UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Risk-Aware Information Retrieval

Zhu, JH; Wang, J; Taylor, M; Cox, IJ; (2009) Risk-Aware Information Retrieval. In: Boughanem, M and Berrut, C and Mothe, J and SouleDupuy, C, (eds.) ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS. (pp. 17 - 28). SPRINGER-VERLAG BERLIN

Full text not available from this repository.

Abstract

Probabilistic retrieval models usually rank documents based on a scalar quantity. However, such models lack any estimate for the uncertainty associated with a document's rank. Further, such models seldom have an explicit utility (or cost) that is optimized when ranking documents. To address these issues, we take a Bayesian perspective that explicitly considers the uncertainty associated with the estimation of the probability of relevance, and propose an asymmetric cost function for document ranking. Our cost function has the advantage of adjusting the risk in document retrieval via a single parameter for any probabilistic retrieval model. We use the logit model to transform the document posterior distribution with probability space [0.1] into a normal distribution with variable space (-infinity, +infinity). We apply our risk adjustment approach to a language modelling framework for risk adjustable document ranking. Our experimental results show that our risk-aware model can significantly improve the performance of language models, both with and without background smoothing. When our method is applied to a language model without background smoothing, it can perform as well as the Dirichlet smoothing approach.

Type:Proceedings paper
Title:Risk-Aware Information Retrieval
Event:31st European Conference on Information Research
Location:Toulouse, FRANCE
Dates:2009-04-06 - 2009-04-09
ISBN-13:978-3-642-00957-0
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Computer Science

Archive Staff Only: edit this record