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Abstract

Historic buildings, and churches in particulare one of the most complex existing
structures not onlydrause of the structural syst@wmplexity but also due to the limited
documentation on their construction that is normallgilable. Amongstistoric buildings,
earthen and timber churchiegilt across LatirAmericaare one of the least studied andst
vulnerable structures, as past earthquakes have shown. For instance, the 2007 Pisco
earthquake caused the collapse of mhisgoric earthen and timber colonial churches in
Peru. The thesis proposes a rfeamework for the seismic assessment of historic buildings
that measures thencertainty of the structurahalysis and its influence on the structural
diagnosis due to incortgie knowledge. The methodology is validated through applicadion

two historic earthen and timber churches built in Peru in the 17th and 18th cerdtiries
different complexity and cultural value, which are representative of important- Latin
American colmial building types. The most importardriables that govern the seismic
response of these churches are identified by means of numerical simulations. Through the
application of the frameworkhe thesis provides a modelirand structural evaluation
solution for planked timber vaults amdhypothesis on the cause of failure of these vaults
during the 2007 Pisco earthquake. The influence of lack or shortage of knowiedgye
structural diagnosis of thghurches is discusseflterationsto currentguidelines for the

assessment of historic buildings are proposed from the conclusions drawn from the study.
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Glossary

Attribute

Control variable

Fragility

Global model

Interval of plausibility

It is an intrinsic aspect of the construction that can
characterized in a qualitative or quantitative way in orde

inform on thestructural performance of the construction

An input or inherent charactstic of a modelthat influences
the results of analysis conducted with this modék Tesults
of structural analysi can be controlled by the value or state
these variables. A control variable can be associated t
geametry, materials, and structural details of the structure,

to actions and modelling techniques usetheanalysis.

The probabilityof a structuresustaininga given damage sta

due toa given hazard level.

Model of thestructure that includes all relevant compone
and/or interactions that govern its global structural behavi
This does not necessarily entail that all structural compor
are modelled. However, it requires the simulation of crit
interactions orhe influence that each componexerts on the

behaviour obthers.

Range of plausible values of a control variable or struct
performance indicator. |t

value of the control variable or structural performal
indicator lies within this range. The interval of plausibility

charactesed by three values: the minimum plausible, the n

Xiii



Local model

Maximum plausible
value of a control

variable

Maximum plausible
value of a structural

performance indicator

Minimum plausible
value of a control

variable

Minimum plausible
value of a structural

performance indicator

Parameter

Reference analysis

conditions

plausible or reference value, and the maximum plaus

value.

Model of a representative portion of a structure used to
alternative hypotheses or to investigate specific local stalc

behaviour.

This value is part of the interval of plausibility of the cont
variable. It corresponds to the maximum expected v
(upper bound) of a control variable in a specific assessr
This valueis defined by the analyst.

This value is part of the interval of plausibility of the structt
performance indicator. It corresponds to the maxir
expected value (upper bound) of iheicator. In the detailec
diagnosis, this value corresponds to an increase of
reference value taking into account the overall knowlec

based uncertainty of the assessment.

This value is part of thimterval of plausibility. It correspond
to the minimum expected value (lower bound) of a cor
variable in a specific assessment. This value is defined b

analyst.

This value is part athe interval of plausibility of the structur:
performance indicator. It corresponds to the minim
expected value (lower bound) of the indicator. In the dete
diagnosis, this value corresponds to a reduction of
accountthe  overall

reference value taking into

knowledgebased uncertainty of the assessment.

A control variable characterised by a value. An intervial

plausibility can be defined faach parameter.

These conditions correspond to a structunalysis where the
reference values and reference states are assumed f

control variables. The outputs of these analyses are
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Reference results

Reference value

Reference state

Sensitivity

State

Structural peformance

indicator

Uncertainty

Value

Vulnerability

reference values of the structural performance indicators

These are the results of a structuanhblysis conducted und
the reference analysis conditions. The results or outputs

structural analysis are the structural performance indicator

This value is also called here as the most plausible value
selected by theanayt as the value ¢
of the control variable. Such selection is based on the

knowledge available and experience of the analyst.

This state is selected by the analyst as the state closest
6r e al 0thescon&rdl eariabld. Such selection is basec

the best knowledge available and experience of the analys

The variation of the value of an output due to variation:

inputs.

Condition ofa control variable that does not have a numer
representationSuch condition aims to simulate a given st
of the structureFor instancealternative boundary conditior

of the model corresportd alternative states of the structure.

It is a quantitative measure of structural behavitimt

indicatesa given performance.

The uncertainty of the diagnosis is here considered as
variation of the outputs within the intervals of plausibility
the control variablegi.e. interval of plausibility of the outputs

given a certain level of knowledge.

Numerical representation of a control variable. For insta
the material properties of a structure, such as the modul

elasticity, are defirby a value.

The degree of loss sustained by a structure under a

hazard level.
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Key Notation

|jmn,Ki

Ijmn,Ki

|jmx,Ki

liret ki

npr

Mpr

Structural performance indicatprwhich is an output of structural analysis

Value of the structural performance indicgtaorresponding to the minimum valt
assumed for the control variatie

Value of the structural performance indicajocorresponding to the maximui
value assumed for the control variaklie

Reference value of the structural performance indicator, calculated fror
reference analysis conditions.

Number of variables of the preliminary diagnosis
Number of macroelements of the preliminary diagnosis
60Real 6 val uepedofmancéirdicatotr r uct ur al

Total number of macroelements in the preliminary diagnosis

Knowledgebased uncertainty associated to a specific structural performance
indicatorj:

ea 8 a " 09

2 g d;,0 =& §/,0
m_:é&l_'_ki:l O3m1+k|:1 Ou 1

Yoe® n o = n_ O

a® ‘b @ © oy

& ¢ 0

XVii



rn.ern

rn.lrmx
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Vi

VKimn

VKimx

VKiref

Knowledgebased uncertainty of the results, whiakes into account multiple
structural performance indicators:
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Minimum reference value of the knowledigased uncertainty
Maximum reference value of the knowledggsed uncertainty
Total number of control variables

Total number of critical variables

Total number of attributes in the preliminary diagnosis
Total number of structural performance indicators

Control variable, wher& denotes the class anthe number
Minimum plausible value

Maximum plausible value

Most plausible or reference value

Weights of the structural performance indicators

Influence of a control variabl€i on the output:
P
é. al j.Ki

i=1

Sensitivity of a structural performance indicgtto the variation of a control
variableKi:
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Acronyms and abbreviations

DEM

DS

EAI-SRP

FEM

GClI

GM

ICOMOS

ISCARSAH

LM

MCP

MDOF

MMI

MRSA

NRSA

Discrete Element Method

Damage states

EarthenArchitecture Initiativei Seismic Retrofitting Project ir
Peru

Finite Element Method

The Getty Conservation Institute

Global model

International Council on Monuments and Sites

International Scientific Committee on the Anasyand Restoratior
of Structures of Architectural Heritage

Local model

Ministerio de Cultura del Peru
Multi-degreeof-freedom

Modified Mercalli Scale

Mean response spectral acceleration

Nominal range sensitivity analysis
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PGA

PUCP

SDOF

SPI

uUCL

UPM

One at a time

Peak ground acceleration

Pontificia Universidad Catodlica del Peru
Singledegreeof-freedom

Structural performance indicator
University College London

Universidad Politécnica de Madrid
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Many issues still need good answers; explanations require new scidatiétopments;

and simple and cheap interventions are needed. But the international knowledge has already
reached a level that, if placed at the easy of professionals and seismimakdes, and
applied without restrictions by their owners, there is a gpgential for an important
mitigation of our architectural heritage.

Carlos Sousa Oliveita

! Sousa Oliveira C. (2003). Seismic vulnerability of historical constructions: a contribution.
Bulletin of Earthquake Engineering, p.3782






Methodology for the Seismic Assessment of Earthen and Timber Historic Ck
Application to Peruvian Herita

CHAPTER 1

Introduction

1.1 Historic buildings: preserving values and assuring safety

Historic buildings have a unigue identityand recognized importance by present
communities, even though their everyday use might have changed over the years. Such
importance emerges from the wide recognition of their cultural significance, which regards
the aesthetic, historic, scientific, soalspiritual value of a construction for past, present or
future generations, as defined by the Burra Charter issued in 1979 (ICOMOS, 2004a).
Cultural significance incides the value of hidden parts (the structural patipse
preservation is often neglect (Hume, 2007). The cultural significance of a historic building

is related to the predominant conservation values of society at any given time, and these tend
to evolve over the years.

On the one hand, conservation values have changed throughout tbey bt
humankind. On the other hand, alternative conservation values, often regulated by
dichotomous philosophies, have coexisted in different geographical locations. Often,
different groups of conservators defend alternative conservation values withsartiee
period of time and location. From the purist approach that advocatesl|tbégialal parts
should be preserveahd supported by a more modest atehrly different mateal, to the
Astylistic r e detDourcadtsi, o nion ow h s haldwete® createsat or er
historic falsehod ( D6 Ayal a and Forsyth, 2007) , conser

found alternative solutions for similar structural problems.



CHAPTER 1 Introductior

At present, the principles of conservation disseminated by the Venice Charéat iissu
1964 (ICOMOS2004b) are almosacceptedworldwide. The principles of authenticity,
minimum intervention, likdor-like repairs, compatibility, reversibility or rectractability, and
durability are well established and widely applied; even thoughafpi@ication of the
principles in practice is deeply related to the expectations and perceptions of the authorities,
citizens and owners, in terms of real cost and cultural significance.

The compliance with conservation principles is met with increaseténgesk in the case
of buildings located irseismicprone areas, since they often require high levels of upgrading
to ensure the present and future safety of the occumamsof the structure itself
Earthquakes have caused and continue to cause extdosses of cultural heritage.
Noticeable examples are the Mausoleum of Halicarnasstiarkey and the Lighthouse of
Alexandriain Egypt which are among the seven wonders of the ancient world. More
recently, the destruction of the Bam Citadel in Iran byanhquake in December28003,
and of many historic temples and palaces in Nepal by an earthquake in Ap@l025
(Figure 1.1 andFigure 1.2), have dramatically shown that historic buildings continue to be
vulnerable to earthquakes.

Stabilization and repair interventions are pftasufficient to prevent life and/or cultural
losses caused by poor structural performance of historic buildings during earthquakes. In this
case, upgrading interventions must be undertaken in order to eliminate or reduce the level of
deficiencies and impve the structural performance of the buildings (see for instance
ISRCHB, 2006). The upgrading of a historic building normally requires algasase

del i berati on, which is based on the foll owing as

(i) The life safety judgment;

(i) Prevention of damage to building components and contents (damage control);
(iif) Cultural significance;

(iv) Foreseen use;

(v) Predominant conservation values, expectations and perception of value;

(vi) Timeframe; and

(vii) Economic context.

As far as samic upgrading is concerned, the timeframe can directly or indirectly affect
all other aspects, since it is associated with the risk of occurrence of natural hazards. This
caseby-case deliberation should be supported by a robust and consistent metred for
thorough assessment of the historic construction. The development and validation of such

method is the objective of this thesis.
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Figure1.1 Hanuman Dhoka Palace damaged by the ApHl@frthquake (Katnandu, May 2015)

Figurel.2 Collapsed temple in Durbar Square after the April 25th earthquake (Kathmandu, N
2015)
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1.2 Investigating the state of historic buildings

The idea of performing a thoroughn ve st i gati on of the actual state
building and the causes leading to such state can be traced back to the sixteenth century with

the work of Leon Battista Al berti (D6Ayal a and
times, ICOMOSpr omot es t he pr i n crecprtirey [0k & derifage g t hat t h
construction or site] should be undertaken to an appropriate level of detail in order to

provide information for the process of identification, understanding, interpretation and

presentation of the heritage [construction] ( | COMOS, 2 0 Oike @and holisic me di c al
approach is currently widely applied to investigate the state of conservation of a historic

building. Complying with the previous principle, the process of asseddiergjfying and

planning treatment measures for a historic building can be categorized into the following

four phases (ICOMOSCARSAH, 2003):

(i) Acquisition and interpretation of original and historical data;
(ii) Interpretation of the current structural layordnstruction and condition;
(i) Diagnosis and safety evaluation; and

(iv) Planning, design and execution of interventions.

The first three phases can bepported by historical investigations, surveys, field and
experimental research, structural analysis and monitoring. Taking into account this approach,
the judgment of the level of current and future safety of a historic building requires that the
analystpossesses both traditional building knowledge and current engineering knowledge
and a robust method of acquiring, interpreting and applying the traditional knowledge
(D6Ayala and Forsyt h, 2007) . Traditi aonal buil di
gualitative analysis, as defined by the ICOMB®ARSAH (2003) principles. Qualitative
analysis regards the comparison between the present condition of the structure and the
condition d other similar structures whiatesponse is already understood.

Sunweying, field and experimental research are important procedures to characterise the
present state of the buildingecausé¢he building has been subjected to ldagm decay and
damage in different ways and to an extent that is hardly comparable to amysiiéh
although might find useful precedents in |itera
testing are constrained in their application by the extent to which they might compromise
any inherent cultural value. Furthermore, the benefits of expetaingéesting are often

limited due to the anisotropic nature of traditional materials, the typical heterogeneity of
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historic buildings, and economic or technical constraints. It has been discussed in literature
that it is difficult to conclude on whethen axperimental sample is representative of the
best, the worst or the average of the structure as a whole (Beckmann and Bowles, 2004).

Advances in numerical methods and computer science provide the theory and tools to
perform structural analyses of incremscomplexity and detail of large structures composed
of thousands of degreed-freedom and several sutructures interacting with each other.
Results of these analyses contribute, sometimes in a decisive way, to several phases of the
investigation, esgcially to the phase of diagnosis and safety evaluation.

Historic buildings have been studied using the most advanced tools contemporarily
available for structural analysis due to their relevant cultural significance (see for instance
Rocaetal., 2010). A important amount of time and resources are therefore usually
allocated to their assessment with the final aim of performing a diagnosis and safety
evaluation. If interventions are required to improve the structural response or condition of a
historic bulding, the interventions must comply with the principles of conservation.

However, although advanced structural analysis of historic buildings, on the basis of
numerical models for instance, has been extensively performed especially in the past two
decades many concerns remain at present due to the high level of uncertainty normally
present in such analyses. The high level of uncertainty normally compromises the reliability
of the diagnosis and safety evaluation, which subsequently can compromise thefdhfet
occupants and the cultural significance of a historic building.

Thus, it could be argued that increasing the complexity of the calculation metbed is
seinsufficient and not conditiogine qua norfor performing an accurate structural analysis.
The accuracy of the results will increase only if the increased sophistication of the model is
accompanied by an increased level of confidence in the value of the additional parameters
required to define the refined model.

The requirements and complianceteria of modern codes and guidelines can be used
for the diagnosis and safety evaluation of a historic building, by taking advantage of the
synergy of different expertise that is usually present in these documents. In addition, the
foreseen use of a hisic building could be considered in the evaluation of the structure and
design of treatment measures by means of importance factors (see for example E.030, 2003
and EN19983, 2005). Notwithstanding this possible application, importance factors
proposedby modern codes do not take into account the cultural significance of historic
buildings, which might be important to the diagnosis. Moreover, specifications of modern

codes demand higher levels of relidy or structural performancén terms of damage

5
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control, which could increase the level of intrusiveness of the interventions required for
compliance. Such level of intrusiveness could compromise the cultural significance of the

building.

1.3 Research motivation

Historic buildings and their analysis preséme principal challenges summarizedTiable
1.1, which emerge from the consideratiateeloped irpreviows sections. These challenges

originated fran several factors, some of which include difficulties or limitations that

compromise the reliability of the assessmant ultimately the precision of the diagnosis.

Tablel.1 Principal challenges for the structural analysigl peservatiorof historic buildings

Principal challenges

Factors

(i) Knowledge of the
present layout of the
structure as a whole
and materials is
limited

Original or historical information with details about the structur¢
normally limited,;

Original construction normally undergoes extensive changes o'
the years, which are not often recorded in detail; and

Surveying and experimental work can be carried out up to an
extent that it does not involve significant losses of historic
materials or elementd the structure.

(i) The present
condition of the
building is difficult
to evaluate

The structure normally undergoes complex processes of decay
damage that are different throughout the structure; and

Evidences of decay or damage are often hidden aneasdy
visible.

(iii) High seismic
fragility is typically
ascribed to historic
buildings

Poor conceptual design and construction for earthquake resist

Poor maintenance over the years, which lead to significant levi
of deterioration; and

Inadequate altetimn of the original structural system.

(iv) Diagnosis is
normally poorly
supported by results
of structural analysis

Several assumptions in terms of structural performance are
normally considered due to lack of knowledge and guidelines f
traditional materies and structural systems;

Structural analysis methods are not sufficiently developed for
structural systems composed of traditional materials;

Effect of decay or damage on the structural performance of the
buildings is often difficult to assess; and

Existing specifications of engineering codes in terms of damag
control and reliability are not tailored to historic constructions.
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Although there has beemmarkable progress on the analysis of historic constructions
made in recent decades, these challenges are still significant obstacles to the preservation of
historic buildings specially in developing seismigrone countries. Peru is a prominent
exampleof this due to the following main reasons:

(i) Peru has a high seismic hazard, being frequently affected by strong, damaging and
deadly earthquakes;

(i) Past ealtquakes have shown that mastisting historic buildings in Peru are
vulnerable to earthquakes; and

(iif) The structural system of Peruvian historic buildings and their performance of
largely under researched in Peru, which has led to wrong seismic retrofitting

measures in the past.

Peru has a long documented history of strong earthquakes that have caused seve
damage to existing constructions. Historical records summariz&igime 1.3 show that
Peru has been affected by many not only strong but alsthydesrthquakes (see for instance
Dorbathet al, 1990; Utsu, 2002 and USGS Historic World Earthquakes List, 2011). The
Global Seismic Hazard Map (Giardiat al, 1999) shows that the Western coast of South
America is one of the most active seismic afasme world. According to this map, a PGA
of 0.24g0.4g with 10% chance of exceedance in 50 years is associated to a vast area of the
Peruvian territory. In general, seismic activity in Peru is related to the subduction of the
Nazca plate under the SoutAmerican plate and also with tectonic structures
accommodating this convergence process (Taates, 2009).

Earthen construction has performed a significant role in Peru for almost four thousand
years, having spread throughout the country. In partic@arthen and timber historic
buildings erected during the Spanish Viceroyalty, a period spanning from 1534 to 1821, have
been constantly used over the years. Past earthquakes have shown that earthen and timber
historic buildings are vulnerable to earthiges For instance, the Arequipa earthquake of
June 23, 2001, of magnitude 6.9 in the Richter scale and maximum intensityi MAMI
(Taveraet al, 2002) caused severe damages, including the total collapse of colonial
churches and houses. According tougr and Farfan (2002), 36 of the 246 historic houses

of the city of Arequipa were severely affected by the earthquake.
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Figurel.3 Magnitude and human losses of historical earthquakes in Peru since 1500 to pre:
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The recent Pisco earthquake of August 15, 2007, of {@rid maximum MM of VIl
in Pisco and VIl in Ica, Chincha and San Vicente de Cafete (Tava&ta2009) caused
severe damage to historic churches. The San Clemente Cathedral, an adobe colonial church
with planked timber vaults, collapsed during a service at the tirtteecgarthquake, causing
the death of 160 people (30% of the total fatalities) (Tageed, 2009). This was the single
largest death toll of any structure during the earthquake (Taica, 2009). During the
Pisco earthquake, 42 churches in Ica addid Yauyos, Cafete and Huarochiri were
damaged, according to the Ministry of Culture of Peru, former National Institute of Culture
(INC, 2007).

In terms of historic churches, the most important lesson of the 2007 Pisco earthquake
was the collapse of mampjanked timber vaultdHgure1.4). This problem has not been only
observed in Peru but also in Chile after the February 2010 earthquake (for detadader

can refer to D6Ayala and Benzoni, 2012).

Figurel1.4 Examples of planked timber vaults that collapsed during the 2007 Pisco earthquake
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Research on the seismic performance of existing constructions in Peru done by Peruvian
universities was triggered by several strong earthquakes that happened between 1940 and
1978 (Torrealvaet al. 2006). In particular, investigations on the seismic respar earthen
constructions began in early 1970s in the aftermath of the 1970 Huaraz earthquake. Most of
this research has focused on experimental testing of adobe Ifewsegargaset al. 1983)
However, research on the response of histooitstructions would only be initiated at the
beginning of the ZLlcent ur y. Neverthel ess, to the authorod
attempts have been made so far to model and analyse Peruvian historic earthen and timber
churches by means of advanced medeld detailed analyses.
The extreme shortage of information on existing structural systems and condition of
earthen and timber churches in Peru exacerbates the challertgresrbReference source
ot found. and jeopardizes the future preservation of this vast heritage. The 2007 Pisco
Earthquake opened a unique, even though dramatic, opportunity to progress on the
understanding of the seismic perforroarof not only earthen and timber churches but also
other historic buildings in Peru. Advances made on the interpretation and analysis of the
structural performance of these buildings will have a potential high impact not only in many
local communities butacross several Latin American countries where similar historic
building types can be found (see for instance D6
The research reported i n t he present t hesi s
Architecture Initiativei Seismic Retraf t t i n g Pr oj eSRP), which Bear ué ( EAI
collaborative project of The Getty @servation Institute (GCl)Jniversity College London
(UCL), Pontificia Universidad Catodlica del Pert (PUCP), and the Ministerio de Cultura del
Pera (MCP). Fofurther detds of the EA}SRPthe reader can refer to Cancietoal. (2012).

1.4 Research aim and objectives

This research seeks a response to the following questions:

(a) How can the seismic performance of heritage constructions be assessed in the
presence of many uncertéigs and uncertaintiebe measured?
(b) What is the structural concept asdismiaesponsef historicPeruvianearthen

and timber churches?
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The response to question (a) provides thategy to answequestion (b). In order to

reach a solution to the afamentioned questions, this reseaahs to

(i) Interpret the structural system of historic earthen anberchurches in Peru;
(i) Proposea strateg to model and analyssartherand timberchurches

(iif) Proposea systematic seismic assessment strategy, tailored to conduct the
diagnoss of existing historic constructiormdto explain the causes eiisting
damage, whiclcan be used byhe technical community iearthquakeprone

countries;

(iv) Proposea strategy tomeasure the uncertainty present in the assessment of
historic constructions; and

(v) Formulate and validata hypothesis to explain tHailure of historic planked

timber vaults during the 2007 Pisco earthquake.

These specific objectives serve the purposeewtbbping and validating the assessment
approach while investigating some of the most complex and under researched heritage

constructions in the world.

1.5 Overview of the thesis

This thesisis organized int@ightchaptersincluding the present introductionhe literature
review in Chapter 2 addresses the historical development of seismic analysis of masonry and
timber structures, discussing the present limitations and inherent uncertainties of the various
approaches from a theoretical and practical viewpdirtonclusion is made at the end of the
chapter on the most adequate assessment strategy tailored to the diagnosis of historic earthen
and timber constructions in develog earthquakegronecountries

Basedon recommendations of guidelines accepted dvade, a general framework for
seismic assessment of historic constructions is proposed in Chapter 3. The framework seeks
to overcome current limitations of the assessment of historic constructions through a logic
sequence of stages thadn be applied bpractitionersin both developing and developed
countries. A procedure for uncertainty analysis is formulated and included in the framework
in order to monitor, quantify and control the level of uncertgimmgsent avarious stages.

Chapters 4, 5, 6 andaim at validating the general framework for seismic assessment of

historic constructions by applying it to the prominent case of earthen and timber Peruvian
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churches. This validation is done through the analysis and diagnosis of both a representative
strudure of Andean adobe churches (the Church ofikKltambo) and a representative
historic timber structur¢Cathedral of Ica). The assessment of each of these representative
structures presents different challenges. The aim is to show that the same gemersbfik

can be applied to historic buildings of different complexity, made of different matemals

with distinct structural behaviour.

Chapter 4 presents a detailed investigation and interpretation of the principal structural
characteristics of the Cheh of Kuiio Tambo and Cathedral of Ica. The structural system and
current condition of these buildings is interpreted on the basis of historical documentation,
oral testimoniesrad surveys conducted by the EBRP team, including the author, in Peru.

A preliminary diagnosis of the Church of Ra Tambo and Cathedral of Ica is presented in
Chapter 5. This consists of the first diagnostic exercise which is based on initial
interpretation of available information by the analysts. The preliminary diagnosis is a
collegial activity conducted by a team with different expertise. It precedes more specialized
and detailed investigations as for instance the structural modelling and analysis. The
preliminary diagnosis is accompanied by an initial qualitative evaluationcertainty.

The structural modelling and analysis of the Church ofilKliambo and Cathedral of
Ica areinitiated in Chapter 6 with local finite element models. The objective of these
analyses at the local level is to investigate alternative hypothessistilate the global
response of the structures and identify critical aspects that must be takeccoiatéan the
structural analysi in order to make a final meaningful diagnosis. The uncertainties of the
assessment due to lack of knowledge and thé&itive influence are quantified, showing that
some inputs of the analyses are more critical than others to the accuracy epticsidi
The conclusions of this chaptadlow identifying hypotheses related to the structural
response of the churches t® forther investigated with the global models, as for instance the
influence of specific aspects on the failure of plantiedber arches dring the 2007 Pisco
earthquake.

Chapter Jresend the analysis of the Church of Ko Tambo and Cathedral of le&the
global level. Based on these results, a detailed diagnosis of the adobe structuf® of Ku
Tambo and timber structure of the Cathedral of Ica is conducted. A hypothesis for the
conservation of these historic building types is proposed

Finally, Chapter &resentghe principal conclusions of thbesisand the opportunities

for further research.
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CHAPTER 2

A literature review ontsuctural assessment of historic buildings

2.1 Introduction

The principal challenges in the structural assessment of historic buildings highlighted in
Chapter 1 can be summarized in one word: knowledge. This knowledge is associated not
only to available information of the building structure but also to present engineering
understanding of the behaviour of historic materials and structural systems. However, the
level of knowledge should be discussed within a wider perspective of the asseasmhthe
respective purpose. It is reasonable to assume that the final aim of any assessment is to make
a diagnosis of the historic building. In another words, the aim is to decide whether the
building requires or not remedial interventions. To make dmgnosis, the analyst will use

best engineering knowledge and tools taking into account the available resources. The
analyst will therefore seek available knowledge and tools and decide what resources and
tools can be used. This chapter attempts tcantp at e t he anal ystodés sea
methodology to make the diagnosis of a specific historic construction. It will therefore
discuss what tools are available and what the use of these tools implies in terms of
uncertainty. While doing so, this chap will discuss the best engineering knowledge and
tools available to study historic buildings and identify the principal limitations. This concept

of engineering tools is here used to denote methods available to model and conduct structural
analysis of kstoric buildings. These structural analysis methods deal with idealisations or
models of the building, in terms of geometry, materials and structural behaviour, and use

estimates of the actions that act on the structure at a given time or which arerfonethe
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future. More refined models would in principle demand more detailed information about the
building and actions, and more experienced analysts; even though for historic buildings
much of the available information is qualitative and anecdotal laadutcertainty of any

data is variable and may depend on expert opinid@yd@a and Forsyth, 2007).

In structural analysis of historic buildings, the constitutive model used to reproduce the
mechanical behaviour of the building materials is a criticarc®wf uncertainty. Any
attempt to reproduce this behaviour faces limitations in terms of characterization of the
building materials and the ability of the models to estimate the response to given actions.

This chapter focus on the most common traditidmalding materials: masonry and
timber. In the specific case of masonry, emphasis is given to adobe, which is one of the most
vulnerable and least studied historic masonry types. Masonry and timber have different
mechanical behaaur, and the structural siemmade ofeither one or the other requiras
different modelling and structural analysis strategy. Nonetheless, masonry and timber
structural systems in real structures do interact with each other and this interaction
phenomenon is often more difficutd reproduce than the isolated structural behaviour of
either masonry or timber structures.

In the following, an overview and discussion of the constitutive models and structural
analysis approaches most applied to the assessment of historic masormbandtiiuctures
are discussed. An overview of seismic assessment procedures for this type of structures is
then presented, highlighting the corresponding limitations and applicability to the objectives
of thisthesis While discussing the advantages anaitktions of the various approaches, the
uncertainties associated to the use of these models and methods are also discussed. A brief
discussion on the uncertainties present in the assessmenttaichinstructions and
provisions of current codes and deilines to take into account these utaiaties conclude

the chapter.
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2.2 Structural analysis of masonry structures

2.2.1Constitutive modelling of masonry

Masonry is a composite ndromogeneous material, normally with a spatially regular
arrangenent of unitsand bonding agenSuch arrangement resultsan orthotropic material

with different mechanical characteristics in three orthogonal directions and different strength
and stiffness in compression, tension and shear. The spatial arrangement can also be
irregular, such as in the case of rubble stone masonwyhere two leaves of wall with

rubble infill exist with a typical anisotropic behaviour. Analytical formulations of the
mechanical behaviour of masonry are normally based on plasticity theory andugontin
damage mechanics.

Classical failure criteria based on plasticity theory have been successfully applied to the
analysis of masonry constructions over the years. For instancdikeaihaterial models
such as MohCoulomb and DruckelPrager (Drucker an®rager, 1952) can simulate well
the seismic behaviour of unreinforced masonry, especially of historic masonry where the
interfaces have typically low friction coefficient due to the type of mortars useduntb
deterioration ([Ryala and Tomasoni, 2008The DruckeiPrager material model allows the
adoption of different relationshiger calculation of strength parametdrased on cohesion
and friction angle. These relationships can be formulated on the basis of a desired match
with a Coulomkbtype critgion. For instance, the relationships can be formulated with the aim
of getting a good match with uniaxial tensile and/or compressive strength of the material.
Some difficulties might however be found when trying to predict the response of the
masonry undeboth uniaxial and biaxial stress states. These limitations can however be
overcome by intersecting two Druckierager surfaces with independent strength parameters
(see for instance Geneaal, 1998).

Formulations based on mufiurface plasticity theg have the main advantage of
allowing different failure mechanisms of masonry to be considered which may act
simultaneously (Mistleet al, 2006). Multisurface formulations were first introduced by
Mann and Miler (1978) and Ganz (1985) for twidmensional and thregimensional
problems, respectively. However, these formulations were verified by means of experimental
data gathered by tests performed on new masonry (Zimmerm@armh, 2010). More
recently, Lourepo (1996) proposed a ndmear model for irplane loaded walls based on a
multi-surface composed of a Hilfype criterion for compression and a Rankiyge criterion

for tension. MAyala (1998) also used a Rankitygpe failure criterion to define the staof
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stress internal to the single element of mortar or brick, while the bond between mortar and
unit and the shear behaviour of the units are defined by a-Blahiomb type criterion.

A drawback of the plasticity theory is the inherent limitation to adpce stiffness
degradation of masonry related mainly to cracking, which is an important aspect when
masonry is subjected to reverse loading, such as earthquake for instance. Continuum damage
mechanics is suitable for applications where this behaviourlmeustken into account.

The approach is based on continuum mechanics theory. Smeared crack behaviour is
assumed, where progression of cracking is simulated by the change of deformational and
strength properties of the material. For instance, an isotropitncum damage mechanics
law was adopted by Callerio and Papa (1998) to simulate the decreasing of stiffness of
masonry subjected toqolane reverse loading. In this work, the behaviour of bed joints in
shear is governed by a Me@oulomb criterion.

Despte their more complex formulation, orthotropic damage models have also been
applied to the analysis of masonry structures. For instance, &eato(2002) developed an
orthotropic damage model to study the response of masonry composed of brickthatiffer
mortar under plane stress conditions, where the directions of the bed and head joints are
assumed as the main directions of the damage. In each direction, a parameter for
compres®n and a parameter for tensiare used to simulate the crack openitogiere. The
model takes into account the capacity of transmission of shear due to friction phenomena
through an open crack, assuring minimum shear strength for a completely damaged material.

The materi al properties of mnmastnumumgahbde component
characterised by means of:

(i) Experimental tests on representative models;
(ii) Statistical studies of properties of bricks and mortar; and

(iif) Homogenisation techniques.

Experimental testing has traditionally been the most successfully appligednior
characterising the material properties of masonry. However, as discussed in Section 1.2,
experimental work is often of limited application due to the anisotropic nature of traditional
materials, the typical heterogeneity oistbric buildings, andeconomic,technical and
conservatiorconstraints At a technical level,ie mainissue regards the representativeness
of the samples or experimental models and the adequacy of the experimental setup and

program for the purpose of the test
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As far as statitical studies are concerned, a representative example can be found in work
by D#yala and Carriero (1995a), who conducted an extensive review of literature related to
experimental work on historic masonry in order to develop a database of geometric and
mechanical properties. From the statistical analysis of the data collected, correlations
between ranges of parameters were identified and regression curves deigued 2.1).

This work enables the definition of mechanical parameters for masonry when mechanical
and geometric properties of the corresponding components are available. As a result of this
work, D#yala and Carriero (1995b) developed a nuoariool to study the nelinear
response of masonry structures by devising a simple step by step procedure that can be
applied using commercial finite element software.

However, a major limitation of statistical studies is the need for having a compkehens
database of relevant properties for bricks and mortar that represent well the heritage
construction. Such database is not available for traditional materials like adobe, as will be
further discussed in Chapter 6.
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Figure2.1 Relation between the compressive strength of the comporkemsdr mortar and=cb for
brick) and the strength ahasonryFcw( af t er D& Ayal a and Carriero

Homogenisation techniques have been formulated for masoroxdér to analytically
obtain the properties of a maesoale continuum from the properties of some components
using alternative approaches, such as Limit State Mechanism approaches, Finite Element and
Discrete Element based approaches. These technigeidsased on the principle that the

macroscopistructural behaviour of regulamasonry can be characterised by a basic cell that
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is representative of the masonry pattern. This concept of a representative cell for periodic
media was described by Anthoine 959 by using the example of a masonry @afiortion

under plane stress conditionBigure 2.2). In this case, the mechanical properties of a
periodic media are invariant along any translationv:+mpv,, wherevy and v, are two
independent vectors ama andm, are integers. The characterisation of the periodic masonry
hence requires only the definition of the mechanical properties of the media orila sma
domainsS (representative cell), associated to a frame of reference) and with an area
equal to the norm of the vectoroduct 1S Vo).
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1

Figure2.2 Masonry under plane stress conditions and frame of reference (after Anthoine, 1995)

Examples of homogenization techniques can be found in work by Raradg(1989),
Anthoine (1995), Leet al. (1996), Chudybat al. (1998), Casolo and Milani (2010), &n
Milani (2011).
Among the various homogenization techniques, finite element nonlinear approaches, also
known alsevwenud tapproaches are one of the most dis
of getting stresstrain relations at the representativé lexel and using this information at a
macroscopic level. The most important limitation of this homogenization technique is the
fact that the double computational effort needed due to the existence of a micro and
macroscale mesh does not allow for staflyeal complex thredimensional buildings, as

quoted by Louregp et al. (2007).
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2.2.2Structural analysis approaches

In literature normally three approaches have been taken so far for the modelling and

structural analysis of masonry structures:

(i) Simplified limit state mechanism approaches;
(ii) Finite element method based approaches; and

(iii) Discrete element method based approaches.

These approaches are listed according to their complexity. The origin and basic
principles of the various approaches, as well as thia mdvantages and disadvantages are
discussed in the following.

2.2.2.1LIMIT STATE MECHANISM APPROACHES

Limit state mechanism approaches assume that the failure of masonry structures is caused by
instability of the units, in the case of dry masonry or masotitty poor mortar, or portions
of the masonry, in the other cases. The units or portions are modelled as a system of rigid
bodies articulated by hinges, and equilibrium states are expressed in terms of
stressresultants. Since equilibrium equations relatessresultants rather than stresses they
only ensure, in general, that equilibrium is satisfied in an overall sense (Livesley, 1978).
Heyman (1966) quotes the work oféEier in the 18 century to demonstrate that the
identification of typical mechanismef collapse of masonry structures through model
experiments is a quite old idelsigure2.3). The origins of limit state mechanism approaches
can betraced back to equilibrium methods or stability methods for structural analysis of
vaulted masonry constructions developed by the end of theelitury. These methods use
the thrust line theory to find equilibrium states and possible collapse mechaiisory all
equilibrium methods, graphic statics was one of the most widely applied intreedfiry
and beginning of the #0century. Recent work by Bloait al.(2006) applies graphic statics
to the analysis and design of masonry constructions by snednan interactive
computational geometry software in which the geometry of the structure can be adjusted in
reattime. Based on this tool, DeJong (2009) applied tilting thrust analysis as a first order
seismic assessment method to study the stabilitgubfstructures, such as vaults and

buttresses, and the influence of the interaction of structural components upon the stability of
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the whole structure. However, local sliding and crushing are not simulated and it is also

limited to twodimensional problems

Figure2.3 Collapse mechanisms of arches aftazler (Heyman, 1966)
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Limit analysis of masonry structures was first formulated by Heyman (1966, 1995)
assuming that the limit theorems of plastictpwerbound theorem and uppkound
theorem) can be applied to masonry structures on the premises that masonry has no tensile
strength but infinite compressive strength and sliding failure does not occur. These
assumptions are usually valid for masonmuatures with high values of friction coefficient
subjected to seliveight; however shear failure and crushing of masonry structures normally
occur under earthquake loading for instance.

Limit analysis evolved towards formulations based on premises objpibg®f sliding
in presence of friction, limited compressive strength and-associated flow rules with
absence of dilatancy. Livesley (1978) considered for the first time a Coulomb friction law to
characterise the behaviour of the interface of rigiaths in shear. More recent advances on
limit analysis formulations can be found in work by#ala and Tomasoni (2008),
Casapulla and @yala (2006), Gilbertet al. (2006) and Ordufia and Lourengo (2005a,
2005b).

In summary, limit state mechanism approactseek the identification of ultimate
stressresultants and load capacities when collapse mechanisms have formed. An important
advantage of limit analysis for practitioners is the simplicity of the approach, which allows
the development of practical comptibnal tools, and especially the reduced number of input
parameters. A major disadvantage is the fact that these approaches do not assess initiation
and progression of damage and therefore they are suited to evaluate only ultimate states,
which occur formodest levels of displacement. It is assumed that no local failures occur
before the critical mechanism is completely triggered. However, in the case of historic
buildings, the assessment pursues mainly the evaluation of the initiation and progress of
damae; such as to identify remedial measures that prevent the occurrence of major damage,
which would compromise the preservation of valuable assets. Moreover, limit state
mechanism approaches are inherently not suited for the analysis of largditheesimal
structures, but for specific structural components, such as buttresses and arches.

Nevertheless, as reported by Retal. (2010), independently of the level of refinement,
the results of any analysis method will produce, at ultimate conditiontgdéstéseeable by
means of limit analysis. An interesting example of the complementary use of finite element
modelling with limit analysis can be found in work by De Lietaal. (2004) to analyse
triumphal arches of Neapolitan churches. In this wdirkfe element analyses alloto
localise potential cracks and identipllapse mechanism@n the other handinhit analysis

providesacollapse multiplier for eacitdentified collapse mechasin
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2.2.2.2FINITE ELEMENT METHOD BASED APPROACHES

Original mathematical ahengineering ideas that led to the Finite Element Method (FEM)
can be traced back to the late™18nd 19' centuries (Zienkiewicz and Taylor, 2000).
However, the basic ideas of the method as known today were developed iff ten0y

by Argyris and kelsey (1955) andlurner et al. (1956). The first book dealing with
preseriday FEM was published in 1967 and authoredZlgnkiewicz and Cheun(l967).
Since the origins to psentday, research oREM has rapidly evolved and its application
expandedacross many professional and academic fields solving multiple engineering
problems, as described in Gupta and Meek (1996).

Zienkiewicz and Taylor (2000)escribeFEM as a general discretization procedure of
continuum problems posed by mathematically defiseatements. A building structure is
therefore discretized into a finite number of elements, where each element is characterised
by a forcedisplacement relationship. The assembly of all elements by following a
well-defined procedure of establishing loeguilibrium at each node or connecting point of
the structure allow solving the resulting equations for the unknown displacefEMsis
based on the principles of continuity, in which all elements are connected at the nodes, and
compatibility in which guilibrium is established at each node.

FEM based approaches assume that the performance of masonry structures is governed
by the behaviour of the constituent materials and contacts between them. Equilibrium states
are expressed in terms of displacemeragst distributions and contact phenomefigure
2.4 and Figure 2.5). An important advantage of these approaches is that the whole
performance of the structure, from damage initiation and progression to failure can be
predicted; even though the large displacements normally accompanying the cdildpse o
structure can be hardly simulated. However, the choice of material models is an important
issue of FEM analysis in order to realistically simulate by means of isotropic or orthotropic
models a material which is typically anisotropic.

In literature, he DrucketPrager and Moh€oulomb models are two of the most
successfully applied material models on the analysisasiomry constructions througteM.

Some examples can be found in work by Robettal. (2005), Mallardoet al. (2008),
Krstevska et al. (2008), Pallaréstal. (2009) and Sevimet al. (2011). In alternative,
concretebased models have also been successfully used in the analysis of masonry
structures. Some examples can be found in work by Meld. (2003), Bayraktaet al.

(2010), Silveetal. (2012) and Tarquet al.(2013).
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Figure2.4 Results of linear elastic finite element analysis for a quarter span point load: (a,b)
maximum and (c,d) minimum principal stresses for seingular and pointed arch, respectively
(afterLourergo, 2001)
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Figure2.5 Results of nodinear finite element analysis for a quarter span point load. Minimum
principal stresses and failure mechanisms for (a)-séaular and (b) pointed arch
(afterLourenco,2001)

According to Rao (2005), one of the main reasamstlie popularity of the FEM in

different fields of engineering is that once a general computer program is written, it can be

used for the solution of any problem simply by changing the input data. Perhaps for this

reason, FEM software is almost worldwkigown by the engineering community.

This popularity of the FEM is an important advantage for the assessment of historic

constructions, since the analysis of the thdigeensional structural behaviour of historic

constructions by practitioners requires g@pr@ach suitable for the modelling of large and

complex structures using current available computational tools. Current finite element

method based software packages have good -thmeensional graphic interface, which
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allows complex geometries to be simigld and a suite of linear and Horear material

models and finite elements, which can be adapted to different adplygieses.

2.2.2.3DISCRETE ELEMENT METHDD BASED APPROACHES

Approaches based on the discrete element method have been applied to anatysetine

of different types of masonry by assuming the material as a discontinuous media composed
of rigid or deformable blocks and contact surfaces between the blocks for simulation of the
joints. Material, geometric and boundary Aotearities, includng large displacements, can

be modelled by these techniques under both static and dynamic conditions. Under these
conditions, individual masonry blocks can separate from each other or slide along their
contact area. In the case of deformable blocks, ditathee model is applied to simulate the

i nternal stress and deformation of the bl
on the interfaces when the blocks are in contact to simulate the response of the masonry in
shear. Following this law, rafive sliding of the blocks occurs when the frictional resistance

is exceeded by the loads.

Alternative formulations such as the Distinct Element Method, Discontinuous
Deformation Analysis, and Discrete Finite Element Method have also been used in the
andysis of masonry constructions (Cundall, 1971; Shi, 1992; Mamagtahj 1999.

The Distinct Element Method (DEM) was initial formulated by Cundall (1971) based on
Newt on6s second | aw. A direct derivation
program UDECT Universal Distinct Element Code. More recent work by Azevedal.

(2000), Zhuge (2008) and Furukawaal. (2010) use approaches which are based on this
method Figure2.6).

Discontinuous Deformation Analysis (DDA), formulated by Shi (1992), is an alternative
displacemenbased method formulated on the basis of the principle of minimum total
potential energy. The method was applied by Btaal. (1996) to the analysis of
two-dimensional masonry structures. This allowed the authors to explain through numerical
simulations the typical behaviour of masonry characterized by the occurrence of local
failures. The authors concluded that althoughcatitinuities or joints between blocks
inherently reduce the integrity and strength of masonry structures, sliding occurring along
those joints consumes seismic energy and therefore the probability of overall structural
collapse is low compared to tbecurence of local failures.

The Discrete Finite Element Method, developed by Mamaggiaal. (1999), uses the

principles of continuity and compatibility of the Finite Element Method for analysis of
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blocky systems, incorporating contact elements to mblbek interactions such as sliding

and separation for the purpose of conducting stability studies.

e B

(a) 0 sec (b) 1 sec (¢)2 sec

(d) 3 sec (e)4sec (f) 5 sec

(2)6 sec (h)7 sec (i) 8 sec

Figure2.6 Structural performance of an adobe building model (5m width x 3m depth x 2.4 height)
subjected to ground motion recorded during the 2003 Bam earthquake in Iran
(after FurukawaandOhta, 2009)

The main advantage of discrete element method based apprascties ability to
simulate the collapse of the structure, which is typically accompanied by large
displacements. However, these approaches require a large number of inputs to characterize
the behaviour of blocks and joints and their interaction, whicmatr@ormally available for
historic buildings. These uncertainties on the inputs resulting in cumulative errors derived by
repetitive iterations lead to significant inaccuraocim the evaluation of failuiiaitiation and
progression. In the case of thesassmnt of historic buildings, where them is to protect
the assets from future dage, the evaluation of failuiieitiation and progression is more
important than the simulation of the collapse. Moreoiremracticethese approaches can
only be appkd to relatively small cells, with a limited number of elements due to very high
computational burden required. This does not allow simulating large-dimessional
historic structures and the complex interactions occurring among the various compbnents a
a macrelevel (e.g. interactions among orthogonal walls). Thus, discrete element method

based approaches are not currently viable to assess the performance of historic buildings.
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2.2.3The specific case of adobe constructions

Taking into account the previoussdussion of the various analysis approaches, and in order
to evaluate possible best approaches for the seismic assessment of historic adobe

constructionsn countries like Pertthree main aspects must be taken into account:

(i) The material behaviour of ale;
(i) The structural characteristics of historic adobe constructions; and
(iii) The availability of resources in seismic prone countries with historic adobe

constructions.

The following discussion will address each and all of these aspects.

Historic adobe is atype of masonry characterised by a relatively low compression
strength compared to other types of masonry, such as fired brick masonry. In addition, adobe
is often not well bonded and can easily lose the cohesion of the material in the presence of
water. These facts can create multiple icat points and local failuremnithe structure,
especially in the case of complex geometries and presence of concentrated loads. Although
adobe has low compression strength if compared to other types of masonry, coishing
adobe in histori®eruvianstructures might not occur as compression stressexpeeted to
be generally low due to the large thickness of thalls and the low weight of typical
Peruvian historicoof structures and their applied loads.

Experimentalevidences from shaking table tests performed on historic adobe structures
(Tolleset al, 2002) indicate that, when cracking develops ndweiralfrequency of vibration
decreases and the displacements substantially increase. Although cracking typictps
for very low values of tension, thick adobe walls admit large displacements without the
formation of a failure mechanism. However, such large displacements would compromise
the conservation of assets with cultural significance; and hence it is impogtant to
identify when large displacements can initiate than to simulate those large displacements.

The mortar of adobe structures has noryndle same or similar materiabmposition,
and hence strength characteristics of the units, which leadsrioired failure mechanisms.
However, the joints may often be the weakest constituents of adobe structures since rapid
drying during the building of the structure can lead to shrinkage and cracking of the mortar
(Tollesetal., 2002). Although shrinkage phemenon can also occur in the adobe units, its
effect is usually less evident due to the typical addition of straw, crushed bone or/and other

organic materials. Indeed, animal, vegetable, mineral or synthetic fibres increase the tensile
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strength of the uts, hinder cracking on drying by distributing the tension arising from the
shrinkage of the clay throughout the bulk of the material, and accelerate drying since they
improve the drainage of moisture towards the outer surface through the channels afforded
the fibres (Houben and Guillaud, 1994).

Considering a similar material behaviour of joints and units, FEM based approaches,
where adobe is simulated as a homogeneous material have been successfully applied both in
the elastic (e.g. Islam and Watanab@04) and inelastic range (e.garqueet al, 2013),
using both soilike material models such as the Druckeager model, and concrdiased
models.

On the other hand, exploring the fact that the joints may also be the weakest component,
and hence thatdabe structures may fail by instability caused by the separation of the units
(as observed in buildings after earthquakes by for instance Furukaala 2010), DEM
based approaches have also been applied to the analysis of the collapse of small adobe
houwses (e.gMayorca and Meguro, 2004; Furukaeftal, 2010).

Although important developments have been recently made oflineam analysis of
adobe structures using advanced numerical simulations, detailed studies on historic adobe
constructions, such asurches, lack in literature when compared to stonered fbrick
masonry constructions. In the case of these constructions, important developments can be
traced back to more than two decades ago tli#hmodelling and analysis of the Colosseum
in Italy by Croci et al. (1995), Mexico Cathedral by Me&dind SancheRamirez (1997) and
Mallorca Cathedral in Spain by Roca (2001).

The lack of detailed seismic analysis of historic adobe structures can be justified by
economic and scientific reasons. Economic reascan be explained by comparing the
distribution of adobe constructions in the world with the distribution of wealth. Simplified
maps showing the distribution of earth construction in the world and a map of the world
combining population density and wédatleveloped by the National Geographic Society are
shown inFigure2.7. These maps show that some of the most densely populated and poorer

areas irthe world have an imponta building environment built frorearth, namely adobe.
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a) Distribution of earth construction in Africa,  b) Distribution of earth construction in
Asia, Europe and Oceania (Houben and North, Centrabnd South America
Guillaud, 1994) (Houben and Guillaud, 1994)

c) Distribution of wealth (in Gross Domestic Product per capita) and population density (
per square mile) in the world (NGM, 2011)

Figure2.7 Distribution of earth construction, wealth and population density in the world
This means that most historic adobe constructions are located in countries where the

engineering community lack resources to develop detailed and expensive experimental and

numerical analyses. In seismic prone countries, like Peru, experimental and analytical work
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