analysed in
subsequent sections of this thesis. In order to obtain morphological reconstructions,
neurons were filled with 0.5 % biocytin during whole-cell recording, enabling a post-
recording recovery of their morphology following 3,3’-diaminobenzidine (DAB)
staining (Figure 3.3, Materials and Methods 2.7). The quality and completeness of the
staining depended heavily on the quality of the recording and the pull-off from the cell.
The dendritic tree and soma of only a fraction of all recorded neurons could be fully
reconstructed and analysed (Figure 3.4 and Figure 3.5). Only neurons with a strong,
high contrast staining, a complete soma and the majority of dendritic endings within the
brain section were considered to be complete and were reconstructed. As it was only
possible to sufficiently recover the axons of few neurons (Figure 3.4 and Figure 3.5,

black traces), no further analysis was performed on the occurrence and shape of axons.
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Figure 3.4 Reconstructions of Recorded GAD65" Neurons Used for Morphological

Analysis

Example tracings from 3D morphological reconstructions of 16 GAD65" neurons.
Whole-cell recordings of all neurons were performed in Gad2-IRES-Cre-tdTomato
animals and GADG65" neurons were identified by fluorescent labelling. Soma and
dendritic tree displayed in blue, axons displayed in black. An additional DAPI staining
of the fixed tissue was used to determine the outlines of glomeruli (grey) innervated by
the reconstructed neurons.
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Figure 3.5 Reconstructions of Recorded TH' Neurons Used for Morphological Analysis
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Figure 3.5 Reconstructions of Recorded TH" Neurons Used for Morphological Analysis
(cont.)

Example tracings from 3D morphological reconstructions of 28 TH" neurons. Whole-
cell recordings of all neurons were performed in TH(9.0)tagRFP animals and TH"
neurons were identified by fluorescent labelling. Soma and dendritic tree displayed in
red, axons displayed in black. An additional DAPI staining of the fixed tissue was used
to determine the outlines of glomeruli (grey) innervated by the reconstructed neurons.

As expected, GAD65" neurons had a significantly smaller soma perimeter than TH"
neurons (somagapes = 30.35 £ 6.48 um vs. somary = 42.57 = 10.85 um, pmean = 0.0002,
Figure 3.6a). Soma size was assessed using the soma perimeter instead of the soma
diameter, because TH™ neurons in particular exhibited elongated, pear shaped soma
outlines (Figure 3.5, for instance neuron number 3). TH" neurons also had slightly more
primary dendrites than GAD65" neurons (primary dendritesgapss = 2 (1-3) vs. primary
dendritesty = 3 (1-6), Pmedian = 0.0003, Figure 3.6b), however GADG65" neurons
exhibited more branching points in their dendritic tree (nodesgapes = 57 (21-195) vs.
nodesty = 37 (15-123), pmedian = 0.017, Figure 3.6c) and therefore more dendritic
terminals (terminalsgapss = 61 (25-210) vs. terminalsty = 39 (18-134), pmedian = 0.011,
Figure 3.6d). When comparing the dendritic trees, the overall length of the dendrites
were similar in both genotypes (dendritic lengthgapes = 1534 um (485-3147) vs.
dendritic lengthty = 1619 pm (721-5835), Pmedian = 0.267, Figure 3.6e), but TH'
neurons exhibited thicker dendrites (dendritic volumegapss = 480 um3 (201-1837) vs.

dendritic volumery = 900 um3 (414-3387), Pmedian = 0.002, Figure 3.6f).

Figure 3.6 Morphological Differences Between GAD65" and TH' Neurons (next page)

Comparative boxplots, illustrating the morphological differences and similarities of
GADG65" neurons (blue, n = 16) and TH™ neurons (red, n = 28) based on

(a) soma perimeter,

(b) number of primary dendrites,

(¢) number of branching points at dendritic tree,

(d) number of endings at dendritic tree,

(e) total length of dendritic tree and

(f) total volume of dendritic tree.

Numbered filled circles correspond to the numbered reconstructions in Figure 3.4 and
Figure 3.5. Black horizontal bars indicate the median for each group. Significance was
determined with a t-test for soma perimeter and with a Wilcoxon rank sum test for all
other properties; n.s.: no significant, *: p-value < 0.05, **: p-value < 0.01,
*Ex p <0.001).
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Figure 3.7 Differences in Dendritic Distance, Volume and Glomerular Innervation
Between GAD65" and TH" Neurons

Comparative boxplots illustrating the differences in glomerular innervation between
dendrites of GAD65" neurons (blue, n = 16 or n = 12) and TH' neurons (red, n = 28 or
n = 20). Parameters plotted are (a) largest radius of a Sholl analysis, (b) innervated
volume determined using Convex-Hull analysis, (¢) number of innervated glomeruli
and (d) average percentage of dendritic tree intersecting a single glomerulus. Numbered
dots correspond to the numbered reconstructions in Figure 3.4 and Figure 3.5. Black
horizontal bars indicate the median for each group. Significance levels of all properties
were calculated with a Wilcoxon rank sum test; *: p-value < 0.05, **: p-value < 0.01.
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On visual inspection, TH™ neurons appeared to innervate larger areas of the glomerular
layer (Figure 3.4 vs. Figure 3.5) and the similarity of both populations in overall
dendritic length was therefore unintuitive. Hence, further analysis on complexity,
spread and innervation pattern of dendritic trees was performed. When using the largest
radius of a Sholl analysis as a measure for the linear distance between soma and the
most distal dendritic ending, the dendrites of TH" neurons extended over a larger area
than the dendrites of GAD65" neurons (linear distancegapes = 110 pum (50-370) vs.
linear distancery = 180 um (110-570), pmedian = 0.038, Figure 3.7a).

A Convex-Hull analysis confirmed that TH' neurons innervated a significantly larger
volume of the glomerular layer than GADG65" neurons (volumegapes = 132 mm’
(20-952) vs. volumery = 529 mm’ (68-4148), pmedian = 0.004, Figure 3.7). This result
indicated that individual TH™ neurons innervated more glomeruli than individual
GAD65" neurons.

Analysis of tracings containing a reconstruction of glomeruli surrounding a neuron of
interest (ngapes = 12, nty = 20), confirmed a significant difference between the number
of glomeruli innervated by the dendrites of GADG65" and TH™ neurons
(glomeruligapes =2 (1 to 5) vs. glomerulity= 4.5 (1 to 11), Pmedian = 0.044, Figure 3.7c).
Consistently, GAD65" neurons exhibited a higher percentage of their dendritic tree
innervating a given glomerulus (dendrite per glomerulusgapss= 31%
(9 to 98) vs. dendrite per glomerulusty = 18% (4 to 84), Pmedian = 0.025, Figure 3.7d).
Together with the larger number of terminals, these results illustrate that GAD65"
neurons innervate fewer glomeruli than TH™ neurons, but that those innervations are

+
more dense and complex than TH'™ neurons.
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3.2.4 Biophysical Characterisation of GAD65" and TH" Interneurons

Neuronal populations can have characteristic intrinsic biophysical properties, which can
be used for classification purposes. To physiologically characterise the GAD65" and
TH' population, an I-¥ protocol (Materials and Methods, section 2.3.6.1) was applied to
each recorded neuron and RMP, input resistance and spiking threshold were determined
(Figure 3.8). On a population level, significant differences in all three properties were
found between GAD65" and TH' neurons, however the two populations were found to
be overlapping in all three properties (Figure 3.9). TH" neurons exhibited a significantly
lower and less variable RMP (RMPgapgs = -66.4 mV (-80.6 to -45.6) vs. RMPty = -68.6
mV (-83.1 to -47.8), Pmedian = 0.0006, pyar = 0.0008, Figure 3.9a). On average, GADG65"
neurons had a higher spiking threshold (thresholdgapes = -33.6 mV (-55.4 to -25.2) vs.
thresholdry = -36.0 mV (-47.2 to -27.6), Pmedian = 6.62X10'5, Figure 3.9b), distributed
over a similar range in both populations (pyar = 0.519). In accordance with the literature,
the smaller GAD65" neurons had significantly higher input resistances than TH"
neurons (Rgapes = 550 MQ (207 to 1401) vs. Rty = 333 MQ (100 to 1087),
Pmedian = 9 .8X10"14, pvar = 0.010, Figure 3.9¢), but again, both populations showed

overlap.
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Figure 3.8 Example Current-Voltage Relations in GAD65" and TH" Neurons

(a) Membrane potential responses of three GAD65" neurons (blue) and (b) three TH"
neurons (red) to current injections (I-V protocol), displayed under each current-clamp
recording.

Both: Displayed are the responses to the first two hyperpolarising current steps and the
step without any current injection (black traces,) the five most hyperpolarising current
steps (grey traces;), the rheobase step (dark read or light blue traces) and the 300 %
rheobase step (blue or red traces). Grey dotted lines denote 0 mV. As indicated on the
rightmost example trace of a TH' neuron, the input resistance was calculated from the
average of the last 50 ms in the first two hyperpolarising current steps (blue box). The
RMP was determined by taking the average membrane potential at the no-current step
(black trace) and the spike threshold was determined at rheobase in a 4 ms window
before the detected spike (vertical blue lines).
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Figure 3.9 Physiological Properties of GAD65" and TH' Neurons

(a) Histogram and boxplot describing the distribution of RMP in GAD65" neurons
(blue,n=163) and TH" neurons (red, n = 164), recorded directly after gaining electrical
access to the cell, without any holding current.
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(b) Histogram and boxplot illustrating the significantly lower spiking threshold of
GAD65" neurons compared to TH" neurons. Data points were calculated from the same
recordings as in (a).

(¢) Histogram and boxplot showing input resistance of GAD65" and TH" neurons.

RMP = resting membrane potential. Significance levels were determined by a Wilcoxon
rank sum test for median (black) and a Brown—Forsythe test for variance (grey); n.s. =
not significant, ***: p <0.001.

3.2.5 Occurrence and Physiological Relevance of Hyperpolarisation-
Activated Cation Current in GAD65" and TH* Neurons

Hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels occur in most
principal neurons and many interneurons of the brain, and I;, has been shown to impact
on neuronal information processing in many different brain areas (McCormick and Pape
1990; Hutcheon and Yarom 2000; Giocomo and Hasselmo 2009; Wahl-Schott and Biel
2009). Following hyperpolarisation, the voltage-gated opening of HCN channels causes
influx of cations (I;) into the neuron, which actively opposes the hyperpolarisation and
drives the membrane potential back towards the resting value (Wahl-Schott and Biel
2009). This phenomenon can be observed in current-clamp mode as a sag in the
membrane potential during depolarisation (Figure 3.10a). It has been shown for various
different neuronal types that the amplitude of this sag correlates well with the amplitude

of Ih.

3.2.5.1 The Sag Potential as a Proxy for Hyperpolarisation-Activated

Cation Current

To confirm the correlation of I, and sag potential amplitude (SPA) in GAD65" and TH”
neurons, a 2-step experiment was conducted, in which the I, was pharmacologically
isolated with a cocktail of synaptic and ion channel blockers (Material and Methods,
section 2.3.5) and subsequently blocked by additional application of 0.4 mM ZD7288.
Subtraction of the currents recorded under these two conditions revealed the amplitude
of I, which could be compared to the SPA, measured earlier under control conditions
(Figure 3.10a, also see Material and Methods, sections 2.4.1 and 2.4.2).

Although GAD65" (n = 12) and TH" (n = 9) neurons exhibited a similar range of I,
amplitudes (mediangapss = -28.1 pA (-10.8 to -101.1) vs. medianyy = -45.3 pA
(-16.2 to -75.2); Pmedian = 0.21, Pvariance = 0.74, Figure 3.10b left), the SPAs recorded in
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the GAD65" population were on average larger and more variable than the SPAs
recorded in the TH" population (mediangapes = 4.6 mV (0.0 to 22.0) vs. medianyy = 1.1
mV (0.3 to 4.1); pmedian= 0.02, Pvariance= 0.0002, Figure 3.10b right). In both populations,
the amplitudes of I, and the membrane potential sag correlated well (R=-0.73,
pPcapes < 0.01 and prg < 0.05, Figure 3.10c), indicating that the SPA recorded in

current-clamp mode can be used to estimate the I;, amplitude in these cell types.

Figure 3.10 Correspondences of I, and Membrane Potential Sag (next page)

(a) Example voltage-clamp recordings of pharmacologically isolated ZD7288-sensitive
current in a GAD65" (blue) and TH™ (red) neuron (top, average of five traces) and the
corresponding SPAs recorded in current-clamp mode (bottom, average of three traces).
(b) Boxplots visualising the distribution of I, (left) and SPA (right) in GAD65" (blue, n
=12) and TH" (red, n = 9) neurons. While the I, is similar in both neuronal populations,
the SPA is significantly bigger and more diverse in GAD65" neurons.

(c) Correlation between the amplitude of I, and SPA in the GAD65" and TH'
population. Open circles correspond to the example traces in (a). Significance levels
were determined by a Wilcoxon rank sum test for median (black) and a Brown—

Forsythe test for variance (grey); n.s. = not significant, *: p-value < 0.05,
k% p <0.001.
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3.2.5.2 The Impact of ZD7288 Application on Input Resistance and Firing
Properties of GAD65" and TH* Neurons

To investigate the potential physiological significance of I, in GAD65" and TH'
neurons, whole-cell recordings in current-clamp mode (I-V protocol, see Table 2-2 and
section 2.3.6) were performed in the absence and presence of ZD7288.

Five minutes after perfusion of the tissue with ZD7288 the I,-mediated SPA was
completely abolished (Figure 3.11a and b), resulting in a more linear relationship
between hyperpolarisation peak and steady-state potential in GAD65" neurons (Figure
3.11b, blue vs. black trace). Therefore, all measurements under the influence of the ion
channel blocker were made at least five minutes after initiation of perfusion with
ZD7288. In the presence of ZD7288, GAD65" neurons exhibited a significant increase
in input resistance (Reontror = 525 £ 105 MQ vs. Rzp72ss = 779 = 101 MQ, pmedian = 0.011,
Figure 3.11c). In TH' neurons, only a small trend towards increased input resistance
was observed (Reontro = 261 £ 105 MQ vs. Rzp7ss = 336 = 168 MQ, Pmedian = 0.301,
Figure 3.11c). When analysing recordings in GADG65" neurons, which exhibited
rebound spiking in control conditions after the end of a hyperpolarisation (n = 7), a
significant impact of ZD7288 on the probability of generating rebound action potentials
could be observed (rebound spikecontrol = 60 £ 26 % vs. rebound spikezp7zss = 22 £ 26 %,
Pmedian = 0.018, Figure 3.11d). Because only two TH' neurons exhibited rebound spiking
under control conditions, no analysis of rebound spiking probability was conducted in
this chemotype. Furthermore, when GAD65" neurons under ZD7288 blockade were
depolarised with increasingly positive current injections, they failed to reliably fire
action potentials at current injections higher than 30 pA. However, under control
conditions they could increase their firing frequency in response to increasingly
depolarising current injections up to 110 pA and this difference between control
condition and ZD7288 blockade was overall significant (repeated measures ANOVA,
PGapss = 2.6 X 10'6, Figure 3.11e, left). In TH' neurons the F-I curve was not
significantly different under ZD7288 blockade compared to normal condition, (repeated
measures ANOVA, pry = 0.31, Figure 3.11e, right). However, the difference between
the GAD65" and TH' population in regards to ZD7288 influence on average firing rate
was not significant (two-way repeated measures ANOVA, p = 0.12). All p-values were

Greenhouse-Geisser adjusted to correct for lack of compound symmetry.
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Figure 3.11 The Physiological Impact of ZD7288 Application on GAD65" and TH'
Neurons (cont.)

(a) Example membrane voltage traces of a GAD65" (blue) and a TH' (red) neuron,
recorded under control conditions and after bath application of HCN channel blocker
ZD7288 (black traces). Action potentials were clipped for visualisation. Neurons were
held at a membrane potential of 53.5 = 4.5 mV and test current steps were applied
(example current steps of -40 pA and -70 pA, black traces at bottom).
(b) left: Plots showing the relation between peak and steady-state voltage during a
hyperpolarising step in GAD65" (blue) and TH" (red) neurons. In GAD65" neurons, the
SPA appeared to be voltage-dependent, with sag amplitudes increasing upon stronger
hyperpolarisation. right: SPA of GAD65" (blue) and TH" (red) neurons, recorded under
control conditions and after bath application of HCN channel blocker ZD7288 (black
traces). The mean is shown with a black line.

(c) Input resistance before and after bath application of ZD7288 in the same eight
GAD65" and TH' neurons as in (b). Mean is illustrated with a black line.

(d) Spike occurrence in GAD65" neurons with and without ZD7288, 0 - 125 ms after
the end of the hyperpolarising step. Mean of GAD65 ™ neurons is illustrated with a black
line. Only two TH" neurons exhibited rebound spiking under control conditions, and no
statistical analysis was performed on this dataset.

(e) Relationship of average firing rate and current step amplitude in the same GAD65"
and TH" neurons as in (b) and (c), without (blue and red trace) and with (black trace)
pharmacological block of I, via ZD7288; Significance was determined by
repeated measures ANOVA and post-hoc test (t-test, Holm-Bonferroni corrected); n.s. =
not significant, *: p-value < 0.05, **: p-value < 0.01, ***: p-value < 0.001.

3.2.5.3 The Dependency of I,-mediated Sag Potential on Experimental

Conditions and Input Resistance

The amplitude of I, and therefore membrane potential sag, depends heavily on factors
like second messengers, temperature, pH and strength of hyperpolarisation (see section
1.3.1). The SPA was therefore measured under controlled recording conditions,
including a bath temperature of 35 £ 1.5 °C, an internal solution with a pH of 7.28 + 0.1,
a holding potential at 53.5 + 4.5 mV, hyperpolarisation to a steady-state potential of
95 £ 5 mV and a time window of no more than five minutes for determining the SPA
(see Materials and Methods, section 2.3.6.1). In addition to the strict adherence to
recording conditions for measuring the SPA, several analyses were conducted to
validate the independence of the SPA from experimental parameters within the
predefined recording conditions. No correlations were found for the GAD65" and TH"
populations individually or for the pooled dataset: No effect of the age of the animal
(three to seven weeks) on the SPA could be determined (Rgapss = -0.112, pgapss =

0.156 and Rty = 0.079, ptu = 0.317; Figure 3.12a). Furthermore, the SPA was not
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dependent on the bath temperature (Rgapss = 0.035, pcapes = 0.658 and Ry = -0.029,
pru = 0.107; Figure 3.12b) and no correlation was found between input resistance and
the SPA under these defined recording conditions (Rgapss = -0.211, pgapes = 0.009 and
Rrg = -0.147, ptu = 0.065; Figure 3.12c). Finally, the SPA did not change
systematically in consecutive recordings from different neurons over the time course of

a day (Rgapes = 0.124, pcgapes = 0.156 and Rty = -0.034, pru = 0.680; Figure 3.12d).
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Figure 3.12 The SPA Measured Across a Range of Experimental Parameters

Scatter plots illustrating in both GAD65" (blue) and TH" (red) neurons the relationship
between SPA and

(a) the age of animals (three to seven weeks).

(b) the bath temperature (within the used range of 33.5 to 36.5 °C).

(¢) the input resistance.

(d) the age of the prepared tissue. Within each experiment, the beginning of the first
recording was used as time point zero.
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3.2.5.4 The Distribution of Sag Potential Amplitude in the GAD65" and TH*

Population

To quantify the distribution of SPA in the GADG65  and TH' populations, a
hyperpolarisation step protocol (Table 2-2 and Figure 2.2) with three negative current
steps in increments of -5 mV was repeatedly applied to each neuron, whereby the
amplitudes of the current steps were adjusted to hyperpolarise each neuron to a steady
state membrane potential within the given range of 95 = 5 mV (Figure 3.13a, top right).
The difference between the peak of the hyperpolarisation during the first 250 ms of the
step and the steady-state membrane potential during the last 100 ms of the step was
used to determine the SPA of each neuron (Figure 3.13a, blue bars and black arrow).
These current-clamp recordings of GAD65" and TH" neurons revealed a broad range of
SPAs in GAD65" neurons, but a narrow distribution in TH" neurons (Figure 3.13b). On
average, the SPA of GAD65" neurons was significantly greater than that recorded in
TH™ neurons and the GAD65" population exhibited a significantly larger variance in
SPAs than the TH" population (mediangapes = 2.7 mV (-0.4 to 34.8) vs. medianty = 2.4
mV (-0.4 to 8.7), Pmedian = 0.03, Pvariance = 4.24x10'7, Figure 3.13b). Both populations
were not normally distributed (Lilliefors test, pgapes < 0.001 and pry < 0.01), with a

skewed extension towards bigger SPAs (Figure 3.13b).
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Figure 3.13 Diversity of Membrane Potential Sag in GAD65" and TH" Neurons

(a) Representative current-clamp recordings from three GAD65" (blue) and TH™ (red)
neurons. Blue and red traces are the average of five hyperpolarising steps from a
neuron’s holding potential at 53.5 £ 4.5 mV to a hyperpolarised steady-state potential of
95 + 5 mV (dashed grey lines). Numbers correspond to the numbered bins in (b). SPA
(black arrow in first GAD65" neuron) was calculated as the voltage difference between
the peak hyperpolarisation in the first 250 ms after the current step onset (left blue box)
and the average steady-state membrane potential at the last 100 ms of the current step
(right blue box). Action potentials have been clipped for display clarity.

(b) Histogram and boxplot showing the distribution of SPA in GAD65" (blue) and TH"
(red) neurons. Significance levels were determined by a Wilcoxon rank sum test for
median (black) and a Brown—Forsythe test for variance (grey); *: p-value < 0.05, ***: p
<0.001.
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3.3 Discussion

Classification of the glomerular interneuron population is an ongoing endeavour, with a
wide range of morphological, molecular and electrophysiological classification
approaches being applied (Nagayama et al. 2014). To explore the functional relevance
of glomerular circuits, it is important to understand the diversity of the population of
neurons conventionally classified as JG cells. This chapter provides a characterisation
of the two molecularly defined interneuron populations, GAD65" and TH" that include
a comparative analysis of their morphological and physiological features. Furthermore,
the results presented here suggest that targeting subsets of GABAergic and
dopaminergic interneurons using transgenic mice expressing tdTomato and tagRFP
under the control of the GADgs and TH promoter, provides a reliable way of targeting
morphological and physiological subclasses of OB interneurons. These classes may

correspond to a certain extent to PG and SA cells and are likely functionally different.
3.3.1 Cell Classification

3.3.1.1 Immunohistochemistry

Using neurochemical markers seems the most reliable way of targeting subpopulations
of heterogeneous JG interneurons across different animals and experiment types.

Because the transgenic mouse line labelling TH-expressing neurons (TH(9.0)tagRFP)
was produced within the laboratory, a validation was performed by counterstaining with
TH-antibody, to address the specificity of fluorescent labelling. With a conservative
counting, in which only cells with an unambiguous fluorescence were considered as
positively stained, 76 % of the genetically labelled neurons in the TH(9.0)tagRFP line
were identified as immuno-reactive to the TH antibody. Unfortunately, this result could
not be directly compared to the original protocol (Min et al. 1994), since the authors did
not quantify their false positive and negative labelling. It is important to acknowledge
that TH expression has been shown to be activity-dependent, with stronger TH
expression in highly active neurons (Baker et al. 1983; Cigola et al. 1998; Parrish-
Aungst et al. 2011; Banerjee et al. 2013). The ongoing fluctuation of TH expression
likely impacts these data, making it difficult to quantify overall TH expression levels at

a single time point. However this result, together with the fact that 31 % of the immuno-
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reactive cells were not genetically labelled, indicates that fluorescent labelling in the
TH(9.0)tagRFP mouse line is potentially not comprehensive, but may be restricted to a
subpopulation of TH-expressing neurons. Also, it is important to note that since the
expression of tagRFP is driven by the promoter for TH, the 24% of genetically labelled
neurons in the TH(9.0)tagRFP line, which did not exhibit immuno-reactivity to the TH
antibody, could be due ectopic tagRFP expression.

The 15 % overlap of fluorescent labelling between TH' neurons identified via antibody
staining and GAD65" neurons in a Gad2-IRES-Cre-tdTomato animal was similar to
previously reported overlap between these two populations of neurons (Parrish-Aungst
et al. 2007; Kiyokage et al. 2010), confirming that it is possible to target two mostly
distinct populations of glomerular interneurons by using these two chemotypes.

It is worth noting that the molecular identity of GAD65" neurons in particular may still
be heterogeneous, because this population has been shown to co-express several other
molecular markers, including a variety of calcium-binding proteins. To my knowledge,
no publications further subdivided the group of GAD65" interneurons and so far no
functional differences were established between subtypes of GAD65" JG cells.
Although other molecular markers have been reported to label non-overlapping
populations of JG cells (for instance TH, Calbindin, calretinin and parvalbumin;
Parrish-Aungst et al. 2007), the chemotypes GADg¢s and TH were selected for their
abundant occurrence in the glomerular layer and their described overlap with the

morphologically defined PG cell and SA cell populations.

3.3.1.2 Morphometry

Several publications (Aungst et al. 2003; Shao et al. 2009; Kiyokage et al. 2010)
suggest that the morphology of GAD65" neurons resembles the morphology of classic
PG cells, which was initially described by Pinching and Powell 1971a. TH" neurons
appear to have a more diverse morphology, with at least two morphologically distinct
subtypes (Halasz et al. 1981; Kosaka and Kosaka 2009; Kosaka and Kosaka 2011;
Chand et al. 2015), however the morphology of both types has been suggested to
resemble SA cell morphology (Kiyokage et al. 2010).

In this chapter, reconstructions performed on GAD65" and TH' neurons after whole-

cell recordings were used to further characterise the population. For all measured
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morphological parameters, some overlap between the GAD65" and TH™ populations
could be seen, but the two populations exhibited significant differences in their median
parameter values.

The soma sizes of all reconstructed neurons were estimated using the perimeter of the
soma instead of the soma diameter, because TH' neurons in particular often exhibited
rather elongated somata. When converting the soma perimeter to diameter (GAD65"
neurons: 30.35 pm (perimenter) = 9.7 um (diameter); TH™ neurons: 42.57 um
(perimeter) = 13.6 pum (diameter); assuming circularity), the calculated average
diameters of both chemotypes match previously published soma diameters of GAD65"
and TH' neurons (somagapes = 7-11 um and somarp= 6-14 pum; Parrish-Aungst et al.
2007; Kosaka and Kosaka 2009; Shao et al. 2009), as well as morphologically identified
PG and SA cells (somapg: 5-8 um and somas: 8-12 pm; Pinching and Powell 1971a;
Hayar et al. 2004a). Surprisingly, no bimodal distribution in the soma sizes of TH"
neurons was observed, but rather a continuum from small and large somata. Several
publications distinguish TH" neurons into two distinct subpopulations based on their
soma sizes (Halasz et al. 1981; Baker et al. 1983; McLean and Shipley 1988). These
subpopulations differ in their development (McLean and Shipley 1988), turn-over
(Kosaka and Kosaka 2009) and occurrence of an axon (Chand et al. 2015), however no
further classification could be performed based on the dataset described in this chapter.
Axons were identified based on morphological appearance, as described in Materials
and Methods (sections 2.7.3). It can be challenging to unambiguously identify a JG
axon without immunohistochemical stainings, because not all JG cells have axons
(Pinching and Powell 1971a) and if they do have an axon, it can branch from a dendrite
instead of the soma (Kosaka and Kosaka 2011). It has also been reported that the
morphology of some dendrites can resemble that of axons (Kiyokage et al. 2010;
Kosaka and Kosaka 2011). Therefore, whenever an axon could be identified based on
morphological criteria, it was excluded from the quantification, resulting in
morphological analysis of the dendritic tree. The processes of all reconstructed neurons
were located within the glomerular layer and did not project to higher brain areas, a
defining characteristic for local interneurons.

The median number of primary dendrites significantly varied between the two

chemotypes, as reported previously (Hayar et al. 2004a; Shao et al. 2009; Kiyokage et
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al. 2010). Despite the smaller number of primary dendrites, GAD65" cells exhibited
more branching points and more terminals while having the same average dendritic
length, indicating a more convoluted innervation pattern compared to TH" neurons. It is
worth noting that some dendritic terminals are likely not natural endings, but artefacts
caused by brain slicing. However, the dendrites of GAD65" neurons extended on
average over shorter distances and ramified in significantly smaller volumes than the
dendrites of TH" neurons, a pattern that has been previously observed and that supports
the idea of GAD65 neurons receiving the bulk of their input from only one or two local
glomerular networks (Shao et al. 2009; Kiyokage et al. 2010).

When quantifying the number of innervated glomeruli, a clear difference between
GADG65" (average of two glomeruli) and TH' neurons (average of five glomeruli) was
discovered, which resembles previous descriptions of the mostly uniglomerular
innervation pattern of PG cells and the innervation of three to four glomeruli by SA
cells (Aungst et al. 2003; Hayar et al. 2004a). Also, in GAD65" neurons significantly
larger parts of the dendritic tree ramified within a single glomerulus compared to TH"
neurons (32 % vs. 17 %). For a more detailed analysis of innervated areas within the
glomeruli, for example to correlate the GAD65" population to type-I and type-II PG
cells or to investigate whether similarly diverging innervation patterns exist for SA cells,
a more precise 3D-reconstruction of the glomerular structures will be necessary.
Surprisingly, the largest number of glomeruli innervated by a TH' neuron was 12. This
is a much more restricted innervation pattern than what has been described for
polyglomerular TH'/GAD67" SA-like cells (Kiyokage et al. 2010), which innervate on
average 40 glomeruli. One reason might be the inevitable truncation of some processes
during the tissue preparation into 350 um thick slices. More extensive dendritic
ramifications are more likely to be truncated and therefore removed from the dataset,
because of incomplete reconstruction. However, the publication describing extensive
processes of TH'/GAD67 neurons explicitly includes both dendrites and axons in their
analysis. Therefore, an alternative explanation might be that these far-spreading
connections are actually made by the axons of TH'/GAD67  neurons and not their
dendrites. Further experiments, including post-fixation staining for axonal markers
would be necessary to reveal the precise glomerular innervation pattern of dendrites and

axons in TH' neurons, but these were beyond the scope of this thesis.
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Unfortunately, it was not possible to subdivide the TH" population into the two clear
morphological subtypes suggested by several publications (Baker et al. 2001; Kosaka
and Kosaka 2009; Kiyokage et al. 2010; Chand et al. 2015). Using the same
classification parameters (soma size, dendritic length and spread) did not reveal a
bimodal distribution, but rather a single widespread, continuous range. However, all
named publications used additional parameters, such as co-expression of other marker
molecules (Baker et al. 2001), occurrence of an AIS (Chand et al. 2015), time of origin
(Kosaka and Kosaka 2009) or arbitrary thresholds (Kiyokage et al. 2010) to distinguish
TH subpopulations. It is therefore possible that soma size and dimensions of dendritic
arborisation are continuously distributed within the TH population, but tend to correlate
with certain features of TH subpopulations and can therefore only used in combination
with these features (which were not given in the presented experiments) to sub-classify
the TH population.

To summarise, the GAD65" and TH' chemotypes overlap in their morphology and
innervation patterns, but are on average significantly different. GAD65™ neurons
exhibited a rather dense and complex dendritic tree, potentially receiving and
processing sensory information predominately from only one or two glomeruli. In
contrast, TH" neurons seem to average information from several different glomeruli
from a larger area of the glomerular layer, potentially distributing the computed

information to widely spread target neurons, participating in different local networks.

3.3.1.3 Passive Biophysical Properties

Intrinsic biophysical properties have a critical impact on the computations a neuron
performs (Marder and Goaillard 2006). The composition of ion channels underlying
these properties is unique for each neuron and it has been shown that chemically and
morphologically homogeneous populations of neurons can exhibit substantial
biophysical diversity (Mason and Larkman 1990; Padmanabhan and Urban 2010;
Angelo and Margrie 2011). Both, GAD65" and TH' neurons exhibited rather
heterogeneous passive physiological properties. Consistent with the literature, GAD65"
neurons have a more depolarised average RMP and spike threshold than TH" neurons,
but the range of both properties overlapped strongly between neurons of the two

chemotypes (Puopolo and Belluzzi 1998a; Smith and Jahr 2002; Hayar et al. 2004a;
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Puopolo et al. 2005; Pignatelli et al. 2013; Parsa et al. 2015). PG cells have been
reported to feature higher input resistances than SA cells, which was consistent with the
data from GAD65" and TH™ neurons (Figure 3.9¢c). However, the absolute input
resistances measured here were slightly lower than literature values for both PG and
GADG65" cells, which have been reported to be between 600 MQ and 1 GQ (Puopolo
and Belluzzi 1998a; McQuiston and Katz 2001; Hayar et al. 2004a; Hayar et al. 2004b;
Murphy et al. 2005; Shao et al. 2009; Pignatelli et al. 2013). The discrepancy between
the present results and literature values might be caused by different analysis
approaches or experimental conditions, such as the composition of internal solution and
use of pharmacological blockers. It is rather difficult to compare the methods for
calculating input resistances, since most publications did not specify how they
calculated this parameter. However it is worth noting, that several publications used
pharmacological ion channel blockers in their internal or external solutions (Puopolo
and Belluzzi 1998a; Murphy et al. 2005; Parsa et al. 2015), which very likely caused an
increase in input resistance. Nevertheless, input resistances in interneurons were still
significantly higher than typical input resistances obtained for OB principal neurons
(Hayar et al. 2004a; Liu and Shipley 2008a; Angelo and Margrie 2011; Tatti et al. 2014).
Some extreme values, like a SPA larger than 10 mV or input resistance larger than
1 GQ, could be used as a signature for GADG65" neurons, but without further context
these properties are insufficient to reliably classify glomerular interneurons, because

both populations largely overlap in these measured biophysical properties.

3.3.2 Sag as a Proxy for Hyperpolarisation-Activated Cation Current

It is commonly accepted that the SPA is a signature of the functional expression of
HCN channels (Robinson and Siegelbaum 2003; Wahl-Schott and Biel 2009). The
correlation between SPA and amplitude of I, was confirmed by changing from current-
clamp mode to voltage-clamp mode during the same recording after perfusion of the
bath with an I, isolating cocktail. Interestingly, similar ranges of I elicited significantly
bigger SPAs in GAD65" neurons than TH' neurons. Also, when compared to recordings
from MCs (Angelo and Margrie 2011), the I in interneurons was an order of magnitude

smaller than I, measured in principal neurons. However, potentially because of the high
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input resistance of GAD65 " neurons these small currents resulted in membrane potential

sag amplitudes comparable to those of MCs.

3.3.3 Potential Significance of Hyperpolarisation-Activated Cation
Current in GAD65" and TH* Neurons

Although it is well established that in response to hyperpolarisation I, causes a rebound
sag in a neuron’s membrane potential (Robinson and Siegelbaum 2003; Wahl-Schott
and Biel 2009), it is important to explore whether I, exerts an effect on other aspects of
cell function. Therefore, the HCN channel blocker ZD7288 was used to block I, (Figure
3.11a).

During whole-cell current-clamp recordings from GAD65" neurons, ZD7288 resulted in
a significant increase in input resistance as well as a decrease in the probability of a
rebound spike after the end of a hyperpolarisation. These changes indicate the
substantial impact I might have on the excitability of GAD65" neurons. Firstly, the
sensitivity of a neuron to synaptic input can be regulated through changes in the input
resistance, whereby a higher input resistance increases the impact of small currents on a
neuron’s membrane potential and generally increases its excitability. Secondly, HCN
channels are slow gated ion channels that can exhibit opening and closing times of over
several hundreds of milliseconds (Wahl-Schott and Biel 2009). When the
hyperpolarising drive that initially activates HCN channels terminates, HCN channels
close with a delay and their depolarising current can drive the membrane potential over
the spiking threshold, resulting in rebound action potentials. Through this mechanism,
action potentials and therefore output signals, can be triggered by inhibitory input. Since
expression levels and gating properties of HCN channels can be activity-dependent
(Wang et al. 2002; Zha et al. 2008), such a mechanism could potentially provide a way
for the neuron to shut down ongoing network activity.

When analysing the distribution of SPAs in interneuron populations, it is worth noting
that, in contrast to the MC population, inhibitory interneurons rarely exhibited a
negative SPA. TH' neurons had a homogeneous distribution of rather small SPAs. In

contrast, GAD65™ neurons exhibited on average larger SPAs (similar to the average
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amplitude measured in MCs by Angelo et al. 2012) and had an extremely wide range of
SPAs across the whole population.

The heterogeneity of SPAs in the GAD65" population on one side and the homogeneity
of SPAs in the TH™ populations on the other side, makes these two chemotypes ideally
suited to exploring whether I} is involved in network-based gain control mechanisms, as
proposed for MCs (Angelo et al. 2012). In addition to morphological and functional
differences, these populations appear to differ greatly in this particular intrinsic property,
which raises the possibility that it might be modulated in different ways or to a different
extent in these two classes of neurons. As a next step I therefore investigated the extend
to which differences in SPA from one neuron to the next might reflect local network

processing.
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Chapter 4. The Sag Potential Amplitude and Its

Relation to Local Glomerular Networks
4.1 Introduction

Each glomerulus receives sensory information from a population of olfactory sensory
neurons (OSN) that expresses a single type of odour receptor (OR). Odour information
is integrated on an intra- and interglomerular level by several hundred local glomerular
interneurons. Since the functional organisation and processing of odour information in
the glomerular layer is structurally well-defined, this brain area provides an ideal model
system to investigate the extent to which intrinsic properties, such as the
hyperpolarisation-activated current (I;), influence information processing within local
sensory networks.

Mitral cells (MCs) exhibit a remarkable diversity in their amplitude of I-mediated
membrane potential sag and this diversity has been shown not only to reflect odour-
specific information processing (Angelo and Margrie 2011), but also act as a signature
of glomerulus affiliation (Angelo et al. 2012). These data demonstrate that the diversity
of I in principal neurons within a single morphological class can reflect a functional
organisation within local networks.

Based on the results presented in the previous chapter, 1 investigated whether
processing of common odour information within the local network influences the sag
potential amplitude (SPA) of interneurons in the glomerular layer. To address this
question, paired whole-cell recordings from GAD65  and TH' interneurons were
performed, with the aim to determine if the SPA of two interneurons was more similar
in cases where they received similar sensory input.

However, in contrast to MCs, inhibitory interneurons in the glomerular layer exhibit a
diverse morphology and glomerular innervation pattern. While periglomerular (PG)
cells are thought to innervate only one or two local networks, short axon (SA) cells have
sometimes been reported to innervate tens of glomeruli. Furthermore, the dendritic trees
of both cell types ramify only in a small area of each glomerulus (Kiyokage et al. 2010).
Affiliation of recorded neurons was therefore verified not only by visual inspection of

the glomerular innervation pattern, but also by coincident spontaneous synaptic input in
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simultaneously recorded cells, under the assumption that coincident synaptic input is

most likely to originate from a common glomerular network.
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4.2 Results

4.2.1 Synchrony of Spontaneous Sub-Threshold Activity as a Proxy for

Affiliation to the Same Local Network

Since the unambiguous determination of a neuron’s affiliation to a specific glomerulus
using morphological reconstructions is challenging (Figure 4.1), electrophysiological
recordings were used to explore whether two simultaneously recorded neurons were
affiliated to the same local networks. Simultaneous current-clamp recordings, with both
neurons held at a hyperpolarised membrane potential (-70 £ 2 mV;
see Materials & Methods, section 2.4.4), were performed and spontaneous synaptic
activity was recorded. In both the GAD65" and TH" population, some paired recordings
revealed spontaneous synchronous sub-threshold activity in the membrane potential that
qualitatively suggested coincident synaptic events (Figure 4.1a, b and c¢). Therefore, the
degree of synchrony between membrane potential fluctuations of two neurons was
determined by performing a cross-correlation of simultaneously recorded membrane
voltage traces. The peak value calculated from each cross-correlogram was used to
quantify how strongly the events in two neurons were synchronised (see Materials &
Methods, section 2.4.4 and Figure 4.1).

A small number of experiments (n = 3) were conducted using pharmacological blockade
of putative receptors mediating fast synaptic transmission to determine if synchronous
sub-threshold events were mediated synaptically rather than by auto-rhythmicity. As
shown in Figure 4.2, the block of synaptic glutamate receptors (AMPA and NMDA)
and GABA, receptors by bath application of 0.01 mM NBQX, 0.05 mM AP-5 and
0.05 mM picrotoxin abolished the membrane potential fluctuations and synchrony in
sub-threshold events, suggesting that membrane potential synchrony in these neurons

was caused by local network activity.
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Figure 4.1 Morphological Reconstructions of Simultaneously Recorded Neurons and
Quantification of Their Synchronised Sub-Threshold Activity

(a-b) Example reconstructions of simultaneously recorded GAD65" (blue and black) or
TH" (red and black) neurons (top), displayed with an example trace of spontaneous
activity recorded at -70 + 2 mV (bottom left). Colours of reconstructed neurons
correspond to colours of membrane potential traces. For each pair a cross-correlogram
was performed on the simultaneously recorded membrane potentials to quantify the
coincident occurrence of sub-threshold activity (bottom right). Both pairs exhibited
strong coincident occurrence of sub-threshold activity, resulting in large cross-
correlogram peak values.

(c-d) Example reconstructions (fop), membrane potential recordings (bottom left) and
cross-correlograms (bottom right) of simultaneously recorded GAD65" (blue and black)
or TH" (red and black) neurons with little or no coincident activity.

Open circles and diamonds are used to highlight these pairs in Figure 4.3.
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If the coincident events were indeed caused by common glomerular input, then the
dendrites of any two simultaneously recorded neurons showing high cross-correlation
scores should share at least one glomerulus and likely have dendritic overlap. To test
this  hypothesis, 3,3’-diaminobenzidine (DAB) stainings and morphological
reconstructions were conducted for all paired recordings. Reconstructions with a
complete recovery of dendritic morphology of both neurons were used to determine the
amount of overlap of their innervation pattern. Since glomeruli have a diameter of
50 — 150 pum, close proximity (< 5 pwm) of dendrites in the glomerular layer likely

indicates innervation of the same glomerulus.
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Figure 4.2 Synaptic Ion Channel Blockers Abolish Synchrony in Sub-Threshold Activity

(a) top: Membrane potential of two simultaneously recorded TH" neurons, exhibiting
synchrony in some sub-threshold events. bottom: Corresponding cross-correlogram
quantifying the strength of synchrony in sub-threshold activity.

(b) Recording from the same neuron as in (a) after block of synaptic glutamate and
GABA, receptors with NBQX, AP-5 and picrotoxin. The synaptic blockers completely
abolished the synchrony in sub-threshold events.
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The dendritic overlap of both neurons was quantified from morphological
reconstructions using the proximity analysis in Neurolucida Explorer (see Materials &
Methods, section 2.7.3). The percentage of one neuron’s dendritic tree that was located
within Sum of the dendrites of the other neuron correlated well with the strength of
membrane potential synchrony between them (R = 0.68, p < 0.05; Figure 4.3).
Additionally, the synaptic events of GAD65" and TH' pairs showing high cross-
correlation scores were detected and analysed (n = 11 pairs). In general, at -70 = 2 mV
spontaneous excitatory postsynaptic potentials (EPSPs) occurred at similar frequencies
in both chemotypes (GAD65" = 14.00 Hz, TH" = 20.59 Hz). However, pairs of
GAD65" neurons exhibited coincident EPSPs more than four times less frequent than
pairs of TH" neurons (GAD65" = 0.15 Hz, TH™ = 0.64 Hz). When analysing all EPSPs,
the median event amplitude was slightly larger in GAD65" pairs than in TH' pairs
(mediangapes = 0.84, medianty = 0.74, p=7.0 x 10'10, Figure 4.4a).

0.8 1 )

Cross Correlation Peak Value

-0.1 1 I 1 I 1 I
0 5 10 15 20 25

Degree of Dendritic Overlap [%]
Figure 4.3 Correlation Between Synchronised Sub-Threshold Activity and Dendritic
Overlap in GAD65" and TH" Neurons

Scatter plot showing correlation between cross-correlogram peak values, calculated
from membrane potentials of two simultaneously recorded GAD65" (blue) or TH' (red)
neurons, and the degree of dendritic overlap in each pair. Dendritic overlap was defined
as the mean percentage of one neuron’s dendrite in 5 pm vicinity to the other neurons
dendrite. Open circles and diamonds correspond to the four example neurons in Figure
4.1.
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Figure 4.4 Quantitative Analysis of Event Amplitudes in Pairs of GAD65" or TH" Neurons

(a) Boxplot (top) and histogram (bottom) displaying amplitudes of all events in
simultaneously recorded GAD65" (blue) or TH™ (red) neurons. Median event amplitude
was significantly larger in GAD65" neurons compared to TH™ neurons.

(b) Boxplot (top) and histogram (bottom) displaying amplitudes of coincidentally
occurring events recorded GAD65" (blue) or TH'™ (red) neurons. GAD65" and TH"
neurons exhibited a small difference in their median coincident event amplitude.

(c) Magnification of histogram in (a), displaying amplitudes of large (> 5 mV) events in
GAD65" and TH" neurons.

(d) Magnification of histogram in (b), displaying amplitudes of large (> 5 mV)
synchronised events in GAD65" and TH' neurons. Insert, single EPSP with large
(30 mV) amplitude. Significance levels were determined by a Wilcoxon rank sum test;
*: p-value < 0.05, ***: p <0.001.

119



Chapter 4 Results

Also, when isolating coincidentally occurring EPSPs, only a small difference in median
event amplitude became apparent (mediangapes = 1.21, medianry = 1.33, p = 0.050,
Figure 4.4b). Interestingly, the median amplitude of coincidentally occurring events was
significantly greater than the median amplitude of all events in both GADG65"
(mediangyerage = 0.84, mediancoincidens = 1.21, p = 5.5x107" ) and TH" neurons
(median,yerage = 0.74, mediancoincident = 1.33, p = 1.0X10'65). Inspection of the skewed end
of the amplitude histograms (Figure 4.4a and b) revealed that GAD65" neurons
exhibited several large events (> 21 mV) that were not present in the TH" population
(Figure 4.4c and d).

Since all recordings were conducted at hyperpolarised membrane potentials (-70 £+ 2
mV), around half of the cells in the GAD65" and TH" population did not exhibit action
potential firing during passive recording of the membrane voltage. The remaining
neurons exhibited sporadic action potential firing, which was more common in
synchronised GAD65" pairs compared to TH" pairs (10 vs. 1, Figure 4.5). However, no

statistical analysis was conducted due to the small size of the dataset.
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Figure 4.5 Qualitative Analysis of Synchronised Action Potential Firing in GAD65" and

TH' Neurons

(a) Raster plot illustrating action potential firing in seven simultaneously recorded
GADG65" pairs. Grey horizontal bars indicate a pair of neurons and vertical black bars
the occurrence of a single action potential. Coincident action potentials shown in blue.
(b) Raster plot illustrating action potential firing in ten simultaneously recorded TH"
pairs. Grey horizontal bars indicate a pair of neurons and vertical black bars the
occurrence of a single action potential. Coincident action potentials shown in red.
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4.2.2 SPA Diversity of GAD65" and TH® Interneurons Within Local

Networks

Once the cross-correlation analysis was validated, a method was established to identify
pairs of neurons with high levels of event synchrony. Since the range of cross-
correlation peak values describing coincident events was continuous rather than
bimodal, a threshold value was used to identify pairs of neurons receiving substantial
input from a common local network. To determine a cross-correlation peak threshold,
all neurons recorded in GAD65" and TH™ populations were systematically paired with
neurons of the same chemotype that had not been recorded simultaneously to form a

dataset referred to as pseudo pairs (see Materials & Methods, section 2.4.4).
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Figure 4.6 Cross-Correlation Peak Scores of GAD65 and TH" Pairs

Boxplot comparing cross-correlation peak values of simultaneously recorded GAD65"
(dark blue) and TH" (dark red) neurons with cross-correlation peak values of pseudo
pairs, generated from the same GADG65" (light blue) and TH" (light red) dataset. The
highest cross-correlation score of a pseudo pair (0.13, grey dashed line) was used as a
threshold to sort simultaneously recorded neurons in groups of strongly and weakly
synchronised pairs. Significance levels were determined by two-way ANOVA and post-
hoc test (Wilcoxon rank sum test); ***: p <0.001.
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Figure 4.7 SPA Similarity in Synchronised Pairs of GAD65" and TH" Neurons
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Figure 4.7 SPA Similarity in Synchronised Pairs of GAD65" and TH" Neurons (cont.)

(a) Example voltage traces of three simultaneously recorded GAD65" pairs with
corresponding injected hyperpolarising current steps (underneath). Average membrane
potentials are displayed in blue and individual voltage traces in grey.

(b) Example voltage traces of three simultaneously recorded TH' pairs with
corresponding injected hyperpolarising current steps (underneath). Average membrane
potential displayed in red and individual voltage traces in grey.

(c) Boxplot of SPA similarity in synchronised pairs of GAD65" (dark blue) and TH"
(dark red) neurons and the corresponding pseudo pairs (light blue and light red).
Significance levels were determined by two-way ANOVA and post-hoc test (Wilcoxon
rank sum test); n.s. = not significant; **: p-value < 0.01.

A cross-correlation analysis was then performed on all GAD65" and TH" pseudo pairs.
A Wilcoxon rank sum test between simultaneously recorded neurons and pseudo pairs
revealed on average significantly higher cross-correlation peak values in the
simultaneous recordings than in pseudo paired neurons (pairgapss= 0.12 vs. pseudo
pairgapes=0.00, pairry= 0.31 vs. pseudo pairry=0.00; pcapss = 7.9x107"® and PGAD6S =
1.5x10™%; Figure 4.6). The highest cross-correlation peak value found for the pseudo
pair groups was then used as a threshold for separating moderately and highly
synchronised pairs from weakly or non-synchronised pairs (threshold value = 0.13,
Figure 4.6).

Next, the SPA similarity in synchronised pairs (Figure 4.7a and b) was investigated.
The simultaneously recorded pairs of neurons were again compared to pseudo pairs
assigned from the same dataset (Figure 4.7c). In the GAD65" population, the SPA was
significantly more similar in pairs (medianp.irs = 0.49 mV, ngapes = 12) compared to
pseudo pairs (medianpseudo = 1.53 mV, pcapss = 0.0007), whereas no significant
difference could be observed in the TH" population (medianp,ix= 1.01 mV, nry = 21;
medianpseudo = 1.27 mV, pry = 0.23034), despite sampling from a larger population of
pairs. However, the interaction between genotype and synchronisation was not
significant (two-way ANOVA, p = 0.511) and therefore the SPA difference between
pairs and pseudo pairs was not significantly larger in the GAD65" population than in
TH" population.

The SPA similarity in synchronised GAD65" was highly reliably, and significant over a
large range of cross-correlation thresholds (0 — 0.26). Furthermore, the threshold set to
define a highly synchronised pair did not affect the lack of significance simultaneously

recorded TH" neurons (Appendix B).
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4.3 Discussion

In MCs, where glomerular membership is anatomically unambiguous, it has been
shown that the level of I is tightly correlated to the affiliation of a neuron to a local
glomerular network (Angelo et al. 2012). However, because morphological
confirmation of glomerular affiliation can be challenging in interneurons, an alternate
method to determine common local network affiliation was introduced and verified. The
coincident occurrence of synaptic input was validated as a proxy for the affiliation of
simultaneously recorded neurons to the same glomerular network. Here, the peak values
of cross-correlograms calculated from the membrane potentials of simultaneously
recorded pairs correlated well with the dendritic overlap of these neurons. Furthermore,
recordings without dendritic overlap (e.g. Figure 4.1d) did not exhibit notable cross-
correlation. In accordance with these results, the dependence of the synchronised events
on glutamatergic transmissions indicated a common synaptic origin. Whether these
events stem from monosynaptic input from OSNs or polysynaptic input through other
principal neurons remains to be demonstrated.

Interestingly, the GAD65" and TH™ population exhibited a wide range of cross-
correlation peak values, with TH' neurons having on average larger values than
GAD65" neurons. A high cross-correlation peak value indicates a strong synchrony
between a pair of neurons, but does not reveal the origin of this synchrony, as high
cross-correlation values are either the result of synchronised, large amplitude events or a
high number of smaller synchronous events. A more detailed analysis of EPSPs in
GAD65" and TH™ neurons was performed to address this question, which revealed that
in TH" neurons synchronised EPSPs occurred at a higher frequency than in GAD65"
neurons, consistent with higher cross-correlation peak values (Figure 4.6).

The median amplitude of synchronised EPSPs was nearly identical in GAD65 and TH"
neurons. However, the GADG65" population exhibited a small number of very large
(> 21 mV) EPSPs, which were absent in TH" neurons. Furthermore, when comparing
the spontaneous action potentials recorded in both chemotypes, the GAD65" population
exhibited more action potentials in total and more action potentials that were
synchronised. Since it has been demonstrated that the amount of I;, can depend on both

the strength of glutamatergic synaptic input (van Welie et al. 2004) and action potential
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firing of the post-synaptic cell (Fan et al. 2005), this could provide a possible
explanation for the differences in SPA amplitude and diversity between GAD65" and
TH' neurons (as shown in Chapter 3).

A low cross-correlation value in a simultaneously recorded pair could result from
several different scenarios. Firstly, two neurons might not share common input.
Secondly, two neurons might be affiliated to the same local network, but the relevant
dendrites may have been truncated in one or both neurons during the slicing process.
Thirdly, the network innervated by both cells could be damaged or silent.

Since a number of possible explanations for a lack of observed synchrony may be
proposed, it is difficult to interpret the similarity of SPAs in pairs with low synchrony,
hence data from these pairs were not analysed further. Instead, pseudo pairs were
generated by systematically pairing neurons from the pair dataset that were not recorded
simultaneously. By definition, any coincident event detected in pseudo pairs must be
noise. Therefore, pseudo pairs provided a more suitable comparison than for example
simultaneously recorded neurons with soma locations far apart.

The final aim of this chapter was to explore whether the amplitude of membrane
potential sag reflects local network affiliation and similar activity. The experiments
demonstrated that SPA was significantly more similar in GAD65" neurons that
exhibited a strong synchrony in their subthreshold activity than in randomly assigned
GAD65" neurons. No such effect could be shown for the TH' population. Since the
SPAs of two fundamentally different types of neurons — MCs and GAD65" interneurons
— were dependent on network affiliation, these results suggest that I, may be regulated
in a similar way in both principal cells and interneurons. However, the functional
relevance of the regulatory mechanism underlying I, might vary between cell types. It is
possible that the excitability of neurons predominantly innervating a single local
network (for instance MCs, PG cells and ET cells) is much more tightly regulated by
the network activity than the excitability of neurons averaging input from several
different networks (for instance SA cells). The activity dependence underlying such

regulatory mechanisms will be investigated in the next chapter.
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Chapter 5. Experience-Dependence of Sag Potential

Amplitude is Glomerulus Specific
5.1 Introduction

Hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels can be regulated
on a short time scale via conformational changes caused by cellular metabolites and
phosphorylation, and on a longer time scale by changes in protein expression levels and
intracellular relocation of HCN isoforms (as summarised by Biel et al. 2009). The
dependence of SPA levels on the affiliation to a specific glomerulus in GADG65"
neurons could theoretically be a hard-wired, predetermined process that is stereotypical
across animals. However, because expression levels and gating properties of HCN
channels can be activity-dependent (Wang et al. 2002; Zha et al. 2008), the SPA in
these cells might be the result of the activation history of the glomerular network. If this
was the case, it would be reasonable to speculate that SPA in GAD65" neurons is
sensitive to olfactory signalling and that odour processing might be involved in its
regulation.

To address this question, a M72-IRES-ChR2-YFP mouse line was used (Smear et al.
2013), whereby a ChR2-EYFP protein is selectively expressed under the promoter of
odour receptor 160 (OR160). This results in channelrhodopsin-2 (ChR2) expression
restricted to OR160 olfactory sensory neurons (OSNs). The axons of OR160 OSNs
converge onto two bilaterally symmetrical M72 glomeruli, one lateral and one dorsal on
the surface of each olfactory bulb (OB). These light-sensitive M72 OSNs appear
functionally and anatomically normal: they have been shown to express the intact
OR160 and exhibit a typical axonal innervation pattern (Smear et al. 2013).
Furthermore, the M72 glomerulus is anatomically and developmentally well-described
(Zheng et al. 2000; Potter et al. 2001; Feinstein and Mombaerts 2004), with known
odour-response curves to several different ligands (Zhang et al. 2012).

The YFP expression in M72 OSNs of the M72-IRES-ChR2-YFP line enables
identification of the same glomerular network across animals and experiments. A cross

between this line and either Gad2-IRES-Cre-tdtomato or TH(9.0)tagRFP provides a
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way of targeting distinct subpopulations of juxtaglomerular (JG) interneurons that can
be tested for their affiliation to the M72 glomerular network using ChR2 stimulation.

To assess the extent to which olfactory stimulation might influence the SPAs of
GAD65" and TH' neurons, two experiments were set up in which mice were either
exposed to an odour or deprived of olfactory input. To ensure M72-OSNs were
stimulated, animals were exposed to the odour 2’-hydroxyacetophenone (2-HAP), a
ligand known to strongly activate OSNs expressing OR160 (Zhang et al. 2012). By
exposing animals to the odour for several days, the aim was to impose a close to natural
stimulation of the M72 network. Odour concentration was adjusted to generate neither
attractive nor aversive responses from the animals, and animals were otherwise kept in
conditions identical to littermates that were not exposed. Odour exposure had no
observable effect on their development or behaviour.

Olfactory deprivation was carried out by rinsing the nasal cavity of the animals with
ZnSQ,, an established method for causing anosmia by degeneration of OSNs (Smith
1938; Harding et al. 1978; Mayer and Rosenblatt 1993; Ducray et al. 2002; McBride et
al. 2003; Bracey et al. 2013). Animals were treated with a well-established protocol
(Bracey et al. 2013) and are generally considered anosmic one to four days after ZnSO4
treatment (Ducray et al. 2002; McBride et al. 2003; Bracey et al. 2013). However, since
the axons of the OSNs expressing ChR2-YFP are required to be intact to locate and

stimulate the M72 glomerulus, slices were obtained one day after the treatment.
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5.2 Results

5.2.1 Confirming Functionality of the M72-IRES-ChR2-YFP Mouse Model

The YFP-labelled axons of all OR160 OSNs converge onto two M72 glomeruli (Figure
5.1a). It was expected that interneurons receiving synaptic input from the M72
glomerulus (Figure 5.1b) should reliably respond to light activation of ChR2. Several
control experiments were conducted to confirm that the responsiveness of an
interneuron to light stimulation could be used as a proxy for affiliation to the M72
glomeruli. During all recordings in M72-IRES-ChR2-YFP animals, neurons were filled
with biocytin and their morphology was subsequently visualised by DAB staining.
Recovered and analysed morphologies indicated that only neurons innervating the M72
glomerulus reliably respond to stimulation of OR160 axons (n = 8; Figure 5.2a).
Furthermore, light-evoked responses in neurons innervating the M72 glomerulus could
be completely abolished by blocking glutamatergic and GABAergic synaptic
transmission (0.05 mM Picrotoxin, 0.05 mM DL-APS5 and 0.01 mM NBQX, Figure
5.2b).

Figure 5.1 Location and Anatomy of the M72 Glomeruli in the M72-IRES-ChR2-YFP
Mouse Model

(a) Fluorescent image of YFP-expressing OSN axons exhibiting a typical innervation
pattern by converging onto one medial and one lateral M72 glomerulus per OB (5x
objective).

(b) Neuron (white arrowhead) innervating an M72 glomerulus. The neuron was filled
with Alexa Fluor® 488 after whole-cell recording and successful pull-off (40x
objective).

Both pictures are overlays of two images taken with a YFP filter set at different optical
section within the same brain slice. D= dorsal, L= lateral, M= medial, V= ventral.
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Figure 5.2 Only Neurons Innervating M72 Respond to ChR2 Stimulation

(a) Morphological reconstruction of two simultaneously recorded neurons, one neuron
innervating the M72 glomerulus (yellow circle) and responding to a 2 ms light
stimulation (black reconstruction and recording trace) and the other neuron neither
innervating M72 nor responding to the light stimulation (green reconstruction and
recording trace). Both recording traces are averages of 20 repeats. (b) Morphological
reconstruction of a neuron innervating an M72 glomerulus (vellow circle), showing an
excitatory response to repeated 10 ms light stimulation (upper trace). The response was
completely abolished by bath application of the synaptic blockers 0.05 mM Picrotoxin,
0.05 mM DL-APS and 0.01 mM NBQX (lower trace). Both recording traces are
averages of 20 repeats. (¢) Boxplot of response latencies in 16 M72-affiliated GAD65"
and TH" neurons to the onset of a 2 ms long blue light stimulus. (d) Boxplot comparing
SPAs in M72-GAD65" (dark blue) and M72-TH" (dark red) neurons to SPAs in
GAD65" and TH' neurons innervating other glomeruli (light blue and light red).
Significance levels were determined by a Wilcoxon rank sum test (black) and a Brown—
Forsythe test (grey); n.s.= not significant.
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In 16 randomly selected M72-affiliated GAD65" and TH™ neurons, 20 to 50 light-
evoked events were analysed to determine the reliability of postsynaptic response and
response latency to the stimulus onset. At a frequency of 1 Hz, 98% of 2 ms light
stimuli triggered an excitatory post-synaptic potential (EPSP) larger than 0.3 mV in the
postsynaptic interneuron and sometimes evoked spiking. The average response latency

in these neurons was 5.4 ms for GAD65 neurons and 5.9 ms for TH™ neurons (Figure

5.2¢).
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Figure 5.3 Pairs of GAD65" Neurons Affiliated to the Same M72 Exhibit High Cross-

Correlation Values

(a) top: Example reconstruction of two simultaneously recorded GAD65" neurons that
exhibited a small cross-correlation peak value (0.07). Both neurons are affiliated to the
M72 glomerulus (yellow) and respond reliably to light stimulation. Bottom.: Example
voltage traces from the reconstructed pair showing synchronised events. Colours of the
traces match colours of the reconstructions.

(b) Boxplot of cross-correlation peak values from six pairs of M72-affiliated GAD65"
neurons and the corresponding pseudo pairs. The same cross-correlation score (grey
dashed line) as for non-M72-affiliated pairs (Figure 4.6) was chosen to define five out
of the six pairs as synchronised in their spontaneous sub-threshold activity. Significance
levels were determined by a Wilcoxon rank sum test (***: p <0.001).
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The SPA was quantified in 32 GAD65" and 16 TH' neurons receiving input from the
M?72 glomerulus. The SPAs of these neurons were compared to those of neurons not
affiliated with M72, which were selected based on a large anatomical distance between
their somata and the M72 glomerulus (> 500 um). In both chemotypes no significant
differences in median SPA (pgapes = 0.318, ptu = 0.596) or SPA variance (pgapes =
0.131, pry = 0.373) were observed between M72-affiliated and non-M72-affiliated
neurons (Figure 5.2d).

Next, paired recordings of GAD65" neurons were conducted in the vicinity of the M72
glomerulus (Figure 5.3a). In total, six pairs of GAD65" neurons were recorded in which
both neurons responded reliably to light stimulation of M72. These six M72-affiliated
GADG65" pairs were analysed using the cross-correlation method previously described
for GAD65" and TH' pairs (Chapter 4.2.2). Five out of six pairs exhibited a cross-
correlation peak value above the previously set threshold of 0.13 and were therefore
considered to exhibit strong synchrony in their sub-threshold activity (Figure 5.3b). The
cross-correlation peak values of all six pairs were on average significantly higher than
the cross-correlation peak values of pseudo pairs generated from the same dataset
(Figure 5.3b). When analysing the reconstruction of the least synchronised pair, it
became apparent that the two neurons both innervated the M72 glomerulus (Figure 5.3a,
top), but one neuron to a smaller extent (black neuron), which is also reflected in the

difference of synchronised event amplitudes in both cells (Figure 5.3a, bottom).

5.2.2 Sensory Stimulation and Deprivation of the M72 Network

To assess the dependence of SPAs on history of glomerular activation, M72-IRES-
ChR2-YFP mice were either exposed to 2-AHP or deprived of odour input. After mice
received either of these treatments, coronal slices were prepared and the SPA was
measured in neurons that were either affiliated to the M72 (confirmed with light
stimulation of ChR2) or not affiliated to M72. To ensure lack of affiliation to the M72
networks, only neurons that did not respond to light stimulation and that had somata a
large distance from the M72 glomerulus (> 500 um) were analysed. Results from
whole-cell recordings under both experimental conditions were then compared to

recordings obtained from control animals that did not receive any treatment.
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Analysis of the SPAs of M72-affiliated and non-M72-affiliated neurons within each of
the three experimental conditions (odour-exposed, control, odour-deprived) revealed no
significant differences in median and variance in any comparison in both chemotypes
(GAD65": Podour = 0.709, Peontrol = 0.318, pzn = 0.779; TH': Podour = 0.107, Peontrol = 0.596,
pzn = 0.283; Figure 5.4a and b).
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Figure 5.4 SPAs in M72-Affiliated GAD65" and TH™ Neurons are Similar to Neurons
Innervating Other Glomeruli

(a) Boxplot comparing the SPAs of GAD65" neurons innervating M72 glomeruli to
GADG65" neurons innervating other glomeruli. Recordings from GAD65" neurons were
divided according to the three experimental conditions the cells were recorded in: Seven
day exposure to 5 % 2-AHP, untreated control and treatment with ZnSOj4. (b) Boxplot
comparing the SPAs of TH™ neurons innervating M72 glomeruli to TH' neurons
innervating other glomeruli under the same three experimental conditions. Significance
levels were determined by a Wilcoxon rank sum test for median (black) and a Brown—
Forsythe test for variance (grey); n.s.= not significant.
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In both GAD65" and TH' neurons the SPA in M72-affiliated neurons from odour-
exposed animals was significantly larger than the SPA in M72-affiliated neurons from
control animals and odour-deprived animals (odour vs. control: pgapes = 0.026, pry =
0.012; odour vs. ZnSOs4: pgapes = 0.016, pru = 0.007; Figure 5.5). Moreover, in both

chemotypes the SPAs of odour-deprived animals were not significantly different from
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Figure 5.5 Long-Term Stimulation of the M72 Network with an Odour Ligand Increases
the SPA in Interneurons Affiliated to M72

(a) left: Boxplot of GAD65" neurons affiliated to the M72 glomerulus divided in the
three different conditions the cells were recorded in: Seven day exposure to 5 % 2-AHP,
untreated control and treatment with ZnSOs. right: Same boxplots for GADG65" neurons
that did not innervate an M72 glomerulus. GAD65" population divided according to the
same three experimental conditions.

(b) Boxplots as in (a) for TH™ neurons either affiliated to the M72 glomerulus (eff) or
to other glomeruli (right) with recordings divided into the same three experimental
conditions. Significance levels were determined by two-way ANOVA and post-hoc test
(Wilcoxon rank sum test, Holm-Bonferroni corrected); n.s. = not significant, *: p-value
<0.05, **: p-value < 0.01, ***: p <0.001.
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the SPAs of control animals (pgapes = 0.750, pry = 0.631; Figure 5.5). Additionally, the
SPAs of M72-affiliated GAD65" neurons in odour-exposed animals were significantly
more diverse than the SPAs of M72-affiliated GAD65" neurons in odour-deprived
animals (p = 0.009; Figure 5.5a, left).

Comparing non-M72-affiliated GAD65" and TH™ neurons showed a significantly larger
SPA in odour-exposed animals compared to control animals (pgapes = 0.007, pry =
0.008; Figure 5.5). However, no differences were seen in the SPAs of odour-treated and
odour-deprived animals for either cell type (pcapss = 0.188, ptu = 0.767; Figure 5.5).
Furthermore, the SPA of TH' neurons in odour-deprived animals was significantly
larger than the SPA in the TH" control group (p = 0.116). No significantly different
variances in SPAs were observed between any of the non-M72-affiliated GAD65" or
TH' populations.

5.2.3 Sag Potential Amplitude Diversity Within and Between the Two M72

Networks

Theoretically, all M72 glomeruli should receive a similar amount of odour-evoked input.
Therefore, if SPA is regulated primarily due to direct sensory input (and is not primarily
defined by lateral network interactions) it should be similar in neurons affiliated to these
four local M72 networks. To investigate whether the location of the M72 glomerulus
(medial or lateral) impacts on the SPA of a neuron affiliated to it, the SPAs measured in
the medial and lateral M72 were compared for all three experimental conditions (odour-
exposed, control, odour-deprived).

In both chemotypes, no significant differences in median SPA could be seen between
the medial and lateral M72 glomerulus under odour-exposed (pgapss = 0.599, pru =
0.766), control (pgapes = 0.479, ptu = 0.875) or odour-deprived condition (pgapss =
0.456, pru = 0.898; Figure 5.6a and b). Also the SPA variance was not significantly
different between medial and lateral M72 in odour-exposed (pgapss = 0.850, pry =
0.653), control (pgapes = 0.324, pru = 0.310) or odour-deprived animals (pgapss = 0.726,
pru = 0.992; Figure 5.6a and b).
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Figure 5.6 SPAs Do Not Depend on the Affiliation of GAD65" and TH' Neurons to the

Lateral and Medial M72 Glomerulus

(a) Boxplot of GAD65" neurons receiving input from the lateral or medial M72
glomerulus, divided in the three different conditions the cells were recorded in: Seven
day exposure to 5 % 2-AHP, untreated control and treatment with ZnSOj,. (b) Boxplot
comparing the SPAs of TH™ neurons innervating the lateral or medial M72 glomerulus
in same three experimental conditions. Significance levels were determined by a
Wilcoxon rank sum test for median (black) and a Brown—Forsythe test for variance

(grey); n.s.= not significant.
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5.3 Discussion

The activity of a neuron can impact on HCN channel gating properties (Wang et al.
2002) as well as expression levels (Fan et al. 2005). I, has in turn been shown to
modulate neuronal excitability in various different cell types (Biel et al. 2009). Taken
together, the activity-dependent plasticity of HCN channels can provide a feedback
mechanism, regulating the input/output function of a neuron (McCormick and Pape
1990; Hutcheon and Yarom 2000; Giocomo and Hasselmo 2009; Wahl-Schott and Biel
2009). However, activity-dependent regulation of I, has not been proposed to tune the
output of a local network in any other brain area so far. The aim of this chapter was
therefore to determine if there is evidence for a network-dependent, homotypic
mechanism, regulating the SPA of interneurons within the glomerular network. The first
step towards this was to explore whether the level of SPA is dependent on the activity
history of the network and presumably the neuron.

To test this hypothesis, the genetically modified mouse line M72-IRES-ChR2-YFP
(Smear et al. 2013) was used, which allowed the visualisation, targeted stimulation and
recording from a specific glomerular network. One of the biggest challenges in using
this system in slice physiology was to slice the OB in a way that ensured mostly intact,
yet sufficiently superficial M72 glomeruli. During repeated experiments it became
apparent that only light stimulation of an M72 glomerulus that was largely intact
resulted in stable and reliable light-evoked responses in post-synaptically connected
neurons throughout the duration of a whole-cell recording. After successful slice
preparation, the activation of ChR2 in this mouse line provided a reliable way of testing
the affiliation of individual neurons to a specific glomerular network, as several control
experiments confirmed (Figure 5.2). By crossing Gad2-IRES-Cre-tdTomato or
TH(9.0)tagRFP with the M72-IRES-ChR2-YFP mouse line it was possible to
repeatedly target the same GAD65™ and TH' interneuron population across different
animals and experiments through light stimulation.

For data analysis, only neurons with a presumed monosynaptic connection to the M72
glomerulus were used, defined by reliable, short-latency post-synaptic responses to light
stimulation of ChR2. Channelrhodopsin has an opening time around 2 ms (Nagel et al.

2005), but these opening kinetics can be slower, depending on the light intensity used,
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as well as temperature and voltage (Chater et al. 2010). ChR2-induced depolarising
currents can reach maximal rise within 2.3 ms in cultured neurons (Boyden et al. 2005;
H134R might be slower) and elicit action potential firing in cultured hippocampal
neurons with a latency of around 5 ms (Lin et al. 2009). It has also been shown that
light activation can induce action potentials with similar latencies locally in axons
(Schoenenberger et al. 2011). Taken together, a median response latency of 5.4 ms for
GAD65" neurons and 5.9 ms for TH" neurons is consistent with the delay of previously
reported channelrhodopsin-evoked responses and therefore likely the result of a
monosynaptic connection between OSNs and interneurons. Varying numbers of
stimulated axons and light-gated channels, and variable light penetration of the tissue
might have cause the latency variance observed.

The high cross-correlation values measured in simultaneously recorded, M72-affiliated
GAD65" neurons (Figure 5.3) further support the hypothesis that coincident events
indicate synaptic input from the same local networks, as discussed in Chapter 4. The
morphological reconstruction of the pair that exhibited the lowest cross-correlation
value confirmed that even in this pair both neurons innervate the same M72 glomerulus
(Figure 5.3a). These results suggest that while a high cross-correlation value indicates
affiliation to a common glomerulus, a low cross-correlation value does not exclude it.
Instead, a silent glomerular network, or neurons only receiving a small fraction of their
input from the common network could cause the low cross-correlation values. Both
hypotheses are possible for the presented low cross-correlation pair. Furthermore, these
results suggest that the highly synchronised pairs might either receive common input
from more than one network or receive the majority of their input from the shared
source. Unfortunately, comparing only five GAD65" pairs with eight pseudo pairs did
not provide the power necessary for a robust statistical analysis, but for future
experiments, it would be interesting to see whether the SPA in these simultaneously
recorded M72 pairs is more similar than the SPA from pseudo pairs.

To address whether there is evidence for SPA dependence on the history of network
activity, changes in the activity of neurons participating in the M72 network were

introduced by odour exposure or odour deprivation of animals.
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Compared to the general OSN population, the OR160 OSNs converging onto the M72
glomerulus appear to be typical in their OR expression profile and innervation pattern
(Zheng et al. 2000; Potter et al. 2001; Feinstein and Mombaerts 2004). In accordance
with this, no significant differences between the SPAs measured in M72-affiliated and
non-M72-affiliated neurons were observed in control conditions (Figure 5.4), showing
that the M72 glomerulus is a valid model network to test our hypothesis and extrapolate
findings to other glomerular networks. However, once a mouse line with ChR-YFP
expression in another glomerulus becomes available it would be very interesting to
repeat these recordings from neurons affiliated to a different glomerulus in order to
generalise the results seen for neurons participating in the M72 network.

Also, odour deprivation was not selective for M72-affiliated OSNs, because the ZnSO4-
treatment non-specifically targets all OSNs. Therefore, no significant differences
between the SPAs measured in M72-affiliated and non-M72-affiliated neurons were
observed in the odour-deprived condition (Figure 5.4). It will be necessary to confirm
these findings through control experiments using saline for nasal rinsing, as established
with 0.9% w/v NaCl by Bracey et al. (2013).

It is perhaps not surprising to see an overall increase in SPA in all recordings from the
odour-exposed group, even in neurons not affiliated to M72 (Figure 5.4). 2-HAP is not
a specific ligand for M72, but likely an agonist for a range of different ORs, like OR151
which is expressed in OSNs converging onto M71 (Zhang et al. 2012). Furthermore, it
has been shown that the exposure to an odour can increase the overall sensitivity to
odours (Kass et al. 2016). However, a trend toward higher SPAs is observable in the
M72 datasets for both odour-treated GAD65" and TH' populations and the lack of
significance might be a result of too few data points.

The long-term exposure of animals to the M72 ligand 2-HAP caused an increase in SPA
compared to control and ZnSOjy-treated animals in both M72-GAD65" and M72-TH"
neurons (Figure 5.5). These results strongly suggest that odour-evoked activity can
regulate SPA in these two types of interneurons.

When comparing the ZnSO4-treatment group with the other two conditions, SPAs in the
ZnSQOq-dataset consistently showed the lowest variability (Figure 5.5). Large SPA
variability in the odour-treated and control groups was expected, because animals are

continuously exposed to diverse range of complex odours in their normal environment.
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However, this sensory input should be reduced in the anosmic ZnSOs-treatment group,
which in turn would be expected to reduce SPA variability and median SPA.
Surprisingly, the odour-deprivation with ZnSQO4 did not cause a significant reduction in
median SPA in either GAD65" or TH' neurons (and in one case even caused an increase
compared to control conditions). This may be for several reasons. First, the median SPA
recorded in control animals was rather small and potentially a large number of
experiments would need to be conducted to show a significant reduction. Second, the
ZnSO4 might not have caused a full anosmia. Previous experiments demonstrated an
anosmia in ZnSOy-treated animals after one to four days (Ducray et al. 2002; McBride
et al. 2003; Bracey et al. 2013). In the current experiments the electrophysiological
recordings were conducted one day after the ZnSO, treatment, in order to preserve the
ChR2-YFP expressing axons of the M72 glomerulus. One day might not be enough
time to sufficiently down-regulate the activity of the glomerular networks, so the timing
of these experiments might need to be adjusted accordingly. However, finding the
balance between causing enough ZnSOs-induced OSN degeneration and preserving
ChR2-YFP expressing OSN axons may be challenging. In addition, the ZnSOs-
treatment might have affected the animals’ behaviour. As shown by previous
publications, OSN depletion by ZnSO4 can result in altered performance of animals
during behavioural tasks (Harding et al. 1978; Mayer and Rosenblatt 1993; McBride et
al. 2003; Bracey et al. 2013), which might ultimately have global effect on the intrinsic
properties of neurons participating in a highly plastic neuronal network, like the OB.
Finally, the ZnSOy-treatment might have had an additional unknown effect the intrinsic
properties of the recorded neurons or other neurons participating in the same glomerular
networks. It is conceivable that, if ZnSO4 indeed induced a global depletion of OSNss,
the dying OSNs could exhibit an altered firing pattern, inducing a temporal abnormal
stimulation of local glomerular networks. Alternatively, the lack of OSN input might
result in altered cell survival (although unlikely during such a short time period, see
Harding et al. 1978; Mandairon et al. 2006a) or adapted intrinsic properties of neurons
participating in glomerular circuits, as shown in naris occlusion experiments
(Cummings and Brunjes 1997).

Next, a comparison between the SPA in the medial and lateral M72 was conducted

(Figure 5.6) to address whether the SPA was at least partly dependent on the identity
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and location of the glomerulus, which would suggest an additional component
regulating the SPA. However, no systematic changes in SPA according to M72 identity
could be observed in any of the three conditions in both chemotypes (Figure 5.6). This
data strongly supports the hypothesis of a homotypic SPA regulation based on the
history of sensory input in individual local networks, rather than lateral interglomerular
interactions. Because all M72 glomeruli receive sensory information from clonally
identical OR160 OSNss, if the SPA is predominately regulated by this sensory input, it
should be similar in all four M72 networks.

However, to provide evidence for an odour-stimulation dependent activation of M72
affiliated neurons, the neuronal activation after odour stimulation would need to be
demonstrated. A near future experiment that could provide such evidence would be the
staining for immediate early genes, like c-fos, in animals that were stimulated with 2-
HAP, as well as control animals. Repeated neuronal stimulation can lead to rapid and
transient changes in gene transcription, such as the increase of immediate early gene
transcription. Immediate early genes are transcribed only minutes after a cellular stimuli.
So far around 40 of these genes have been identified as markers for neurons that have
recently been activated (Flavell and Greenberg 2008). C-fos is one of the first
immediate early genes that has been found suitable to track neuronal activation
(Greenberg and Ziff 1984). Furthermore, it has been shown that c-fos, as well as the
immediate early gene Egrl, are suitable to detect neuronal activation in the glomerular
layer after odour stimulation (Bepari et al. 2012).

To summarise, these experiments demonstrate that I, in glomerular networks is
regulated based on glomerular affiliation and is activity-dependent. However, the
experiments allow no conclusions regarding the molecular nature of the regulation.
HCN channel plasticity has been shown to depend on conformational changes of the
channel, as well as on changes in protein expression levels and intracellular relocation
(Biel et al. 2009). To determine what mechanisms induce the SPA regulation in
glomerular network, a temporally more precise change in network activity would be
necessary, for example by repeated light activation of ChR2 in M72 OSNs.
Unfortunately, the time for reliably measuring SPA in a whole-cell configuration is
limited, making it difficult to follow light induced, activity-dependent changes in SPA

during a single recording over a significant time period. However, introducing variable
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durations of light-evoked activity by shining light onto the M72 glomerulus prior to
whole-cell recording could help identify the time course of activity-dependent SPA

regulation in these networks.
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Chapter 6. Discussion

6.1 Summary of Results

This thesis investigates the diversity and activity-dependence of sag potential amplitude

(SPA) in interneurons within the glomerular microcircuit of the olfactory bulb (OB).

The major conclusions can be summarised as follows:

1.

GAD65" and TH" transgenic mice are valid tools for targeting two populations
of juxtaglomerular neurons that are different in their morphological (Figure 3.6,

Figure 3.7) and physiological (Figure 3.9, Figure 3.13) properties.

Hyperpolarisation-activated current (Iy) can have a substantial impact on
neuronal excitability in glomerular interneurons, as seen by the effect of its

blockade in GAD65" cells (Figure 3.11), which exhibit substantial SPAs.

SPA correlates well with I, amplitude in GAD65" and TH' neurons (Figure

3.10) and may be used as a proxy for Ij, in interneuronal cell types.

The GAD65" interneuron population in the glomerular layer exhibits on average
significantly larger and more heterogeneously distributed SPAs than the TH"
population (Figure 3.13).

. The degree of spontancous sub-threshold synchrony observed for two

simultaneously recorded neurons indicates affiliation to a common glomerulus

(Figure 4.1, Figure 4.6 and Figure 5.3).

GADG65" and TH' neurons exhibit synchronised EPSPs with similar amplitudes,
however GAD65" neurons appear to have more synchronised action potential

firing than TH™ neurons (Figure 4.4).

GAD65" neurons receiving input from a common network have significantly

more similar SPAs than those belonging to different networks (Figure 4.6).

Neurons affiliated to the M72 glomerulus exhibit a distribution of SPA similar
to the overall population (Figure 5.2 and Figure 5.4).

These conclusions will now be further discussed in the following sections.
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6.2 GADG65" and TH* Neurons as Representative Examples for

Glomerular Interneurons

In order to explore the potential physiological significance of SPA diversity in the
glomerular layer, a method to reliably target the same juxtaglomerular subpopulation
across animals and experiments was crucial. Using neurochemical markers to target
distinct interneuron populations provided a reliable high-throughput method for
performing recordings from neurons belonging to these populations. Also, in the
densely populated glomerular layer, the genetic labelling of interneurons increased the
success rate of simultaneous recordings from members of the same neuronal class.
GAD65" and TH' juxtaglomerular neurons were selected for two main reasons. Firstly,
the two classes exhibit only moderate chemotopic overlap in the OB (Parrish-Aungst et
al. 2007; Kiyokage et al. 2010; Figure 3.2). Secondly and most importantly, several
previous publications established that GAD65" and TH' neurons morphologically
resemble periglomerular (PG) cells (Aungst et al. 2003; Shao et al. 2009; Kiyokage et al.
2010) and short axon (SA) cells, respectively (Kiyokage et al. 2010; Liu et al. 2013).
PG and SA cells are morphologically well-described classes of glomerular interneurons
(section 1.4.1.3). While PG cells are believed to mediate intraglomerular inhibition, SA
cells are thought to predominately mediate inhibition between glomeruli (section 1.4.2),
which leads to the conclusion that these two classes of interneurons may be functionally
distinct. By targeting these two classes, the aim was therefore to explore the diversity
and regulation of I; in the context of functionally different glomerular interneurons.
However, in order to interpret the result of the presented experiments one needs to first
consider the limitations of defining neurons solely by their neurochemical expression
profile. In the OB, the GAD65" and TH" interneuron population exhibit a small degree
of overlap in the expression of their molecular markers, resulting in a small number of
GAD65" neurons also being TH™ and vice versa. When exploring an intrinsic
biophysical property such as I, in GAD65" and TH' interneurons, this overlap in
molecular marker expression is likely to result in a small amount of cross-sampling in
the data recorded from both chemotypes. Additionally, when working with
developmentally plastic (Kosaka and Kosaka 2009; Akiba et al. 2010) and activity-
dependent (Baker et al. 1983; Cigola et al. 1998; Parrish-Aungst et al. 2011; Banerjee et
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al. 2013) marker molecules such as tyrosine hydroxylase, it is unlikely that the entire
population of neurons will be fluorescently labelled. Moreover, a gradient in fluorescent
labelling may introduce a bias in data sampling. However, the wide distribution of soma
sizes and glomerular innervation patterns in the TH™ dataset suggests that the sampling
of TH' neurons was not restricted to a single subpopulation and therefore makes a
selection bias less likely. In addition to GAD65" and TH™ neurons exhibiting different
chemical and morphological characteristics, each chemotype constitutes a diverse
population of neurons (Halasz et al. 1981; McLean and Shipley 1988; Kosaka et al.
1998; Hayar et al. 2004a; Parrish-Aungst et al. 2007; Shao et al. 2009; Kiyokage et al.
2010; Banerjee et al. 2013; Chand et al. 2015). However, since the within-class
distribution of morphological data was not found to be multimodal, no further sub-
classification of GAD65" and TH' neurons was conducted so far, but may be
considered for future analyses.

To that end, a cluster analysis performed on biophysical properties of these neurons, as
carried out on OB principal and interneurons neurons by Kollo et al. (2014)
(supplementary figure 2), could reveal physiologically distinct sub-populations of
GAD65" and TH' neurons and therefore aid understanding the heterogeneity of these
two populations. Additionally, morphological reconstruction of a larger number of
neurons, and a principal component analysis of morphological and physiological
parameters could provide a more comprehensive picture of the GAD65" and TH'
populations and ultimately lead to reliable prediction of morphologically defined types
without the need of laborious manual reconstructions. Increasing the number of
morphological reconstructions from recorded neurons will be the next step in this
project. Manual morphological reconstruction is an extremely laborious process, but
will in future be aided by the use of partly automated tracing software (Neurolucida
360) that was recently made available in the lab.

Despite overlap in molecular, morphological and biophysical features, GAD65" and
TH™ neurons exhibit unique phenotypes regarding the distribution of SPA. The TH"
population had, in general, very low and homogeneous levels of SPA, whereas the
GADG65" population exhibited large diversity in their amplitudes of membrane potential

sag.
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6.3 Network-Dependent Regulation of Sag Potential Amplitude

in Interneurons of the Glomerular Layer

Network-dependent regulation of SPA could be shown for neurons belonging to the
GAD65" population. Membership of two neurons to the same local network was
determined by quantifying the strength of synchrony in their sub-threshold activity.
When simultaneously recording from two GADG65" neurons that were affiliated to the
same local network, SPAs were significantly more similar than the SPAs of two
randomly paired neurons from the same dataset. Interestingly, the TH™ population only
exhibited a trend towards more similar SPAs, despite sampling from twice as many
pairs. One possible explanation might be that SPA in TH" neurons is not regulated in an
activity-dependent manner. However, since both populations exhibited an increase in
SPA in response to odour exposure (see Chapter 5), the regulation of I is likely to be
subject to similar activity-dependent mechanisms in both cell types.

GAD65" neurons exhibited a much wider distribution of SPA than TH' neurons. It is
therefore likely that uncovering any activity-dependent SPA regulation in TH™ neurons
requires a larger sample size, since the narrow distribution of SPAs results in a
relatively small difference in SPA between any pair of TH' cells, independent of their
network affiliation. This in turn means many more data points would be needed in the
TH" population to observe a potential difference between pairs and pseudo-pairs
compared to the GAD65" population.

Alternatively, activity-dependent regulation of SPA might have a larger impact on
information processing in GAD65" neurons than in TH' neurons. In both chemotypes
the temporal coincidence in their synaptic input correlates well with the degree of their
dendritic overlap and thus potentially the location of their synaptic contacts.

However, as morphological reconstructions revealed, GAD65  neurons innervate on
average significantly fewer glomeruli than TH' neurons (2 vs. 5 glomeruli), with a
denser innervation pattern. Because of this local restriction of GAD65" dendrites, the
majority of synchronised synaptic events in two simultaneously recorded GADG65"
neurons must originate from the inputs of one, or possibly two glomeruli. On a
functional level, the activity-dependent regulation of SPA together with innervation of

few glomeruli could result in a strong relationship between I, and the activity of
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individual glomeruli. In contrast, in TH" neurons any activity-dependent regulation of
SPA is likely the result of more diverse glomerular input and could be “averaged out”,
which would also explain the more homogeneous SPA distribution in this neuronal

population.

6.4 Odour-Dependent Regulation of Sag Potential Amplitude in

Interneurons of the Glomerular Layer

The experiments described in Chapter 5 demonstrate an increase in SPA in both
GAD65" and TH' neurons after long-term exposure of animals to a monomolecular
odour source. These results strongly suggest a dependence of SPA on the history of
activation in GAD65" and TH interneurons.

To support and extend the evidence for activity-dependent regulation of I in glomerular
interneurons, experiments in which animals were deprived from sensory input were also
conducted. If SPA linearly depended on a neuron’s activity, the depletion of olfactory
sensory neurons (OSN) by nasal irrigation with ZnSO4 would be expected to reduce
SPA. However, no such effect was seen when comparing SPAs in the ZnSOy-treatment
group with SPAs recorded in the control group. As discussed earlier (section 5.3), it
might be difficult to demonstrate a significant reduction of SPA in ZnSOs-treated
animals, because the average SPA in untreated animals was already rather small. Also,
ZnS0Oy is thought to induce anosmia after one to four days, therefore it could be possible
that more than one day between treatment and slice preparation is necessary to
drastically reduce the activity in glomerular networks. Furthermore, it is unclear
whether nasal irrigation with ZnSO4 destroys the entire olfactory epithelium (McBride
et al. 2003). Given that OSN terminals exhibit a high release probability (Murphy et al.
2004), a less than total ablation might not significantly impact transmission onto
postsynaptically connected glomerular neurons. In order to clarify the interpretation of
these results, further ZnSO4-induced sensory deprivation experiments, potentially with
an extended time period between treatment and electrophysiological recordings should
be conducted. If ZnSO4-treatment fails to show an activity-dependent reduction in SPA,
sensory deprivation could alternatively be achieved by naris occlusion (Cummings and
Brunjes 1997; Mandairon et al. 2006a). However, naris occlusions have been shown to

affect survival of adult-born glomerular interneurons (Mandairon et al. 2006a) and
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therefore need to be timed appropriately. A genetically modified, anosmic mouse model
(Brunet et al. 1996) could also provide the long-term sensory deprivation necessary for
down-regulation of SPA. Crossing such a line with mice expressing an axonal marker
under the control of the OR160 promoter would make it possible to identify the M72
fibres in an anosmic mouse (Zheng et al. 2000). However, it is not clear to what extend
the action potential firing rate of OSNs is decreased in anosmic animals compared to
control animals (Brunet et al. 1996). Moreover, the local glomerular network formation
is heavily altered in these animals (Zheng et al. 2000), which might have additional
impact on SPAs in local interneurons.

In order to investigate the activity-dependence of SPA in GAD65" and TH™ neurons in
more detail, I attempted to investigate SPA modulation in response to light stimulation
of ChR2 in the M72 OSN terminals. However, during whole-cell recordings, SPA
exhibits rundown after a few minutes and activity-induced changes of I, have been
reported to occur on a time scale of tens of minutes (van Welie et al. 2004; Fan et al.
2005). Therefore, reliable monitoring of SPA within such small neurons may not be
achievable using whole-cell recordings. An alternative approach could be repeated light
stimulation of ChR2 in M72 OSNs during brain slice incubation prior to recordings. On
a timescale of 30 minutes, the increased activity of M72 OSN terminals should induce
activity-dependent changes in the SPA of postsynaptically connected JG cells. Thus, it
would be possible to compare the levels of SPA from neurons of the stimulated slices to
neurons of non-stimulated slices.

If ZnSOy-treatment or naris occlusion would be used for sensory deprivation, it could be
possible to perform ChR2-based rescue experiments, in which the introduction of light-
evoked activity is used to assess the reversibility of deprivation-induced SPA reduction.
If light-induced OSN activity is seen to modulate SPA in GAD65" and TH'™ neurons,
pharmacological experiments, as conducted by Fan et al. (2005), could be performed on
these JG cells to further address the mechanisms underlying activity dependence of I,.
Fan et al. (2005) have shown that postsynaptic action potential firing is necessary for
upregulation of I in pyramidal neurons. In general, postsynaptic depolarisation causes
Ca”" influx into a neuron and cytoplasmic Ca®" is known to perform various regulatory
functions (Berridge 1998), including the modulation of ion channels by increasing the

production of second messengers like cAMP (Cooper et al. 1995) or influencing gene
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transcription (Berridge 1998). By using the calcium chelator BAPTA in intracellular
solution (Fan et al. 2005) or BAPTA-AM in the bath (van Welie et al. 2004) it has been
shown that the upregulation of I, depends on the Ca®" influx in the postsynaptic cell.
The bath application of AP5 or CNQX further demonstrated a Ca>* influx in these cells,
primarily through NMDA receptors. Furthermore, the use of Ca**-dependent protein
kinase (CAMKII) inhibitory peptide 281-309 revealed the dependence of I,-regulation
on CaMKII, a protein kinase that regulates transcription by phosphorylation of cAMP
response element-binding protein (CREB; Sun et al. 1994). Lastly, the dependence of
Ip-upregulation on de novo protein synthesis has been demonstrated by the use of
anisomycin, a protein translational inhibitor (Fan et al. 2005). In accordance with these
results, preliminary experiments described in this thesis indicated that synchronised
synaptic input might result in more synchronised action potential firing in pairs of
GAD65" neurons compared to pairs of TH' neurons. If action potential firing is indeed
necessary for I-regulation in these interneurons, a high synchrony in postsynaptic
action potential firing could be the mechanism underlying the homotypic regulation of

SPA in GAD65" neurons.

6.5 I,-Mediated Activity-Dependent Changes in Neuronal
Excitability

As in mitral cells (MCs), GAD65" neurons exhibited diverse SPA, which not only
originated from the affiliation of a neuron to a specific network, but also from the
activity history of that network. Recorded SPAs were not significantly different
between neurons affiliated to the medial or lateral M72 glomerulus, which indicates that
SPA regulation could be mainly driven by sensory inputs through OSNs and is
potentially neither pre-determined nor driven by interglomerular interactions with
neighbouring glomeruli.

The aim of this thesis was to investigate the extent to which SPA in JG cells reflect
local network activity, however the impact of the described regulatory effects on the
integrative properties of cells remains to be explored.

When looking at previous work on the functional impact of I, the current has been
shown to serve diverse functions in multiple neuronal classes (Robinson and

Siegelbaum 2003). These functions include intrinsic oscillations and resonance (Pape
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1996; Luthi and McCormick 1998; Dickson et al. 2000; Santoro et al. 2000; Liu and
Shipley 2008b; Giocomo et al. 2011), synaptic integration (Williams and Stuart 2000;
Berger et al. 2001; Angelo et al. 2007) and regulation of neuronal excitability (Poolos et
al. 2002; van Welie et al. 2004; Fan et al. 2005; Nolan et al. 2007). No intrinsic
oscillations or resonance has so far been shown for GAD65" and TH' JG neurons and
exploring the dendritic integration of inputs or the distribution of ion channels on the
dendritic arbour would be challenging due to the small size of these neurons.

Therefore, the focus of future experiments may be on how somatic HCN channel
activity influences neuronal excitability by modulating the subthreshold voltage range.
As indicted by preliminary pharmacological experiments with the HCN channel blocker
ZD7288 and analysis of synchronised action potential firing in paired recordings, Iy
might have more impact on the excitability of GADG65" neurons. Upon specific
blockade of HCN channels with ZD7288, GAD65" neurons exhibited a significant
increase in their input resistance and a significant decrease in their probability of
generating a rebound action potential. Both properties can influence the intrinsic
excitability of neurons (Pape 1996; Robinson and Siegelbaum 2003; van Welie et al.
2004; Engbers et al. 2011; Gastrein et al. 2011). In contrast, no significant increase in
input resistance was seen in TH" neurons and most TH' neurons did not exhibit rebound
spiking under control conditions. More pharmacological experiments and experiments
altering network activity need to be conducted in order to predict the impact of activity-
dependent I, regulation onto the integration of sensory stimuli in the glomerular layer.
HCN channels have been shown to alter passive properties, including membrane
potential and input resistance (Pape 1996; Berger et al. 2003; Robinson and Siegelbaum
2003; van Welie et al. 2004; Aponte et al. 2006) as well as active properties, such as
firing patterns (Nolan et al. 2007). However, whether an increase in I results in an
increase or decrease of neuronal excitability depends on the interplay of I;, with other
voltage-activated ion channels and the fine balance of passive membrane properties in
each neuron. For example, in CA1 pyramidal cells I;, has been shown to reduce intrinsic
excitability of both dendrites (Poolos et al. 2002) and soma (van Welie et al. 2004; Fan
et al. 2005), but hippocampal interneurons and MCs show an increased excitability in
the presence of I, (Aponte et al. 2006; Angelo and Margrie 2011). It is known that

depending on, for example neuromodulators (Marder 2012) or second messengers
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(Siegelbaum et al. 1982), a given set of ion channels in a neuron can produce
heterogeneous firing dynamics, but conversely different ion channel compositions can
produce the same firing profile (Marder and Goaillard 2006). Consequently, the effect
of I, on neuronal excitability depends strongly on the balance of intrinsic properties, and
can even change within a single neuron depending on the presence of neuromodulators
(Pape and McCormick 1989). Therefore, the activity-dependent regulation of I is
thought to be a homeostatic mechanism, scaling the output of neurons as an adaptive
response to changes in synaptic input (van Welie et al. 2004). It would be of particular
interest to investigate the impact of activity-dependent I, regulation not only on a
physiological level, but as a next step, also on a behavioural level. The regulation of
integration of synaptic information through I has been suggested to play a role in
learning and memory as well as synaptic plasticity in hippocampal CA1 pyramidal cells
(Nolan et al. 2004). In the distal dendrites of these pyramidal neurons the activity of
HCNI1 channels is thought to counteract postsynaptic changes in membrane potential
that would normally trigger synaptic plasticity. Furthermore, a recent modelling study
suggested that a linear relationship between HCN channel plasticity and synaptic
plasticity in hippocampal pyramidal neurons is necessary for firing rate homeostasis
(Honnuraiah and Narayanan 2013). This study concludes that HCN channels are critical
for a dynamic gain control mechanism that regulates synaptic learning in these neurons.
In the olfactory system, MCs exhibit synaptic plasticity (Ennis et al. 1998; Delaney et al.
2009) and, similar to CA1 pyramidal cells, also exhibit larger I at the distal area of
their apical dendrite (Angelo and Margrie 2011). Therefore it is conceivable that HCN1

channels might have a similar impact on olfactory learning and memory.

6.6 Implications of This Study

Within a glomerulus, JG interneurons are crucial for governing the strength and
temporal structure of activity in principal neurons using feed-forward and recurrent
inhibition (Aungst et al. 2003; Murphy et al. 2005; Shao et al. 2009). The results of the
pharmacological block of HCN channels described in Chapter 3 suggest that I, might
increase the excitability of GAD65" neurons. If these results are confirmed in further
experiments, it can be assumed that, on the level of local glomerular networks, Iy

influences the balance of excitation and inhibition in principal neurons. The increase of
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SPA upon increased sensory input might result in stronger feed-forward inhibition of
principal neurons, reduction of their feed-forward excitation via inhibition of external
tufted cells and recurrent inhibition of principal neurons via inhibition of OSN terminals.
Interestingly, the inhibition of principal neurons mediated by GAD65" neurons appears
to dominate at lower odour concentrations, whereas stimulation with high odour
concentrations tends to result in a net excitation of principal neurons (Fukunaga et al.
2014). If a glomerulus has a history of strong activation, and I, is therefore upregulated
in affiliated GAD65" neurons, weak activation of this glomerular network might result
in a stronger inhibition of principal neurons and therefore suppression of the output of
previously active networks.

The network-dependence of SPA seems to play a minor role in TH™ neurons, the type of
glomerular interneuron that presumably transmits lateral, interglomerular inhibition.
Therefore, a network- and activity-dependent regulation of I, may serve as a form of
gain control mechanism specifically on the level of local networks. Such a mechanism
could tune the dynamic range of all neurons participating in the same glomerular
network and shape their output across diverse levels of input activity. Since odour-
induced changes of SPA persisted over several days, one could imagine an adaptive
mechanism that decreases responsiveness of local glomerular networks underlying
persistent stimulation. Such a mechanism could for example help scale the output of the
olfactory system in the presence of background odours.

HCN channels show a rather ubiquitous expression and I; has been demonstrated to
shape the integrative properties of neurons throughout the brain (Robinson and
Siegelbaum 2003; Wahl-Schott and Biel 2009). Furthermore, variations in I, levels
within the same cell type have been described in several brain regions (Giocomo and
Hasselmo 2008; Hemond et al. 2009). However, the homeostatic impact of I, plasticity
on a neuron has been rather sparsely studied in principal neurons, like CA1 pyramidal
neurons of the hippocampus (van Welie et al. 2004; Fan et al. 2005), but never in
interneurons. Furthermore, these studies restricted their focus on a single-cell level and
did not consider homeostatic regulation of networks through I,. In addition, I, was
largely viewed as static, for instance the graded HCN channel expression in grid cells
along the dorsal-ventral axis of the medial entorhinal cortex (Giocomo et al. 2011) or

along the tonotopic axis of the nucleus laminaris (Yamada et al. 2005). In fact, a plastic,
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network-wide regulatory mechanism through I, was first suggested by Angelo et al.
(2012). Therefore this thesis, together with previous publications of our lab (Angelo and
Margrie 2011; Angelo et al. 2012), provides the first comprehensive and comparative
analysis regarding the distribution, interplay and potential function of I in several
neuronal types participating in the same local network. Once a more complete
regulatory mechanism of I, is established, the gained knowledge can likely be
transferred and tested in other sensory areas, like the barrel cortex. In the barrel cortex
sensory deprivation causes downregulation of HCN channel density in layer 5
pyramidal neurons, which results in an increased excitability, but also in a more likely
discharge of action potential bursts (Breton and Stuart 2009). However, a potential
function of [} in interneurons of the same microcircuit is unknown.

Furthermore, the research of homeostatic I, plasticity in interneurons of the OB could
have implications for interneurons in other brain areas. For instance GABA-mediated
inhibition is essential for synchronisation through local oscillations in neuronal
populations of several brain areas (Buzsaki and Chrobak 1995; Singer 1996; Traub et al.
1998). Exploring the potential contribution of I, to synchronisation of neuronal
populations in the OB could contribute to a broader understanding of how GABAergic

interneurons operate in local networks.

6.7 Future Directions

The findings presented in this thesis have raised new questions regarding the
classification of glomerular interneurons and mechanisms behind network- and activity-
based regulation of I, as well as the functional relevance of such regulatory
mechanisms. In the following section, experiments proposed to target these questions

are summarised:

1. The results presented in this thesis are based on a large set of electrophysiological
recordings from GADG65" and TH' neurons. So far, no publication has presented a
sub-classification of these interneurons using such a large dataset of intrinsic
biophysical properties. Therefore, a systematic classification of GAD65" and TH"
neurons based on intrinsic biophysical properties using a cluster analysis approach

would help to further characterise these glomerular interneurons.
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Obtaining a greater number of morphological reconstructions from recorded
GAD65" and TH' neurons could refine our knowledge about morphological
characteristics of these interneurons. Additionally, correlation between
morphological and physiological characteristics of larger numbers of GAD65" and
TH" neurons could establish a protocol for prediction of JG cell types purely based

on electrophysiological measurements.

The results of this thesis strongly suggest an activity-dependent regulation of SPA in
GAD65" and TH' neurons. To confirm and further establish the mechanisms behind
such a homotypic mechanism of regulation, a protocol should be established for
induction of SPA plasticity under temporally precise conditions using light
stimulation of ChR2 in the M72 OSN terminals. Investigating the timing of SPA
plasticity in more detail can help reveal the molecular mechanisms underlying the
adaptive property of HCN channels (for example conformational changes of the

channel vs. expressional changes).

. Further experiments will be necessary to interpret the lack of SPA reduction
observed after sensory deprivation by ZnSOs-treatment. Additionally, control
experiments with saline treatment will be necessary, as previously established by
Bracey et al. (2013). If it is not possible to induce sufficient changes in glomerular
network activity with ZnSO4, nasal occlusion or genetically modified, anosmic

animals could be used instead.

To address the impact of I, on neuronal excitability in glomerular interneurons, a
comparison of passive membrane properties (e.g. resting membrane potential, input
resistance) and firing patterns in GAD65  and TH™ neurons with and without
pharmacological block of HCN channels should be conducted. It would also be
interesting to investigate potential changes in neuronal excitability after odour
stimulation, however it might be difficult to directly link these changes to the

upregulation of I,

On a longer time-scale, pharmacological experiments, as conducted by Fan et al.
2005, should be considered to explore the molecular machinery underlying activity-

dependent regulation of I, in JG neurons.
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7. Addressing the behavioural relevance of activity-dependent regulation of SPA in
local glomerular networks could be a long-term goal of this research. Inducing SPA
plasticity in behaving animals with light stimulation of the M72 glomerulus, is one
possible way of investigating the significance of I, modulation in olfactory

performance.

To summarise, I have shown for the first time that I, in glomerular interneurons is
regulated by local network activity and sensory experience.

Together with the work of Angelo et al. (2012), these results indicate that HCN
channels, which have a profound impact on network excitability, are regulated in both
principal cells and interneurons as a result of odour processing. Given the simple
anatomical structure of the OB and the fact it is possible to target, stimulate and record
from specific glomerular circuits, the OB is an ideal structure to investigate the

behavioural relevance of I; regulation.

154



Chapter 7. Appendix

List of Reagents

Appendix A

2'-Hydroxyacetophenone > 98 %

Sigma-Aldrich

4-Aminopyridine

Sigma-Aldrich

Adenosine 5'-triphosphate disodium salt hydrate (Na,-ATP)

Sigma-Aldrich

Adenosine 5'-triphosphate magnesium salt (Mg-ATP)

Sigma-Aldrich

Alexa Fluor” 488 Hydrazide Life Technologies
L-Ascorbic acid BioXtra, > 99.0 % Sigma-Aldrich
Certified™ Molecular Biology Agarose Bio-Rad

Barium chloride dehydrate (BaCl,)

Sigma-Aldrich

Biocytin hydrochloride > 98 %

Sigma-Aldrich

Calcium chloride solution volumetric, 1.0 M (CaCl,)

Sigma-Aldrich

Cobalt(II) chloride 97 % (CoCl,)

Sigma-Aldrich

SIGMAFAST™ 3 3'-Diaminobenzidine tablets (DAB)

Sigma-Aldrich

D-(+)-Glucose BioXtra, > 99.5 %

Sigma-Aldrich

D-2-amino-5-phosphonovalerate (D-APS5)

Tocris

Ethyleneglycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid
BioUltra, > 99.0 % (EGTA)

Sigma-Aldrich

Ethanol, absolute > 99.8 %

Fischer Scientific

Glycerol AnalaR

VWR

Guanosine 5'-triphosphate sodium salt hydrate (Na,-GTP)

Sigma-Aldrich

Hydrogen peroxide solution 30 wt. % in H,O

Sigma-Aldrich

HEPES BioXtra>99.5 %

Sigma-Aldrich

Magnesium chloride solution volumetric, 1.0 M (MgCl,)

Sigma-Aldrich

Mineral oil

Sigma-Aldrich

MOWIOL® 4-88 Reagent

Calbiochem

Sodium chloride BioXtra, > 99.5 % (NaCl)

Sigma-Aldrich

Sodium bicarbonate > 99.5 % (NaHCO3)

Sigma-Aldrich

Sodium phosphate monobasic BioXtra, > 99.0 % (NaH,PO,)

Sigma-Aldrich

2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-

Tocris
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sulfonamide disodium salt (NBQX)

Paraformaldehyde powder, 95 %

Sigma-Aldrich

Picrotoxin

Sigma-Aldrich

Potassium chloride EMSURE® (KCl)

Merck Millipore

Potassium methanesulfonate > 98.0 % (CH3KOsS)

Sigma-Aldrich

Tetraethylammonium chloride hydrate (TEA-CI)

Sigma-Aldrich

Triton™ X-100

Sigma-Aldrich

Tetrodotoxin (TTX)

Tocris

ZD7288 hydrate > 98 %

Sigma-Aldrich

Zinc sulphate monohydrate > 99 %

Sigma-Aldrich
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Figure 7.1 Significance of SPA Similarity in Pairs of GAD65" and TH" Neurons Depending
on the Set Cross-Correlation Peak Value Threshold

Left: Graph illustrating the relationship between a chosen cross-correlation peak value
threshold (0 — 0.5, corresponding to Figure 4.6) and the significance of SPA similarity
in synchronised pairs of GAD65" (blue) and TH' (red) neurons compared to
corresponding pseudo pairs using a Wilcoxon rank sum test (corresponding to the post-
hoc analysis used with the ANOVA test in Figure 4.7). Grey dashed line indicating a
significance level of p = 0.05 and grey dotted line indicating a significance level of
p=0.01.

Right: Number of GAD65" (blue) and TH" (red) pairs that exhibited a cross-correlation
peak value above a set threshold and were used for the analysis displayed in the left
graph.
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