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Abstract 

Titanium dioxide (TiO2) is a pigment used in the whitening of millions of products from paint to 

foodstuffs. Produced via purification of ores using the Chloride Process, the mined TiO2 ore is 

chlorinated along with all of the impurities. The resulting TiCl4 is a liquid at room temperature and 

can be separated from its impurities using distillation. V2O5, an impurity present in this ore is 

converted to vanadium oxytrichloride (VOCl3) which is too similar in boiling point to TiCl4 to 

separate via distillation and instead is removed via addition of an oil, which preferably binds to 

VOCl3.  

 

This work, sponsored by Huntsman Pigments and Additives, seeks to better understand this 

reaction, as well as other aspects of the Chloride Process. This is achieved by analysing industrial 

samples as well as producing lab scale models for the process and investigating inorganic synthesis 

of analogous compounds [TiCl4{CH2(CO2CH(CH3)2}2] [1a], [(µ-O)(TiCl3{CH2(CO2CH(CH3)2}2)] 

[1b],  [TiCl4{CH2(CO2CH(C6H5)}2] [2], [TiCl4{C2H4(CO2CH3)}2] [3], VOCl3+glycerol tribenzoate [4], 

[VOCl2(acac)] [5], [{VOCl2(CH2(CO2Et)2}4] [6] and [VOCl2{C2H4(CO2Et)2}]n [7] that were characterised 

via single crystal X-ray diffraction analysis (with the exception of 4) 

 

Alongside this study, multiple side projects were undertaken that sought to use some of the novel 

materials produced in materials synthesis, due to the useful nature of both TiO2 and VO2 in window 

coating applications, the abundance of oxygen in the products making them good contenders for 

metal oxide precursors.  This included the deposition of TiO2 /SiO2 thin films for photocatalytic self 

cleaning applications, VO2 thin films for energy saving windows and VC/VN particles for mechanical 

hardening applications.  

 

In addition, a new system for the in-situ study of high temperature gas phase inorganic reactions 

via mass spectroscopy was developed and used to study the reactivity of gaseous TiCl4 and VOCl3, 

as well as several other species including vanadium chloride, titanium isopropoxide and butyltin 

trichloride considered to be of greater interest to the field of thin film deposition.   
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   Chapter 1 

Introduction 

 

1.1. Project Overview 

This project was funded by Huntsman Pigments and Additives, branch of Huntsman Chemicals 

that produces titanium dioxide, a pigment used in the production of paints. TiO2 is produced 

on an industrial scale by The Chloride Process, a series of steps in which TiO2 ore is converted 

to TiCl4 and the impurities removed via distillation. One impurity in particular, VOCl3, is 

removed via the injection of oil, which is found to react exclusively with the gaseous VOCl3, 

leaving the TiCl4 to distil into the next part of the process. This technique is widely used, but 

little is known as to why the TiCl4 does not react with the oil.  

This project seeks to further the understanding of the Chloride Process. The reactions of TiCl4 

and VOCl3 with oils have been studied using a number of methods. Initially industrial samples 

of TiCl4 taken from the Chloride Process were analysed using nuclear magnetic resonance 

(NMR) spectroscopy. Following this various β-diketo esters and triesters were used as 

analogues for the triglyceride backbone of the oil and reacted with both species. The products 

of these reactions were crystallised, and the products used to explain the oils preferred 

reactivity in the Chloride Process.  

The gas phase interactions of TiCl4 and VOCl3 were then studied by building a laboratory scale 

replica of the distillation phase of the Chloride Process, and the samples produced were 

analysed. Following this a system for studying the contents of a high temperature vapour 
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deposition reactor was designed and built, and used to study the reactivity of TiCl4 and VOCl3  

in the gas phase directly, as well as several other molecules frequently used in the vapour 

deposition of thin films.  

In addition to data on The Chloride Process, several new single source precursors for the 

chemical vapour deposition (CVD) of VO2 and composited TiO2-SiO2 thin films were produced 

as an indirect result of this project. The precursors were characterised and the resulting films 

grown and were analysed. 

1.2. Titanium Dioxide 

Titanium Dioxide (TiO2) is a heavily studied material that has a variety of uses, with over  4.5 

million tonnes produced annually.1 Titanium dioxide is mostly obtained through mining and 

purification of the ore, which is carried out by one of two main processes (vida infra). In recent 

years a synthetic alternative to production has been developed using titanium slag from 

metallurgical processes.2  

1.2.1. Structure and Phases  

Titanium dioxide has three common mineral phases: Rutile, Brookite and Anatase (Figure 1). 

All of these phases consist of distorted octahedra with titanium surrounded by six oxygen 

atoms.  The orientation of these octahedral alters depending on the phase present. The most 

thermodynamically stable phase is Rutile TiO2. Anatase and Brookite convert to this phase 

when heated to 915 ˚C and 730 ˚C, respectively. 3 
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Figure 1: Crystal structures of the three polymorphs of TiO2.
4 

Rutile TiO2 has a primitive tetragonal geometry with space group 4/m 2/m 2/m. The Rutile 

unit cell consists of two TiO6 octahedra each coordinated to 6 oxygen atoms which are in turn 

shared by 3 titanium atoms. The resulting greater structure appears as an array of corner 

sharing octahedra. 

Anatase TiO2 also has tetragonal geometry and shares its space group with rutile TiO2; 

however the structures differ in that the TiO6 octahedra are linked at two corners (edge 

sharing). This makes the Anatase phase less dense and hard than the Rutile (Anatase has a 

Moh hardness of 5.5 vs. 6.5 For Rutile).5 Despite this, Anatase frequently finds mechanical 

uses due to its lower abrasiveness compared to that of Rutile.3 Brookite TiO2 has a crystal 

structure with Orthorhombic geometry and space group 2/m 2/m 2/m. Unlike the other two 

polymorphs it is brown in colour. 

1.2.2. Uses of TiO2 

Titanium dioxide’s primary uses derive from its extremely high refractive index of 2.73 for 

Rutile and 2.55 for Anatase.6 This makes it the ‘whitest white pigment’ available, zinc oxide 
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having a refractive  index of 2. This has led to titanium dioxide being used in whitening of a 

large number of products, with a market worth $15.17 billion in 2014. 7 

Figure 2 gives a breakdown of the uses of TiO2 pigments. By far the largest portion of the TiO2 

pigments market is taken up by coatings (paint), however it is also heavily used in plastics, 

where it is added to the resin in order to whiten the product,8 as well as the food, makeup 

and clothing industries.9  As Figure 2 shows, over the last 15 years these uses, as well as the 

demand for energy and antimicrobial applications, have seen a huge increase in demand for 

TiO2, with ‘other’ now responsible for over half of the annual consumption of TiO2   

 

Figure 2: Breakdown of TiO2 use in 20031 compared with 2013.10 

The refractive index of titania is found to relate to the particle size, as well as the polymorph 

present. For instance when TiO2 is encased in a polymer resin with a refractive index of 1.5, 

then the refractive index is found to increase with particle size up to 0.19 μm, at which point 

there is a drop off.11 This is important in the later stages of TiO2 production. In addition to 

pigmentation, TiO2 has found use in a wide variety of applications, as described below.  

 Self-Cleaning Coatings.  Titanium Dioxide’s self-cleaning capabilities are well studied. The 

material exhibits super-hydrophilicity as well as photocatalysing the breakdown of dirt.12 This 
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process occurs as a result of photoexcitation. TiO2 has a band gap of 3.2 eV for the Anatase 

phase,13 putting it in the UV region of the Electromagnetic spectrum. When the material 

comes into contact with UV light, electrons are excited to the conductance band, leaving 

positive holes. Some of these charge carriers migrate to the surface of the material, where 

the holes reduce the organic material on the surface and the electrons combine with 

atmospheric oxygen to form superoxide radicals, which aggressively break down organic 

materials.14 

Antibacterial Coatings: The light induced generation of the superoxide radicals is also 

responsible titanium dioxide’s effectiveness in killing bacteria. This is believed to be due to a 

mechanism known as lipid peroxidation,15 in which TiO2 catalyses the formation of radicals, 

which go on to remove a proton from an unsaturated fatty acid chain. The organic radical then 

reacts with dioxygen, forming a peroxide radical that removes another proton, propagating a 

chain reaction. This chain of reactions is believed to prevent the cell membrane from 

functioning, leading to cell death. Nanostructured TiO2 films have been shown to kill 99.9% of 

bacteria in light conditions typical of hospitals.16  

Photovoltaic Devices: Titanium dioxide is frequently utilised in the field of solar power 

generation, most prominently in the field of dye sensitized solar cells. First developed by 

Gratzel and Oregan in 1991,17 these are electric circuits with wide band gap semiconductor 

anodes, that have been sensitized by dye molecules that are excited by visible light, allowing 

them to conduct in the visible region. TiO2 has a wide band gap of 3.2 eV and is commonly 

used as an anode material.  
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1.3. Titanium Dioxide Production 

Industrial titanium dioxide production consists of two main possible processes for purifying 

titanium dioxide ore, the Chloride Process and the Sulfate Process. There are multiple 

different types of TiO2 ore available, with each process using different ores. The three most 

commonly used types in the Chloride Process are rutile, anatase and ilmenite. Rutile and 

anatase are mainly used in the Chloride Process, with rutile considered the best option due 

to its higher purity.18 At the beginning of this project the price of these ores had increased 

greatly year-on-year for some time, with Rutile TiO2 ore priced at $3000/tonne in 2012. 

Ilmenite (FeTiO3) mainly used in the Sulfate Process but also sporadically in the Chloride 

Process and is considerably cheaper at $285/tonne,19. In the intervening years, however, the 

cost of titanium containing mineral has fallen dramatically (Figure 3). 

There are also ‘slags’ available for each of the processes,20 which are mineral ores with greater 

percentages of Fe2O3. These are cheaper but harder to work with due to the high volume of 

solid iron compounds damaging waste disposal relative to rutile.21 
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Figure 3: Price of rutile ore a) and anatase ore b) from 2012 to 2015 and retail price of TiO2 from 

2010 to 2015 (c),22 

1.3.1. The Sulfate Process 

The Sulfate Process was the first major method for producing TiO2 from its ores on a large 

scale (Figure 4A).23 The dried, ground ilmenite ore is ‘digested’ using sulfuric acid to separate 
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the FeTiO3 into separate sulfates. This results in a solid ‘cake’ which is leached using dilute 

sulfuric acid to produce a viscous liquid, which contains predominantly TiOSO4 and FeSO4.24 

The liquid is cooled, allowing some FeSO4 to be removed by precipitation of iron sulfate 

heptahydrate. With the solid particulates removed, the TiOSO4 is hydrolysed to TiO(OH)2 by 

heating with dilute sulfuric acid. The material is then filtered and redissolved in water 

repeatedly and a bleaching agent, such as aluminium is added.25 At the hydrolysis stages of 

the Sulfate Process it is usual to add seed solution, consisting of a suspension of TiO2 particles 

that can alter the size and shape of the titanium dioxide particles that are produced.26 Dopants 

can also be added during the process to affect the size of the particles formed (usually 

aluminium oxide or zinc oxide).27 In the final stage of the Sulfate Process the TiO(OH)2 is 

calcinated at 1000 ˚C in a rotary kiln, to produce TiO2 of the correct particle size and 

distribution.  

The Sulfate Process is technically the simpler of the two, and has a far cheaper feedstock, 

however it has several drawbacks. The sulfuric acid must be recycled which is difficult, or 

neutralized, which is costly.25 Also there is the environmental issue of disposing of large 

amounts of highly acidic waste product. Since the innovation of the Chloride Process, the 

Sulfate process has been in a state of decline.3  
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Figure 4: Simplified schematic representations of the Sulfate and Chloride Processes.28 In the 

Chloride Process, all of the chemical purification takes place between the ‘chlorination’ and 

‘oxidation’ steps. 

1.3.2. The Chloride Process 

The Chloride Process was first developed in the 1950s by Dupont as an alternative to the 

Sulfate process (Figure 4B). It involves taking impure TiO2 ore and converting it to titanium 

tetrachloride. Impurities are then removed via condensation and distillation, following which 

the titanium tetrachloride is reverted back to TiO2 (Figure 5). This is the process employed by 

Tioxide and is thus investigated in this project. The process itself can be separated into 6 

stages as described below and is shown in Figure 6.29 
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i) Chlorination: The ore is fed into the chlorinator with chlorine gas and coke. The 

chlorinator acts as a pressure vessel, with the reactants heated to 900 - 1100 ˚C. This leads to 

the following chlorination reaction: 

TiO2(s)  +  3/2 C(s)  +  2 Cl2(g)   →   TiCl4(g)  +  CO(g)  +  ½ CO2(g) 

The coke is added in order to facilitate the chlorination of the metal by acting as a reducing 

agent, forming CO, which extracts oxygen from the TiO2, increasing the rate of the 

chlorination.3 This stage also leads to the chlorination of all of the metal oxide impurities in 

the ore, most prominently: 

2 VO2(s)         +    3 Cl2(g)   →    2 VOCl3(g)   +    O2 

2 Fe2O3(s)    +    6 Cl2(g)   →   4 FeCl3(g)          +     3 O2 

2 Al2O3(s)     +    3 Cl2(g)   →    2 AlCl3(g)      +     3 O2   

SiO2(s)           +    2 Cl2(g)     →   SiCl4(g)         +   2 O2 

Although not shown in the above equations, the coke functions a reducing agent in all of the 

above reactions in addition to the chlorination of TiO2. These are all carried through to the 

quench tower with the TiCl4 and the carbon dioxide. 

ii) Removal of Solid Impurities: when the gaseous chlorides exit the chlorinator they are 

met with a stream of liquid TiCl4 from further along the process which cools the gas from 

1000 ˚C to below 230 ˚C. The lower temperature causes many of the chloride impurities, most 

importantly FeCl2 to condense out of the gas stream as solids. The stream of metal chloride 

gaseous material is pushed with nitrogen through a dirt cyclone (a cooled pipe with sloped 
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walls that forces the gas into a cyclone that pushed the solid into the walls via centrifugal 

force). The tangential angle causes the solid to fall along the walls into a ‘dirt handling’ tank 

where the waste is neutralized, whilst the lower boiling chlorides including TiCl4 exit through 

the top of the cyclone, still in their gaseous form.  

iii) Gas Cleaning: At this point, the only remaining chlorides in the TiCl4 gas stream should 

be SiCl4, VOCl3 and AlCl3. These are problematic to remove due to their having similar boiling 

points to TiCl4. The gas cleaning tower enables the removal of the VOCl3 by injection of a small 

amount of mineral or vegetable oil, which complexes to the VOCl3.
30

 This leads to an increase 

in the boiling point of VOCl3 enabling it to be removed via distillation.31 The gas cleaning tower 

also injects a small amount of water and sometimes sodium chloride into the gaseous TiCl4 

flow. This is thought to to remove the AlCl3 by converting it to AlOCl which is insoluble in 

TiCl4.
32

 The reaction is believed to take place in two stages, with a titanium oxychloride 

intermediate that facilitates the oxidation of the aluminium, as shown below.33 The small 

amount of water added leads to partial oxidation of the TiCl4 to TiOCl2, which exists as a highly 

unstable coordination complex that rapidly reacts with the AlCl3 due to the entropically 

favourable products. 34 

TiCl4(g)(excess)   +   H2O(g)    →   TiOCl2.2HCl(l)   

TiOCl2.2HCl(l)      +    AlCl3(l)  →   TiCl4(g)     +    AlOCl(s)  +  HCl(g) 

The injection of water takes place in the gaseous phase. The high temperature in the tower 

(230 ˚C) leads to corrosion by the hot acid produced. Furthermore, to ensure complete AlCl3 

removal an excess of water to AlCl3 is required, meaning that some TiOCl2 remains after this 

stage, however it is recycled and converted back into TiCl4 minimising loss.  



12 

 

iv) Condensation: The condensation of the TiCl4 takes place in two columns. The primary 

column cools the gas flow with a stream of liquid TiCl4, pumped through the system and 

cooled with a spiral heat exchanger. The majority of the TiCl4 is condensed in this column 

(around 95%). Any uncondensed gas moves through to a second condenser, which 

refrigerates the stream to -12 ˚C causing the remaining TiCl4 to condense and impurities that 

are less soluble in the TiCl4 to crash out as solid. 

v) Distillation: This stage is a simple distillation of the liquid TiCl4 to remove remaining 

impurities, mostly the oil added during the gas cleaning phase, combined with the vanadium 

containing impurities. The liquid is fed through to a tank that is heated using a calandria. A 

calandria is a thermosiphon boiler that heats a flow of liquid via thermal transfer from a series 

of tubes heated with high pressure steam.35 The TiCl4 exits that calandria as a mixture of 

boiling liquid and vapour. It is then circulated back into the distillation column where the 

gaseous TiCl4 rises to the top of the column. The ‘pure’ TiCl4 gas stream is then condensed and 

either moved into storage tanks or straight to the furnace for oxidation.  

vi) Oxidation: The final stage of purification is the oxidation of the TiCl4 back to its original 

form. The resulting TiO2 pigment is rutile. The liquid TiCl4 is heated using a furnace to 350 ˚C 

becoming a vapour. The vapour is fed into a reactor and mixed with a flow of oxygen. The 

oxygen is typically heated to a far higher temperature than the TiCl4, usually 900-1000 ˚C.36 

This ensures that the reaction initiates and goes to completion as it cools.  The resulting 

powder is ground to a specific particle size and coated in order to produce a specific pigment 

type, Further treatment allows specific products such as the Deltio® Freeflow TiO2 pigment 

which is treated in order to make it flow more easily, leading to a higher throughput, 

minimising dust.37  
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Figure 6: a)Rutile TiO2 ore before38 and after39 the purification via the Chloride Process, as well as the 

intermediate  TiCl4 samples before and after purification. b) The structure of the vegetable  oil,40 

used to separate the vanadium oxychloride that gives the intermediate TiCl4 its yellow colouring.    

1.3.3. Issues with the Chloride Process 

Although the Chloride Process is considered less problematic than the Sulfate Process in terms 

of environmental damage, the lengthier process, as well as the aggressive nature of the 

chlorides formed, can lead to several issues with production41 These problems can lead to 

plant down time, at a cost of approximately £300,000 per day 

i) Vanadium Carryover: When not enough oil is injected into the system, the vanadium 

oxytrichloride is not fully removed from the TiCl4 before oxidation to TiO2. This causes the 

resulting pigment to appear yellow. This product cannot be sold and is disposed of into landfill 

at high cost. TiCl4 appears yellow at VOCl3 concentrations greater than 5 ppm, although most 

processes aim for closer to 1-2 ppm. Addition of too much oil, however, can lead to fouling of 

a) 
 
 
 
 
 
b) 
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components further along the process. Much of the research relating to the Chloride Process 

involves researching the oils used and how vanadium can be removed more effectively.    

 

Figure 7: Collected black residue in the furnace, following cleaning. 

ii) Fouling of Plant Components: Many of the components in the process have their life 

cycles cut very short due to the build up of material on their surfaces, which damages their 

effectiveness (Figure 7). The three main areas where fouling is an issue are the spiral heat 

exchangers in the gas cleaning section, the calandria in the distillation tower and the furnace 

in which The TiCl4 is heated before oxidation. The coating appears to be black, however due 

to the air sensitive nature of TiCl4 and the enclosed nature of the components, the only way 

to make it safe to collect a sample is to completely hydrolyse it, which would in turn greatly 

diminish the value of any compositional data collected.  

iii) Tetra Sample Aging: Throughout the process, samples of the liquid TiCl4 known as 

‘tetra’ can be  tapped off, from the gas cleaning, primary condensate and post distillation 

points. This is an excellent way of determining where exactly a problem might be if the TiO2 

produced were to look ‘dirtier’ than it otherwise should. It can also be a useful selling point 

for the process, to observe the quality of the product. Generally speaking the tetra should be 
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as clear and colourless as possible, becoming more so, the further along the process, as more 

of the impurities are removed. It has been observed that over time the samples taken from 

the process at all points seem to ‘age’. This is seen in a gradual discolouration of the liquid, 

going from colourless to yellow. This is observed in many samples of TiCl4, including those 

bought commercially from firms such as Sigma Aldrich. The samples from Huntsmanare also 

observed to precipitate a black solid over a period of weeks.  

iv) Packing of the Distillation Column: When TiCl4 is industrially distilled, it is common to 

pack the column with glass. This is thought to increase the surface area of the passage that 

the gaseous TiCl4 has to navigate and ‘catch’ some of the lower boiling impurities that would 

otherwise make it through the column. The packing has to be replaced at least once a year, 

resulting in costly downtime and there has been some debate as to how much a role in the 

separation of the impurities the column packing actually plays. One of the distillation studies 

carried out in this work was repeated with and without a vertical column packed with glass 

beads in order to determine how much a difference their presence makes.   

 

1.4.  Titanium(IV) Tetrachloride 

For the vast majority of the Chloride Process the titanium is present in the form of titanium(IV) 

tetrachloride. This is a wellstudied compound due to its unusual properties and high 

reactivity. TiCl4 is one of only three transition metal halides that is a liquid at room 

temperature (the others are VCl4 and SnCl4). This is because whilst most metal halides form 

polymeric octahedral species such as the edge sharing octahedral structure of ZrCl4,42 

titanium tetrachloride is a tetrahedral monomeric species due to the relatively high enthalpy 

of the Ti-Cl bond (494 kJmol-1)43 and lewis acidic nature of the compound making it more 
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stable than the equivalent edge sharing lattice Infrared spectroscopy shows the Ti-Cl bond to 

have a length of 2.185 Å,44 which has been verified computationally.45  

Titanium(IV) tetrachloride’s strong Lewis acid character is responsible for the majority of its 

uses. It is the starting point for the synthesis of a number of titanium complexes in inorganic 

synthesis and has been used in the formation of novel CVD precursors, such as titanium(IV) 

arsenide complexes.46,47 TiCl4 itself is also frequently used in  chemical   vapour   deposition,   

usually in the deposition  of  TiO2   nanostructures,48 however it has also been used in 

combinatorial CVD in the formation of titanium oxynitrides.49   

 

Figure 8: Different morphologies of TiO2/composites that have been deposited from TiCl4 using CVD 

 In  organic  chemistry  it  is frequently used in coupling reactions, such as the condensation 

reaction of alcohols and aromatics and aldol coupling reactions, for instance  the Mukaiyama 

aldol coupling which traps the enolate by forming a silyl enol ether.50 

By far the most well known use of titanium tetrachloride is that of Ziegler Natta catalysis, a 

specific class of heterogeneous catalysts that are used in the polymerization of alkenes. They 

typically involve a transition metal halide, usually TiCl4 with an alkyl metal co-catalyst (AlEt3). 

The resulting polymers are noted for their high linearity and taticity.51 52 Zeigler  And  Natta  

both  separately  proposed  a  mechanism  for  the  polymerization  involving  the propagation 

of free radicals, however this does not explain the high level of steroselectivity.53,54,55 
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. Difficulty arises when investigating titanium tetrachloride due to the highly Lewis acidic 

nature of the TiCl4 centre. The moisture sensitive nature of TiCl4 results in a hydrolysis 

reaction.56 

TiCl4(l)    +   2H2O(g)      →    TiO2(s)    +   4HCl(g) 

This makes analysis of samples of TiCl4 and its use in synthesis challenging and requires a 

moisture free atmosphere, necessitating the use of Schlenk techniques. This was a challenge 

that had to be overcome in the first part of this project, which required characterizing a large 

number of samples of TiCl4 taken directly from the industrial process in order to identify the 

impurities that were carried through the different stages of the Chloride Process. 
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Chapter 2 

Analysis of Samples from Industrial TiO2 Production 

 

This section details work done in relation to improving the understanding of the Chloride 

Process, by analysing various samples sent from the Greatham TiO2 production facility in order 

to identify potential impurities within the samples that could lead to downtime or 

discolouration of the product further down the production process. These samples consisted 

of liquid TiCl4 samples which were analysed using NMR spectroscopy and black solid 

precipitates that forms within these samples over time, which was separated from the TiCl4, 

oxidised and identified using various analytical techniques.   

2.1. NMR study of Industrial TiCl4 Samples 

Initial experiments largely consisted of developing a means of reliably creating NMR samples 

of TiCl4 samples and then investigating the products present in different fractions from the 

distillation of those samples.  

2.1.1.   Experimental 

2.1.1.1. Making an NMR sample 

NMR spectra were obtained for a number of TiCl4 samples collected from the Chloride process 

at different points and different times. The highly air sensitive nature of the samples meant 

that they had to be made up under an atmosphere of nitrogen using Schlenk techniques. This 

was achieved using the apparatus displayed in Figure 9.  
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The sample was made by using a canula to move 3 drops of the TiCl4 into a three necked round 

bottom flask, under a flow of nitrogen. The flask was equipped with an elongated neck piece, 

capped with a subaseal and a release needle, with a screw-top NMR tube inside.  

Experiment Sample Point in Process Year 

Initial Study 

1 Primary condensate 2012 

2 Plant distilled 2012 

3 
Primary condensate 
(lab distilled) 

2012 

Sample Aging 

4 Primary condensate 
2013 
(new) 

5 Primary condensate 
2011           
(2 yrs old) 

6 Plant distilled 
2013 
(new) 

7 Plant distilled 
2011          
(2 yrs old) 

Fractional 
Distillation of 
Primary 
Condensate 

8 
Primary condensate 
1st 20 ml (packed) 

2013 
(new) 

9 
Primary condensate 
2nd 60 ml (packed) 

2013 
(new) 

10 
Primary condensate 
3rd 20 ml (packed) 

2013 
(new) 

11 
Primary condensate 
1st 20 ml (packed) 

2013 
(new) 

12 
Primary condensate 
2nd 60 ml (packed) 

2013 
(new) 

13 
Primary condensate 
3rd 20 ml (packed) 

2013 
(new) 

 

Table 1: Complete list of industrial TiCl4 samples analysed 
Figure 9: apparatus used to 
collect NMR samples of TiCl4 
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Figure 10: Schematic of TiCl4 distillation with packed column 

To the TiCl4, 2 ml of CDCl3 (Sigma Aldrich, 99.8 atom% D, anhydrous, dried over activated 

molecular sieves) was injected into the flask through a side arm using a plastic syringe and 

deposable needle. The solution was then taken into a second syringe via a needle through the 

top subaseal, before being injected directly into the NMR tube. The tube was then screwed 

shut under a flow of nitrogen and removed. Samples were collected in this manner for primary 

condensate, plant distilled and laboratory distilled TiCl4, as well as the distilled fractions of 

plant distilled and non-distilled TiCl4. 

2.1.1.2. Distilling Titanium Chloride Samples 

Two distillations were carried out following the collection of the initial NMR data: one for the 

TiCl4 that had passed through the distillation column at the site in Greatham and one that had 
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not. In each case an air sensitive distillation was carried out by heating a 110 ml sample of 

TiCl4 in a two necked round bottom flask to 120 ̊ C using an isomantle, under a flow of nitrogen 

(Figure 10). The gaseous TiCl4 and volatile impurities passed up a 10 cm column into a cold 

water condenser.  

At the bottom of the condenser was a three pronged distillation receiver, with two 25 ml flasks 

and one 100 ml flask. These are marked at the 20 ml and 60 ml levels respectively. Upon filling 

the first flask to 20 ml the join was turned allowing the second to fill to 60 ml and finally the 

third to 20 ml. The flasks were then stoppered and NMR samples immediately made up (vide 

infra).   

2.1.2. Results and Discussion 

2.1.2.1. Initial Study 

NMRs taken were from the primary condensate and the distilled portion of the plant (Figure 

9). Another sample was made by distilling the primary condensate in the lab under nitrogen.  

The samples used were all over one year old and were highly discoloured with black 

precipitate in all except for the lab distilled primary condensate. 

The spectra showed several collections of peaks that can be divided into three categories 

according to how their relative intensity and therefore the concentration of the source 

molecule can be reduced by distilling the sample: (a) those removable by plant or lab 

distillation (b), those removable by lab distillation only and (c) those not removable by either 

plant or lab distillation. 

 

a) The peaks removed by plant distillation have chemical shifts between 0.8 and 

1.5 ppm. Although these peaks were dramatically reduced by distillation, they appear 
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in all three spectra. They are likely the result of the oil breaking down into alkyl species 

that boil lower than TiCl4 

b) The peaks that can be removed by laboratory distillation fall between 0.4 and 

0.6 ppm. These are likely caused by silane compounds present in the material. 

These occur as a result of SiCl4 reacting with the oil species.  

 

Figure 11: Comparison of the 
1H NMR spectra of primary TiCl4 undistilled (black), plant distilled at 

Greatham (blue)  and laboratory distilled (red) 

c) The relative intensity  of  peaks  at  0.65  ppm and  0.75  ppm were  increased  

by      the distillation  process, indicating that they were not affected by distillation 

as removal of other impurities would lead to an increase in their relative 

concentration.  
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Due to the large number of  species present it would be impossible to reliably define  

the  peak  integrals and  very  difficult  to  ascertain  exact  structures  of  the  species  

present. Interestingly, none of the unbroadened peaks in the spectra display any 

coupling, suggesting a number of methyl species. On the other hand, some of the peaks 

appeared rather broad in some instances, which may mask coupling 

2.1.2.2. Comparison of Recent and Older TiCl4 Samples 

Following the initial testing, ‘fresh’ TiCl4 samples were obtained from Huntsman. 

Samples were once again taken from the primary condensation, and post-distillation 

parts of the process. NMR spectra were taken of each sample and compared with the 

equivalent 15 month old samples (Figures 12 + 13). 

All samples saw a dramatic increase in the number and relative intensity of the ‘silane 

peaks’ between 0.0 ppm and 0.7 ppm in the newer samples over the equivalent older 

one. The only exception to this was the two peaks at 0.64 ppm and 0.73 ppm, both of 

which were far more prominent in the older samples. There are a number of possible 

reasons for this occurrence. It is probable that the silane species react slowly over time 

within the TiCl4 samples, resulting in the observed difference in peak patterns. This study 

cannot confirm this however as the samples were taken from the plant at different 

points in time meaning that the different patterns could be due to a change in the 

manufacturing process or the starting material. The firm were unable to confirm this. 

To confirm that there is a slow reaction within the TiCl4 samples, NMR spectra were 

collected of several samples two months after they arrived. The spectra collected show 

changes in the peak patterns. 
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Figure 12: 
1H NMR spectra of Primary TiCl4 samples produced approximately 15 months 

apart, with the shifts between 0.6 and 0.0 ppm enhanced (inset). 

 

              

Figure 13: 
1
H NMR spectra of Plant distilled TiCl4 samples produced approximately 15 

months apart, with the shifts between 0.6 and 0.0 ppm enhanced (inset), with the 2011 

sample enhanced in order to see much less abundant peaks that are near the baseline. 
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2.1.2.3. Lab-distilled Primary Titanium Tetrachloride Samples 

With the study of samples taken directly from the plant complete, the next step was to 

simulate the distillation part of the column in the laboratory setting. 110 ml samples of 

primary tetra were distilled at 140 ˚C, with three samples collected from each: a) The first 

20 ml to distil over, b) The following 60 ml of distillate, c) The final 20 ml. NMR spectra were 

obtained from all three fractions (Figure 14) . The experiment was repeated, with the column 

packed with 6 mm diameter glass beads, to emulate the packing in one of the distillation 

columns at the Greatham plant (Figure 15).  

2.1.2.3a.    The First 20 ml of Distillate 

 The first fraction showed a large amount of peak broadening not seen in the other two.  This 

implies that some paramagnetic species with low boiling points were brought over early in 

the distillation, mostly likely a vanadyl species vanadium (IV) (although it should be noted 

that both samples were colourless when tested, so the concentration of vanadyl species 

would be below 5 ppm). The majority of peaks seen were downfield from 0.7 ppm, which is 

indicative of methylsilyl species. The packed column’s distillate was observed to give a less 

broadened spectrum, implying that the packing may be able to retard distillation of VOCl3. 

2.1.2.3b.    The Second 60 ml of Distillate 

The spectra appeared similar to the first 20 ml although far less broadened. This 

suggests that all of the paramagnetic species have already distilled over and are 

therefore all lower boiling than the TiCl4 itself. The vanadium is likely causing a 

broadening through weak, labile coordinating to some of the molecules of 

the alkyl species distilling over. 
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Figure 14: 
1H NMR spectra of all three fractions of Distilled Primary 

TiCl4 using an unpacked column 

 

Figure 15: 
1H NMR spectra of all three fractions of Distilled Primary 

TiCl4 using a packed column 
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There were no discernible differences between the two peak patterns for the packed and 

unpacked column however there are differences in the relative intensities of some of these 

peaks.  A set of peaks between 0.38 ppm and 0.49 ppm, appears to consist of two related 

pairs of peaks, at 0.42 and 0.49 ppm and 0.39 and 0.47 ppm (Figure 16).  

               

Figure 16: Comparison of 1H NMR peak pattern thought to relate to siloxane rings, distilled primary 

(second fraction) in packed and unpacked distillation columns 
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It is possible that the peaks relate to the same group in the axial and equatorial positions on 

a siloxane ring. A study by Pelletier et al. showed similar patterns with methyl and hydrogen 

substituted cyclosiloxanes.57 

The intensities of these peaks in relation to each other remain roughly the same over the two 

spectra, increasing and diminishing by the same amount. Pair 1 is two singlets, whereas the 

other pair appears as two multiplets, with a small coupling constant. The difference in the 

shifts between these two ‘pairs’ peaks is too great to be down to J-coupling. 

 

2.1.2.3c.    The Third 20 ml of Distillate 

Rather than the multitude of singlets seen in the earlier samples, the majority of the peak 

patterns in the final distillate showed splitting, especially the more upfield peaks. This is 

expected as these patterns likely relate to larger alkyl groups, whereas before they related to 

smaller methyl species. These groups would be heavier and therefore would distil over after 

the methyl species. Further downfield there are two shifts:  a doublet at 1.60 ppm and a 

septet at 5.15 ppm, with an integral ratio of 6:1.  This pattern  resembles  the  well  known  

pattern  of isopropyl alcohol.58 Figure 17 is an enhanced image of these two environments. 

The septet for the central carbon’s proton   is   shifted   further   downfield,   indicating   the 

presence of an ester or acyl-chloride group. This pattern is by far the most prominent in the 

spectra and is likely a product of the breakdown of the soya oil at high temperatures. Samples 

of plant distilled TiCl4 do not feature this pattern at all.  Therefore it can be inferred that the 

final fraction is likely to bear the least resemblance to the actual distilled product of the three 

studied. 
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Figure 17: Shifts present in the 
1H NMR spectra of the final fractions of Distilled Primary TiCl4 

indicating the present of an Isopropyl group, attached to an electron withdrawing group 

 

2.1.2.4. Investigation of Aging in Distilled Fractions 

Inspection of the fractionated products two months after the initial study was carried out 

revealed a surprising result. The first and third fractions in both cases turned from colourless 

to dark yellow as expected, however the middle fractions remained relatively colourless. All 

samples were stored in the same type of container so this difference is not environmental.  

The implication of this is that there are multiple species within the distilled tetra that lead to 

the discolouration/precipitation. Retaking the 1H NMR spectra of the first and second 

fractions from the packed column indicated that this could be a result of reactions of the 

silane compounds. The broad hump in the 1H NMR of the first fraction is no longer present, 

and the intensities peaks from 0.4 - 0.5ppm have altered relative to each other. The spectra 

are compared in Figure 18. The emergence of doublets with a shift of 1.5 - 1.7 ppm is also 

observed, however it is possible that this is due to the breakdown of the  
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Figure 18: 
1H NMR spectra of the first and second fractions of distillate collected from 

distilling 110 ml of TiCl4, using a packed column, collected two months apart 

 

syringe used to make up the 1H NMR sample.  Conversely, the 1H NMR spectra of the second 

fraction, which had remained colourless, were almost identical, with both peak patterns and 

integrals unchanged. It should be noted that for the sake of completeness, 13C NMR were 

recorded for allsamples, however the higher concentrations of materials required to obtain a 

signal and the numerous low concentration species present, meant that they possesses very 

little useful information about the species.  
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4 

2.1.3. Conclusion 

This study of industrial samples of TiCl4 suggests strongly that there are a large number of 

silicon based impurities within the samples, due to the multitude of peaks in the 0.7 ppm - 

0.0 ppm region, which is usually too upfield for alkyl protons without the upfield directing 

shielding character of the silane coordinated to the carbon. These peaks were largely absent 

in the oldest samples, which comparatively had relatively simple NMR patterns. There are 

several possible explanations for this. The silyl compounds with the very downfield shifts 

could be intermediates that over a long period will react to form a smaller group of more 

energetically favourable species. Another option is that they gradually form insoluble 

molecules that are part of the precipitate observed, no longer appearing in the NMR. Finally 

they could be caused by the use of different starting material, or a change in the process. 

Components such as the distillation calandria foul quickly and must be replaced or cleaned, 

so it is possible that the different stages of fouling could affect the contaminants in the TiCl4 

samples that are removed.  

Whilst the number of shifts present in the NMR makes characterising individual contaminant 

species impossible, general structures representing groups of silanes can be inferred. The 

silanes must have a boiling point close to that of TiCl4 itself or it would not make it through 

distillation. If the species were too high boiling it would be recycled to the sludge tank, too 

low and it would exit as waste gas. The lack of splitting in the samples suggests relatively small 

alkyls. This information allows for a few general impurity structures to be proposed. 

Methylcyclosiloxanes: This group consists of ring systems of alternating silicon and oxygen, 

with methyl groups or chlorine bound to the silicon. Hexamethyl cyclosiloxane (Figure 19) 

has an identical boiling point to TiCl459 and a mass spectroscopy study commissioned by 
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Tioxide found cyclosiloxanes present in samples of the material that fouls the calandria, 

however the samples used to generate them were completely hydrolysed so it was not 

possible to say for sure that they were present in the TiCl4 during the process.  The peak 

patterns between 0.3 and 0.5 ppm resemble those of chlorosiloxanes,60 with the peaks with 

matching integrals representing different structural isomers of the same ring system. The 

singlets may represent the hexamethyl material and the triplets the ethyl equivalents which 

would present themselves as peaks in the 1.0- 1.5 region, as seen in the first 20 ml of the 

more aged sample.  

 

Figure 19: Structures of four potential siloxane species forming within the TiCl4 samples, all with 

boiling points between 100 and 134 ˚C, and all with 1H NMR spectra that would only give highly 

upfield peaks.61–64 
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Methylchlorosilanes: A far wider range of compounds, usually involving a single silicon atom 

or two silicon atoms bound directly or with a methyl bridge, with methyl/chlorine 

substituents. These are the most probable source of the very downfield peaks between 0.0 

and 0.3 ppm. Many molecules in this group have boiling points similar to that of TiCl4, such 

as 1-Chloro pentamethyldisilane and dichlorosilyltrimethylsilane, both of which boil at 

136˚C.65,66 

 

 

Figure 20: Structures of four potential chlorinated methyl silane species forming within the TiCl4 

samples, all with boiling points between 80 and 134 ˚C,65–68 and all with NMR spectra that would 

only give highly upfield peaks. 
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In addition to those species, a great number of similar species exist with boiling points lower 

than 136 ˚C that would likely be found in the first few ml of distillate. These usually resemble 

a chlorinated version of tetramethylsilane such at Chloromethyl(dimethyl)silane and 

dichloro(chloromethyl)methylsilane, both shown in Figure 20, which have boiling points of 

88 and 121 ˚C respectively.  

2.2 Analysis of the Black Precipitate in the Tetra Samples 

Each of the samples of TiCl4 was found to precipitate out a black solid over a period of time. 

This occurred in both industrial samples and the samples bought from chemical suppliers The 

analysis of the black precipitate found in the stored samples of TiCl4 was carried out primarily 

in order to discover what it consists of and how it forms. With this information, the aim was 

to confirm whether or not its formation was related to the discolouration of TiCl4 samples 

and if it could be analogous to the solids that foul the process components.  

The black solid in three samples of TiCl4 were isolated. The samples analyzed were from the 

primary condensation tank, the distillation step and the third fraction from the lab distillation 

(with packing). These samples were chosen due to the high volume of black solid present, as 

well as being representative of some of the problem areas of the plant, for instance the 

primary tetra would be analogous to what runs through the calandria and the distilled tetra 

would be similar in content to that which causes fouling of the furnace in the production 

process.  The primary and distilled samples were both eighteen months old at the time of 

testing and the lab distilled three months old. 
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2.2.1. Experimental 

The tetra samples were stored under air in glass jars. The TiCl4 was removed from the jars as 

fully as possible, leaving the black solid in the jar. This was done by flushing the jar with 

nitrogen before removing the majority of the TiCl4 with a filter canula with a separate flask. 

The remaining solid was then washed by adding 20 ml of hexane, forming a suspension with 

the precipitate. This was then stirred for one hour whilst heating to 40 ˚C before the hexane 

was removed into a separate flask via a filter canula. This was repeated twice more, with all 

three of the washings entering into the same flask. Following the washing, each sample was 

left under vacuum for 6 hours in order to remove any remaining hexane and TiCl4. When the 

drying process was completed, the jars that had held the distilled and primary tetra held 

roughly 0.25 g of grey solid and the lab distillation fraction jar held roughly 0.1 g. The samples 

were then stored under air in the jars they came in. 

The samples were analyzed using 1H NMR spectroscopy was carried out using a 600 Hz Bruker 

Avance 600 Cryo III spectrometer, and X-ray Photoelectron spectroscopy (XPS) carried out 

using a Thermo ScientificTM K-alphaTM spectrometer, with monochromated Al Kα radiation, a 

dual beam charge compensation system and constant pass energy of 50 eV. Survey scans 

were collected in the energy range of 0 – 1200 eV.  

Mass Spectra were obtained using chemical ionization with a methane reagent gas with the 

Finnigan Thermo MAT900xp spectrometer. XPS measurements were carried out on a VG 

ESCALAB 220i XL instrument using focused (400 lm spot) monochromatic Al Ka radiation at a 

pass energy of 20 eV. Scans were acquired with steps of 100 meV. EDX analysis was carried 

out on carbon coated samples on a Philips XL30 ESEM instrument. FT-IR spectra were 

obtained using an FT-IR Shimadzu 8700 spectrometer over a range of 400-3500 cm-1. 
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2.2.2. Results and Discussion 

2.2.2.1. NMR spectroscopy 

The black solid was largely insoluble in most NMR solvents. Samples were made by NMR 

spectra of the black precipitate were obtained by placing a spatula tip full of solid into a small 

sample tube and shaking with 5 ml of CDCl3 for 30 minutes. Although some solid remained, 

some appeared to have dissolved. The spectra for all three solid species were extremely 

similar. The most prominent peak in all three spectra appears at 1.45 ppm. This is similar to 

the position of the diminished peak in the filtered TiCl4, further implying that the black solid 

consists at least partially of an alkyl species.  

 

2.2.2.2 Toluene Washings 

The samples were washed repeatedly using hexane, however initially it was planned that 

toluene would be used. In an initial test with an older sample of gas cleaning tetra TiCl4 

removal was carried out in the way described above and the material washed three times 

with dry toluene. It was observed that the solid became much lighter in colour following the 

washings. Conversely the toluene took on a faint purple grey colour. This suggests that the 

supposedly black solid impurities are in fact coated in a substance that gives them the 

black/grey appearance, with a lighter core. As the samples were stored under air rather than 

nitrogen due to the nature of their containers, it is a reasonable assumption that this could 

be solid TiO2 with an organic coating. 

 

2.2.2.3. Mass Spectroscopy 
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Mass spectrum were obtained for the three solid samples. Appendix 5 shows the mass 

spectra of the plant distilled solid sample.  The spectra all share two notable characteristics. 

Firstly, the prominent peaks that appear in all three spectra: 391, 338, 279, 167, 149 and 113 

m/z can all be attributed to the molecule bis 2-ethylhexyl phthalate (Figure 21).69  

 This molecule is a common mass spec impurity due to its use as a plasticizer for materials 

such as PVC. Plastics can contain between 1 and 40%, bis 2-ethylhexyl phthalate depending 

on their purpose.70 The mass spectrum peaks can be assigned to fragments of the molecule. 

The only exception to this is the peak at 338 m/z. This peak is most likely attributable to 

euracamide,71 a very common slip agent, added to plastics in order to reduce surface friction 

and improve slip. It is also a well-known mass spec contaminant. The other important trait 

to emerge from the mass spectra of the solid is the pattern of peaks every 14 m/z up to 

around 800 m/z. Intervals of 14 m/z are a strong indicator of long alkyl chains, such as 

polymers. This is fitting with the broad peak present in the proton NMR, which is similar in 

position and shape to that of a polyethylene backbone of a polymeric species.72 

Both of the distilled samples showed this pattern, despite the fact that the distillation process 

would remove any high molecular weight polymeric species. This implies that they are 

entering the sample at another point in the process. 



39 

 

 

Figure 21: Mass spectrum of a sample of DCM that has been shaken with the black solid. Structure 

and simulated spectrum of plasticizer molecule bis 2-ethylhexylphthalate inset. 

 

2.2.2.4. Infrared Spectroscopy 

IR spectra were taken of all three solid samples (Figure 22). They were prepared by grinding 

a spatula tip of the solid with 0.2 g of KBr and then pressing into a disc using a dye. The 

spectra of all three materials were very similar. The most noticeable feature of all three 

spectra is the presence of a large broad peak between 3000 cm-1 and 3500 cm-1, which 

suggests the presence of water. This confirms that the material in question is hygroscopic. 
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The spectra also has several peaks that could be due to the presence of the plasticizer that 

was picked up in the mass spectroscopy experiments, namely the peak at 2932 cm-1 which 

represent the stretching vibrations of ethylene C-H bonds. The peak at 1641 cm-1 is in the 

correct position for the aromatic C=C bond, however the broadened shape and high relative 

intensity suggest that it is not the only bond vibrating at that frequency. This could be due to 

the ester group in the phthalate, although this shift appears at a lower wavenumber than 

normally expected for a phthalate C=O asymmetric stretching, which usually occurs at just 

above 1700 cm-1. 

 

Figure 22: Infrared Spectrum of the black solid, as prepared using a pressed KBr disc. 



41 

 

This could be explained by the carbonyl groups co-coordinating to a metal species, which 

would remove electron density from the bond, lowering its vibrational frequency. This could 

explain how the phthalate is part of the precipitate and not seen in the solution NMR. Further 

relevant peaks were found in the fingerprint region.  The large peak at 1431cm-1 is 

characteristic of the symmetric stretching of the C=O bond in the ester group. As with the 

asymmetry stretch it is shifted from its expected position (1400 cm-1) in a way that suggests 

that the group is coordinated to a transition metal species. The two broad bands between 

1000 and 1300 cm-1 are characteristic of the C-O stretch in an ester group. The spectra also 

feature two distinct broad humps at the low frequency end of the spectrum, between 500 

and 800 cm-1. These represent the vibrational frequency of the Ti-O bonds in a lattice. The 

broad hump at 400 cm-1 could also be representative of TiCl4 however due to the large 

amount of interference and the fact that only half of the peak is visible this is not certain. 

2.2.2.5. Energy Dispersive X-ray Spectroscopy (EDX) 

The elemental composition of the three samples was studied using EDX and is shown in Table 

2. The values shown in Table 2 are compositions of area scans of dimensions approximately 

30 x 30 µm. The major components of each sample were carbon which makes up 40-55% of 

the species present, and oxygen which makes up 25-40% of the material present in the 

precipitate samples of primary condensate, plant distilled and lab distilled (3rd fraction) 

tetra. 
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Table 2: Atomic percentages of the elements present in the black 

solid as determined by EDS 
 

Atomic% 

Element Primary 

Condensate 

Plant 

Distilled 

Lab Distilled 3rd 

Fraction 

C K 46.16 55.19 39.66 

O K 31.99 26.01 40.46 

Cl K 11.24 8.85 7.24 

Ti K 10.29 9.07 12.1 

 

Each sample also has a significant amount of chlorine and titanium. The chlorine is likely in 

the form of residual Ti-Cl bonds exiting within the solid, most likely as partially oxidized 

TiOCl2.2(H2O) within the solid. However this cannot be the only source of titanium as the 

chlorine would only account for around 10 - 20% of the atomic titanium present. The rest can 

be assumed to be in the oxidized form. This implies that some of the oxygen is present in the 

form of TiO2. Once again however this does not cover all of the atomic species present. The 

remaining titanium in each sample only accounts for 25 -50% of the oxygen. The remaining 

oxygen could be present in the form of the bis 2-ethylhexyl phthalate plasticizer picked up in 

the mass spectroscopy experiments. 

The plasticizer bis 2-ethylhexyl phthalate is 17% oxygen. Assuming that all the carbon comes 

from the plasticizer, which it almost certainly does not, this still only accounts for two 
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combined only account for around 35% oxygen content in the older samples and 60% and 

the lab distilled. The actual value is likely to be lower as mass spectroscopy suggests the 

presence of a polymeric species in the material as well. The remaining oxygen most likely 

comes from the water present in the solid as observed by the NMR and IR spectroscopy. 

2.2.2.6. X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy was carried out on the solid from the primary condensate 

TiCl4. The resulting spectra (Figure 23) showed the expected strong environments for the 

carbon and oxygen, measuring the atomic percentages at 46.8% and 28.93% respectively. 

This combined total is higher than the EDX, with substantially lower proportion of the oxygen. 

The atom% of titanium is lower than that predicted by EDX at only 6.3%. The binding energies 

of the Ti 2p3/2 and 2p1/2 peaks at 458.78 eV and 464.61 eV respectively indicate the presence 

of Ti4+ exclusively,57, 58 as expected for the TiCl4 and TiO2 present. The atom% of Si is also 

lower at 4.13% 

The ratio of Ti : Cl is roughly the same in XPS and EDAX, which indicates that they are present 

together at the same point in the solid, lending credence to the theory that the chlorine exists 

as a small amount of unreacted TiCl4. The reason for the lower overall percentages of the 

Titanium and chlorine could be the result of the XPS sampling the surface of the material. 

The XPS penetrates less deeply into the material and therefore pick up more of the organic 

surface coating. This also explains why the atom% of oxygen is lower as less TiO2 is being 

sampled at the expense of the surface organics. The oxygen peak at 531.99 eV is seen to be 

a compound of four different oxygen environments which account for the organic oxygen, 

the oxygen in the water and the TiO2 present.59, 60 
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Figure 23: Compound peak in the O1s environment form the XPS spectrum of the black solid, 

showing organic oxygen (dotted + dashed), H2O (dotted) and TiO2 (dashed). 

2.2.3. Conclusion 

Analysis of the solid confirms the presence of the bis 2-ethylhexyl phthalate plasticizer 

molecule. This almost certainly came from the lid of the jars in which the TiCl4 is stored. The 

process is gradual which explains why EDX analysis showed a greater carbon content for the 

older samples when compared to the new ones. Infrared spectroscopy showed a peak 

pattern that matches that expected from bis 2-ethylhexyl phthalate; however the peak that 

is thought to represent the carbonyl group is shifted to a lower frequency than expected. 

This can be explained by the carbonyl coordinating to a metal centre, co-ordination chemistry 

of phthalates has been shown to cause this carbonyl peak shift.61 
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A schematic shown in Figure 24 shows a simplified, proposed mechanism for the formation 

of the black solid. Exposure to the air in the jar (these samples are collected in open air from 

valves on the side of the process), causes the reaction of TiCl4 with small amounts of H2O 

trapped inside the jar, leading to the formation of the solid TiO2. The corrosion of the lid, 

possibly due to the release of the HCl, leads to the leaching of bis 2-ethylhexyl phthalate into 

the solution, which then binds to the surface of the TiO2 particles. 

Phthalates have been shown in the literature to co-ordinate to the surface of titania62 and 

have been used in the surface characterization of TiO2 nanoparticles.63 The mass spectra 

confirms the presence of the phthalate, however it is not seen in any of the NMR spectra of 

the liquid TiCl4 samples. This could be due to the breakdown of the phthalate in solution by 

the TiO2, a common UV catalyzed reaction. 

 To simulate the conditions for the formation of the black precipitate in different samples of 

TiCl4, shavings of one of the sample caps were placed in to TiCl4 (Aldrich 99.9%) under N2 and 

left in a cupboard. After one week the shavings had discolored but there was no colour 

change or precipitate growth in the TiCl4. The flask was filled with air, sealed and left in 

darkness. After one week, a black precipitate was observed in the bottom of the flask. When 

this was repeated without the plastic in the sample, a small amount of much lighter solid 

formed. 

The mass spec also strongly suggests the presence of long chain alkyl species as seen by the 

repeating peak pattern every 14 m/z up to 600 m/z. There are a number of explanations for 

this occurrence. The corrosion of the lid could also leach polymer chains into the solution; 

however the lid is predominantly PVC, which would give a different mass pattern. Alkyls of 
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that molecular weight would not be able to move through either the lab or plant distillation 

columns so they cannot be carried over from the oil added in the process. 

Figure 

24: Proposed stepwise process for the formation of the precipitate, consisting of TiO2 particles with 

bis 2-ethylhexyl phthalate molecules coordinating to the surface. 

A possible explanation is the formation of a Zeigler Natta type polymerization system in the 

liquid TiCl4.  Small alkyl molecules from the breakdown of the oil could make it through the 

distillation column, or from the UV catalyzed breakdown of the phthalate molecules. 

Traditional Ziegler Natta catalysis uses a heterogeneous system such as the TiO2 particles. 

TiCl4 at the surface of these particles could act as a source for the polymerization of the 

polymeric species in solution. Furthermore, phthalates are widely used as electron donors in 

Zeigler Natta catalysis, encouraging polymerization, as well as controlling the nature of the 

polymer produced.64 The TiCl4 would be activated by Lewis basic materials, possibly the 

silanes and chlorosilanes present, which have been shown to interact with the 

alkylaluminium co-catalysts in a way that affect the polymerization of alkyls.  
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Chapter 3 

Reaction of Titanium Chloride and Vanadium 

Oxytrichloride with Diester and Triester Molecules as 

Analogues for Oil 

3.1. Introduction 

 During the Chloride Process, titanium dioxide ore is commonly purified using a fluid 

bed reactor which is heated to over 1000 ˚C whilst a stream of concentrated chlorine 

gas is passed over the ore. This converts the all solid TiO2 present into gaseous TiCl4.73 

The ores used are heavily contaminated with various other metal oxide species. These 

contaminants, most notably Fe2O3, V2O5, Al2O3 and SiO2 are chlorinated along with the 

TiO2, forming gaseous chlorinated species that rise out of the fluid bed reactor along 

with the TiCl4. Purification of the TiCl4 is carried out using a series of temperature 

changes and distillations, described in detail in the introductory chapter of this thesis, 

before being oxidised back to TiO2.
74  

Vanadium oxytrichloride (VOCl3) represents the most challenging impurity to remove 

(with the exception of SiCl4 which is not removed due to its lower concentration in the 

ore and lower boiling point along with the relative inertness and whiteness of SiO2 

meaning that its presence is not detrimental to the final product). The p 

resence of over 5 ppm of VOCl3 in the TiCl4 distillate can be extremely damaging to the 

final product due to the intense yellow colour of vanadium oxide, due to the presence 

of Vanadium (V) centres, ruining the white titania pigment. VOCl3 has a similar boiling 
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point to TiCl4, (126 ˚C and 136 ˚C respectively) and is therefore extremely challenging 

to separate effectively using a large scale industrial distilling column without somehow 

increasing the boiling point of the VOCl3.75 This is traditionally achieved via addition of 

mineral oils, the active component of which are triglyceride backbones and 

unsaturated carbon chains of lengths C15-18 (Figure 25).76 Although this process has 

been used for decades, little is understood about why the oil preferentially reacts with 

the VOCl3 rather than the TiCl4.77   

 In order to improve the understanding of the Chloride Process on a molecular level, 

substituted esters were reacted with titanium chloride and vanadium oxytrichloride. 

The esters used were diethyl malonate, diethyl succinate, dibenzyl malonate, bis-

isopropyl malonate and glycerol tribenzoate. Each molecule used was a diester, 

featuring two carbonyl groups, with the exception of glycerol tribenzoate which 

features three carbonyl groups. Glycerol tribenzoate was considered by far the most 

similar to the triglyceride backbone of the oil. The diester ligands were used to study 

the effects of the length of the hydrocarbon backbone separating the carbonyl groups, 

as well as the size of the side groups of the products formed.  

 

Figure 25: Ester species used as analogues for the triglyceride backbone of oil in the reaction 

with TiCl4 and VOCl3 
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The simple structures of the diester species were also beneficial in producing single 

crystals of the reaction products. Due to TiCl4 having a prominent role in Zeigler Natta 

catalysis and the use of diesters as electron donor species,78 several studies have been 

carried out on the reactivity of TiCl4 with bidentate carbonyl ligands.  Maier et al. found 

that  co-ordination of 3,3-dimethyl 2,4-pentadione to TiCl4, resulted in a six coordinate 

octahedral complex, with both carbonyl oxygen atoms coordinating to the metal 

centre without the displacement of the chloride ligands.79 

 Conversely a similar study found that unsubstituted 2,4-pentadione (acacH) displaces 

a chloride atom, giving the dimeric [TiCl2(acac)µ-Cl]2 as a product.  The monomeric 

equivalent was prepared by carrying out the reaction in tetrahydrofuran  (THF) as 

opposed to CH2Cl2, with the THF acting as an Lewis base stabilising the monomeric 

species.80  

Complexes of TiCl4 with diesters have been studied previously using diethyl 

malonate.81 Like with acac, diethyl malonate acts as a bidentate ligand with the 

titanium coordinating to both carbonyl oxygen atoms. However, unlike acac, all of the 

chloride ligands were retained. The crystal structure showed that the ligand molecule 

was unchanged and the complexes adopted a distorted octahedral geometry (Figure 

26).  

 

Figure 26: Reaction of diethyl malonate and titanium(IV) chloride, observed by both Sobota 

et al. and Kakkonen et al.81,82 
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3.2. Experimental 

All reactions were carried out under argon obtained from BOC using standard Schlenk 

techniques. All Solvents were dried over activated alumina by the Grubbs method 

using anhydrous engineering equipment, such that the water concentration was 5 – 10 

ppm.83 Anhydrous TiCl4 and malonate starting materials were purchased from Sigma 

Aldrich; all were used without further purification. 1H and 13C{1H} NMR spectra were 

obtained on a Bruker AV-600 Mz spectrometer, operating at 295 K and 600.13 MHz 

(1H). Signals are reported relative to SiMe4 (δ = 0.00 ppm) and the following 

abbreviations are used s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), b 

(broad). CDCl3 was obtained from GOSS Scientific and was dried and degassed twice 

over activated 3 Å molecular sieves.  

3.2.1. Synthesis of tetrachloro(diisopropyl malonate)-titanium(IV) [1a] 

 Diisopropyl malonate (0.5 cm3, 3.3 mmol) was added dropwise to TiCl4 (1.0 cm3, 9.1 

mmol) in 50 cm3 of hexane and stirred under argon for 2 h. A yellow precipitate was 

immediately formed but the mixture was stirred for a further 2 h to ensure no further 

reaction. The solvent and excess TiCl4 were removed via filtration and the precipitate 

was filtered and washed three times with 20 cm3 hexane before drying  in vacuo to 

afford complex 1a in good yield (0.8 g, 63%). Some of the product was re-dissolved in 

5 cm3 of dichloromethane and layered with 15 cm3 of hexane. After 48 hours small 

crystals formed. The molecular structure of 1a was determined by X-ray 

crystallography. 1H NMR (CDCl3): δ 5.46 (b, 2H, -CH), 3.95 (b, 2H, -CH2), 1.47 (d, 12H, -

CH3, J = 6.20Hz). 13C{1H} NMR (CDCl3): δ 21.7 (-CH3), 38.0 (-CH2), 54.8 (-OCH2), 172 
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(C=O). Elemental analysis calculated for TiCl4C9O4H16: C, 28.60; H, 4.27. Found: C, 26.03; 

H, 3.45.  

When 1a was crystallised, two types of crystals were observed, block type and plate 

type. Carrying out single crystal XRD on both types revealed that a second product had 

formed (1b), a dimeric species consisting of two titanium centres linked by a bridging 

oxygen, each titanium centre coordinated to one malonate ligand. The additional 

oxygen that entered the system is likely responsible for the discrepancy between 

calculated atomic percentage and that found through elemental analysis. 

3.2.2. Synthesis of tetrachloro(dibenzyl malonate)-titanium(IV) [2]  

Dibenzyl malonate (1.0 cm3, 3.5 mmol) was added dropwise to TiCl4 (1.0 cm3, 9.1 mmol) in 50 

cm3 of hexane. A yellow precipitate was observed immediately and the reaction was stirred 

under argon for 2 h. The solvent and excess TiCl4 were removed via filtration and the 

precipitate was filtered and washed three times with 20 cm3 hexane before drying in vacuo 

to afford 2. A good yield was recovered (1.2 g, 77%).  Yellow crystals were again formed from 

a solution in CH2Cl2 layered with hexane. The molecular structure of 2 was determined by X-

ray crystallography. 1H NMR (CDCl3): δ 7.3 – 7.5 (m, 10H, Ph), 5.5 (b, 4H, -CH2), 4.0 (b, 2H, -

CH2). 13C {1H} NMR (CDCl3): δ 38.0 (-CH2), 73.0 (-OCH2), 129-130 (m, C6, -Ph). Elemental 

analysis calculated for TiCl4C15O4H12: C, 43.08; H, 3.40. Found: C, 43.24; H, 3.40. 

3.2.3. Synthesis of tetrachloro(diethyl succinate)-titanium(IV) [3]  

Diethyl succinate (0.5 cm3, 3.3 mmol) was added dropwise to TiCl4 (2.0 cm3, 18.2 mmol) 

in 50 cm3 of hexane and stirred under argon for 2 h. A yellow precipitate formed 

immediately, the reaction was stirred for 2 h to ensure completion. The yellow 

precipitate was filtered off and washed three times with 10 cm3 hexane and dried in 
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vacuo, to afford complex 3 in good yield (0.9 g, 75%). The product was re-dissolved in 

5 cm3 dichloromethane and layered with 10 cm3 hexane. Small crystals formed 

overnight allowing the molecular structure of 3 to be determined by X-ray 

crystallography. 1H NMR (CDCl3): δ 4.61 (q, 4H, -CH2, J = 14.3 Hz), 3.08 (s, 4H, -CH2), 

1.46 (t, 6H, -CH3, J = 14 Hz). 13C {1H} NMR (CDCl3): δ 14.1 (-CH3), 29.2 (-CH2CH2), 66.2 (-

OCH2), 179 (C=O). Elemental analysis calculated for TiCl4C8O4H14: C, 26.4; H, 3.88. 

Found: C, 26.41; H, 4.02 

3.2.4. Synthesis of complex of titanium(IV) chloride with glycerol tribenzoate [4] 

Glycerol tribenzoate (0.5 g, 1.2 mmol) was added gradually to TiCl4 (2.0 cm3, 18.2 

mmol) in 50 cm3 of hexane and stirred under argon for 2 h. An excess of TiCl4 was used 

as its removal after reaction completion is facile.  Gradual precipitation of a yellow 

product was observed. The solvent and excess TiCl4 were removed via filtration and 

the precipitate was filtered and washed three times with 20 cm3 hexane before drying 

in vacuo to afford 4 in good yield (1.6 g 75%).  Crystals suitable for X-ray diffraction 

were obtained by dissolving the yellow product in a minimum amount of 

dichloromethane, cooling to -10 ᵒC, and leaving for one month. 1H NMR (CDCl3): δ 8.27 

(d, 2H, o-CH, J = 7.7 Hz), 8.17 (d, 4H, o-CH, J = 7.7 Hz), 7.69 (t, 2H,-CH2, J = 4.8 Hz, 12.3 

Hz). 2H, p-CH J = 7.7 Hz), 7.65 (t, 1H, p-CH, J = 7.7 Hz), 7.53 (t, 2H, m-CH, J = 7.7 Hz), 

7.50 (t, 1H, m-CH, J = 7.7 Hz), 5.82 (quin, 1H, -OCH, J = 5.1 Hz), 4.98 (dd, 2H, -CH2, J = 

4.8 Hz, 12.3 Hz), 4.75 (dd, 4H,  13C{1H} NMR (CDCl3): δ  63.5 (CH2), 72.2 (CH), 129 (o-

CH), 131 (p-CH), 135 (m-CH), 168 (C=O). Elemental analysis calculated for 

Ti4Cl16C48O12H46: C, 36.64; H, 2.95. Found: C, 37.6; H, 2.98.  

3.2.5. Synthesis of Dichloro(oxo)(2, 4-Pentanedione) vanadium(V) [5] 
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 2,4-pentadione (acacH) (0.5 cm3, 4.87 mmol) was added dropwise to VOCl3 (2 cm3, 

21.1 mmol) in 30 cm3 of hexane and stirred under nitrogen for 2 h. A dark precipitate 

formed immediately, giving a thick suspension that appeared black. The precipitate 

was filtered and washed with hexane and dried in vacuo. This afforded the dark red 

complex 5 in good yield (1.1 g, 75%). 1H and 13C NMR were carried out on this product 

under nitrogen. Crystals suitable for single crystal X-ray diffraction were grown by 

layering a saturated solution of 5 in dichloromethane with hexane. Large green crystals 

formed over the course of 2 days and were analysed. 1H NMR (CDCl3): δ 2.39 (s, 6H, 

CH3), 6.13 (s, 1H, CH). 13C {1H} NMR (CDCl3): δ 26.4 (CH3), 105 (CH), 193 (C=O). 

Elemental analysis calculated for VO3Cl2C5H7: C, 25.34; H, 2.98. Found: C, 25.80; H, 

3.02. 

3.2.6. Synthesis of Dichloro(oxo)(diethyl malonate) vanadium(V) [6]  

Diethyl malonate (0.5 cm3, 3.3 mmol) was added dropwise to VOCl3 (2 cm3, 21.1 mmol) 

in 50 cm3 of hexane and stirred under nitrogen for 2 h. An excess of VOCl3 was used to 

ensure completion as unreacted VOCl3 is facile to remove from the reaction. A very 

dark precipitate was formed in a dark red solution. The precipitate was filtered and 

washed three times with 20 cm3 hexane and dried in vacuo to afford 6 in good yield 

(0.9 g, 78%). 1H and 13C NMR were carried out on this product under nitrogen. Some 

of the product was re-dissolved in 5 cm3 dichloromethane and layered with 15 cm3 

hexane. Small crystals formed over approximately a week. 1H NMR (CDCl3): δ 1.34 (t, 

6H, -CH3, J = 7.25 Hz, 3.35 (s, 2H, -CH2), 4.18 (q, 4H, -CH2, J = 7.25 Hz). 13C{1H} NMR 

(CDCl3): δ 14.2 (CH3), 55.9 (CH2), 63.6 (CH2CH3), 163 (C=O). NMR peaks were highly 
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broadened due to presence of paramagnetic vanadium species. Elemental analysis 

calculated for V4Cl8C28O20H48: C, 28.21; H, 4.06. Found: C, 26.38; H, 3.78. 

3.2.7.  Synthesis of VOCl3 Bis-isopropyl malonate Complex  [7]   

Bis-isopropyl malonate (0.5 cm3, 2.7 mmol) was added dropwise to VOCl3  (2 cm3, 21.1 

mmol) in 30 cm3 of hexane and stirred under nitrogen for 2 h. A dark red precipitate [7] was 

formed in a dark solution, the precipitate was filtered and washed 3 times with 20 cm3 

hexane. The final washing was coloured red suggesting the product is partially soluble in 

hexane. The sample was dried in vacuo. 1H NMR (CDCl3): δ 5.14 (b, 1H, -CH), 3.37 (b, 2H, -

CH(CH3)2 ), 1.30 (b,12H, -CH3) 13C {1H} NMR (CDCl3): δ 21.5 (CH3), 54 (CH2), 73 (CH2), 129 (C = 

0). 

3.2.8. Synthesis of Dichloro(oxo)(diethyl succinate) vanadium(V) [8]  

Di-ethyl succinate (0.5 cm3, 3.3 mmol) was added dropwise to VOCl3 (2 cm3, 21.1 mmol) in 

40 cm3 of hexane and stirred under nitrogen for 2 h. A dark red solution formed 

immediately but no precipitate was observed. The product was dried in vacuo leading to the 

removal of the solvent and VOCl3, leaving a viscous red liquid product (0.8 g, 90%). 1H and 

13C NMR were carried out on this product under nitrogen. The flask containing the liquid 

product was left on its side for two weeks. Small green crystals were observed in the flask. 

1H NMR (CDCl3): δ 1.21 (b, 6H, -CH3), 2.59 (b, 4H, -CH2CH2), 4.12 (b, 4H, -CH2CH3). 13C {1H} 

NMR (CDCl3): δ 14.3 (CH3), 29.2 (CH2CH2), 60.9 (CH2CH3), 173 (C = 0). 

3.2.9. Synthesis Of  Glycerol tribenzoate VOCl3 [9] 

 2 cm3 of VOCl3 (21.1 mmol) in 10 cm3 of toluene, was added dropwise to a rapidly stirred 

suspension of glycerol tribenzoate (0.5 g, 1.2 mmol) in toluene (30 cm3 )using a canula. The 

mixture was refluxed under nitrogen for 15 h. A red-brown solution was removed by filtration 

to yield and a brown precipitate. This precipitate was washed and dried in vacuo and 1H and 
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13C NMR were obtained. The compound was dissolved in CH2Cl2 and layered with hexane in 

an attempt to grow crystals, however none formed after multiple attempts. NMR (CDCl3): δ 

8.05 (b, 9H, (o-CH)), 7.5 (b, 16H, p-CH and m-CH) 5.7 (b, 1H, -OCH), 4.8 (b, 4H, -CH2), 4.12 

(broad, 2H, (O-CH3). 13C {1H} NMR (CDCl3): 63.30 (CH2), 71.32 (CH), 128 (o-CH), 130 (p-CH), 134 

(m-CH), 166 (C=O). Elemental analysis calculated for VCl2C8O5H14: C, 30.79; H, 4.52. Found: C, 

29.83; H, 4.49. 

It should be noted that although elemental analysis results for carbon and hydrogen 

were in come cases, outside of the 0.4% tolerance, this was expected due to the 

exteremly air sensitive nature of these compounds,  

3.2.10. Crystallography 

Suitable crystals were selected and mounted on a nylon loop, datasets of 1a and 1b 

were collected on a Rigaku AFC12 goniometer equipped with an enhanced sensitivity 

(HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright 

molybdenum rotating anode generator (λ1 = 0.71073 Å) with VHF Varimax optics (100 

µm focus). Crystals of compound 1b were of poor quality and did not diffract well, 

leading to a low-quality dataset. Although the atomic connectivity is unambiguous, the 

high R factors (R1 = 0.1153, wR2 = 0.3054) and low precision on C–C bond lengths 

preclude accurate comparison of bond lengths and angles. The diffraction pattern for 

3 was obtained using a  Rigaku R-Axis Spider diffractmeter including curved Fujifilm 

image plate and a graphite monochromated sealed tube Mo generator (λ1 = 0.71073 

Å). The datasets of 2, 4, 5, 6, and 8  were collected on a SuperNova, Dual, Cu, 

Atlas diffractometer. The crystal was kept at 150 K during data collection. 1a, 1b, and 

3 were solved using cell determination, data collection, data reduction, cell refinement 
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and absorption correction were carried out using CrystalClear-SM Expert 3.1 b18.84 

Structure solution and refinement were carried out using WinGX and software 

packages.85 H atoms attached to C atoms were placed in geometrically assigned 

positions, with C-H distances of 0.95 Å (CH), 0.98 Å (CH3) or 0.99 Å (CH2) and refined 

using a riding model, with Uiso(H) = 1.2Ueq(C) (CH, CH2) or 1.5Ueq(C) (CH3). enCIFer was 

used to sprepare CIFs for publication.86 Compounds  2, 4, 5, 6, and 8  were solved using 

Olex2,87 the structure was solved with the olex2.solve88 structure solution program 

using Charge Flipping and refined with the ShelXL89 refinement package using Least 

Squares minimisation. The crystal structures were solved by Dr. David Pugh and Dr. 

Peter Marchand in the case of 1a, 1b and 3 and Dr. Caroline Knapp in the case of 2, 4, 

5, 6, and 8.  

3.3. Results and Discussion 

The diesters bis-isopropyl malonate, dibenzyl malonate, diethyl succinate and the 

triester glycerol benzoate were all added to solutions of TiCl4 in hexane. In each case a 

bright yellow precipitate was observed to form immediately. After the solution was 

stirred for two hours the precipitate was separated via filtration and washed with 

moisture free hexane three times. All of the reactions gave yields above 60%. The 

products were analysed using NMR spectroscopy and elemental analysis. Single 

crystals for X-ray diffraction analysis were obtained by layering saturated solutions of 

products in CH2Cl2 with hexane in the case of 1-3 and cooling a saturated solution in 

CH2Cl2 in the case of 4.  

All four complexes adopt a pseudo octahedral geometry with two carbonyl oxygen 

atoms coordinating to the titanium centre without the displacement of the chlorine 
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atoms.  The octahedral geometry of the complex is distorted, largely due to the  

chelating nature of the ligands, which forces the O(1)-Ti(1)-O(2) bond to narrow to 

80.23(4) ° as the carbon carbon bonds are generally longer than the titanium oxygen 

bonds. Although chelation is the dominant force in the narrowing of the angle,  the 

effect is exacerbated due to the electronegative nature and greater atomic radii of the 

chlorine, compared with the carbonyl oxygen. Chlorine has a Van der Waals radius of 

1.75 Å  whereas the Van der Waals radius of  oxygen is 1.52 Å,90 leading to  the bond 

angles between the chlorine ligands to be wider than those between the oxygens.  

Forcing the less electronegative carbonyl oxygen atoms closer together.   

3.3.1. Interaction of TiCl4 with Diester Ligands 

In addition to the triester species, the interactions of the dieter molecules (diisopropyl 

malonate, dibenzyl malonate and diethyl succinate) with TiCl4 were also studied. Whilst 

less indicative of the active species in the oils used for vanadium removal, these 

molecules still provide information regarding the potential reactivity of TiCl4 with ester 

functionality. These species were advantageous in that their simplicity allowed for 

single crystals to be obtained easily. The resulting NMR spectra were far less complex 

and easy to rationalize. As only two ester groups are present the species behave in the 

same way as the glycerol tribenzoate species without the third carbonyl species 

facilitating dimerisation. This may be of relevance as it is likely that the long alkyl chains 

of the oil could sterically hinder dimerisation observed in 4, making it less favourable. 
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Scheme 1: Reaction of TiCl4 with bis-isopropyl malonate to give tetrachloro(bis-

isopropylmalonate)-titanium(IV) [1a] 

 

Figure 27: 1H NMR spectra of bis-isopropyl malonate and the product of its reaction with 

TiCl4 [1a], all peaks exhibiting a downfield shift indicating coordination to the titanium metal 

centre 
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Figure 28: ORTEP representation of the crystal structure of tetrachloro(diisopropyl 

malonate)-titanium(IV) [1a], with thermal ellipsoids at the 50% probability level. Hydrogen 

omitted for clarity. 

Table 3: Crystallographic Data and Selected bond lengths angles for the crystal structure of 1a the product of 
reaction TiCl4 and bis isopropyl malonate 

 

Structural Data  Selected Bond Angles °  Selected Bond Lengths Å 
crystal system Monoclinic  C(4)-O(2)-Ti(1) 129.89(9)  Cl(3)-Ti(1) 2.2312(6) 

space group P21/c  C(6)-O(1)-Ti(1) 131.45(9)  Cl(4)-Ti(1) 2.2519(5) 

A 6.6655(14) Å  O(1)-Ti(1)-O(2) 80.23(4)  O(2)-Ti(1) 2.1032(10) 

B 12.954(3) Å  O(1)-Ti(1)-Cl(3) 170.85(3)  O(1)-Ti(1) 2.1120(10) 

C 18.983(5) Å  O(1)-Ti(1)-Cl(4) 84.68(3)  C(4)-O(2) 1.2340(15) 

Α 90.000°  Cl(1)-Ti(1)-Cl(4) 97.21(2)  Cl(1)-Ti(1) 2.2322(5) 

Β 90.032(4)°  O(1)-Ti(1)-Cl(1) 90.40(3)  Cl(2)-Ti(1) 2.3414(5) 

Γ 90.000°  Cl(1)-Ti(1)-Cl(3) 98.44(2)  C(6)-O(1) 1.2294(16) 

R1 0.023  O(1)-Ti(1)-Cl(2) 83.26(3)  C(4)-C(5) 1.506(2) 

wR2 0.0569  Cl(3)-Ti(1)-Cl(2) 93.86(2)  C(7)-C(8) 1.4996(18) 

 

3.3.1.1. Tetrachloro(diisopropyl malonate)-titanium(IV) [1a] 

Diisopropyl malonate was reacted with an excess of titanium(IV) chloride (Scheme 1) 

at room temperature, yeilding yellow crystals after layering in CH2Cl2  with hexane. 

NMR spectroscopy indicates a simple 1:1 coordination complex of the ligand and TiCl4 

(Figure 27). The 1H NMR signal of the two protons of the central carbon atom between 

the two ester groups has shifted by 0.66 ppm downfield in comparison to the free 

ligand. Likewise the signal of the isopropyl CH group had shifted by 0.42 ppm and the 

signal of the four isopropyl methyl groups have shifted by 0.25 ppm when compared 

to the uncoordinated ligand. The NMR confirms there is no loss of a proton from the 

central carbon, as is customary with the similar ligand acac, implying that the ester 

groups are able to mitigate the formation of a charged complex, instead the product 
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remains covalent. This is confirmed by the crystal structure which shows no shortening 

of the C(4)-C(5) bond compared with other C-C bonds (table 3). 

The structure of 1a was confirmed by single crystal XRD (Figure 28). The malonate 

ligand forms a six membered ring structure with the titanium centre, datively bound 

to the two carbonyls, linked in turn by a carbon chain. The C(4)-O(2)-Ti(1) angle of the 

six membered ring species is considerably wider (129.89(9)°) than that expected for a 

flat hexagon (120°). 

Comparatively the O-Ti-O bond angle observed for this complex is 80.23(4)°, narrower 

than 90° due to the electronegativity of the chlorine atoms forcing the carbonyls closer 

together. This, combined with the differing length of the Ti-O bonds (~ 2.1Å) and C-O 

bonds (~ 1.2Å) leads to considerable ring puckering. Sobota et al. observed similar 

angles when carrying out the related reaction with TiCl4 and diethyl malonate.16 The 

length of the bond between the titanium and the carbonyl oxygen on the diisopropyl 

malonate is 2.123(3) Å. This is far closer to the dative Ti-O bond length of [TiCl4(THF)2] 

91,92  than that of a covalent Ti-O bond27 and is due to the coordination of the bis-

isopropyl malonate being dative, via a lone pair on each the carbonyl oxygen atoms.  

3.3.1.2. Bis-trichloro-µ-oxo-(diisopropyl malonate)-titanium(IV) [1b] 

This dimeric species was produced during the same synthesis as 1a described above. The 

reaction produced yellow crystals, after workup. Two noticeably different types of crystal 

were observed, both of which were characterized by single crystal X-ray diffraction. While all 

of the other compounds described in this thesis form as a result of simple addition of the 

ligand to the tetrahedral TiCl4 with no displacement of chlorine, 1b contains titanium centres 

linked by an oxygen atom, facilitated by loss of chlorine (Figure 29).  
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This was likely a result of a small amount of air entering the vessel, which lead to reaction of 

the product with water in which the addition of oxygen was facilitated by the formation of 

HCl gas.   This effect has been reported with similar titanium chloride complexes, leading to 

oxo bridged dimers and tetramers (Scheme 2). 93 The bond distances between the bridging 

oxygen and the titanium centres was 1.741(7) and 1.863(7) Å, showing the bonding to be 

covalent in nature.28 

 

Scheme 2: Reaction of 1a  with atmospheric water to give  bis-trichloro-µ-oxo-(diisopropyl 

malonate)-titanium(IV) [1b], facilitated by the elimination of HCl. 

The bridging oxygen stabilised the system and similar bridging compounds have been 

reported before as easier to crystallise. 94 This is likely a result of the system forming 

multiple π-bonding interactions between the filled p orbitals of the bridging oxygen 

and the empty d orbitals of the two titanium centres, interactions which are stronger 

than two Ti-Cl bonds that are replaced. The species is likely the result of there being a 

limited oxygen supply, with further oxidation occurring over time should the flask have 

been opened fully.  
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Figure 29. ORTEP representation of 1b with thermal ellipsoids at the 50% probability level. Hydrogen 

atoms omitted for clarity 

Table 4: Crystallographic Data and Selected bond lengths angles for the crystal structure of 1b the 
product of reaction TiCl4 and bis isopropyl malonate and subsequent air exposure 

Structural Data  Selected Bond Angles °  

Selected Bond 
Lengths Å 

crystal system triclinic  C(4)-O(2)-Ti(1) 133.0(7)  Cl(3)-Ti(1) 2.230(4) 

space group P21/c  C(6)-O(1)-Ti(1) 131.2(8)  O(2)-Ti(1) 2.136(8) 

a 18.335(16) Å  O(1)-Ti(1)-O(2) 80.0(3)  O(1)-Ti(1) 2.129(8) 

b 12.436(12) Å  O(1)-Ti(1)-Cl(3) 167.3(3)  C(4)-O(2) 1.225(14) 

c 13.683(11) Å  O(1)-Ti(1)-Cl(1) 92.3(2)  Cl(1)-Ti(1) 2.222(4) 

α 90.000°  Cl(1)-Ti(1)-Cl(3) 100.31(14)  Cl(2)-Ti(1) 2.306(4) 

β 102.474(14) °  O(1)-Ti(1)-Cl(2) 81.7(2)  C(6)-O(1) 1.233(14) 

γ 90.000°  Cl(3)-Ti(1)-Cl(2) 96.22(16)  Ti(2)-Cl(5) 2.373(3) 
R1 0.1153  O(6)-Ti(2)-Cl(6) 168.9(2)  O(3)-Ti(2) 1.741(7) 

wR2 0.3054   Ti(2)-O(1)-Ti(1)  177.2(5)  O(3)-Ti(1) 1.863(7) 

The bond angles and distances in the two bridged titanium centres of 1b are similar to 

those reported previously. The bridging Ti-O-Ti bond angle being 177.3(5)°, which is 

similar to other oxo-bridged titanium chloride dimers with alkoxide ligands that are 

less sterically hindering.94,95 In the presence of bulkier ligands, more acute oxo bridge 
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angles have been reported.93 The formation of the dimer demonstrates how 

air/moisture sensitive this system is and how oxygen can stabilise the product. 

3.3.1.3.  Tetrachloro(dibenzyl malonate)-titanium(IV) [2]  

Dibenzyl malonate was reacted with an excess of titanium(IV) chloride at room 

temperature (Scheme 3), which yielded yellow crystals after layering in 

dichloromethane with hexane. NMR spectroscopy revealed that the ligand 

coordinated to the metal centre, in a manner similar to compound 1a. The 1H NMR 

spectra of the product shows the signal of the two central protons to shift 0.50 ppm 

downfield from the signal of the free ligand. Signals from the two CH2 groups adjacent 

to the ester oxygen shifted by 0.32 ppm (Figure 30). 

 Finally the benzyl proton signal, a single broad peak in the spectrum of the 

uncoordinated ligand is shifted to reveal two of the overlapping phenyl group proton 

signals. The ortho protons shifted downfield by 0.9 ppm, the meta and para by only 0.5 

ppm. As described for the diisopropyl malonate, the complex features a puckered six 

membered ring (Figure 31). 

 Like compound 1a, the chelating nature of the ligand as well as the repulsion of the 

four chlorine ligands resulted in the subsequent compression of the O-Ti-O bond angle 

to 79.33(19)°. As with the diisopropyl malonate complex, the Ti-O bond length of 

2.122(5) Å suggests that the bond between the titanium and the carbonyl is dative in 

nature (Figure 31). 
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Scheme 3: reaction of TiCl4 with Glycerol tribenzoate give tetrachloro(dibenzyl malonate)-

titanium(IV) [2]. 

 

 

Figure 30: 1H NMR spectra of dibenzyl malonate and the product of its reaction with TiCl4 [2], 

all peaks exhibiting a downfield shift indicating coordination to the titanium metal centre. 

 

dibenzyl malonate 
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Figure 31 : ORTEP representation of tetrachloro (dibenzyl malonate)-titanium(IV) [2] with 

thermal ellipsoids at the 50% probability level. Hydrogen atoms omitted for clarity. 

Table 5: Crystallographic Data and Selected bond lengths angles for the crystal structure of 2 the product of 
reaction TiCl4 dibenzyl malonate 

Structural Data  Selected Bond Angles °  Selected Bond Lengths Å 
crystal system monoclinic  C(4)-O(2)-Ti(1) 134.6(5)  Cl(3)-Ti(1) 2.224(4) 

space group P21  C(6)-O(1)-Ti(1) 134.4(4)  Cl(4)-Ti(1) 2.303(2) 

a 16.3215(4) Å  O(1)-Ti(1)-O(2) 79.33(19)  O(2)-Ti(1) 2.115(5) 

b 9.5645(2) Å  O(1)-Ti(1)-Cl(3) 169.39(16)  O(1)-Ti(1) 2.122(5) 

c 19.7379(4) Å  O(1)-Ti(1)-Cl(4) 82.63(16)  C(4)-O(2) 1.221(8) 

α 90.000°  Cl(1)-Ti(1)-Cl(4) 95.47(8)  Cl(1)-Ti(1) 2.213(2) 

β 90.069(2) °  O(1)-Ti(1)-Cl(1) 90.59(15)  Cl(2)-Ti(1) 2.292(2) 

γ 90.000°  Cl(1)-Ti(1)-Cl(3) 99.96(9)  C(6)-O(1) 1.224(8) 
R1 0.0849  O(1)-Ti(1)-Cl(2) 84.78(16)  C(4)-C(5) 1.489(12) 

wR2 0.2263  Cl(3)-Ti(1)-Cl(2) 95.28(8)  C(3)-C(2) 1.482(13) 

 

 

 

 



 

66 

 

3.3.1.4. Tetrachloro(diethyl succinate) titanium(IV) [3] 

 Diethyl succinate was reacted with an excess of titanium(IV) chloride in hexane at 

room temperature, which yielded yellow crystals after dichloromethane/hexane 

layering. 1H NMR once again revealed that the ligand had coordinated to the metal 

centre unchanged, forming a simple 1:1 adduct (Figure 32). This was confirmed by 

single crystal X-ray diffraction.  

Like other complexes synthesised in this work, this structure contains a ring system 

formed by the bidentate coordination of the ligand to the metal centre. In this case 

however the ring is seven membered. As with the compounds 1a and 2 the ring is 

puckered, taking on the boat chair conformer, and distorted by the presence of the 

chloride ligands to give an acute Ti-O-Ti bond angle of 86.26(6)° (Figure 33, Table 6). 

This is wider than that of the malonate complex 80.23(4)° , due to the extra C-C bond 

making a less restrictive chelating complex.    

This is to my knowledge the first time that a succinate ligand has been coordinated to 

titanium chloride. Due to the increased rigidity and shorter C-C bond length resulting 

from the double bond, the malonate structure is more strained, with a Ti-O-Ti bond 

angle of 81.2°. 

 As with the structure reported here for compound 2a, due to the dative nature of the 

coordination between the malonate ligand and the Ti centre the metal oxygen distance 

is longer (2.1101(10) Å) than for other compounds of this type. 
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Scheme 4: reaction of TiCl4 with diethyl succinate to give tetrachloro(diethyl succinate)-

titanium(IV) [3]. 

 

Figure 32:  1H NMR spectra of diethyl succinate and the product of its reaction with TiCl4 [3], 

all peaks exhibiting a downfield shift indicating coordination to the titanium metal centre. 

diethyl succinate 
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Figure 33: ORTEP representation of the crystal structure of tetrachloro (diethyl succinate)-

titanium(IV) [3] with thermal ellipsoids at the 50% probability level. Hydrogen atoms omitted 

for clarity. 

Table 6: Crystallographic Data and Selected bond lengths angles for the crystal structure of 3 the product of 
reaction TiCl4 diethyl succinate 

Structural Data  Selected Bond Angles °  Selected Bond Lengths Å 
crystal system monoclinic  C(4)-O(2)-Ti(1) 136.55(10)  Cl(3)-Ti(1) 2.2379(4) 

space group C 2/c  C(6)-O(1)-Ti(1) 136.55(10)  Cl(4)-Ti(1) 2.3070(4) 

a 16.6592(11) Å  O(1)-Ti(1)-O(2) 86.26(6)  O(2)-Ti(1) 2.123(2) 

b 8.5418(5) Å  O(1)-Ti(1)-Cl(3) 173.87(3)  O(1)-Ti(1) 2.1101(10) 

c 10.3708(7) Å  O(1)-Ti(1)-Cl(4) 83.57(3)  C(4)-O(2) 1.2408(18) 

α 90.000(5) °  Cl(1)-Ti(1)-Cl(4) 95.985(15)  Cl(1)-Ti(1) 2.2379(4) 

β 98.836(3)°  O(1)-Ti(1)-Cl(1) 88.39(3)  Cl(2)-Ti(1) 2.3070(4) 

γ 90.000(5)°  Cl(1)-Ti(1)-Cl(3) 97.10(2)  C(6)-O(1) 1.2408(18) 

R1 0.0244  O(1)-Ti(1)-Cl(2) 86.39(3)      

wR2 0.0669  Cl(3)-Ti(1)-Cl(2) 95.985(15)      
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3.3.2. Interaction of TiCl4 with Triglyceride Analogue Glycerol Tribenzoate [4]   

By using diesters and triesters as model compounds for the interaction of oils with 

TiCl4, their ability to bind other metal chlorides, while leaving TiCl4 can be better 

understood. By knowing the portion of the oil molecule responsible for the removal 

and how it happens, the most effective oil or combination of oils can be found, leading 

to improvements in the efficiency of the Chloride Process.   

Glycerol tribenzoate is a triester, meaning that of all the ligands in this study, it is the 

most representative of the glycerol group of the oil used for purification of TiCl4 in TiO2 

production. Rather than unsaturated hydrocarbon chains however, in this case each 

ester group is linked to a benzene ring. This simpler molecule serves as a close 

analogue to the structure and reactivity of the glyceride group of the oils used in the 

Chloride Process, however the absence of long alkyl chains makes the characterisation 

of the product, as well as the growth of single crystals, more facile. Glycerol tribenzoate 

was reacted with excess TiCl4 under Schlenk conditions in hexane (Scheme 5). An 

excess of TiCl4 was used as the product’s lack of solubility in hexane means that the 

excess reagent could easily be removed via filtration. This is in fitting with the Chloride 

Process, where the oil is added stoiciometrically in far lower amounts.  After two hours 

a yellow product was observed, which was washed with hexane and dried in vacuo. 

Crystals suitable for single X-ray crystallography were grown by making a concentrated 

solution of 4 in dichloromethane and cooling to -1 °C for 1 month.  

The 1H NMR spectrum for unreacted glycerol tribenzoate shows two sets of doublet of 

doublets around 4.7 ppm. These represent the inequivalent CH2 environments situated on 
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the ends of the molecule’s central propyl carbon chain, which couple to each other as well as 

the proton on the central carbon. Upon reaction of TiCl4 with the glycerol. 

 

  

Scheme 5: Schematic of the synthesis of compound 4, formed by the reaction of TiCl4 in hexane with 

glycerol tribenzoate. 

 

 

Figure 34: 1H NMR spectra of glycerol benzoate and the product of its reaction with TiCl4 [4], 

all peaks exhibiting a downfield shift indicating coordination to the titanium metal centre. 
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Figure 35: ORTEP representation of 4 as determined by single crystal X-ray diffraction, with 

thermal ellipsoids at the 50% probability level. Hydrogen atoms omitted for clarity. 

Table 7: Crystallographic Data and Selected bond lengths angles for the crystal structure of 4 the 
product of reaction TiCl4 and glycerol tribenzoate. 

Structural Data  Selected Bond Angles °  

Selected Bond 
Lengths Å 

crystal system Triclinic  C(4)-O(2)-Ti(1) 164.3(2)  Cl(3)-Ti(1) 2.2258(9) 

space group P-1  C(6)-O(1)-Ti(1) 170.7(2)  Cl(4)-Ti(1) 2.2756(9) 

a 9.9955(3) Å  O(1)-Ti(1)-O(2) 83.59(8)  O(2)-Ti(1) 2.124(2) 

b 13.9772(3) Å  O(1)-Ti(1)-Cl(3) 177.38(7)  O(1)-Ti(1) 2.101(2) 

c 14.4644(4) Å  O(1)-Ti(1)-Cl(4) 87.98(6)  C(4)-O(2) 1.228(3) 

α 71.868(2)°  Cl(1)-Ti(1)-Cl(4) 94.63(3)  Cl(1)-Ti(1) 2.2234(8) 

β 76.307(2)°  O(1)-Ti(1)-Cl(1) 93.79(6)  Cl(2)-Ti(1) 2.2938(9) 

γ 77.073(2)°  Cl(1)-Ti(1)-Cl(3) 98.32(4)  C(6)-O(1) 1.227(3) 

R1 0.0381 
 O(1)-Ti(1)-Cl(2) 84.49(7)  Ti(2)-Cl(5) 2.5002(8) 

wR2 0.0977 
 Cl(3)-Ti(1)-Cl(2) 95.38(3)  Ti(2)-Cl(7) 2.2328(9) 

   O(6)-Ti(2)-Cl(7) 171.73(7)  Ti(2)-O(6) 2.020(2) 

   O(6)-Ti(2)-Cl(6) 90.13(7)    

   O(6)-Ti(2)-Cl(5i) 84.62(7)    

   Cl(5)-Ti(2)-Cl(8) 167.70(4)    

   Cl(5i)-Ti(2)-Cl(8) 92.11(3)    

   Cl(5i)-Ti(2)-Cl(5) 78.41(3)    
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tribenzoate one of these peaks was shifted upfield by 0.2 ppm whereas the other only 

shifts by 0.1 ppm, in comparison to the free ligand. 

The 13C {1H} NMR shows a shift for the signal of the carbonyl, upfield from 174  to 168 

ppm compared to the free ligand, which is due to the formation of a dative bond to 

the titanium centre reducing the  shielding around  the carbon (Figure 34). 

The crystal structure of 4 shows two different environments for the TiCl4 bound to the 

glycerol tribenzoate. In one of these environments titanium is bound to four chlorine 

atoms and also to two carboxyl oxygen atoms of the same glycerol tribenzoate (Figure 

35). The bond distances and angles observed around this titanium centre which adopts 

a distorted octahedral coordination geometry, are similar to those observed for the 

diester complexes 1-3. 

The third carbonyl oxygen of the glycerol benzoate molecule, rather than coordinating 

to the same titanium centre, which would be sterically unfavourable, instead 

coordinates to a second TiCl4 molecule. This leads to an electron deficient, 5 coordinate 

TiCl4 centre. This species would be highly unstable as a monomer and thus dimerises. 

A two chloro-bridged dimeric species is formed, with the two central titanium atoms 

taking on edge sharing octahedral geometry. The bridging Ti-Cl bond distance of 

2.5002(8) Å is longer than the terminal Ti-Cl bond distances observed to be on average 

2.244(16) Å (Table 7). This is unsurprising as the electron density of the bridging 

chloride is shared between two metal centres rather than just one in the case of the 

terminal chlorine.  

Furthermore among the terminal Ti-Cl bonds, it is observed that those trans to the 

ester carbonyl are notably shorter than the equivalent cis-chlorines. This is a result of 
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the carbonyl oxygen being less electron withdrawing than the chlorine and thereby 

increasing the electron density around the chlorine opposite.  For example Ti(1)-Cl(1) 

(trans) and Ti(1)-Cl(2) (cis) are 2.2234(8) and 2.2938(9) Ǻ respectively, a difference of 

0.0704 Ǻ. This is also the case for products 1-3, all of which show a shortening of the 

Ti-Cl bond trans to the ester carbonyl of 0.7–1.0 ppm, due to the trans influence of the 

coordinating carbonyl group.  

The formation of chloro-bridged bimetallic titanium species is relatively commonplace. 

Wu et al. reacted  2-propanol and TiCl4 to produce a Ti2Cl8 dimer.96 What is of note in 

the case of this species is that despite the complexity of the molecule formed, there is 

no elimination of any chloride species as a result of the reaction. Only addition 

followed by dimerisation of the resulting bimetallic species was observed. This is of 

interest in relation to the Chloride Process as the TiCl4 is still intact within the molecule, 

and therefore at the high temperatures used in industrial synthesis, this coordination 

would be reversible. 

 

3.3.3. Interaction of Glycerol Tribenzoate and Diesters With VOCl3 

Excess vanadium(V) oxytrichloride was reacted with the bidentate dicarbonyl ligands; 

2,4-pentadione, diethyl malonate, bis-isopropyl malonate, and diethyl succinate and 

glycerol tribenzoate to yield compounds 5, 6, 7, 8 and 9 in anhydrous hexane under an 

atmosphere of nitrogen. Repeated attempts to grow single crystals of the resulting 

compounds were made, of which only 5, 6 and 7 were successful. These crystals 

revealed that the reactions had yielded a monomeric species, an oxo-bridged tetramer 

and a one dimensional coordination polymer, respectively.  
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In each case the loss of chlorine from the VOCl3 was observed. This is significant as 

having lost a chlorine atom from the metal centre, dissociation of the ligand would not 

be enough to restore the staring material.  This makes the reaction less reversible than 

those observed with titanium in complexes 1- 4, when dissociation of the ligand would 

leave TiCl4 completely intact.  

In the production of TiO2 via the Chloride Process, the addition of oil is carried out at 

around 200 °C, and hence all of the metal chlorides present are in the vapour phase. 

At this temperature, the dative coordination observed for titanium would likely be 

more reversible as the extreme conditions would make the ligand more labile. The 

reactions with VOCl3, explain the preference with which the glyceride-containing oils 

are able to remove VOCl3 from a gaseous TiCl4 stream. 

 

3.3.3.1.  Dichloro(oxo) (2,4-Pentanedione) Vanadium(V) [VOCl2(acac)] [5] 

Excess VOCl3 was reacted with 2,4-pentadione (acacH) and stirred for 2 hours under a 

nitrogen environment. A dark precipitate in a dark red solution formed immediately 

but the mixture was stirred for 2 hours to ensure full reaction. The dark purple product, 

[VOCl2(acac)] (5), was dissolved in dichloromethane and layered with hexane. After a 

week, small black crystals were observed which were suitable for single crystal X-ray 

crystallography. The crystal structure for compound 5 is shown in Figure 37 along with 

selected bond lengths and angles in Table 5.  

1H NMR of 5 showed a peak at 2.39 ppm corresponding to the methyl groups on the 

acac ligand, which was upfield to the same peak, observed at 2.2 ppm, in 

uncoordinated acacH (Figure 36). Two further peaks were observed at 3.5 ppm and 5.4 
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ppm in uncoordinated acacH, which represent the H atoms bonded to the central 

bridging carbon. These normally equivalent protons are responsible for two different 

chemical shifts because one proton can freely dissociate, giving a conjugated system. 

When two protons are bound to the carbon atom the chemical shift is 3.5 ppm, 

however upon disassociation of one of the protons, shielding around the remaining 

proton increases, leading to a downfield shift to 5.4 ppm. This is a very useful tool in 

determining coordination. In the 1H NMR spectrum of 5 only one further peak (in 

addition to the peak at 2.39 ppm) was observed at 6.13 ppm. The integral of this peak 

has a 6:1 ratio with the peak corresponding to the two methyl groups at 2.39 ppm. This 

provides clear evidence that one proton from the acac ligand has been lost on 

coordination to the vanadium centre with a concordant upfield chemical shift of 0.7 

ppm. This suggests that the reaction of VOCl3 with acacH proceeds via loss of HCl, as 

shown in Scheme 6. 

The structure of compound 5 shows that the acac ligand is bound to the vanadium 

centre via the carbonyl oxygen atoms (Figure 37). The V-O bond lengths are 1.918(3)Å 

for O(2) and 1.904(3) Å for O(3). These are shorter than typical dative V-O bond 

distances of ~2.1 Å, as described for 6 and 7 (vide infra) and is the result of the 

increased electron density given from the carbonyl oxygen. A proton from C(3) was 

lost in the reaction and a delocalised system is therefore created between O(3), C(2), 

C(3), C(4) and O(2) (Table 8). 
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Scheme 6: Schematic of the synthesis of compound 5, formed by the reaction of VOCl3 in hexane 

with diethyl malonate 

 

Figure 36: 1H NMR spectra of 2,4 pentadione and the product of its reaction with VOCl3 [5], 

The signals relating to the non-conjugated variant of acac are completely removed in the 

spectrum of 5, indicating that coordinating to the VOCl3 is responsible for loss of a proton. 

Both peaks exhibiting a downfield shift indicating coordination to the vanadium metal centre. 
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Figure 37: ORTEP representation of crystal structure of [VOCl2(acac)] [5] with thermal 

ellipsoids at the 50% probability level. Hydrogen omitted for clarity. 

Table 8: Crystallographic Data and Selected bond lengths angles for the crystal structure of 5 the 
product of reaction VOCl3 and 2,4 pentadione. 

Structural Data  Selected Bond Angles °  

Selected Bond 
Lengths Å 

crystal 
system monoclinic  Cl2 - V1 - Cl1 93.45(3)  V1 - Cl1 2.2880(8) 

space group P21/c  O1 - V1 - Cl1 99.58(9)  V1 - Cl2 2.2275(9) 

a 15.3393(8) Å  O1 - V1 - Cl2 99.94(9)  V1 - O1 1.569(2) 

b 9.7939(5) Å  O1 - V1 - O2 100.11(10)  V1 - O2 1.903(2) 

c 8.6842(5) Å  O1 - V1 - O3 101.11(10)  V1 - O3 1.918(2) 

α 90  O2 - V1 - Cl2 159.64(7)  O2 - C2 1.290(4) 

β 94.664(5)  O2 - V1 - O3 84.62(9)  O3 - C4 1.283(4) 

γ 73.746(5)  O2 - V1 - Cl1 86.68(8)  C2 - C3 1.398(4) 

R Factor 3.21%  O3 - V1 - Cl2 88.12(7)  C3 - C4 1.398(4) 

 

This results in the ligand having an overall negative charge, which is stabilised by the 

reaction with the VOCl3 resulting in a stronger bond to the vanadium than seen in 

complexes of VOCl3 with the diesters, diethyl malonate and diethyl succinate (vide 

infra). This is evidenced in the crystal structure of 5 in which the C2-C3 and C3-C4 bonds 

between the carbonyl groups appear shortened (1.398(5) Å and 1.382(5) Å 
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respectively).22 This shows that the central carbon has been deprotonated leading to 

a conjugated 6 membered ring system as is frequently seen with coordination 

compounds of acac.23 

 Compound 5 is five coordinate, which is common for vanadium species, particularly 

when a V=O bond is present. This is also seen for [VO(acac)2], a five coordinate species 

in which the 4 carbonyl oxygen atoms take an almost square planar geometry with the 

double bond perpendicular.24 In the case of compound 5, the geometry is similar, with 

bond angles between the oxygen atoms in the acac O(2)–V(1)-O(3) at 84.59(12)°, 

whereas the angle between the chlorine atoms and the equivalent oxygen atoms on 

the acac are wider, at 86.68(8)° and 88.12(8)°, respectively for O(2)-V(1)-Cl(1) and O(3)-

V(1)-Cl(2). The angle between the two chlorines (Cl(1)-V(1)-Cl(2)) is widest at 93.47(4)°. 

This is due to the increased repulsion between the chlorine atoms due to their greater 

electron density. 

 

 

3.3.3.2. Dichloro(oxo) (diethyl malonate) Vanadium(V) [{VOCl2(CH2(COOEt2)}4] [6] 

Diethyl malonate was reacted with an excess of VOCl3 at room temperature, which 

yielded dark red crystals of [{VOCl2(CH2(COOEt2)}4] [6] after layering a concentrated 

solution of 6 in dichloromethane with hexane (Scheme 7).The 1H NMR spectra of 

compound 6 shows that peaks corresponding to the coordinated ligand have shifted 

downfield compared with that of the unreacted malonate starting material (Figure 38). 

The protons on the central carbon showed the greatest shift, implying they are most 

heavily deshielded by the presence of the vanadium, with the signal shifting downfield 

to 3.5 ppm from 3.2 ppm for the unreacted ligand. NMR spectroscopy displayed strong 
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peak broadening may suggest the presence of a paramagnetic vanadium species, 

however the crystallographic data (vide infra) would suggest otherwise, as the 

malonate has not been deprotonated as with the acac, implying a redox exchange has 

not occurred. It is more likely that there is a degree of ligand exchange happening 

between the vanadium atoms in solutions, resulting in the loss of peak resolution.   

Single crystal X-ray diffraction analysis of the red crystals revealed that the tetrameric 

complex [{VOCl2(CH2(COOEt))2}]4 6 had formed, as shown in Figure 39. The crystal 

structure of compound 6 is a tetramer linked by four bridging oxygen atoms. From each 

of the bridged vanadium centres a chlorine atom has been lost and the coordination 

sphere filled with the bridging V-O bond. Around each vanadium atom there are 4 V-O 

bonds. The two longest bonds are the dative bonds to the carbonyl groups of the 

diethyl malonate. These are similar to the equivalent Ti-O bond lengths (2.112(4) Å and 

2.102(4) Å) observed for the same malonate ligand coordinating to titanium 

tetrachloride.97 In the case of the TiCl4 however, all four chlorides are retained, giving 

a monomeric species. The C(2)-C(3) bond lengths of the central carbon chain are 

equivalent to those of the side group C(6)-C(7), (1.496(9) &1.498(7) Å respectivelty) 

suggest that no deprotonation as occurred (as with 1-3 but unlike with VO(acac)2).  

The other two V-O bond lengths represent the bridging oxygen bonds, this shows that 

the oxygen atom does not sit equidistant between the two vanadium atoms. The 

shorter of the two has a length of 1.623(3) Å, close to that expected for a V=O bond, 

for example 1.595(5) Å observed in VOCl3.25 The other bridging V-O bond distance was 

considerably longer at 2.036(3) Å, resembling the dative coordination of the malonate. 

This shows that the original V=O bond in the VOCl3 has not been broken but datively 
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coordinates to another vanadium atom. This structure has been reported previously 

by Sobota et al. formed via reaction of [V2(μ-Cl)2Cl2(MeCO2Et)2] with diethylmalonate to 

give [V2(µ-Cl)2Cl2(MeCO2Et)4], which was exposed to air  to give 6. 98 

 

Scheme 7:  Schematic of the synthesis of compound 6, formed by the reaction of VOCl3 in hexane 

with diethyl malonate 

 

 

Figure 38: 1H NMR spectra of diethyl malonate and the product of its reaction with VOCl3 [6], 

all peaks exhibiting a downfield shift and experiencing broadening indicating coordination to 

the vanadium metal centre 
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Figure 39: ORTEP representation of crystal structure of [{VOCl2(CH2(COOEt2)}4] [6] with 

thermal ellipsoids at the 50% probability level. Three of the four diethyl malonate molecules 

and all hydrogen atoms omitted for clarity. 

Table 9: Crystallographic Data and Selected bond lengths angles for the crystal 
structure of 6 the product of reaction VOCl3 and diethyl malonate 

Structural Data  

Selected Bond 
Angles °  

Selected Bond 
Lengths Å 

crystal 
system Triclinic  O1–V1–Cl2 89.07(10)  V1 - O1 2.077(3) 

space group P-1  O4–V1–O1 83.64(13)  V1 - O2 2.148(3) 

a 12.516(5) Å  O1–V1–O2 80.58(12)  V1 - O3 1.623(3) 

b 13.338(5) Å  O3–V1–O1 93.47(14)  V1 - O4 2.036(3) 

c 17.573(5) Å  O3–V1–O2 171.21(15)  V4 - O3 2.027(3) 

α 85.751(5)  Cl1–V1–Cl2 93.66(5)  O2 - C5 1.222(6) 

β 84.006(5)  V1–O3–V4 172.1(2)  C3 - C4 1.498(7) 

γ 90.000(5)  O4–V1–O2 78.95(12)  C4 - C5 1.492(7) 

R Factor 5.51%  C3–O1–V1 133.1(3)  C6 - C7 1.496(9) 
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In this work however, a direct route to 6 is reported from VOCl3 and diethyl malonate. 

Despite 6 being the same the structure reported by Sobota et al., with similar R factors 

(4.94% cf. 5.51%), the crystallographic data differs, which is likely a result of collection 

temperature (283-303 K cf. 150 K). This in turn has resulted in significant differences in 

the unit cell dimensions (Sobota structure has the unit cell dimensions: a = 12.655(4) 

Å, b = 13.735(3) Å, c = 18.141(3) Å, compared with: a = 12.5230(2) Å, b = 13.3895(2) Å, 

c = 17.5946(3) Å, reported here). The low temperature collection reported here has 

been submitted to the CCDC since there are noticeable differences in the majority of 

the bond lengths and angles of the two structures and we consider this of interest to 

the field. For example the V-O bond distance between the vanadium and the carbonyl 

groups on the malonate is 2.177(6) Å in the previously reported structure, but 

considerably shorter in this case at only 1.904(3) Å. 

Dimeric oxo-bridged vanadium complexes have been produced in a similar way by 

reaction of VOCl3 and pinacol. In this case one of the oxygen atoms of each pinacol 

ligand is coordinated to both vanadium centres, acting as bridges, with the other 

oxygen coordinating to one.99 The V-O bond lengths observed for the bridging oxygen 

atoms are 2.0211(11) Å, resembling the dative coordination of the malonate, rather 

than a direct oxo bridge. This is likely due to the electron decent nature of the 

vanadium centre. The dative V-O bond length of 2.077(3) Å in 6 is still shorter than the 

V-Cl bonds at 2.3031(13) Å. This shows how the coordination sphere of the oxygen is 

important in these reactions, and until the oxygen is bound to two other elements it 

will be reactive when subjected to an electron poor metal centre.  
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In compound 6, each of the vanadium atoms are coordinated to two chlorine atoms, 

having lost one on coordination to the ligand. The lengths of the C-C bonds between 

the two carbonyl groups are 1.492(7) and 1.496(9) Å which indicates that both are 

single bonds.22 This implies that the coordination to the vanadium centre has not lead 

to the loss of a proton from the central carbon atom resulting in the evolution of HCl 

as would be expected and observed in the formation of compound 5. Had this occurred 

the C-C bond lengths would be shortened to around 1.38 Å due to the increased 

electronic density resulting from the aromaticity of the resulting species. Therefore, 

the vanadium centre has been reduced to V(IV) from V(V) with concurrent oxidation 

of chloride ligands to elemental chlorine. This has been observed previously in the 

reaction of VOCl3 with 2-ethoxy ethanol, which was shown to coordinate in a bidentate 

fashion to the vanadium whilst maintaining the ethanoic proton.28 This reaction was 

found to result in the reversible loss of chlorine ligands via oxidation to Cl2. Vapours 

from the reaction were found to test positive for Cl2 gas.100  

 

3.3.3.3. Dichloro(oxo)(diethyl succinate) Vanadium (V) [VOCl2{C2H4(CO2Et)2}]n [7] 

Excess VOCl3 was reacted with diethyl succinate in hexane and stirred for 2 hours under 

nitrogen. The reaction mixture turned from orange to dark red over 5 minutes and was 

left to stir for 2 hours to ensure a full reaction. The reaction yielded a dark red oily 

product (Scheme 8). The flask was left under nitrogen for one month, during which 

time, green crystals of compound 7 were formed which were suitable for single crystal 

X-ray crystallography. The NMR spectrum of 7 showed customary peak broadening 

associated with coordination to a paramagnetic vanadium species (Figure 40).  
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The diethyl succinate acts as a bidentate ligand in 7, with each carbonyl binding to a 

different metal centre rather than chelating as was observed with the malonate ligand 

in compound 6. Likewise, each vanadium centre forms bonds with two different ester 

groups thus forming a polymer chain. This polymer chain is classed as a one 

dimensional coordination polymer. Coordination polymers are metal-ligand complexes 

that extend "indefinitely" into one, two or three dimensions via covalent metal-ligand 

bonding. Coordination polymers are also known as metal organic frameworks 

(MOFs).101,102 One dimensional coordination polymers are of particular interest for 

their electronic properties, for use as nanowires.103,104 

The first non-cluster vanadium coordination polymer was synthesised by Zhang et al. 

in 2001, with the synthesis of [VO(dod)2]X2 (X = Cl, Br; dod = 1,4-

diazoniabicyclo[2,2,2]octane-1,4-diacetate].105 There have been other reported 1-

dimensional coordination polymers containing vanadium, one with O,O,N-dichelating 

ligands106 and a further from the reaction of vanadium sulfate with 1,3-aryl-linked bis-

β -diketones in aqueous alcohol and sodium acetate followed by 4,4-bipyridine, which 

stabilises formation of a polymeric species.107 Furthermore, succinate has been used 

as a bridging ligand in a cobalt based MOF, forming a similar one dimensional chain, 

stabilised with benzadine ligands.108 

This is the first mononuclear 1-dimensional vanadyl coordination polymer to be 

isolated as a single crystal and the structure probed by X-ray diffraction. The presence 

of the two V-Cl bonds makes the polymer extremely moisture sensitive. The vanadium 

centre is similar to that in 6 in that it is five coordinate, bound to three oxygen atoms 

and two chlorine atoms. The complexes differ in the way that the ligand is oriented. In 
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compound 5, the carbonyl oxygen atoms are cis to each other since they are from the 

same acac ligand. In compound 7, the carbonyl oxygen atoms originate from two 

different molecules and are positioned axial to each other, rather than equatorial, as 

in the case for 5. 

 This is reflected in the O(1)-V(1)-O(21) bond angle of 167.72(6)˚ in 7, whereas in 

compound 5 the equivalent O-V-O angle between the carbonyl oxygen atoms is 

84.59(12)˚ (Figure 41). 

Structure 7 differs from the related cobalt polymer synthesised by Roy et al.,34 since 

the O-M-O bond angle was observed to be 180°. This is due to the electronegativity of 

the two chloride ligands, resulting in the Cl(1)-V(1)-Cl(2) bond angle being 131.62(3)°, 

as opposed to the expected 120° for a five coordinate geometry. Regardless of this the 

chain is linear due to the positioning of the succinate bridge.  

The V-O bond lengths in 7 for the carbonyl oxygen atom are 2.0483(13) Å and 

2.0370(13) Å respectively, which resembles the dative coordinative bonds observed 

with the malonate ligand in 6. It is likely that VOCl3 forms this polymer because of the 

two bridging carbon atoms between the ester groups. When there is one bridging 

carbon, as is the case with the malonate and the acac, both of the carbonyl oxygen 

atoms lie on the same side of the chain. In the case of the succinate ligand there are 

two bridging carbon atoms, the bond between which can rotate freely, allowing the 

carbonyls to lie on opposite sides due to steric hindrance. This appears to be the more 

favoured conformation of the ligand, most likely due to the presence of the relatively 

large, electron rich chlorine centres.  
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Scheme 8:  Schematic of the synthesis of compound 7, formed by the reaction of VOCl3 in hexane 

with diethyl succinate. 

 

Figure 40:  1H NMR spectra of diethyl succinate and the product of its reaction with VOCl3 [7], 

all peaks exhibiting a downfield shift and experiencing broadening indicating coordination to 

the vanadium metal centre. 
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Figure 41: ORTEP representation of crystal structure of [VOCl2{C2H4(CO2Et)2}]n (7) with 

thermal ellipsoids at the 50% probability level. Hydrogen omitted for clarity. 

 

 

Table 10: Crystallographic Data and Selected bond lengths angles for the crystal structure of 7 
the product of reaction VOCl3 and diethyl succinate. 

Structural Data  

Selected Bond 
Lengths Å  

Selected Bond 
Angles ° 

crystal system orthorhombic  Cl2 - V1 - Cl1 131.62(3)  V1 - Cl1 2.2854(6) 
space group P212121  O3 - V1 - Cl1 113.26(6)  V1 - Cl2 2.2776(6) 

a 8.3503(3) Å  O3 - V1 - O1 93.40(7)  V1 - O3 1.5783(14) 

b 13.5046(4) Å  O3 - V1 - O21 98.62(6)  V1 - O1 2.0483(13) 

c 15.2041(5) Å  O1 - V1 - Cl2 85.88(4)  V1 - O21 2.0370(13) 
α 90.000(5)  O2¹ - V1 - Cl2 86.74(4)  C3 - C4 1.487(3) 

β 90.000(5)  C3 - O1 - V1 142.20(13)  O1 - C3 1.228(2) 

γ 90.000(5)  C3 - C4 - C5 113.60(16)  O4 - C3 1.312(2) 

R Factor 3.40%  O2¹ - V1 - O1 167.72(6)  O2 - C6 1.237(2) 

      O5 - C6 1.312(2) 

      O5 - C7 1.473(2) 

      C4 - C5  1.530(3) 
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Each of the diester molecules were observed to coordinate datively to the vanadium 

metal centre, facilitated by the loss of a chlorine ligand, as was observed for compound 

6. The structures differ greatly according to the ligand, with the malonate appearing to 

favour oxo-bridged oligomeric structures, whilst the less oxygen rich acac favours a 

simple monomeric species. This can be related to the effectiveness of the mineral oil 

as a means of removing VOCl3 in the Chloride Process as opposed to other organic 

mixtures. By encouraging the formation of oligomeric species the likelihood of 

vanadium crashing out of the TiCl4 as a solid or liquid in the Chloride Process rather 

than passing through the distillation column is increased, leading to a cleaner final 

product. Another interesting characteristic of the diester species is that both the 1H 

NMR spectra and bond lengths observed suggests that there is no deprotonation of 

the ligand to form a conjugated species, as is observed in the acac ligand. This is 

unexpected, especially for the diethyl malonate ligand, the deprotonated state of 

which is widely used in organic synthesis.35 This may relate back to the propensity for 

forming oligomeric and polymeric species, which could facilitate the loss of Cl2 gas in 

the event of the dimerisation of two unstable VOCl3L centres as a preferable reaction 

pathway.28 

3.3.3.4.  Reaction of VOCl3 with Other Species  

In addition to the above three structures, VOCl3 was reacted with other ester species, 

however it proved impossible to isolate crystals of these products. Bis-isopropyl 

malonate and glycerol tribenzoate were reacted with VOCl3 to give 8 and 9 

respectively. Compound 8 was formed under the same conditions as 5, 6 and 7 with 

the ligand added dropwise to a solution of VOCl3 in hexane.
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Figure 42:  1H NMR spectra of bis-isopropyl malonate and the product of its reaction with VOCl3 [8], all 

peaks exhibiting a downfield shift and experiencing broadening indicating coordination to the 

vanadium metal centre. 

  

Figure 43:  1H NMR spectra of bis-isopropyl malonate and the product of its reaction with VOCl3 [9], all 

peaks exhibiting a downfield shift and experiencing broadening indicating coordination to the 

vanadium metal centre.
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This approach with glycerol tribenzoate was found to be ineffective as glycerol 

tribenzoate is highly insoluble in hexane and preventing the reaction from going to 

completion. The reaction was repeated in toluene and refluxed for 15 hours, at which 

point a black liquid was obtained. NMR of 8 (Figure 42) reveals considerable peak 

broadening in all three peaks, as well as a minor downfield directing effect relating to 

the electron poor desheilding nature of the VOCl3,  The most noticeable shift is, as 

expected, the central proton of the malonate, which is shifted from 5.05 to 5.44 ppm. 

Peaks at 1.25 and 3.31 ppm in the unreacted bis-isopropyl malonate spectra have also 

shifted downfield, however this is far less pronounced.   

As a crystal structure could not be obtained due to the extremely air sensitive nature 

of the product, the NMR data confirms coordination of the malonate to the VOCl3. The 

highly similar nature of the ligand would suggest that the mostly likely structure taken 

on by 8 would be cyclic, similar to 6, with the vanadyl oxygen forming bridges between 

the metal centres.  

The same is true for the glycerol tribenzoate and VOCl3 complex. In this case the 

broadening and downfield shifting in the NMR spectrum (Figure 43) is far more 

pronounced than that seen in the bis-isopropyl malonate. The doublet peak of proton 

B has shifted from 4.78 to 5.10 ppm and broadened greatly. The single proton singlet 

at 5.9 ppm has also broadened to the point to where it is barely visible from the 

background. The signals for the aromatic species have homogenised to form two 

extremely broad peaks over the range of 7.3 to 8.3 ppm. This once again confirms 

coordination of the glycerol tribenzoate to the vanadium centre, however predicting 

the structure is considerably more challenging. The length of the bridging alkyl chain 
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between the carbonyls resembles that of the succinate species, and is long enough for 

polymerization to be possible. However the fact that there are three carbonyl groups 

would make the formation of a branched polymer species possible. The complexity of 

the resulting species would explain the extreme difficulty in forming crystals.  

3.4. Conclusion 

All of the diesters studied coordinated to the titanium(IV) chloride in the same way, forming 

complexes of an octahedral geometry, distorted by the presence of the chloride ligands. No 

chlorine was lost from the TiCl4 upon formation of the complexes 1 - 3. The same is true for 

glycerol tribenzoate titanium chloride complex 4, with two of the ester groups datively 

coordinating via the carbonyl oxygen to a single titanium centre. This lead to a six coordiate 

octahedral centre with  octahedral geometry. The third ester carbonyl group coordinates to 

a second titanium chloride molecule. The resulting species instability leads to dimerization. 

Formation of a two choro-bridged Ti2Cl6(µ-2)Cl2 centre was observed, with both titanium 

centres coordinated to a single carbonyl oxygen of a different glycerol benzoate molecule. As 

with the other structures, no chlorine loss is observed. 

Conversely, with VOCl3, all three molecules coordinating to the vanadium lead to the loss of 

a chlorine atom. This is significant as the reaction could not be reversed by simple dissociation 

of the ligand alone, which could occur for the TiCl4 complexes at the high temperatures used 

in the Chloride Process.  

Additionally,  whilst all three diesters form monomeric species with TiCl4 to compensate for 

the loss of the chlorine atom, the diester complexes of vanadium (4 + 5) form a ring and a 
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chain respectively, with the oxygen of the VOCl3 forming a dative bond with another metal 

centre. 

The addition of oil in the Chloride Process for the production of TiO2 is carried out at around 

200 ˚C, at which point all of the metal chlorides present are in the vapour phase. At this 

temperature, the dative coordination would likely be more reversible, as neither the TiCl4 nor 

the esters are altered structurally by coordination. Conversely the addition of donor ligands 

to VOCl3, the species removed by the oil, frequently causes the dissociation of one of the 

chlorine atoms.  

This suggests that even though the Lewis acidy of the TiCl4 is greater than VOCl3, the VOCl3 

may be changed irreversibly by reaction with carbonyl groups in the oils, making it the 

preferred species for the reaction of the  triglyceride group of the oil, despite being present 

in far lower concentrations in the gas stream. The group may coordinate briefly to many 

titanium(IV) chloride molecules before coming into contact with one vanadium oxytrichloride 

but having done so the energy barrier to reversibility would be greater and so the interaction 

leads to a permanent formation of a new species which is not able to pass through the 

distillation.  
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Chapter 4 

Vanadium Removal Flow System 

4.1. Introduction 

Having analyzed the contents of various samples from different points along the Chloride 

Process using NMR spectroscopy, and modeled the interaction of TiCl4 and VOCl3 with diesters 

and triesters as analogues for the oils, the next step was to try and recreate the gas phase 

interactions of the heated TiCl4 and VOCl3. To achieve this, a piece of glassware was designed 

to mimic the distillation column of the Chloride Process, complete with the ability to cycle the 

same liquid through the distillation repeatedly. Samples of TiCl4 and VOCl3 that had been 

passed through this apparatus were analyzed using NMR using the same method described 

in Chapter 2.  

In order to investigate the behaviour of oil in the Chloride Process on a laboratory scale, the 

conditions within the Chloride Process had to be emulated as closely as possible.  This  

involved  reacting  mixtures  of  gaseous titanium(IV)  chloride  and  vanadium(V)  

oxytrichloride  with  the  liquid  oil  at  over  140 ˚C under moisture free conditions. An 

additional challenge lies in the fact that the industrial scale production of TiO2 is a cyclic 

process. Material that does not pass through the distillation columns is not discarded but 

recycled into the chlorinator, passing through the process repeatedly. This is done to minimize 

waste and production of harmful by-products as well as to maximize the yield of titanium 

dioxide obtained from the ore. 
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A potential problem with this method however is that byproducts, such as those formed by 

the breakdown of the oil, can be recycled repeatedly and build up in the system, leading to 

fouling or unwanted side reactions. To accurately recreate the addition of oil, the same 

sample of TiCl4/VOCl3 needs to react with the oil repeatedly, simulating possible build-up of 

breakdown products.  In order to achieve this, a flow cell was designed by modifying a Soxhlet 

extractor (Figure 44) with the purpose of forcing gaseous TiCl4 and VOCl3 over a small amount 

of rapidly stirred oil, simulating the injection of the oil as a dispersion of liquid droplets into 

the gaseous TiCl4 stream, as shown in the schematic of the process (Figure 45).  

 

Figure 44: Schematic of a Soxhlet extractor.109 

This was achieved by modifying the bottom pipe of the Soxhlet, through which the distillate 

drains in the flask. To the side of this tube was connected to  a thinner glass pipe (0.5 cm 

diameter) that leads into a second two necked round bottom flask. From this flask, a second 

0.5 cm wide pipe leads 10 cm directly upwards before connecting to the upper Soxhlet. This 
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set up effectively elongates the distillation tube of the Soxhlet to include a second round 

bottom flask to which oil can be added (Figure 45). 

4.2. Experimental 

Before each experiment, 5 ml of the selected oil (Tables 11 and 12) was added to flask 2. The 

flow cell was assembled as shown in Figure 45 and purged with nitrogen anhydrous nitrogen 

from a Schlenk line for 30 minutes whilst the bottom two flasks were heated to 140 ˚C using 

a silicone oil bath and a hot plate, in order to remove as much moisture from the system as 

possible, so as to more accurately emulate the conditions during industrial TiCl4 removal.  

The apparatus was fitted with an ice water condenser in order to ensure that all of the TiCl4 

remained inside the system, not escaping through the top of the Soxhlet extractor. The 

apparatus was also fitted with an oil bubbler in order to regulate the flow of nitrogen through 

the system, which was kept as low as possible. Following this, the condenser was removed 

from the top of the Soxhlet chamber and replaced with a rubber septum, through which 15 

ml of TiCl4, VOCl3 or a mixture of the two were injected. This caused the Soxhlet to fill, leading 

to roughly 10 ml falling into flask one and 5 ml remaining in the top chamber of the Soxhlet. 

This was important as it prevented backflow of the hot vapour, forcing it through the system 

in the correct direction, ensuring interaction with the oil in flask 2. Following the addition of 

the TiCl4, VOCl3 or mixture, the rubber septum was removed and replaced with the condenser 

and oil bubbler. After the addition of the metal chloride species both flasks were stirred 

vigorously using magnetic stirrer bars. The movement of the metal chloride species within the 

system can be described as 5 steps. Throughout the process the system was heavily insulated 

using foil and thermal insulation material.  
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Figure 45:  Gaseous metal chloride flowcell from a modified Soxhlet extractor. 

The metal chloride species pass through the flowcell in five steps: 
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1) The titanium chloride was added via the top of the Soxhlet extractor into the flow cell 

whereupon it filled the Soxhlet before dropping through into flask one. The TiCl4 was 

heated to 140 ˚C using an oil bath. This lead to evaporation of the TiCl4. As some liquid 

TiCl4 remain in the Soxhlet above, the path of least resistance was into flask 2. 

 

2) Flask 2 contain roughly 5 ml of the selected oil, which was vigorously stirred at 140 ˚C. 

The heating caused the oil to become far less viscous and droplets were kicked up by the 

stirrer, emulating the dispersion of oil that is injected into the gas cleaning tank. The 

gaseous TiCl4 interacted with the oil in flask 2 whist purely in the gaseous state as the 

inlet was not submerged in the oil. 

 

3) Following reaction with the oil, the TiCl4 and VOCl3 were distilled through the 0.5 cm 

diameter glass tube, along with any volatile products that may have formed in flask 2.  

 

4) The TiCl4 and volatile products moved into the condenser. Here their temperature was 

reduced sufficiently to cause them to enter the liquid phase and drip down, filling the 

Soxhlet extractor sample chamber. 

 

5) The full Soxhlet emptied into flask one beginning the cycle over. This simulates the cyclic 

nature of the Chloride Process, allowing possible byproducts to build up over multiple 

cycles. 
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Whilst the experiments were carried out, a third magnetic stirrer was kept inside the Soxhlet 

chamber above flask 1. This reduced the amount of liquid that was required to build up inside 

before emptying into flask 1 from 10 ml to around 5 ml. This was found to improve the flow 

of the gas and prevent either of the heated flasks from boiling dry.  

Once the Soxhlet had filled and emptied a certain number of times the nitrogen flow was 

removed and the system left to cool to room temperature, at which point three NMR samples 

were taken.  

- The contents of flask 1, which contained TiCl4 and any by-products built up over 

several cycles. 

- The contents of the Soxhlet extractor, which contained the freshly distilled TiCl4 

- The contents of flask 2, which contained the oil residue, which had often solidified as 

well as the vanadium oxytrichloride that had been removed from the gas stream. 

4.2.1. Soya Bean Oil Experiments  

The initial experiments all used soya oil as this is the oil currently used by Huntsman Pigments 

and Additives in the removal of VOCl3. After some initial optimizing of the technique by 

running toluene, SiCl4 and finally TiCl4 through the system, a series of experiments were 

carried out. The details of these experiments are shown in Table 11. The 1000 ppm 

vanadium(V) oxytrichloride dosed titanium(IV) chloride was obtained from Huntsman. The 

40,000 ppm VOCl3 sample was made up in a separate Schlenk flask by adding 1 cm3 of VOCl3 

to 25 cm3 of TiCl4. 
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4.2.2. Analysis of Naphthenic Oils 

Following the experiments with soya bean oil, a second flow cell study was carried out using 

various naphthenic oils (Table 12). All of these experiments were carried out as described in 

the previous section, with an NMR spectrum being obtained from each of the naphthenic 

samples for comparison. After initially sampling several naphthenic oils with only TiCl4 it was 

decided that Flavex 977(s) would be reacted with the other metal chloride mixtures in the 

same way as the soya bean oil, as it possessed greater fluidity and was observed to become 

solid less rapidly upon exposure to TiCl4. 

Table 11: Key experiments involving soya oil carried out using the flow system 

 
EXP 
no. 

Chloride 
flask 

Oil flask No. 
Cycles 

Time 
/hrs 

Results + Observations 

1 TiCl4 soya 4 3 Oil becomes brown and viscous after 
3 cycles. NMR shows chlorinated 
alkene species have distilled into 
Soxhlet. 

2 VOCl3 soya 3 4 Oil became black and viscous during 
first cycle. VOCl3 that distills into 
Soxhlet identical to starting material 
by NMR. 

3 TiCl4  + VOCl3 
(1000ppm) 

soya 4 3 Oil becomes brown and viscous after 
2 cycles. NMR shows chlorinated 
alkenes species have distilled into 
Soxhlet. 

4 TiCl4  +  
VOCl3 
(40,000ppm) 

soya 4 4 Oil becomes black and viscous after 
1.5 cycles. 1H NMR shows no 
broadening suggesting that VOCl3 has 
been removed. Chloroalkane peaks 
only present in oil. 

5 TiCl4 - 4 3 NMR shows no reaction. 
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Table 12: Experiments run through the flow cell apparatus using naphthenic oils 

EXP 
no.  

Chloride 
flask  

Oil 
Flask  

No. 
Cycles  

Time 
(hrs)  

Results + Observations  

6 TiCl4  Flavex 
977(s)  

4 2 Oil becomes dark red/brown, almost as 
soon as TiCl4 begins boiling however 
remains fluid. TiCl4 condensing in Soxhlet 
dark red   

7 TiCl4  EH 
L550 

4 3 Oil becomes dark red/brown, almost as 
soon as TiCl4 begins boiling however 
remains fluid. TiCl4 condensing in Soxhlet 
dark red   

8 TiCl4  Gravex 
926  

4 3 Oil becomes dark red/brown, almost as 
soon as TiCl4 begins boiling however 
remains fluid. TiCl4 condensing in Soxhlet 
dark red   

9 TiCl4 Edelex 
926(s) 

3 4 Oil becomes dark red/brown, almost as 
soon as TiCl4 begins boiling however 
remains fluid. TiCl4 condensing in Soxhlet 
dark red   

10 Toluene Flavex 
977(s) 

4 1.5 NMR shows pure toluene  

11 TiCl4 +  
VOCl3 

(1000ppm)  

Flavex 
977(s) 

4 4 Same as 8 except the oil is visibly darker 
during the initial cycle.  

12 TiCl4 + 
 VOCl3 

(40,000ppm)  

Flavex 
977(s) 

4 3 Oil goes from colourless to black as soon 
as it is exposed to the gaseous species. 
The distilled fraction appears to stain the 
apperattus orange (Figure 30). 
Precipitation of black solid is observed in 
distillate 

13 VOCl3  Flavex 
977(s) 

3 4 Oil initially appears less viscous, however 
over the course of the cycle it gradually 
becomes more solid. By the third cycle 
only 4 ml of VOCL3 remains, the rest 
appears to have been taken up by the oil.  
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4.3. Results and Discussion  

4.3.1. Soya Bean Oil Analysis  

4.3.1.1. TiCl4 + Soya Oil 

TiCl4 caused the oil to gradually go from light yellow to brown, becoming more viscous over 

time. After the Soxhlet had emptied and filled three times, the oil had become so thick that 

the stirrer could no longer move. The TiCl4 passing into the Soxhlet was clear and colourless, 

lighter in colour than the starting material, which was a light yellow due to aging. The NMR 

spectra taken from flask 1 and the Soxhlet show a number of signals that were not present in 

the starting material.  

These peaks were not present in any of the spectra from when the cell was run without oil, 

which only shows signals from the grease used on the joints.  This suggests strongly that the 

peaks are a result of TiCl4 breaking down the oil. Figure 46 shows enhanced images of two 

major new peaks, whilst Figure 47 shows the COSY (correlation spectroscopy) spectrum of 

the same two peaks.  The two signals in question are a quartet of doublets at 3.95 ppm and a 

pentet at 5.2 ppm. These are the strongest peaks that appear as a result of the flow system 

experiment. The COSY shows that the two signals are from protons situated on adjacent 

carbons. This is in keeping with the 1H NMR signal of a glycerol group, which shows both the 

pentet and quartet of doublets when coordinated to TiCl4, however both were considerably 

more downfield shifted due to the presence of the three highly electron withdrawing ester 

groups (Figure 47). These signals strongly suggest that the glycerol group of the soya bean oil 

is responsible for these signals emerging.  
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Figure 46: 1H NMR spectra of the starting material and the contents of flasks 1, 2 and the Soxhlet 

extractor from experiment in which gaseous TiCl4 was reacted in soya oil. Spectra taken in CDCl3. The 

figure shows the region between 3.5 and 5.5 ppm. 

 

Figure 47:1H NMR COSY spectrum of the contents of flask 1, from experiment in which gaseous TiCl4 

was reacted in soya oil, showing  the region between 3.5 and 5.5 ppm. Spectra taken in CDCl3.
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Despite this it is unlikely that the soya bean oil was able to make it though the distillation intact. 

Neither the NMR spectra from the Soxhlet or flask 1 showed any trace of the unsaturated 

alkene peaks at 2.1, 2.4 and 2.8 ppm that were also seen in the NMR spectrum of the soya bean 

oil. Furthermore the signals have undergone an upfeild shift, with the equivalent signals in soya 

bean oil appearing at 5.4 and 4.3 ppm as opposed to the peaks at 5.1 and 3.9 ppm observed in 

this spectrum (Figure 46).  

This evidence points to the molecules that produce these signals being the products of the 

breakdown of the soya bean oil, with the fatty acid chains separating from the glycerol.  

The resulting molecule must still be able to provide the signals resulting from a 1, 2, 3 propane 

species whilst providing downfield shifts in the correct environments. The protons on the 1 and 

3 carbons must also be equivalent as otherwise the signals from the carbons in the 1 and 2 

positions of the propyl backbone would not be  in the same position, as was observed in these 

spectra. The species that fits best in simulated NMR is that of a dichlorinated species in which 

the ester groups have been replaced by the chlorine in the 1 and 3 positions (Figure 48 and 49). 

 

Figure 48: Proposed general structure of the main NMR product of the reaction of TiCl4 and soya bean 

oil in the flow cell 
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This matches well with the product of the reaction of the TiCl4 with glycerol tribenzoate as 

shown in the previous chapter. The TiCl4 was found to coordinate to the two terminal ester 

groups or the central ester on two molecules forming a chloro-bridged tetra-titanium species. 

It is probable therefore that this species, formed in the gas phase, or at least part of it, should 

be the intermediate for the formation of the volatile molecule that would be able to distill over. 

The R group represents the carbon chain that would also need to be far shorter to make 

distillation possible.  

 

Figure 49: Comparison of the spectrum of the contents of flask 1 produced from putting TiCl4 through 

4 cycles with soya bean oil, compared with the simulated 1H NMR spectrum of 1, 3 dichloro propan-2-

acetate.The simulation does not factor In long range coupling of the 4H peak which was added 

manually.  Simulation carried out using NMRDB NMR predictor software. 110–112 

The  chlorination of an ester species from  TiCl4 would be unfavorable due to the greater bond 

enthalpy of the C-O linkage than the formed C-Cl (348 kJ mol-1 vs 328 kJ mol-1 respectively) as 

well as the large energy barrier of 373kJ mol-1 required o break the TiCl4 bond. 113 However, it 
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should be noted that just because the formation of the above distillate product is unfavorable 

does not mean it should be discounted.  The flowcell device is designed to allow for the buildup 

of marginal species over a period of hours, as was seen in the Chloride Process, with undistilled 

components cycled repeatedly through the entire system. Even if a very small amount of each 

5 ml of distilled TiCl4 reacts with the oil in this way, it would build up in the system, being 

removed from the oil flask via distillation preventing the reaction from reaching equilibrium.   

The spectrum also shows weaker signals that could be the same molecule but with different 

ester groups substituted. A postulated mechanism is shown in Figure 50, with the chlorine 

attacking the electron poor carbon adjacent to the ester and the resulting rearrangement 

leading to fission of the C-O bond. The resulting species rearranges giving a covalent structure 

similar to those observed by Barrow et al.114 It should be noted that despite the species denoted 

by Barrow being bis-titanium dimers bridged by carboxyl ligands, with both carboxyl oxygen 

atoms coordinating to a titanium centre, a similar reaction could occur here, with the second 

stage facilitated by the presence of a second species.  

 

Figure 50: Suggested mechanism for the formation of the 1, 3 dichloro 2 acetyl propane species 

observed in the 1H NMR of the flow-cell distillate. 
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Despite the unfavourable nature of this reaction due to the Lewis acid character of the titanium 

chloride, it would be irreversible and as the experiment involves cycling the same sample of 

TiCl4 repeatedly, even a product that forms in minuscule amounts could be observed to build 

up.  

Another explanation could be that the formation of HCl in the system plays a part in the 

chlorination and stabilizing the resulting TiCl4 carboxylate species. The cause of this chlorination 

could either be the formation of small amounts of HCl from residual water, as well as the small 

amount of water in the nitrogen stream. This would not be entirely inaccurate to the process 

as before the addition of oil, a small jet of water vapour is injected in order to remove water. 

4.3.1.2.  VOCl3 + Soya Oil 

When the flow system was used with only VOCl3 present, the oil was found to become viscous 

far more rapidly, becoming black and solid just after the first Soxhlet-full had passed through. 

It was observed that most of the VOCl3 appeared to have been ‘consumed’ by the oil, with only 

around 5 ml flowing through the system by the third cycle.  The distilled VOCl3  in the Soxhlet 

appeared unchanged. This implied that all of the soya oil had reacted with the VOCl3 allowing 

what remained to pass through the flow cell repeatedly undisturbed.  This was confirmed by 

the 1H NMR analysis (Figure 51). The VOCl3 in the Soxhlet adaptor showed no significant change 

from the starting material, except for the removal of peaks at 0.5 – 0.7 ppm, which are the 

result of unsaturated alkyl impurities. These were apparently removed by the distillation.  

The NMR spectrum of the oil flask was similar to that of unreacted soya oil, except broadened 

significantly, suggesting the presence of vanadium, coordinated to the oil. This is in keeping 

with current theory that the VOCl3 coordinates to the double bonds and triglyceride backbone 
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irreversibly, rendering it unable to pass through the distillation column. Conversely the TiCl4 

coordinates in a more reversible manner, allowing it to pass through the distillation. 

These findings support the work in which TiCl4 and VOCl3 were reacted with diesters.  The 

reaction with the VOCl3 was found to displace chlorine, which heavily reduces the reversibility 

of the reaction when compared with the TiCl4, which remains intact upon coordination, simply 

adopting an octahedral moiety, maintaining all four chlorine atoms. 

 

Figure 51: 1H NMR spectra of the starting material and the contents of flask 2 and the Soxhlet 

extractor from experiment 2, in which gaseous VOCl3 was reacted in soya oil. Spectra taken in CDCl3. 

The figure shows the region between 0.6 and 5.5 ppm. 

 

4.3.1.3.     TiCl4 + 1000ppm VOCl3 + Soya Oil 
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Of the two mixtures put through the flow cell, the 1000 ppm VOCl3 mixture was far more similar 

to the gas stream found in the actual Chloride Process. The results are highly similar to those 

obtained, using pure titanium chloride.  The 1H NMR spectra of flask 1 and the Soxhlet both 

show the same peaks between 3 and 6 ppm including the large quartet of doublets at 3.95 ppm 

(Figure 52). The lack of any broadening in the spectra as well as the colourless nature of the 

distillate suggests complete removal of the vanadium species by the oil. This is a promising 

result as it shows that the flow cell is able to emulate the distillation and removal of VOCl3 in 

the plant effectively. 

 

Figure 52: 1H NMR spectra of the starting material and the contents of flasks 1, 2 and the Soxhlet 

extractor  from experiment in which gaseous TiCl4 with 1000 ppm VOCl3 was reacted in soya oil. 

Spectra taken in CDCl3. The figure shows the region between 3.5 and 5.5 ppm. 

4.3.1.4.     TiCl4 + 40,000ppm VOCl3 + Soya Oil 
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The presence of a higher proportion of VOCl3 in the distillation mixture lead to the oil solidifying 

far more rapidly, similar to when only VOCl3 was passed through the system. However the 

distilled product in the Soxhlet remained colourless, suggesting successful removal of the 

VOCl3.  This is supported by the lack of peak broadening in any of the flask’s spectra, save the 

oil suggesting that the VOCl3 had been effectively removed as with the Chloride Process itself 

(Figure 53) 

 

Figure 53:1H NMR spectra of the starting material and the contents of flasks 1, 2 and the Soxhlet 

extractor from experiment 4 in which gaseous 40,000 ppm VOCl3 In TiCl4 was reacted in soya oil. 

Spectra taken in CDCl3. The figure shows the region between 3.5 and 5.5 ppm. 

 

Interestingly, this far higher dose of VOCl3 appears to prevent the carryover of the 

chloroacetate formed by reaction of the oil, with the TiCl4. The signals relating to the 

chlorinated glyceride species are only present in the spectra of the oil and neither of the TiCl4 

samples from the Soxhlet or flask 1. This suggests that whilst the TiCl4 may still be reacting with 
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the oil as seen in the previous experiments, it is impeded by the thickening of the oil and cannot 

pass through the distillation column. The lack of peak broadening in the quartet of doublets 

implies that although prevented from passing over, this species has not directly coordinated to 

the vanadium. 

4.3.2. Naphthenic Oil Analysis 

Following the successful study involving soya bean oil, the flow system was used to investigate 

a range of prospective oils that can be used to separate VOCl3 from TiCl4. The purpose of this 

study was less about defining the breakdown products of these species, but to investigate the 

ability of these oil to separate the two transition metal species, as well as to determine whether 

or not breakdown products formed by using NMR to observe them, as well as looking at the 

colour of the oil entering into the Soxhlet extractor. This study was carried out at the request 

of Huntsman Pigments and Additives in order to better understand their competitors method 

for refining TiO2.  

Naphthenic oils are produced from the naphtha fraction of crude oils. Naphthenics feature 

hydrocarbon chains containing ring systems, both saturated and conjugated.  The oil’s are made 

up of different blends of these species in order to control characteristics such as viscosity and 

lubricity. Structurally, all of these oils are therefore far more complex than soya-bean oil, which 

is formed of the same basic triglyceride structure, but with only four possible long unsaturated 

chains, all of which are linear  An example of some of the commonly featured species in 

naphthenic oils are shown in Figure 54. Viscosity, boiling range and colour are all affected by 

the number and size of these groups, as well as their ratio to straight chain portions. 
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Figure 54: Example structures of naphthenic acids, derived from the hydrolysis of naphthenic oil. 

 

 

 

 

 

This study focussed on the oil Flavex 977(s) as a previous study at Huntsman Pigments and 

Additives concluded that it showed potential for the removal of VOCl3.  Other oils tested were 

Ergon-Hygold 550 (the worst performer in the aforementioned test, as well as Gravex 926 (s) 

and Edelex 926. These were chosen to represent the ‘other end’ of the naphthenics spectrum, 

being far lighter in colour and less viscous. The pH of all of the oils was tested using a pH meter. 

Each of the oils were found to be more acidic than soya bean oil (Table 13). 

Unfortunately it was impossible to obtain information as to the exact or even approximate 

contents of each of these oils, as the companies that produce them, Shell, Nynas and Ergon 

Hygold, would not respond to any enquiries made about them. 

4.3.2.1. NMR of the Naphthenic Oils 

Table 13: Comparison of acidity of naphthenic oils and soya bean oil. 

Oil  
 

pH 

Soya bean Dec 13 
 

7 

Flavex 977(s) 
 

5.9 

Ergon Hygold L500 
 

6.3 

Gravex 926 (s) 
 

6.6 

Edelex 926 
 

6.4 
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All of the oils tested give extremely similar NMR spectra (Figure 55).  This is not to say that they 

are the same, simply that the number of proton environments are in the same region but 

slightly different, which broadens the spectrum peaks to the point where differences cannot 

be seen. All spectra showed a peak at 1 ppm representing the primary carbon at the end of the 

hydrocarbon chains, a large peak at 1.5 ppm for secondary carbons and cyclic chains. This peak 

is very broad at the base due to the number of different ring systems. Several other broad 

humps can be seen on the side representing either more stained rings or rings with a double 

bond. Finally a region between 7-8 ppm of many smaller peaks representing a small number of 

conjugated ring systems can be observed. 

 

Figure 55: Comparison of the 1H NMR spectra of four naphthenic oils: Flavex 977s (blue), Ergon Hygold 

L550 (red), Gravex 926 (green) and Edelex 926s (purple). Spectra taken in CDCl3. The figure shows the 

region between 0.8   and 2.4 ppm 

4.3.2.2.  Flow Cell Experiments  
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In a setup identical to the previous section, 20 ml of TiCl4 was pushed through the flow system 

with 5ml of oil stirred vigorously in the second flask. In each case the Soxhlet was allowed to fill 

four times when possible before the heater was turned off and the samples collected. 

In the case of all 4 oils, regardless of the original oil colour and viscosity, interaction with the 

gaseous TiCl4 caused the oil to immediately take on a dark red colour as the TiCl4 began to boil 

and pass over it. The TiCl4 that enters the Soxhlet having passed though the oil appears red in 

all four cases (Figure 56). The stained TiCl4 was observed to layer on top of the clean  TiCl4 within 

the Soxhlet extractor, not mixing at all until the first emptying (Figure 57). This red colouring 

becomes more prominent with each emptying of the Soxhlet. This was never seen when soya 

bean oil was used. 

The cause of this red staining was most likely related to the formation of a weakly bound charge 

transfer complex between the titanium chloride and the aromatic portions of the oil that had 

broken away from the molecule and carried over to distillation column. This is a commonly 

observed phenomenon with TiCl4, most commonly observed in its interaction with toluene and 

tetrahydrofuran (THF). 115 This phenomenon is the result of the electron rich conjugated and 

double bond systems within the oils donating weakly to the Lewis acidic TiCl4 centre, however 

not being able to bond directly due to the Lewis basic character of these species being too 

weak, as well as steric hindrance. This results in the formation of a weakly bound charge 

transfer complex, usually deep orange or red in colour. These species can only exist in solution, 

with solids unable to form and lower boiling aromatics still being separable by distillation. It has 

been observed that solutions of TiCl4 with toluene do form small amounts of solid when left 

over long period.115  Taking the red solution and refrigerating it does not result in the formation 

of a solid.   
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The Flavex 977s oil appeared to be able to effectively remove VOCl3 from the gaseous TiCl4. 

When the flow system was run with 15 ml of VOCl3, only 4 ml remained after three cycles, the 

rest appeared to have been ‘captured’ by the Flavex 977(s). When VOCl3 and TiCl4 were run 

together, the distillate appeared dirtier, staining the pipe leading up to the Soxhlet with a black 

solid. This implies that gas phase reactions continue to occur throughout the distillation, 

resulting in the formation of a solid that crashes out in the liquid phase (Figure 58). When 

toluene was run through the system with Flavex 977(s) no oil was found to have passed 

through, implying that TiCl4 and VOCl3 were responsible for the breakdown and carry-over of 

the oil fragments, not simply the heating and agitation.  

 

Figure 56: Pure TiCl4 and Flavex 977(s) after 4 cycles, contents of Soxhlet adaptor. TiCl4 appears to 

break down the naphthenic, which then carries over, staining the distillate red. 
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Figure 57: Gravex 926 with TiCl4 during first cycle. The red distillate is seen to gather on top off the 

clean TiCl4 that starts off in the Soxhlet, before falling though when it fills.  

 

Figure 58: 25ml TiCl4 and 1ml VOCl3 with Flavex 977(s). Flow system is stained; solid in Soxhlet 

suggests that whatever carries over continues reacting. 
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4.3.2.3. NMR Experiments with Flavex 977s 

Following the four initial experiments with TiCl4 and the four naphthenic oils, all of which 

yielded extremely similar spectra, further experiments were carried out, focussed on the Flavex 

977s oil, altering the contents of flask one, in order to study the effect of VOCl3 on the oil, as 

well as its ability to separate it from TiCl4. 

 

Figure 59: 1H NMR spectra of the starting material and the contents of flasks 1, 2 and the Soxhlet 

extractor from experiment in which gaseous TiCl4 was reacted in naphthenic Flavex 977(s) oil Spectra 

taken in CDCl3. The figure shows the region between 0.0 and 5.4 ppm. 

Figure 59 shows the NMR spectra of the contents of the Soxhlet, Flask 1 and the oil from flask 

2 after four cycles of gaseous TiCl4, as well as the unreacted oil. The familiar pattern of 

diminished CH2 and enhanced CH3 was seen. The TiCl4 flask and Soxhlet flask also show traces 

of chloroakanes, implying that the chlorination of double bonds seen with soya oil was still 
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occurring, but less prevalent. Several peaks were only seen in the TiCl4 flask spectra, implying 

continued reaction of the oil flask after distillation.  

Pure TiCl4, pure VOCl3 and TiCl4 containing 1000 ppm and 40,000 ppm of  VOCl3 were put 

through the flow system with Flavex 977s. The NMR spectra of the Soxhlet extractor’s contents 

after each experiment are compared in Figure 60.  The spectra from the Soxhlet were largely 

the same for each. The peak representing chain and cyclic species was reduced in relation to 

the straight chain peak.  It can be inferred from this that the chains carrying over are 

considerably shorter than the ones in the starting oil.  

 

Figure 60: Comparison of the 1H NMR spectra of  Flavex 977s compared with the contents of the 

Soxhlet  extractor after three cycles of TiCl4 (red), VOCl3 (green), TiCl4 + 40000ppm VOCl3 (purple) and 

toluene (yellow) . Spectra taken in CDCl3. The figure shows the region between 0.8 and 2.4 ppm.  
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Firstly that the TiCl4 is breaking down the oil into smaller fragments, similar to the soya oil. It 

could also be due to the distillation only carrying though the smaller chains, however as nothing 

was seen to carry through when TiCl4 was replaced with toluene, this would still require an 

interaction with the TiCl4 or VOCl3, possibly in the form of complexation. Following this it is 

likely that the straight chain alkane fragments that carry through react further after distillation. 

This explains the solids carrying over, as seen in the Huntsman Pigments and Additives study. 

The oil appears to be efficient at vanadium removal.  Even with very high vanadium 

concentration in the starting material, there was not broadening in the final spectra. 

Furthermore, when using only VOCl3 after three cycles, there was not enough to fill the Soxhlet, 

the rest appearing to have congealed with the oil in the second flask. The first flow system 

experiment carried out was that of pure TiCl4 and Flavex 977s. 

 

4.4.   Conclusion 

A lab bench scale system for removal of VOCl3 from a gaseous stream of TiCl4 using liquid phase 

oil was designed and built. This involved modifying a Soxhlet extractor so that the volatile 

products pass through a round bottom flask and an extended column further than directly into 

the sample chamber. This was done in order to analyse the side products formed during the 

vanadium removal process, with TiCl4 reacting with the oil species to give unwanted volatile 

products.  

The results conclusively show that TiCl4 is capable of breaking down the soy oil into component 

fragments capable of passing through a distillation column. The most abundant species formed 

appears to be the result of the triester backbone of the oil being chlorinated at the 1, and 3 

positions, which mirrors the way in which the species is observed to coordinate to TiCl4 in the 
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case of glycerol tribenzoate. This suggests that the TiCl4 is capable of chlorinating the 

triglyceride. This reaction is not likely to be favorable and therefore this only happens in small 

amounts, however, it is likely that this species could build up over time within the Chloride 

Process due to the recycling of the undistilled fractions.  

 This is not how TiCl4 usually behaves with alkenes, showing that the state of the reactants in 

the process is important, as well as the absence of water from the system. It has also been 

demonstrated that the flow system is capable of separating VOCl3 from the TiCl4 in doses both 

equal to and far higher than found in industry.  

As well as soya bean oil, naphthenic oils were also reacted with TiCl4 using the flowcell. These 

we also found to produce the chlorinated glyceride species, as well as forming a red charge 

transfer complex with the TiCl4 which was able to distil over, staining the products and also to 

continue reacting with the TiCl4 after distillation, forming a black precipitate both of which 

would have been disastrous were they to occur in industrial production. 

 

 

 

 

 

 

 

 

 



 

120 

 

Chapter 5 

Using Mass Spectrometry to Study Gas Phase 

Reactions in Chemical Vapour Deposition 

 

5.1. Introduction 

The work described in this chapter involved using a molecular beam mass spectrometer to 

study the hot vapours within an atmospheric pressure CVD reactor. This was designed with the 

goal of furthering the work with the flow-cell in the previous chapter by detecting and 

characterising the intermediates of gas phase metal chlorides and carbonyl containing ligands, 

similar to the reactions seen within this Chloride Process.  

Whilst related to the work carried out studying the production of TiO2, this work is of greater 

scope, contributing to the understanding of several of the most common CVD reactions studied 

worldwide. Using a specialised mass spectrometer able to withstand heated corrosive gaseous 

species and a custom designed mass spectrometer/ CVD adaptor apparatus the deposition of 

TiO2, VO2 and SnO2 were studied from a variety of precursors.  

5.1.1. Atmospheric Pressure CVD 

Atmospheric pressure chemical vapour deposition (APCVD) is one of the earliest forms of 

chemical vapour deposition,116 and is the building block from which many more complex 

varieties arise such as atomic layer deposition  (ALD)117 and  plasma enhanced CVD (PECVD).118 

The process involves the heating of a precursor molecule containing the metal atom for which 

the film is to be comprised, often with the bonds to be present in the film pre formed.119–121  
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The vapours of these materials form a thin film on a substrate at high temperatures inside a 

heated reactor vessel.  

APCVD is thought to occur in 6 stages (Figure 61):122 

1. Evaporation of precursors and transport of gaseous molecules in the bulk gas flow.  

2. Precursor vapour enters the heated reactor leading to the formation of reactive 

intermediates and by products.  

3.  Some of the gaseous intermediates come into contact with the surface of the heated 

substrate. 

4.  Adsorption of precursor/reactive species onto substrate surface.  

5.  Reactive species diffuse across the surface to growth sites, such as imperfections in the 

substrate or existing crystals of the product material. This leads to nucleation of the thin 

film as the reactive species break down. 

6.  Gaseous by-products of the thin film formation desorb from the surface and are carried 

out the reactor via the exhaust. 123 

 

Figure 61: Schematic of basic model of film growth in APCVD122 
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APCVD has been used extensively in the deposition of a wide range of metal oxide thin films. 

Films of  TiO2,124–126, VO2(M),127–129, SnO2, 
130–132

 Fe2O3, 
133 WO3, 134,135, ZnO,136–138, α-Al2O3,139,140 

as well  as many others. 141 Composite films of two or more of these species that combines the 

advantageous properties of its components have also been fabricated. 142–144 Furthermore, 

doping small amounts of metallic or main groups species into a thin film has proven highly 

effective in APCVD, for instance fluorine doped tin oxide142 as a transparent conducting oxide, 

N doped TiO2 as a photocatalyst 16,145 and W doped VO2 (M).146 This can either be achieved by 

the introduction of a separate bubbler full of co-material/dopant, or they can be deposited 

from the same vessel if the thermal conditions to generate the desired amount of precursor 

vapour match closely enough.   

Many of the above examples of metal oxide thin film deposition involve using metallic chloride 

precursors. These are highly prized in APCVD due to their relatively low boiling point as well as 

being more volatile and reactive than other transition metal species. 147 The advantages of 

these precursors are however counteracted by their lack of stability in air making handling the 

precursors challenging.148 Additionally, unlike with metal alkoxides, another heavily used 

precursor group120,128,134,140,149 there are no preformed metal oxygen bonds. This means that 

the precursor needs to be oxidised by an outside source. This can be achieved using a stream 

of water,144 or air.150 

 Another method is to co-deposit the metal precursor with a second, oxygen-heavy organic 

precursor that provides oxygen by supposedly coordinating to the metal centre and having the 

excessive organic material ‘burnt off’. A common organic oxidising agent is ethyl acetate.151 

This has been used extensively in the oxidation of  TiCl4,152,153  however it has also been used in 

the deposition of VO2 from VCl4.154 Ethyl acetate is used in this study as the predominant 

oxidising agent, due to its similarity to diethyl malonate, as the malonate themselves were 
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observed to lead to blockages.  

In APCVD the concentrations of the precursors are controlled by the vapour pressures 

generated. By altering the temperature of the bubbler, the amount of vapour formed is 

controlled. This is determined by the Clausius-Clapeyron equation (equation 1).155 

ln(P1/P2) = (ΔHvap/R)((1/T2) - (1/T1))        (1) 

where: 

   ΔHvap= The enthalpy of vaporization of the liquid 

R = The real gas content, or 8.314 J/(K × Mol). 

T1 = The temperature at which the vapour pressure is known 

T2 = The required vapour pressure  

P1 & P2 = The vapour pressures at T1 and T2, respectively. 

 

This equation is used to generate vapour pressure curves of the precursors in order to 

determine the pressure evolved at a given temperature.156 In general the precursor vapour is 

generated at roughly half of its boiling point 157 By controlling the temperature of the bubbler 

the amount of each precursor reaching the reactor can be manipulated. This is especially useful 

in dopant studies, wherein only a very small amount of the dopant precursor can make it to the 

reactor.  

APCVD offers the ability to uniformly coat large areas of substrate with a repeatability that is 

hard to obtain for other CVD techniques such as aerosol assisted (AACVD). It is also highly 

tuneable, with the flow rates and temperature of the bubblers controlling precursor flows 

effectively.158 These factors lead to the most compelling reason to choose APCVD over other 

means of depositing thin films: industrial applications. As well as simplicity and reliability the 

fact that it is carried out entirely at ambient pressures means that the process involves no 
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vacuum pumps, that are expensive to procure and maintain. Cold wall and hot wall industrial 

reactors for the deposition of SiO2 barrier layers onto float glass has been in existence for many 

years.159  

The major drawback of APCVD is the limited number of precursors available. Precursors must 

be suitably volatile to generate a vapour and suitably reactive to deposit a film. This means that 

for every material there are only a few options, for instance with TiO2 there are few studies 

outside of TiCl4 and titanium isopropoxide. Furthermore there can be major issues with the  

purity of some films,160 particularly with carbon contamination.  

This study seeks to study the gas phase interactions (Figure 61), in order to determine the 

intermediates that lead to the formation of films at different temperatures, by examining three 

frequently deposited thin films, namely TiO2, VxOy and SnO2. 

 

5.1.2. Using Mass Spectrometry to Study CVD  

Chemical vapour deposition is a widely used means of depositing metal oxide thin films onto a 

variety of substrates.161,162 Despite widespread use in the deposition of metal oxide coatings, 

little is known about reactions within the gas phase during the deposition of the thin film.122 

Part of the reason for this is the challenge in taking in-situ measurement from the inside of a 

chemical vapour deposition reactor, as well as the potentially damaging nature of those 

vapours to analytical equipment.  

Although relatively few in number, mass spectrometry studies of vapour phase deposition have 

been carried out previously. Turgambaeva et al. studied the gas phase reactions of copper(I) 

cyclopentadienyltriethylphosphine for the deposition of cuprous films. This was achieved by 

heating a small sealed ampoule of the precursor, whilst attached to the front of a time of flight 

mass spectrometer that measured the content of the evolved gas.163 Time resolved spectra 
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showed how the evolution of fragments over time as the sample was heated, similar to 

thermogravimetric analysis.  

Li et al. used mass spectrometry to study the deposition of silicon carbide from a tetraethyl 

silane precursor using hot-wire CVD. This is a technique whereby the decomposition of the 

gaseous precursor  is catalysed by the heated substrate it is deposited onto, usually tungsten 

wire or stainless steel.164 Measurements were obtained by placing the hot – wire apparatus 

into a chamber with a time of flight (TOF) mass spectrometer. This study revealed the formation 

of four membered rings of alternating silicon and carbon in the gas phase.165 

Numerous mass spectrometry studies have been undertaken by Rego, Petherbridge and Tsang 

et al. on the mechanism for the CVD of diamond from methane. Using a Hiden HPR-60, the 

same model spectrometer as this study, the levels of CH4, C2H6, C2H4 and C2H2 and CH3 in the 

gas phase were analysed. 166 Additionally the device was employed to measure the effects of 

nitrogen,167 chlorine,168 and phosphine169  on the growth mechanics. Furthermore low 

temperature plasmas of methane and CO2 were analysed, in order to determine the ideal 

conditions for formation of the •CH3  radical, which is believed to be the major species in the 

formation of diamond thin films.168 

Analysis of titanium containing precursors has been carried out using mass spectrometry 

previously.  Rahtu et al. used a four vacuum chamber quadrupole assisted MBMS system, 

sampling directly from the exhaust of a thin quartz tube hot wall reactor to examine the 

formation of Ti-N-Si composite thin films from Ti(NMe2)4, NH3, and SiH4, examining the decay 

of the SiH4 peak in order to construct an Arrhenius plot and in doing so propose a mechanism 

for the interaction of the precursors and subsequent thin film deposition.170 

Additionally Rahtu and Matero et al. used a similar system combined with a quartz crystal mass 

balance to analyse atomic layer deposition of titanium tetrachloride,171 titanium(IV) 
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isopropoxide172 and trimethyl aluminium170 with deuterated water. These studies provided 

insight into the breakdown of the precursors within the gas chamber, showing how loss of 

ligand is affected by the presence of water. The use of a deuterated solvent also allowed for 

the differentiation of side products evolved from reaction of the precursor with the D2O and 

those evolved from the thermal decay of the precursor itself.  

The main difference between the system proposed in these experiments and those discussed 

above is that of versatility and scale. Most of the above studies were on heavily modified 

systems, that do not  resemble an unmonitored deposition, with the exception of the work on 

diamond. That work whilst similar, only focused on the use of methane as a precursor, scanning 

in very low mass ranges (below 100 amu). A problem with this is that spectra can be noisy in 

this region. The system designed for this work seeks to emulate thin film deposition on a 

laboratory scale as closely as possible, whilst still sampling continuously and safely from within 

the reactor. The work also focuses on a wider range of precursors than seen in previous studies, 

with multiple titanium and vanadium precursors analysed as well as additional work with tin 

oxide and silicon oxide precursors carried out.  

5.1.3. Mass Spectrometry 

Mass spectrometry is the technique used mainly in the characterisation of the organic 

materials, with uses in chemistry173 as well as widespread use in the fields of art restoration 

and archaeology.174 

The general principal of mass spectrometry is based around the ionization of a parent molecule, 

forming a charged species, usually positive (equation 2)175 

M + e-       M+• + 2e-
     (2) 

This radical cation then decays by numerous possible pathways that can be categorized into 

two paths, shown in equation 3. The species either breaks down to form a radical (R) and a 



127 
 

positively charges species [EE]+ as is the case with equation 3a or the parent ion can lose a 

neutrally charged species (equation 3b), with the other species remains a radical cation.176 

 

   [EE]+      +        R∙      (3a) 

  M+•   

   [OE] +•       +       N      (3b) 

 

The sample can be ionised by a wide range of different techniques. The simplest of these is 

electron ionisation (EI), as is used in this study. This involves subjecting the sample to a beam 

of high energy electrons from a filament. The current applied to the filament is used to control 

the energy of the electrons, which is usually set in the region of 70 eV.  175,177 

Higher energy electrons lead to more fragmentation.  A method of ionisation is judged ‘hard or 

soft’ depending on the level of fragmentation it produces (hard being more fragmentation). EI 

is considered overall to be a hard ionisation method.  

Soft ionisation methods include chemical ionisation (CI), which involve creating a charged cloud 

of molecules. The most common chemical ionisation agent is methane, which forms highly 

unstable CH5
+ and C2H5

+.178 These species go on to ionise the sample. Another soft method is 

electrospray ionisation (ESI), in which a solution of the material to be studied is pushed through 

a thin, charged tube into a heated vacuum chamber. The solvated analyte exists as an ion in 

solution. Upon entering the chamber the solvent evaporates and the now gaseous ions are 

accelerated through the spectrometer. 179 These techniques are frequently used in biology in 

the study of protein molecules as they allow the base structure of the macromolecule to be 

maintained.  
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The charged species are separated according to their mass to charge ratio in the mass analyser 

portion of the device. There are several types of mass analyser including magnetic sector, 

where the charged species pass through a curved tube with a variable magnetic field applied 

so that only species of a certain mass can pass through, the others colliding with the walls.180 

There are also time of flight (TOF) detectors, which separate ions by velocity.181 This method 

struggles to separate ions of high mass. To counteract this most modern TOF analysers have a 

reflectron, a series of high voltage ring electrodes, creating an electrostatic field at the end of 

the flight tube that reflect the particles in the opposite direction, heavier molecules being able 

travel further into the magnetic field before being repelled. Quadrupole spectrometers offer 

advantages in terms of reproducibility and cost, however unlike TOF, quadrupoles must scan a 

range of masses in succession, not all masses simultaneously. A result of this is that scans take 

longer to complete the wider scan range.  

In the case of the Hiden HPR-60 the spectrometer, this is fitted with a quadrupole mass 

analyser. This consists of four metal rods arranged parallel in a square pattern (Figure 62) inside 

a cylindrical chamber.182 These rods act as electrode with a constant DC voltage and a variable 

radiofrequency (RF) voltage applied across them. Ions that pass along this path oscillate 

according to this frequency however for each frequency only ions of a certain mass/ charge 

ratio can pass through, with heavier or lighter species ‘spinning out’ and colliding with the 

chamber walls.183 The quadrupole in the spectrometer used in this work is a triple filter 

quadrupole. These devices feature a smaller quadrupole in front of and behind the main unit, 

arranged in tandem (Figure 63). This is beneficial as it can increase resolution in detection of 

high mass species.184 Other triple quadrupole can be used to filter ions and then break down 

the filtered ions into fragments, the second quadrupole acting as a collision chamber, before 

filtering again. 185 
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Figure 62: Diagram of a quadrupole mass analyser                   

In this study, all mass spectrometry measurements were taken using a modified quartz tube 

CVD reactor containing a heated stainless steel pipe. This pipe carried a stream of the reactive 

vapour inside the system into a heated, airtight chamber attached to the front of a Hiden HPR60 

molecular beam mass spectrometer (MBMS). This spectrometer has an inlet approximately  

0.25 mm in diameter. This leads to three consecutive vacuum chambers of increasingly low 

pressure. This focuses the gas entering the system into a beam of singular molecules that enter 

the ionisation chamber. The species are then ionised using a dual source low profile electron 

ionisation source, before separation by Quadrupole mass analyser. The device uses an Off-Axis 

Positive and Negative Ion Pulse Counting Single Channel Electron multiplier detector with a 

maximum threshold of 1000 Da. This system allows for examination of extremely low 

concentrations of analyte compared to traditional spectrometers, enabling the analysis of 

transition metal species that would damage the detector in larger quantities. The MBMS system 

is ideal for high energy gas phase studies as upon entering the system the gaseous molecules 

undergo no further reaction, not coming into contact with each other or the walls of the 

detector.  

Figure 63: Schematic of the triple filter 
analysers used in the Hiden HPR-60368 
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The detector was set to positive ion RGA mode for all measurements meaning that all species 

analysed are positively charged (cations or radicals). The energy of the ionizing electrons was 

set to 70 eV for all experiments.   

5.2. Experimental 

Argon (Puresheild 99.998%) was obtained from BOC and used as supplied. Films of TiO2 were 

deposited using a modified cold wall CVD reactor, onto 60 × 40 × 4 mm silicon coated float glass 

substrates, from Pilkington Glass Plc.  The argon carrier gas was delivered into the system using 

stainless steel tubing. All of the tubing making up the rig was heated to 150 °C using heater 

tape, monitored using by Pt-Rh thermocouples. The precursor was introduced into the gas 

stream using stainless steel bubbler, heated to roughly half the boiling point of the precursor 

using a heater jacket. Hot argon or nitrogen was passed through this bubbler, the gas stream 

carrying the precursor molecules to the reactor. When used, ethyl acetate was introduced 

through a second bubbler, heated to 35 °C (Figure 64). The amount of precursor was controlled 

using the flow rate of argon through the bubbler. This was kept as low as possible whilst still 

seeing data on the mass spec readout as to avoid dealing with unnecessary damage to the 

detector.  

The precursor vapour enters into the reactor, which is held at an elevated temperature, 

between 300 and 600 ˚C. A stainless steel tube above the substrate carried a sample of the 

reagent gas out of the reactor with the majority passing out of the rear of the reactor as 

exhaust, as with regular vapour deposition. Stainless steel tube passes through a chamber 

bolted to the front of the mass spectrometer, where a small amount entered the chamber 

through a hole in the tube (Figure 65).  Both the chamber and the tube were heated to 170 ˚C, 

however due to the flow of hot air from the reactor, it is estimated the temperature inside the 

tubing is far higher. A small amount of the vapour entered the spectrometer through a ¼ mm 
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hole in the front end, which then formed the molecular beam. The remainder was carried back 

into the fume hood through the heated tube or a secondary exhaust built into the front 

chamber (Figure 66). There is added protection for the spectrometer in the form of a weak flow 

of nitrogen or argon over the spectrometer’s inlet, known as the purge flow, which can be used 

to dilute the gas stream further. 

 

In most experiments the mass spectrometer was set to continuously scan over a set range. 

After collecting a background of at least 10 scans, the precursor bubbler was opened in order 

to view the spectrum of the precursor only. Following this the ethyl acetate oxidising agent 

bubbler was opened (if used), and the spectra of both reagents in the gas stream was observed. 

Each time either of the bubblers was turned on or the flow rates altered, the mass spectrometer 

would be allowed to take 10 scans if the range was between m/z- 50 - 300 and 5 scans if it was 

between m/z- 50 – 500. This was decided as it allows for enough scans to identify anomalous 

results, which can be the result of impurities or build-up of charge on the quadrupole, whilst 

still preventing overexposure of the detector to the gas stream, which can lead to blockages 

and damage. 
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Figure 64: Schematic representation of entire mass spectrometry CVD setup. 

 

 

Figure 65: Annotated photograph of mass spectrometer CVD setup. 
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Figure 66: Schematic of CVD apparatus and mass spectrometer setup. 
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In the majority of experiments scanning began at 50 amu, so as to avoid sampling the carrier 

gas N2 (mass = 28 amu) or argon (mass = 40 amu). Due to their extremely high concentration, 

sampling these numbers for long period can age the detector extremely quickly. Furthermore 

if too high a concentration of a single mass is obtained, the detector will automatically shut off 

in order to prevent damage. By not sampling the highly abundant carrier gasses, the system 

can be opened to allow more analyte into the system, improving the signal to noise ratio of the 

spectra. For these reasons scans were only taken below 50 amu when specifically searching for 

lower mass fragments.  

 

5.2.1. Preliminary Experiments 

Before using the apparatus to study thin film depositions, two proof of concept experiments in 

which toluene was passed through the reactor in order to test the devices sensitivity were 

carried out. 

5.2.1.1. Toluene Test Run 

In order to test the spectrometer’s ability to sample a mobile gas stream, toluene was heated 

in a bubbler to 60 ˚C. Scans were taken between 1 and 100 amu. The bubbler was opened and 

closed alternately every 10 scans, each time increasing the flow rate through the bubbler by 

0.2 L min-1 from 0.2 up to 1 L min-1
. The reactor was kept at 150 ˚C and the plain line flow at 6 L 

min-1 over the whole experiment. Figure 67 shows the effect of the different flow rates on the 

number of counts per second for the mass number corresponding to the intact toluene 

molecule (91amu).  
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Figure 67: Intensity of the mass spec peak at m/z- 91 representing the molecular mass of toluene 

plotted alongside the flow rate through the toluene bubbler. 

This study shows that the spectrometer was able to pick up a signal of toluene across the entire 

range of flow rates, as well as that the signal increases roughly proportionately with flow rate. 

This is an encouraging result as toluene has a boiling point of 110 ˚C, similar to that of many 

CVD precursors.  

5.2.1.2. Purge Flow Test 

Toluene was also used to the test the effectiveness of the purge flow system in lowering the 

concentration of harmful vapour species. As before, toluene was heated in a bubbler to 60 ˚C 

with the reactor kept at 150 ˚C and the plain line flow at 6 L min-1. Scans were carried out over 

the range of m/z- 1 -100. Every 5 scans the purge flow rate was increased by 0.5 L min-1, from 

0 – 2 L min-1. Over this range the signal was observed to fall from ~22000 to ~15000 counts, a 

reduction in signal of around 30 % (Figure 68). 
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Figure 68: Intensity of the mass spec peak at m/z- 91 representing the molecular mass of toluene 

plotted alongside the flow rate of the purge flow. 

 

5.2.2. Precursor Deposition 

Table 14 shows the experiments carried out using the CVD mass spectrometry apparatus that 

successfully produced spectra of the precursors. Initially the reaction of titanium and vanadium 

oxytrichloride with ethyl acetate was studied. Ethyl acetate was chosen as it is a common 

oxidising agent in CVD, with a low boiling point allowing it to be easily manipulated. Attempts 

were made to use diethyl malonate to which would have been a better fit with the 

crystallography study, however blockages within the tubing were found to form quickly upon 

opening the bubbler in both cases. Ethyl acetate can be thought of as half of a diethyl malonate 

molecule. Although lacking the chelating properties of diethyl malonate, the increased 

reactivity of such was the likely cause of the blockages.  
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Following the study with TiCl4 and VOCl3, titanium(IV) isopropoxide (TTIP) were studied, along 

with butyltin trichloride, a common SnO2 precursor. 

Finally a study was carried out investigating the reactivity of VCl4 with ethyl acetate. This 

common vanadium oxide precursor has been found to be extremely sensitive to the presence 

of an oxidising agent, with the formation of thermochromic VO2 occurring with roughly equal 

mass flow rates of the precursor and ethyl acetate. Increasing the flow of ethyl acetate has 

been found to result in growth of V2O5 films. Using mass spectrometry, the different gas phase 

species forming as the ratio of ethyl acetate to VCl4 changes has been analysed in order to 

determine a possible the cause of this sensitivity.  
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Table 14 
Table 14: List of precursors and conditions used in the mass spectrometry analysis of CVD experiment.  

Number Precursor Reactor 
Temp (˚C) 

Scan 
Range 

Bubbler 
Temp 
(˚C) 

Bubbler 
Flow 

rate (L 
min ⁻¹) 

Plain 
Line 
Flow 

Rate (L 
min ⁻¹) 

Ethyl 
acetate 
bubbler 

flow rate (L 
min ⁻¹) 

Observations 

1 Ethyl Acetate 300, 400, 
500 +600 

1-100 35 0.4 6 n/a Strong peaks visible immediately. No film deposited no 
discernible difference between spectra at different 

temperatures 
2 Titanium 

tetrachloride 
300 + 600 50 - 300 60 0.4 2 0 Spectrum of TiCl4 fully visible 

3 Titanium 
tetrachloride 

300 + 600 50 - 500 60 0.4 2 0.4 At 600 ˚C Coordination peaks of ethyl acetate to TiCl4 visible. 
Only TiCl4 and ethyl acetate peaks seen at 300 ˚C 

4 Vanadium 
Oxytrichloride 

300 + 600 50 - 300 60 0.4 2 0 Spectrum of VOCl3 fully visible 

5 Vanadium 
Oxytrichloride 

300 + 600 50 - 300 60 0.4 2 0.4 Coordination peaks of ethyl acetate to vanadium oxytrichloride 
visible at 300 ˚C and 600 ˚C 

6 Titanium(IV) 
isopropoxide 

300 + 600 50 - 300 110 0.2 6 0 Major issues with blockages above 300 ˚C, little difference 
between temperatures 

7 Butyltin 
Trichloride 

300 + 600 50 - 500 120 0.4 6 0 Spectrum of BuSnCl3 fully visible 

8 Butyltin 
Trichloride 

300 + 600 50 - 500 120 0.4 6 0.4 Coordination peaks of ethyl acetate to BuSnCl3 visible at 300 ˚C 
and 600 ˚C 

9 Vanadium 
Tetrachloride 

300 + 600 50 - 500 35 0.4 2 0 Spectrum of VCl4 fully visible 

10 Vanadium 
Tetrachloride 

550 50 - 500 35 0.4 2 0.05 Spectrum of VCl4 fully visible. Small peaks match those of VOCl3 

11 Vanadium 
Tetrachloride 

550 50 - 500 35 0.4 2 0.2 Spectrum of VCl4 fully visible. Small peaks match those of VOCl3 

stronger than in 10 

12 Vanadium 
Tetrachloride 

550 50 - 500 35 0.4 2 0.6 Spectrum of VCl4 fully visible. VOCl3 peaks now more intense 
that VCl4 peaks of similar mass/charge ratio. Intermediate VCl4 + 

ethyl acetate complex observed 
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5.2.2.1. Ethyl Acetate 

Ethyl acetate (anhydrous 99.8%, Sigma Aldrich) was placed in a stainless steel bubbler equipped 

with a heater jacket and a thermocouple. This bubbler was connected to the CVD system. The 

bubbler was heated to 35 ˚C whilst the mass spectrometer scanned the range of 1-100 mass 

numbers. The bubbler was opened and a flow of nitrogen (0.6 L min-1) transported the gaseous 

ethyl acetate to the plain line through an 80 ̊ C 10 mm stainless steel tube. Once inside the plain 

line the vapour joined a 6 L min-1 flow of nitrogen heated to 150 ˚C, carrying it into the reactor. 

From the reactor the sample was transported to the mass spectrometer via the 20 mm 

sampling tube and analysed, with the excess vapour transported back into the fume hood 

through the exhaust tubes.  Following the opening of the bubbler, 10 scans were taken of the 

reagent gas before closing the bubbler and increasing the reactor temperature by 100 ˚C. This 

was repeated 4 times, from 300 up to 600˚C. 

5.2.2.2.  Titanium Tetrachloride 

Titanium tetrachloride (anhydrous 99%, Sigma Aldrich) was placed in a stainless steel bubbler 

(B1) equipped with a heater jacket and a thermocouple that was then connected to the CVD 

apparatus.  The bubbler was heated to 60 ˚C. Ethyl acetate (anhydrous 99.8%, Sigma Aldrich) 

was added to a second identical bubbler (B2), attached in the same way as the first and heated 

to 35 ˚C.   The mass spectrometer scanned the range of 50 to 500 mass numbers. The TiCl4 

bubbler was opened and a flow of nitrogen (0.4 L min-1) transported the gaseous TiCl4 to the 

plain line through a 150 ˚C, 10 mm stainless steel tube. Once inside the plain line the gaseous 

TiCl4 joined a 2 L min-1 flow of nitrogen heated to 150 ̊ C, carrying the precursor into the reactor, 

which was heated to 600 ˚C. A sample of the atmosphere within the reactor was transported 

to the mass spectrometer via the 20 mm sampling tube and analysed, with the excess vapour 

transported back into the fume hood through the exhaust tubes.  Five scans were taken of the 
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TiCl4 vapour  before B2 was opened as well, releasing a stream of ethyl acetate carried by a 0.4 

L min-1 stream of N2 into the plain line, where it mixed with the TiCl4 before entering the reactor.  

Five scans were obtained of the TiCl4 / ethyl acetate mixture before both bubblers were closed. 

The reactor temperature was lowered to 300 ˚C and the atmosphere in the detector allowed 

to return to its previous state before the process was repeated. Only five scans were obtained 

for each set of conditions as the highly reactive nature of the TiCl4 lead to rapid oxidation to 

solid TiO2. This lead to the formation of blockages, which would then clog the mass 

spectrometer inlet, preventing further scans. 

5.2.2.3. Vanadium Oxytrichloride 

Vanadium oxytrichloride (99%, Sigma Aldrich) was placed into bubbler B1 and attached to the 

CVD apparatus.  The bubbler was heated to 60 ˚C. Ethyl acetate (anhydrous 99.8%, Sigma 

Aldrich) was added to B2, attached and heated to 35 ˚C.  The reactor vessel was heated to 600 

˚C. The mass spectrometer scanned the range of 50 to 500 mass numbers. B1  was opened first, 

allowing a stream of gaseous VOCl3, to be carried through the 150 ˚C, 10 mm stainless steel 

tubing with a flow of N2 (0.4 L min-1) towards the plain line, joining a 2 L min-1 nitrogen gas 

stream at 150 ˚C. The precursor passed into the reactor where a sample of the atmosphere 

within was transported to the mass spectrometer via the heated 20 mm sampling tube. The 

excess reagent gas passed back into the fume hood through the exhaust tubes.  VOCl3 was 

judged to be far slower to block the spectrometer than TiCl4 allowing for 10 scans to be 

obtained. Following this, ethyl acetate was released into the gas stream from B2 (heated to 35 

˚C , with a gas flow of 0.4 L min-1).  Ten more scans were taken before both bubblers were shut 

off. The reactor temperature was lowered to 300 ˚C and the signals given by the previous 

experiment observed to dissipate until the spectrum resembled that of the carrier gas only. At 
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this point the process was repeated, capturing 10 scans of VOCl3 and VOCl3 / ethyl acetate at 

the lower temperature. 

5.2.2.4. Titanium(IV) Isopropoxide 

Titanium(IV) isopropoxide (TTIP) (97%, Sigma Aldrich) was placed in B1 and connected to the 

CVD system at which point it was heated to 110 ˚C. The reactor temperature was set to 300 ˚C 

and the mass spectrometer scanned the range of 50 to 300 mass numbers. B1 was opened and 

a 0.4 L min-1 stream of nitrogen carried the gaseous titanium(IV) isopropoxide through stainless 

steel tubing heated to 150 ˚C to the plain line, heated to the same temperature with a 6 L min-

1 flowing towards the reactor. A sample of the atmosphere within the reactor was transported 

to the mass spectrometer via the 20 mm sampling tube and analysed, with the excess vapour 

transported back into the fume hood through the exhaust tubes.  Five scans were taken of the 

TTIP vapour before B1 was closed and the reactor temperature increased by 300 ˚C to 600 ˚C. 

The process was repeated with five scans of TTIP vapour collected at 600 ˚C.  

5.2.2.5. Butyltin Trichloride  

Butyltin trichloride (95%, Sigma Aldrich) was placed into bubbler B1 and the vessel attached to 

the line of the CVD system, sealing it shut.  The bubbler was heated to 120 ˚C. Ethyl acetate 

(anhydrous 99.8%, Sigma Aldrich) was added to B2, attached and heated to 35 ˚C.  The reactor 

vessel was heated to 600 ˚C. The mass spectrometer was set to scan the range of 50 to 500 

mass numbers. B1  was opened first, allowing a stream of gaseous BuSnCl3 , to be pass through 

the 150 ˚C, 10 mm stainless steel tubing  with a flow of N2 (0.4 L min-1) towards the plain line, 

mixing with the  2 L min-1 plain line flow of nitrogen at 150 ˚C. The precursor passed into the 

reactor where a sample of the atmosphere within was transported to the mass spectrometer 

via the 20 mm stainless steel sampling tube, heated to 150 ˚C. The excess reagent gas passed 

back into the fume hood through the exhaust tubes. Unlike the titanium precursors, BuSnCl3 
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was found not to block the detector at all, allowing for more numerous scans over a longer 

range. After ten scans, ethyl acetate was released into the gas stream from B2 as described in 

the method for the TiCl4 and VOCl3 depositions.  10 more scans were taken before both 

bubblers were shut off. The reactor temperature was lowered to 300 ˚C and the signals given 

by the previous experiment observed to dissipate until the spectrum resembled that of the 

carrier gas only. At this point the process was repeated. 

5.2.2.6. Vanadium(IV) Chloride  

The study of VCl4 consisted of four different depositions. In each, VCl4 was placed into bubbler 

B1, connected to the APCVD system and heated to 35 ˚C. A 0.6 L min-1 flow of N2  pushed the 

VCl4 through the 10 mm stainless steel tubing into the plain line, which were heated to 100 and 

150 ˚C respectively. The gaseous VCl4 flowed into the reactor which was set to 550 ˚C from 

which some of the atmosphere within passed along the 20 mm stainless steel sampling tube 

into the mass spectrometer front chamber. This atmosphere was sampled by the mass 

spectrometer and the remaining gas passed harmlessly back into the fume hood through the 

exhaust pipes.  

This process was repeated three times, between which the reactor was switched off and the 

substrate replaced. For the subsequent scans, in addition to the VCl4 vapour stream, a stream 

of ethyl acetate from B2, heated at 30 ˚C  was also used. The flow of nitrogen through B2 was 

varied between each deposition, altering the mass flow of ethyl acetate. The first of these three 

depositions used a flow of 0.6 L min-1 ethyl acetate, roughly 2 x the mass flow of VCl4  the second 

and third depositions used flows of 0.2 L min -1 and 0.05  L min -1, roughly equal and half the 

mass flow of VCl4, respectively. As with the first experiment five scans were obtained at 550 ˚C, 

with both the VCl4 and ethyl acetate bubblers open.  
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5.3. Results and Discussion 

A Hiden HPR-60 quadrupole mass spectrometer was connected to a CVD reactor  in order to 

sample the gaseous species within during atmospheric pressure vapour deposition reactions. 

Depositions using TiCl4, VOCl3, VCl4, SnBuCl3, TTIP and were carried out, and the atmosphere 

within the reactor sampled at different temperatures and with different levels of the oxidising 

agent ethyl acetate in the atmosphere to determine the gas phase intermediates that form 

during high temperature deposition reactions.  

5.3.1. Ethyl Acetate 

Initial depositions used ethyl acetate without a metal oxide precursor. This was  in order to  

establish a ‘baseline’ as ethyl acetate’s role as an oxygen donor meant that it would be present 

in the spectra of all further depositions. Furthermore, due to ethyl acetate’s interesting 

fragmentation pattern, its mass spectrum is well studied and provided a good means of 

establishing the effectiveness of the mass spectrometer at picking up low mass signals  

spectrometer. 

Ethyl acetate has a simple but telling set of peaks at m/z 88(M+), 70, 61, 45, 31 and 18. All of 

these are clearly visible in the spectra obtained using the CVD MS apparatus (Figure 69a). This 

combined with its interesting fragmentation pattern sees ethyl acetate frequently used as an 

example in mass spectrometry training courses. Rather than simple fragmentation, ethyl 

acetate undergoes condensation of water resulting in the loss of the ethyl oxygen and 

subsequent rearrangement to form a methyl vinyl ketone species. The formation of this is not 

fully understood.  
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Figure 69: Assigned mass spectrum of ethyl acetate as passed through an atmospheric pressure 

chemical vapour deposition reactor at 600 ˚C (a) and comparison of ethyl acetate fragmentation 

patterns over the temperature range of 300 to 600 ˚C (b). 
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The spectrum of the ethyl acetate was observed to be very stable to temperature. The spectra 

remained identical with variation in reactor temperature from 300 to 600 ˚C in 100 ˚C 

increments (Figure 69b). 

 

5.3.2. Titanium Tetrachloride 

5.3.2.1. Mass Spectra Analysis 

In the first instance titanium chloride was passed through the reactor without the presence of 

ethyl acetate at 600 ˚C. The spectrum recorded matches well to that taken for TiCl4  first taken 

by Hogg in 1954 that features in the NIST Webbook.186 

The four major peaks at m/z 189, 154, 118, and 83 accounts for titanium(IV) chloride having 

lost 0, 1, 2 and 3 chlorine atoms respectively. In each case the isotope pattern for the correct 

number of chlorines was observed, with the peaks representing the presence of one and two 

mass 37 chlorine atoms increasing in size as more chlorine is present (Figure 70). 

An additional peak was visible at m/z 225, which represents a titanium atom with five chlorine 

ligands present. This is most likely caused by the extremely high energies within the ionisation 

chamber, giving discarded chlorine radicals enough energy to react with the parent molecule, 

allowing for the formation of the highly energetically unfavourable TiCl5. Although surprising, 

side reactions involving fragments and the parent ion are relatively common in mass 

spectrometry, (although usually in high energy ionisation sources) and are not relevant to this 

study.  
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Figure 70: Mass spectrum of titanium(IV) chloride as passed through an atmospheric pressure  

chemical vapour deposition reactor at a temperature of 600 ˚C. 

 

When the experiment was repeated with a flow of ethyl acetate joining that of TiCl4, the fumes 

passing out of the reactor, as well as the two exhaust tubes of the mass spectrometer chamber, 

were observed to be far thicker and denser. The inlet to the spectrometer was found to block 

more rapidly as well, demonstrating that the presence of the oxygen rich organic species 

facilitates TiO2 formation.  The spectra collected (shown in Figure 71), contained a number of 

new peaks, representing intermediates formed via coordination of the ethyl acetate to the 

TiCl4. 
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Figure 71: Mass spectrum of titanium(IV) chloride and ethyl acetate as passed through an atmospheric 

pressure  chemical vapour deposition reactor at a temperature of 600 ˚C, with an enhanced image of 

the peaks between m/z 200 and 330, showing the newly formed adduct peaks. 

 

Spectra collected for the same experiment at 300 ˚C do not show these peaks, suggesting that 

the formation of these intermediate species is conducive to the formation of TiO2 films.  
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The peak at m/z 314 possesses the isotope pattern of a trichloride, and is m/z- 159 heavier than 

the TiCl3 ion. This suggests that the species present is likely to be a TiCl3 centre complete with 

two ethyl acetate molecules coordinated to the titanium centre, one of which is missing a 

methyl group, a common fragmentation pathway for the molecule.  

This suggests that the TiCl4 is able to coordinate to one ethyl acetate without loss of chlorine, 

with subsequent coordination by ethyl acetate molecules leading to displacement of a chloride 

ion in the gas phase. It is however plausible that the tetrachlorotitanium bis-ethylacetate 

species exists, but is simply too unstable to make it to the spectrometer intact. The remaining 

peaks at m/z 279, 244 and 209 represent the same species following the loss of a second third 

and fourth chlorine, respectively, as confirmed by the clear isotope patterns. Their presence as 

single charge cations demonstrates that this loss of chlorine is taking place at the ionisation 

source following formation of a radical cation parent ion, as with the TiCl4 molecule.  

5.3.2.2. Thin Film Analysis 

The film deposited from TiCl4 and ethyl acetate at 600 ˚C appeared largely transparent, 

displaying the birefringence common with titanium dioxide films. A dark, hazy patch formed 

immediately before the position of the gas sampling tube, which is likely the result of the 

obstruction leading to a build-up of product in that area. The deposition at 300 ˚C gave no film, 

instead yielding a very thin grey powder, easily removed from the substrate.  

i) X-ray diffraction 

The X-ray diffraction pattern of the film deposited at 600 ˚C from TiCl4 and ethyl acetate 

revealed that the film consisted of TiO2 in the anatase phase (Figure 72). X-ray diffraction of the 

material deposited at 300 ˚C gave a largely amorphous pattern, several small signals suggesting 

the faint presence of anatase TiO2.  
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Figure 72: X-ray diffraction pattern of the films deposited from TiCl4 and ethyl acetate onto float glass 

at 300 and 600 ˚C  using the APCVD / mass spectrometry apparatus, alongside an anatase TiO2 

standard.187 

 

ii) Scanning Electron Microscopy 

SEM images  were obtained for the films deposited from TiCl4 at 600 and 300 ˚C. The film 

deposited at 600 ˚C revealed a dense microstructure consisting of a mixture of thin plates 

roughly 200 nm in diameter and protruding rods of approximately 50 nm in diameter (Figure 

73). Imaging of the powdery substance deposited at 300 ˚C shows a substrate sparsely 

populated with roughly square particulates of around 100 nm in diameter. 
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Figure 73: SEM image of the film deposited from TiCl4 and ethyl acetate onto float glass at 600 ˚C using 

the APCVD / mass spectrometry apparatus. 

 

SEM and XRD analysis  confirms the formation of TiO2 thin films at elevated temperatures when 

TiCl4 was deposited with an oxidising agent, as is well documented in the literature.151  The 

pronounced difference in the mass spectra taken during depositions at 300 ˚C and 600 ˚C, as 

well as the resulting films, is strong evidence that the formation of the TiO2 on the substrate 

surfaces relates to the formation of the gas phase [TiCl3(CH3COOC2H5)2] intermediate observed 

in the mass spectrum of the reactor atmosphere.  

 

5.3.3.  Vanadium Oxytrichloride 

5.3.3.1. Mass Spectrometry Analysis 

Scanning the atmosphere when only VOCl3 was present in the gas stream alongside the carrier 

gas shows that the precursor predominantly makes it through to the detector intact (Figure 

74).  The peaks at m/z 172, 137, 102 and 67 represent the intact parent ion and the loss of one, 
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two and three chlorine ligands respectively. This is confirmed by the very clear isotopic patterns 

of the chlorine for all three peaks. The signals at m/z 102 and 86 represent the parent molecule 

minus the double bound oxygen, as well as the loss of one and two chlorines,respectively. These 

species appear considerably less abundant than that of those only missing chlorine, likely due 

to the energy required to break the V=O double bond.  

 

 

Figure 74: Mass spectrum of vanadium(V) oxytrichloride as passed through an atmospheric pressure  

chemical vapour deposition reactor at a temperature of 600 ˚C. 

 

Similarly to TiCl4, when an equivalent amount of ethyl acetate was run through the reactor 

alongside the VOCl3 stream at the same temperature, new peaks at a mass greater than that of 

VOCl3 were observed relating to the products of gas phase reactions (Figure 75). 
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Figure 75: Mass spectrum of vanadium(V) oxytrichloride and ethyl acetate as passed through an 

atmospheric pressure  chemical vapour deposition reactor at a temperature of 600 ˚C, with an 

enhanced image of the peaks between m/z- 200 - 330, showing the newly formed adduct peaks. 

 

As with the TiCl4 experiment, the new peaks relate to the VOCl3 coordinating to the ethyl 

acetate in the gas phase. In this case only two peaks were visible, both of which were the result 

of ethyl acetate coordinating to the vanadium, presumably via the carbonyl oxygen, displacing 

a chlorine atom on the vanadium. This has occurred twice in the species represented by the 

m/z 278 peak and in the species represented by the peak at m/z - 225. This is confirmed by the 

isotope patterns of the chlorine in both cases. 

This presents an interesting difference in the reactivity of the TiCl4 and VOCl3, previously alluded 

to in this thesis. In the case of TiCl4, the peak at m/z- 314 represents the TiCl4 having coordinated 

to two ethyl acetate molecules with the loss of one chloride. It can be inferred from this that, 

although perhaps unstable, the TiCl4 is capable of coordinating to a single ethyl acetate without 
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the loss of any chlorine. In the case of VOCl3 in the case of each new species involves 

coordination to an ethyl acetate molecule comes at the expense of a chlorine ligand.  

This pattern relates closely to that seen with the diester species reacting with TiCl4 and VOCl3 

where the coordination of a diester ligand to the titanium saw no loss of chlorine, making it far 

more reversible than the same reaction with VOCl3 which would always result in the 

displacement of chlorine.  

Furthermore, unlike TiCl4, the formation of the intermediate species with VOCl3 was visible at 

both 300 ˚C and 600 ˚C, with the ratio of intermediates to unreacted VOCl3 in fact higher at 300 

˚C. This suggests that gas phase reactions of the ethyl acetate and VOCl3 either possess a lower 

activation energy barrier than the equivalent reaction with TiCl4, or have greater stability ty in 

the gas phase and able to make it to the detector at the lower temperature, rather than simply 

dissociate, both of which fit well with the chemistry observed in the chloride process.   

5.3.3.2. Thin Film Analysis 

Both depositions at 600 ̊ C and 300 ̊ C yielded films. The film deposited at 600 ̊ C was completely 

opaque, with a matte dark blue/black appearance and complete coverage of the substrate. The 

film deposited at 300 ˚C was lighter in colour with translucent brown areas around the edges 

likely due to the temperature being lower, leading to incomplete oxidation of the precursor to 

V2O5. The film appeared only on the back half of the substrate. The films were both very thick, 

likely the result of the very long deposition time taken to obtain 10 scans.    

i) X-Ray Diffraction 

XRD patterns were obtained for both the films deposited at 300 and 600 ˚C (Figure 76). Both 

films appear to be predominantly VO2, however the different temperatures appear to result in 

the formation of different polymorphs. This is an interesting development as the vanadium is 

entering the reactor in the 5+ oxidation state, implying that the ethyl aceate, whilst providing 
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Figure 76: X-ray diffraction pattern of the films deposited from VOCl3 and ethyl acetate onto float glass 

at 600 ˚C (top) and 300 ˚C (bottom)  using the APCVD / mass spectrometry apparatus, alongside 

standards for monoclinic (PDF 72-0514)188 and tetragonal (PDF 80-0690) VO2.
189 

 

oxygen is not an oxidising agent. It is plausible that it could be attributable to the donation of 

electron into the d empty shell by the dative coordination of the acetate, or it could be a more 

complex chain or reactions occurring at the surface of the substrate.  

At 600 ˚C, the monoclinic polymorph appear to be the dominant phase, with strong reflections 

of the (001), (200) and (211) planes. Although there is less work done on the use of VOCl3 as a 

precursor for the deposition of VO2 than for VCl4, due to the vanadium being in the +5 oxidation 

state, this is in keeping with literature findings of depositions with VOCl3 and water.190 At the 

lower temperature of 300 ˚C, the dominant phase appears to be the tetragonal polymorph of 

VO2. Although both patterns are fairly broadened, the lower temperature film gave far weaker 

reflections. This is reflected in SEM images taken of the film (vide infra), in which the higher 

temperature films appear to have a far more crystalline morphology.  
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ii) Scanning Electron Microscopy 

Scanning electron micrographs of the films reveal a striking difference in the morphologies of 

the deposited films with deposition temperature. At both temperatures, the films were thick 

and dark in appearance due to the length of depositions time. This is reflected in the 

morphologies with both films featuring densely packed particles. 

At both temperatures, the films consist of elongated particles of between 1 and 2 μm in length 

with no preferred orientation (Figure 77a). At 600 ˚C the film consists of fairly uniform, rod-like 

structures roughly 100 nm wide. These crystallites have flattened edges, indicating preferred 

growth of certain faces. Formation of vanadium oxide nanorods has been observed in several 

cases, including previously with APCVD of VOCl3. 191–193 The particles formed at 300 ˚C were 

considerably wider and less uniform with rounded edges and diameters ranging from 200 to 

600 nm (Figure 77b). 
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Figure 77: SEM images of the film deposited from VOCl3 and ethyl acetate onto float glass at 300 (a) 

and 600 ˚C (b) using the APCVD / mass spectrometry apparatus. 
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5.3.4. Butyltin Trichloride 

5.3.4.1. Mass Spectrometry Analysis 

Unlike the previous two species, the presence of the butyl group on the butyltin trichloride 

makes the spectrum far more complex. Furthermore, isotope patterns of the chlorine ligands 

are far more unclear due to the overlapping of peaks from which one or two protons are lost 

creating complex multiplets (Figure 78). Nevertheless as there is only one alkyl group present 

the fragments are relatively facile to deduce.  

 

Figure 78: Mass spectrum of butyltin trichloride as passed through an atmospheric pressure chemical 

vapour deposition reactor at a temperature of 600 ˚C. 
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The parent ion peak was not seen in this spectrum. Instead the highest molecular weight peaks 

has a signal at of m/z 252, which relates to the parent ion having lost a [CH3CH2]+ from the butyl 

species.  

This peak overlaps with another set of peaks at around m/z 245, resulting from the parent ion 

having lost a chlorine ligand. The peaks at m/z 210 and 177 (extremely faint) represent the 

subsequent loss of two more chlorine atoms. Of these three species the only one with a 

relatively clear isotope pattern is that at m/z 210. Peaks at m/z 225, 190 and 155 likewise 

represent the parent species having lost the butyl group and subsequently losing a chlorine 

ligand, giving [SnCl3]+∙, [SnCl2]+∙ and [SnCl]+∙ species respectively. These are presumably radical 

species as otherwise the multiple charges would cause them to appear at far lower mass 

numbers.  

When gaseous ethyl acetate was flowed through the reactor chamber alongside the BuSnCl3, A 

host of new peaks, formed from reaction of the two species were visible in both the scans 

collected at 300 and 600 ̊ C (Figure 79). Similarly to the titanium chloride, the highest mass peak 

at m/z 423 relates to that of BuSnCl3, having coordinated to two ethyl acetate ligands, leading 

to the loss of a single chloride. The peak at m/z 335 represents the same molecule following 

the loss of one of those ethyl acetate molecules. 

The ethyl acetate also appears to be able to displace the butyl group, with an equilvalent pair 

of peaks at m/z 401 and 313, generated by the coordination of two ethyl acetate ligands and 

the loss of a butyl group and the subsequent loss of a one ethyl acetate in the ion source, as 

well as a peak at m/z 366 relating to the loss of one chlorine and one butyl group following the 

coordination of two ethyl acetate groups.  
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Figure 79: Mass spectrum of Butyltin trichloride and ethyl acetate as passed through an atmospheric 

pressure chemical vapour deposition reactor at a temperature of 600 ˚C and 300 ˚C, with an enhanced 

image of the peaks between m/z-  250 and 500, showing the newly formed adduct peaks. 

 

The fact that these adduct peaks appear in both the low and high temperature runs is hard to 

explain as BuSnCl3 will only deposit tin oxide at above 400 ˚C,194 implying that the formation of 

the intermediates is not enough to guarantee film deposition. It should be noted that all peaks 
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relating to unreacted SnBuCl3 have greater relative intensity in the depositions at 300 ˚C, 

whereas the products of the ethyl acetate and SnBuCl3 have a higher intensity in the 600 ˚C 

deposition, suggesting that a greater proportion of the SnBuCl3 is reacting with the ethyl 

acetate at higher temperatures.   It is possible to consider that at 300 ˚C the intermediates are 

capable of forming; however this does not mean that they have enough energy to fully oxidise. 

This could explain why despite most of the  intermediate peaks in the spectrum taken at 300 

˚C are roughly half the relative intensity of those taken at 600 ˚C, the peaks at m/z 401 and 423, 

representing the fully intact intermediates, are the same intensity as those in the high 

temperature and low temperature spectrum. This increase in relative height could be the result 

of a failure to react in the gas phase inside the reactor, leading to a greater concentration on 

the ensuing mass spectrum. This experiment was repeated, with the flow rate of ethyl acetate 

lowered from 0.6 L min-1 to 0.2 L min-1, resulting in an excess of BuSnCl3 entering the reactor. 

This yielded the same result, with intermediates visible in both the higher and lower 

temperature spectra.  

 

5.3.4.2. Thin film Analysis 

The depositions with butyltin trichloride and ethyl acetate at 600 ˚C yielded a colourless 

transparent thin film, with slight haze just before the entrance to the sampling tube. 

Depositions at 300 ˚C appeared to yield no visible deposition onto the substrate.  

i) X-ray Diffraction Analysis 

The XRD pattern of the film deposited from 0.6 L min-1 BuSnCl3  and 0.6 L min-1 ethyl acetate at 

600 ˚C are shown in Figure 80. The XRD patterns of the films confirm the deposition of rutile 

SnO2, as compared to a standard. The peak for the (101) miller plane is present although that 

plane appears heavily disfavoured by the particles making up the film. The deposition under 
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the same conditions at 300 ˚C shows no visible peaks, suggesting that had a film formed it was 

highly amorphous.  

 

Figure 80: X-ray diffraction pattern of the film deposited from BuSnCl3 and ethyl acetate onto float 

glass at 600 ˚C using the APCVD / mass spectrometry apparatus, alongside a rutile SnO2 standard. 195 

 

ii) Scanning Electron Microscopy 

SEM imaging of the film deposited at 600 ˚C shows a leaf-like microstructure consisting of 

flattened, pointed particles, packed tightly together on the substrate (Figure 81). This is a 

similar morphology to fluorine doped tin oxide reported in the literature, as grown from 

BuSnCl3 from atmospheric pressure and aerosol assisted CVD.196,197 

The substrate from the equivalent experiment at 300 ˚C was also imaged by SEM, revealing a 

sparse scattering of sphere like particulates of what is likely amorphous SnO2.  
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Figure 81: SEM image of the film deposited from TiCl4 and ethyl acetate onto float glass at 600 ˚C using 

the APCVD / mass spectrometry apparatus. 

 

5.3.5. Titanium Isopropoxide 

Depositions were carried out using titanium isopropoxide (TTIP) at 600 ˚C and 300 ˚C, both 

yielding thin films. The film deposited at 600 ˚C was far thicker and more adherent, appearing 

transparent with a circular area of haziness at the point of the substrate positioned in front of 

the sampling tube. This film passed the Scotch tape test and was observed to be fairly resistant 

to surface abrasion.  

 The film deposited at 300 ˚C was far more powdery and easily wiped from the surface by 

touching. The opaque film was white in colour as is customary with TiO2.  

Ethyl acetate was not added as an oxygen source in these experiments as it is not commonly 

used in conjunction with TTIP depositions in the literature, as the precursor molecule already 

contains four Ti-O bonds, making oxygen plentiful enough to deposit TiO2 without an additional 
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oxygen source.  This was observed in the depositions, with TTIP depositions blocking the 

machine far more rapidly than any other precursor. 

5.3.5.1. Mass Spectrometry Analysis  

The deposition carried out at 300 ˚C gave the expected spectra of TTIP, with no additional gas 

phase interactions visible (Figure 82). In this case the TiO2 forming is simply the result of the 

alkyl side groups burning off to  leave TiO2. (Scheme 9) 

 

Scheme 9:  Schematic of the decomposition of TTIP at high temperatures to give TiO2. 198 

 

Figure 82: Mass spectrum of titanium isopropoxide as passed through an atmospheric pressure 

chemical vapour deposition reactor at a temperature of 300 ˚C. 

 

Despite being far more stable than TiCl4 and VOCl3 the molecular ion peak was extremely weak, 

instead the dominant peak of the spectrum was the one corresponding to the loss of a single 

methyl group from one of the isopropoxide ligands. This is a phenomenon commonly seen in 
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the ionisation chambers of EI mass spectrometers,199 suggesting that the spectrum seen here 

is a very close approximation to putting TTIP through an EI  instrument directly. This spectrum 

is similar to one taken from an atomic layer deposition reactor at 250 ˚C, the major difference 

being the signal at m/z 247 which could not be assigned to a fragmentation peak of the TTIP 

molecular ion. The following fragmentation is complex although the major peaks have been 

assigned based on the idea that there are three bond at which fragmentation could occur: the 

Ti-O bond, the O-C bond and the C-C bonds, resulting in the loss of a methyl (mass = 15 amu), 

propyl (mass = 43 amu ) or isopropyl (mass = 59 amu) group respectively (Figure 83).  

 

Figure 83: Possible fragmentation points on the TTIP parent ion with the formulas and masses of the 

fragments denoted in red 

 

The deposition at 600 ˚C gave an extremely different pattern to that observed at 300 ˚C. In this 

case a totally new set of peaks, many above the mass of the parent ion were observed (Figure 

84). The initial assumption when observing the repeating pattern of 60 amu decreases in the 

fragment masses, was that the product was simply a polymer consisting of removed 

isopropoxide ligands potentially polypropylene glycol. 



165 
 

 

Figure 84: Mass spectrum of titanium isopropoxide as passed through an atmospheric pressure 

chemical vapour deposition reactor at a temperature of 600 ˚C. 

 

However the difference in mass between the fragments would then be m/z  58, as a proton 

would have to be lost from either end of the monomer.200 The formation of an oxo-bridged 

dimer species in titanium isopropoxide has been proposed as a possible mechanism for the 

formation of nanoparticles via the solvothermal synthesis of TiO2 from TTIP and 

benzylamine.201  

It is thought that the high temperature leads to the loss of the propyl group leaving an unstable 

(OiPr)3TiOH. In this case it appears as though a dioxo bridge has formed between the two 

titanium centres (Figure 85) with electron density shared over the two oxygen atoms forming 

a four membered ring.  
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Figure 85: Proposed formation of an oxo-bridge between two titanium isopropoxide molecules at high 

temperatures.201 

 

The formation of the two oxo bridges without the loss of the isopropyl ligands would be highly 

disfavoured  due to the maximum oxidation state of titanium being 4+, therefore this is likely 

not the whole picture. Two bridging oxygen atoms could potentially be hydroxyl ligands 

themselves, both of which could easily lose a proton in the mass spectrometer ionisation 

chamber.  The mass of this species would be 228, which is a peak present in the spectrum taken 

at 300, however it is masked by a cluster of peaks bringing  another fragment molecule so it is 

unknown if it relates to this species also. This would explain how such a species would be stable. 

A small peak at m/z 484 could explain this, however it is too weak to be seen as proof of this 

species forming. If this is indeed the case, deprotonation of the bridging species could be a 

viable path for the loss of the isopropanol fragments. 

Following the formation of the dimer species, fragments are lost of m/z - 60 . As with the 

polymer this is not simply a case of heterolytic fission causing loss of the ligand, as would occur 

in an ionisation chamber, as the fragments would have m/z - 59. Whilst 1 mass unit below the 

expected value is common due to subsequent proton loss, one heavier is harder to explain. The 

isopropoxide ligand group must be abstracting a proton as it leaves, forming isopropanol. This 

is corroborated by the presence of a large peak at m/z 60 in the spectrum, however it cannot 

be ruled out that the ligand would coordinate to a proton later.  

The most likely pathway for the loss of isopropanol from the ligand is via the abstraction of a 

proton from another isopropyl ligand (Figure 86). The central proton would be the most likely 
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provider of a proton due to the tertiary nature of the carbon providing greater stability for the 

negative charge was well a being adjacent to the oxygen. The oxygen from one isopropoxide 

abstracts the central proton from the adjacent ligand, resulting in the formation of an acetone 

group which remains coordinated to the metal centre.  

 

Figure 86: Proposed mechanism for the loss of the elimination of an isopropanol molecule from TTIP 

and its dimer at high temperatures. 

 

This reaction can be assumed to happen into the gas phase in the CVD reactor, as these peaks 

were not observed during the deposition at 300 ˚C. Further reactivity occurs in the loss of more 

isopropanol molecules in this way, with the dimer eventually splitting apart. The lowest main 

fragment featuring titanium involves coordination to an acetone molecule and an oxygen atom. 

Should the dimer species be forming inside the CVD reactor it is likely a precursor for the 

deposition of crystalline TiO2 at higher temperatures. 

 

5.3.5.2. Thin Film Analysis   

i) X-ray Diffraction Analysis 

As with the films deposited from TiCl4 and ethyl acetate the film deposited at 600 ˚C was 

considerably more crystalline than the film deposited at 300 ˚C (Figure 87). In both cases, the 

film appears to be anatase phase TiO2, with the (200), (211) and (204) miller planes present in 
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both films. The usually dominant (101) plane however appears to be disfavoured at the lower 

temperatures.  

 

Figure 87: X-ray diffraction pattern of the films deposited from TiCl4 and ethyl acetate onto float glass 

at 300 and 600 ˚C  using the APCVD / mass spectrometry apparatus, alongside an anatase TiO2 

standard.187 

ii) Scanning Electron Microscopy 

SEM micrographs were taken of the films deposited from TTIP at 300 and 600 ˚C (Figure 88). At 

300 ˚C the film appears to display more pores  and a disordered microstructure constructed of 

small grains of approximately 100 nm in diameter forming pseudo dendritic protrusions.  
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Figure 88: SEM images of the film deposited from titanium isopropoxide onto float glass at 300 (a) and 

600 ˚C (b) using the APCVD / mass spectrometry apparatus. 

The film deposited at 600 ˚C consisted of flattened diamond shaped crystallites roughly 100 nm 

in width and between 200 and 300 nm in width, in a disordered arrangement with some 

perpendicular to the substrate an others lying flat.   

5.3.6. Vanadium Tetrachloride 

Thin films were deposited using the APCVD mass spectrometer apparatus VCl4 and ethyl acetate 

as a precursors. Four depositions were carried out, the first with only a 0.2 L min-1 flow of VCl4 

and the following three with 0.6 L min-1, 0.2 L min-1 and 0.05 L min-1, giving approximate ratios 

of 2.5:1, 1:1 and 1:4 ethyl acetate to vanadium chloride respectively.  Upon removal of the thin 

films from the reactor, films deposited with a 0.6 L min-1
 flow of ethyl acetate appeared pale 

yellow and opaque. The film was fairly adherent to the substrate surface, resisting the Scotch 

tape test.  The film deposited from a 0.2 L min-1 flow of ethyl acetate was transparent and light 

orange in colour, strongly resembling those deposited from VOCl3 in section 5.3.3. The film 

deposited from the lowest flow rate of ethyl acetate was opaque and dark red, with no 

adherence to the substrate. Upon exposure to the atmosphere the film changed, becoming 

green and oily within twenty minutes of deposition. This implied that the vanadium chloride 

was not fully oxidised within the reactor, most likely depositing as a partially oxidised vanadium 
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chloride species that upon exposure to air reacted with atmospheric water to give an oily 

vanadium hydroxide species. Deposition with no oxidising agent gave no deposition.  

5.3.6.1. Mass Spectrometry Analysis 

Figure 89 shows the mass spectrum of VCl4. Initially, VCl4 was passed through the reactor at 

600 ̊ C without any oxidising agent and a predictable spectrum, with peaks at m/z 192, 155, 122 

and 86 representing the parent ion VCl4 and the subsequent loss of one, two and three chlorine 

atoms respectively was observed. Furthermore, the presence of peaks at m/z  227 and 264 

indicates that chlorination of the parent ion via the fragmented Cl∙ radicals, as observed for 

TiCl4 was also occurring with VCl4.  

 

Figure 89: Mass spectrum of titanium isopropoxide as passed through an atmospheric pressure 

chemical vapour deposition reactor at a temperature of 600 ˚C 

 

Following the deposition using only VCl4, spectra were collected for depositions with the same 

pressure of VCl4 with different pressures of ethyl acetate passing through the reactor. In  the 

case of this study, the mass flows of VCl4 and ethyl acetate were closely monitored as the final 
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product has been found to relate closely to the stoichiometry of VCl4 and the oxidising species. 

The mass flows of all three experiments are shown in Table 15. 

 

By tuning the flow rates, atmospheres were tailored so that  VCl4: ethyl acetate ratios of 2.5:1, 

1:1 and 1:4 were used (experiments 11, 12 and 13 respectively), in order to observe the effect 

of increased levels of oxidising agent on the atmosphere inside the reactor.  

 

 

Table 15: Approximate vapour pressure and molar flow rates of VCl4 and ethyl acetate during mass 

spectrometry APCVD depositions 11-13 

 VCl4 ethyl acetate 

Deposition Bubbler 

Temp /˚C  

Flow 

rate 

L min-1 

Vapour 

pressure 

mmHg 

Mass flow 

Mol min-1 

Bubbler 

Temp /˚C  

Flow 

rate 

L min-1 

Vapour 

pressure 

mmHg 

Mass flow 

Mol min-1 

11 70 0.6 60 0.002 30 0.05 120 0.0005 

12 70 0.6 60 0.002 30 0.2 120 0.002 

13 70 0.6 60 0.002 30 0.6 120 0.005 

 

 

The results are shown in Figures 90 and 91. As the flow rate of ethyl acetate increases, relative 

heights of the ethyl acetate peaks to the vanadium species increases, however the ratios do 

not reflect the amount entering the reactor, as in all three cases the highest peaks in the 

spectrum are those at m/z  88, 70 and 66, commonly associated with ethyl acetate. This is due 

to both the ethyl acetate having fewer breakdown products and a lower boiling point and 

reactivity than VCl4 meaning it is far more likely to reach the detector and not deposit or 

breakdown on the walls of the sampling tube or mass spec chamber. In all three cases the 
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presence of the ethyl acetate appears to lead to the emergence of peaks that relate to VOCl3, 

as observed in Figure 91. 

 

Figure 90: Mass spectra of APCVD depositions of VCl4 at 600 ˚C with flows of ethyl acetate at 0.2 L min-

1 (top) and 0.05 L min-1 (bottom). 
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Figure 91: Mass spectra of APCVD depositions of VCl4 at 600 ˚C with flows of ethyl acetate at 0.6 L min-

1 with peaks in the range of m/z- 180 to 300 enhanced. 
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Peaks at m/z 172, 138 and 102 with isotope patterns matching those of three, two and one 

chlorine ligands can be seen in all three spectrum with the intensities increasing as the mass 

flow of ethyl acetate increases.  

 In the depositions carried out with ethyl acetate, flow rates of 0.2 L min-1 and 0.05 L min-1, only 

those peaks and the peaks of the unreacted VCl4 and ethyl acetate were observed (Figure 91). 

When the ethyl acetate level is highest, the flow rate of 0.6 L min-1 , however, new peaks are 

observed at m/z 281, 244 and 209. These are thought to relate to the VCl4 with one intake ethyl 

acetate ligand coordinated to the metal centre via the carbonyl oxygen, along with the same 

species having lost one and two chlorine ligands respectively. The very low intensity of these 

peaks indicates that this structure is somehow unstable and likely breaks down in the gas phase 

to form VOCl3. 

 

5.3.6.2. Analysis of Thin Films 

i) X-ray Diffraction 

X-ray diffraction patterns of the thin films confirmed that increasing the level of ethyl acetate 

and by extension the amount of VOCl3 forming within the reactor increased the oxidation state 

of the final deposition product (Figure 92). The film deposited with 0.6 L min-1 ethyl acetate 

flow shows a clear pattern for V2O5. The film deposited using a 0.2 L min-1 shows a pattern very 

similar to that resulting from the VOCl3 depositions, that of monoclinic VO2. In both cases the 

patterns were considerably broadened, suggesting low crystallinity in the films. 

The film deposited from the lowest flow of ethyl acetate appears to be largely amorphous, with 

small peaks that may represent V2O5 just visible below the baseline. This is in keeping with the 
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incomplete removal of chlorine in the reactor resulting in slow oxidation of an intermediate 

oxychloride species on the substrate in air to vanadium (V).  

 

Figure 92: X-ray diffraction pattern of the films deposited from VCl4  and ethyl acetate onto float glass 

at 600 ˚C using the APCVD / mass spectrometry apparatus with ethyl acetate flow rates of 0.6 L min-

1(top), 0.2 L min-1 (middle) and 0.05 L min-1 (bottom) and  alongside standards for monoclinic (PDF 72-

0514)188 and tetragonal (PDF 80-0690) VO2.
189 

 

ii) X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) of the thin films deposited from VCl4 and ethyl acetate 

further confirm the pattern of greater oxidation as a result of higher levels of ethyl acetate. The 

film deposited with a flow of 0.6  L min-1 of ethyl acetate gave the largest signal for the V(V) 

oxidation state over V(IV), with a ratio of 3.2:1. The presence of some V(IV) in the film shows 

that the vanadium in the material has not been completely oxidised from the  4+ state (Figure 

93a). 
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Figure 93: Detailed XPS scans of: a) V 2p of film deposited from 0.2 Lmin-1 VCl4 and 0.6 L min-1 ethyl 

acetate and b) V 2p of film deposited from 0.2 Lmin-1 VCl4 and 0.2 L min-1 ethyl acetate, V(IV) (dotted 

line) vs. V(V) (dashed line). 
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The film deposited from 0.2 L min-1 flow rate of ethyl acetate gave a predominantly V(IV) signal, 

with the ratio of the 5+ to 4+ oxidation states at 1:2.1. The presence of some V2O5 in any VO2 

film is explained by surface oxidation of the film (Figure 93 b). This is exacerbated by the nature 

of XPS which is a highly surface sensitive technique. 

XPS of the film deposited from 0.05 L min-1 of ethyl acetate gave a film that was roughly 1:1 

V(V) to V(IV), which is in keeping with the idea that the material deposited was only partially 

reacted, and that a large amount of vanadium chlorine bonds remained, which is evidenced by 

the colour change and non adherent nature of the film deposited. The resulting oily film would 

likely contain a number of different species, especially following exposure to air. XPS was also 

taken of the film deposited from VCl4 without any ethyl acetate, revealing that the glass, which 

appeared uncoated, contained a very small amount of V(IV).  

 

iii) Scanning Electron Microscopy 

SEM imaging of the films deposited from VCl4 appears to show a considerable difference in the 

morphology as a result of increased levels of ethyl acetate present in the gas flow. When the 

amount of ethyl acetate was maximised and the mass flow ratio to  VCl4 was roughly 5:2 (Figure 

94a), the films are at their most porous and disordered, consisting of roughly spherical 

particulates of roughly 100 nm in diameter, adhered together to form protruding structures. 

When the ethyl acetate flow was set to 0.2 L min-1 and the mass flow ratio to VCl4 was around 

1:1, the morphology was observed to consist of vertical columns, roughly cylindrical in shape 

and 200 nm in diameter, densely packed together on the substrate surface.  When the mass 

flow of ethyl acetate was reduced even further, with the flow rate set to 0.05 L min-1 and the 

mass  
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Figure 94: SEM images of the film deposited from a 0.6L min-1 flow of VCl4 onto float glass with 0.6 L min-1
 (a), 0.2 L min-1 (b) and 

0.05 L min-1 (c) flows of ethyl acetate using the APCVD / mass spectrometry apparatus. 
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flow ratio to VCl4 at 1:4 ethyl acetate to VCl4, square plate- like particles of between 200 – 800 

nm in width and no more than 50 nm in thickness were seen, arranged in a disorganised fashion 

across the surface with some flat to the surface, some perpendicular. Some cube shaped 

particles of roughly 500 nm in width were also observed 

 

5.4. Conclusion 

This chapter details a novel, sensitive and versatile approach to analysing the contents of an 

APCVD reactor using mass spectrometry, during high temperature depositions. The approach 

has proved robust enough to sample highly reactive metal chloride species that would be 

beyond the scope of most spectrometers. The methodology has also been shown to be capable 

of ‘capturing’ species that form in the gas phase from the reaction of the metal oxide precursors 

and the oxygen source, giving new insight into the intermediate phases observed in APCVD.  

Initial testing using TiCl4 and VOCl3 with ethyl acetate as a source of carbonyl oxygen appear to 

reaffirm what was previously postulated with regards to the reactivity of the two species. In 

the case of the TiCl4 a species featuring two ethyl acetate species coordinated to the titanium 

species was observed with only the loss of a single chlorine atom from the metal centre. An 

analogous complex with VOCl3 was not observed. In that case with each ethyl acetate molecule 

that was observed to have coordinated to the metal centre, chlorine was lost, as observed with 

the diethyl malonate.  This is important as it shows that the metal chloride species behave the 

same way in the gas phase, as in the solid phase. The ability to observe the intermediate 

gaseous species in-situ rather than in solution, (as with the NMR) and solid, (as with the 

crystallography) gives new weight to these conclusions.  

In addition to this, new light has been shed on numerous other APCVD precursors. Depositions 

using butyltin chloride reveal that the reaction with the ethyl acetate can proceed via two 
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pathways, either displacing the butyl group, or the chloro group first, with the latter being the 

more favourable of the two.  

In the case of titanium isopropoxide, deposited alone, at high temperatures the possible 

formation of a dimeric intermediate to deposition of TiO2 was observed. Ti-O-Ti linkages were 

observed to form in the gas phase, before contact with the substrate surface. These 

intermediates are then likely to nucleate on the substrate surface, resulting in the TiO2 thin film 

product.  

Finally, with VCl4  when deposited alongside ethyl acetate, the observation of VOCl3 as an 

intermediate in the deposition of vanadium oxide thin films were observed, with the height of 

the VOCl3 peaks correlating to the quantity of ethyl acetate in the system. Increasing the level 

of ethyl acetate increases the vanadium: oxygen ratio in the final film. This could mean that 

VOCl3 is the gaseous intermediate to VO2, the vanadium oxygen bonds forming in the gas phase 

before depositing.  

The range of applications of this apparatus is broad and has by no means been fully explored. 

In addition  to work with APCVD, the mass spec CVD linkage has been utilised in the study of 

aerosol assisted chemical vapour deposition reactions, gas sensor arrays and low pressure 

chemical vapour deposition applications. Further work would likely involve increasing the range 

of precursors studied with iron oxide precursors being a likely candidate, as well as investigation 

of dual source co-depositions, although the resulting spectra would likely be extremely 

complex.   
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Chapter 6 
 

Aerosol Assisted CVD of Photocatalytically Active TiO2-

SiO2 Microfractal Thin Films 

 
6.1. Introduction 

 

The work presented in this chapter is based around a continuation of the coordination 

chemistry of carbonyl ligands with TiCl4. In addition to the malonate and triglyceride examined 

in chapter 4, several carbonyl species featuring silane groups were reacted with TiCl4. Whilst 

initially linked to the discovery of organosilanes within the industrial samples for TiCl4, the 

emergence of one compound in particular was found to be highly effective as an aerosol 

assisted CVD precursor for the deposition of TiO2-SiO2 composite thin films, which show 

increased photocatalytic activity over TiO2 deposited from TiCl4 using the same deposition 

technique. The results of the reaction of four silyl-keto species, methyltrimethylsilyl acetate, 

trimethylsilyl acetate, silicon tetraacetate and bis-trimethylsilyl malonate with TiCl4 to produce 

complexes 10 [Ti{OC(OMeCH2SiMe3}Cl3(µ-Cl)]2, 11, 12 [Ti3O2Cl3(CH3CO2)5 and 13 are presented.  

Additionally the resulting TiO2-SiO2 composite thin films fabricated from the deposition of 10 

onto float glass using AACVD are characterised and tested from photocatalytic efficiency and 

hydrophilicity.  

6.1.1. Aerosol Assisted CVD 

Aerosol Assisted CVD differs from conventional chemical vapour deposition in that 

transportation of the precursor is primarily a liquid phase process. The precursor is dissolved 

or suspended in a solvent, from which an aerosol is generated using an ultrasonic humidifier.202 

This creates a mist of aerosol droplets containing solvated precursor molecules that are then 
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transported into the reactor via a carrier gas (Figure 95). In this case nitrogen was used. Upon 

entering the reactor chamber, the aerosol droplets evaporate, leaving the precursor, which 

deposits onto the substrate.203 

 

Figure 95: Schematic diagram of the AACVD apparatus. 

 

AACVD has a number of advantages over conventional methods of CVD,  most notably that it 

opens up a new range of precursors as the primary prerequisite for an AAVCD precursor is its 

solubility rather than its volatility, as is the case with other methods.204 The process is also far 

simpler to set up, requiring no heated tubing to carry the hot precursor, simply an aerosol 

generator and a reactor. AACVD has been used to deposit a large number of metal oxide 

coatings. These include titanium dioxide,205,206  thermochromic vanadium dioxide,207–209 tin 

oxide ,210–212 zinc oxide213 and  tungsten oxide,214,215 as well as composites216,217 and doped 

films.218–220 

The use of a solution based medium allows for greater control over the composition of doped/ 

composite films and also the deposition of mixed metal oxides by allowing the pre-mixing of 

the precursors in solution.221 These one pot depositions allow the correct stoichometery of the 

two components to be achieved before the deposition of the material. 222  The wider range of 

precursors available also means that there is a much more expansive combination of precursors 

that can be combined in order to give the desired properties.223,224 
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AACVD is a highly tunable technique, with many variants.225 In general a piezoelectric mister is 

used to generate aerosol droplets of a solution of the precursor in a solvent. The deposition 

can be altered by the frequency of the ultrasound used to generate the mist, with higher 

frequency producing more numerous, finer droplets.162  The use of a solution based technique 

allows for control over deposition speed and/or film thickness by altering the concentration of 

the precursors within the solution.226  

AACVD has also been shown to produce different morphologies compared to films deposited 

by traditional CVD methods.227 AACVD has been used to produce wide a range of 

nanostructures from the same precursor, for instance tungsten oxide from W(OEt)6 which has 

been deposited as particles, wires, hollow tubes, rods and even ‘nanoflowers’.228,229 Further 

control of morphology can be demonstrated by use of surfactant additives to the precursor 

solution, such as substituted ammonia salts. These have been found to favour certain growth 

patterns.230 

 

Figure 96: Schematic representation of various deposition pathways possible in AACVD. 

 

Depositions within an AACVD process can occur via a number of pathways, relating to the 

substrate temperature, concentration of precursor, solvent used and other factors (Figure 96).  

In each case the precursor arrives at the reactor solvated in droplets of the chosen solvent. The 

solvent either evaporates before reaching the substrate (a) or afterwards (e).231  In the case of 
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(a) the precursor species commonly  decomposes in the gas phase, forming a reactive 

intermediate vapour or particles of the desired product ((b) + (c) respectively), similar to 

atmospheric pressure chemical vapour deposition.225 Following this, in both cases the products 

are absorbed onto the substrate to form the film. The gaseous reagents can also adsorb onto 

the substrate intact before decomposing and coordinating onto the surface of the substrate 

(d).231 In the case of (e) the solution deposits onto the heated substrate and spreads out before 

rapidly evaporating, leaving the precursor species to react as seen in (d).232 

Problems with this method are mainly based around the time taken for the deposition to 

complete, taking anywhere from ten minutes to over an hour depending on the ease with which 

an aerosol of the solvent is generated. There are also issues with industrial scale up 233 and 

reproducibility.234  

6.1.2. TiO2-SiO2 Composite Films 

The photocatalytic properties of TiO2 are widely recognized235 and have received much 

literature attention.236 Irradiation of TiO2 with UV light causes the excitation of electrons to the 

conduction band, leaving a positive hole that can migrate to the surface, oxidising water to 

form highly reactive hydroxyl radical species capable of breaking down surface organics.237 

Efforts to improve the photocatalytic properties of TiO2 have focussed on the use of dopants 

such as nitrogen,238 fluorine,239 and tungsten,240 as well as composite materials such as TiO2-

SiO2, which have been produced in the form of both thin films241 and nanoparticles,242 both of 

which are frequently doped to further improve catalytic activity.243  

TiO2-SiO2 thin films have themselves been widely studied for a number of uses. These films 

have been shown to have exceedingly high wettability.244,245 Work by Hourmard et al. showed 

that films of 20:80 and 60:40 composites of TiO2:SiO2, prepared via sol gel of 

tetraethylorthosilicate and isopropyl orthotitanate show increased superhydrophilicity 
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compared to TiO2 prepared in the same manner.246 This was attributed to increased surface 

roughness of the composites, as well as the presence of charged TiOx
- and SiOx

+ at the 

interfaces.247 

SiO2 / TiO2 composite films have also been shown to have the potential for excellent 

photocatalytic behaviour. Films with a TiO2:SiO2 ratio of 1:1, deposited onto ethylene 

terepthalare via dip coating using a peroxotitanium acid/(aminopropyl) triethoxysilane sol, 

were shown to photocatalytically degrade Rhodamine B under UV light at a rate roughly twice 

that of pure TiO2 deposited in the same way. This was attributed to the generation of surface 

acid sites, as well as smaller grain size.248 Likewise, a study by Yu et al. found that a 5% 

composite film of SiO2 in TiO2 was more effective at degrading methyl orange under UV/Vis 

conditions than TiO2 prepared in the same way, however at concentrations greater than 5% the 

performance became poorer.249 

Chemical vapour deposition has been widely used in the deposition of TiO2 thin films, using a 

variety of methods such as atmospheric pressure (APCVD),250 aerosol assisted (AACVD),251 and 

plasma enhanced (PECVD).252 Examples of TiO2-SiO2 thin films grown via CVD are limited. 

Klobukowski et al. succeeded in depositing a 1:1 TiO2-SiO2 film onto float glass via APCVD using 

a [Ti(OiPr)2{OSi(OtBu)3}2] precursor.253 Additionally, Yoon et al. fabricated a TiO2-SiO2 composite 

film from the co-deposition of tetraethylorthosilicate (TEOS) with titanium isopropoxide at 400 

˚C using AACVD.254 

This work describes the reactions of TiCl4 with methyl trimethylsilyl acetate (mtmsa) to form a 

novel single source precursor for the deposition of photocatalytically active TiO2-SiO2 thin films 

onto glass via AACVD over a range of temperatures. AACVD has a number of advantages over 

conventional methods of CVD, the most notable being that it opens up a new range of 

precursors as their effectiveness is dependent on solubility rather than volatility as is the case 
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with other methods. The process is also far simpler to set up, requiring no heated tubing to 

carry the precursor vapour, simply an ultrasonic humidifier and a reactor.225  

 

Figure 97: Silicon containing ligands reacted with TiCl4 used in the synthesis of 10 (top left), 11 (top 

right) 12 (bottom left) and 13 (bottom right) 

 

In this section TiCl4 was reacted with four silicon containing carbonyl species, methyl 

trimethylsilyl acetate, trimethylsilyl acetate, bis-trimethylsilyl acetate and silicon tetraacetate 

(Figure 97) to produce compounds 10 [Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)]2, 11, 12 [Ti3O2Cl3(O2CCH3)5 

and 13 respectively.  The resulting species were characterised by NMR spectroscopy and single 

crystal X-ray diffraction analysis where possible. Following this, 10 was used as a single source 

precursor for the deposition of TiO2-SiO2 films for use as self cleaning coatings as evidenced by 

their enhanced propensity for the breakdown of stearic acid when compared with TiO2 films 

deposited from TiCl4 in the same manner. This is the first deposition of a TiO2-SiO2 composite 

film using a single source precursor via AACVD. Depositing in this manner lead to films with 

novel fractal like morphologies.  
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6.2. Experimental 

All starting materials were purchased from Sigma Aldrich and used without further purification. 

The solvents were dried over activated alumina by the Grubbs method using anhydrous 

engineering equipment, such that the water concentration was 5 – 10 ppm.83 All products were 

synthesised under an atmosphere of nitrogen obtained from BOC in anhydrous solvents using 

standard Schlenk techniques.  

6.2.1. Synthesis of  [Ti{OC(OMeCH2SiMe3}Cl3(µ-Cl)]2 [10] 

Methyl  trimethylsilyl acetate (1 g, 0.006 mol) was added to an excess of titanium(IV) chloride 

(1 ml, ~ 10  mmol), dissolved in anhydrous hexane (30 ml) in a Schlenk flask under nitrogen. The 

resulting mixture was stirred for two hours. Following this the solvent was removed via 

filtration, and the product washed three times with anhydrous hexane and dried under vacuum 

in order to ensure the complete removal of all remaining TiCl4, leaving a light yellow, free-

flowing powder product [10] (1.931 g, 92.1%). Single crystals of 10 were grown from a 5 ml 

saturated solution of the product in anhydrous toluene, layered with 10 ml of anhydrous 

hexane and left under nitrogen for one week. 1H NMR (CDCl3): δ 4.04 (s, 2H, CH2Si), 2.54 (s, 3H, 

OCH3), 0.44 (s, 9H, SiMe3) 13C {1H} NMR (CDCl3): δ 184.8 (C=O), 56.5 (CH2), 28.8 (CH3), 2.4 

(SiMe3). MS: m/z = 671.46 [M + H+].  

 

6.2.2. Reaction of TiCl4 with trimethylsilyl acetate to produce [11]  

Trimethylsilyl acetate (1 g, 0.006 mol) was added to an excess of titanium(IV) chloride (1 ml, ~ 

0.01 mol), dissolved in anhydrous hexane (30 ml) in a schlenk flask under nitrogen. The resulting 

mixture was stirred for two hours. Following this the solvent was removed via filtration, and 

the product washed three times with anhydrous hexane and dried under vaccum in order to 
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ensure the complete removal of all remaining TiCl4, leaving a bright yellow powder product (11) 

(1.344 g, 55.3%). Attempts were made to grow single crystals of 11 by layering a 5 ml saturated 

solution of 11 in CHCl2 with hexane, an leaving for one week, and by freezing a 5 ml saturated 

solution over one month, however in both cases the product was observed to break down into 

a white solid over time, without the formation of crystals.  1H NMR (CDCl3): δ 2.63 (s, 3H, CH3), 

0.44 (s, 9H, SiMe3), 0.6 (s, 3H), 2.1 (s, 0.5), 2.3 (s, 0.5), 2.4 (s, 0.8).  13C {1H} NMR (CDCl3): δ  173.3 

(C=O), 22.76 (CH3), 3.6 (SiMe3), (Appendix 11). The NMR spectra of 11 shows a number of minor 

peaks adjacent to the product (0.6, 0.8,  2.1, 2.3) peaks that are likely the result of unreacted 

starting material remaining in solution.  

6.2.3. Reaction of TiCl4 with silicon tetraacetate to produce [Ti3O2Cl3(O2CCH3)5]  [12] 

Silicon tetraacetate (1 g, 0.004 mol) was added to an excess of titanium (IV) chloride (1 ml, ~ 

0.01 mol), dissolved in anhydrous hexane (30 ml) in a schlenk flask under nitrogen. The resulting 

mixture was stirred for two hours. Following this the solvent was removed via filtration, and 

the product washed three times with anhydrous hexane and dried under vaccum in order to 

ensure the complete removal of all remaining TiCl4, leaving a white powder product (10) (1.701 

g, 93.87%). Single crystals of 10 were grown from a 5 ml saturated solution of the product in 

anhydrous toluene, layered with 10 ml of anhydrous hexane and left under nitrogen for one 

week. 1H NMR (CDCl3): δ 2.32 (COCH3) (s, 3H).  13C {1H} NMR (CDCl3): δ  184.8 (C=O), 23.1 (CH3). 

6.2.4. Reaction of TiCl4 with bis-trimethylsilylmalonate to produce [13] 

Bis-trimethylsilylmalonate (1 g, 0.004 mol) was added to an excess of titanium (IV) chloride (1 

ml, ~ 0.01 mol), dissolved in anhydrous hexane (30 ml) in a Schlenk flask under nitrogen. The 

resulting mixture was stirred for two hours. Following this the solvent was removed via 

filtration and the product washed three times with anhydrous hexane and dried under vacuum 

in order to ensure the complete removal of all remaining TiCl4, leaving an orange, powder 
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product [11] (1.068 g, 79.2%). The product was found to be insoluble in CHCl2 and CDCl3 with 

NMR showing only signals for the trimethylsilyl chloride formed as a side product (0.5 ppm), 

hexane, toluene and vacuum grease.   

6.2.5. Deposition of Thin Films 

Following characterisation of 10 – 13 as well as some test runs it was determined that only 10 

was a suitable precursor for the AACVD of TiO2-SiO2 composite thin films, as the other three 

were found to be unsuitable precursors. Compounds 11 and 12 were found to decay rapidly 

upon exposure to a dynamic flow of nitrogen. In the case of 13, despite being air stable, the 

compound did not dissolve in any common AACVD solvents and did not contain any silicon in 

the crystallised  product.  

For all three depositions using 10, 0.5 g (0.00071 mol) was dissolved in 20 ml of anhydrous 

toluene and transferred to a glass bubbler under nitrogen using a cannula. The resulting 

solution was atomized for 5 minutes to ensure complete solvation of the precursor. An aerosol 

was generated using a Piezo Liquifog® ultrasonic atomiser. The deposition was carried out using 

nitrogen as the carrier gas at a flow rate of 0.5 L min−1. The glass substrate was standard float 

glass of 4 mm thickness. A top plate was suspended level, 0.5 cm above the substrate to ensure 

a laminar flow.  

A stream of air was introduced into the baffle via a second tube, from the house line fitted with 

a filter. Air is frequently used in AACVD rather than nitrogen as a carrier gas in order to ensure 

that the product is fully oxidised in the reactor chamber. 255 In this case however, due to the air 

sensitive nature of the precursor, using air as the main carrier gas would result in the pre 

oxidation of the precursor, forming TiO2 before the materials could enter the chamber and 

deposit. By using the split baffle and two streams, one of nitrogen through the bubbler and one 

of air directly into the chamber the benefits of both carrier gasses can be achieved without loss 
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of product to oxidation before entering the chamber. The depositions were carried out at 450, 

500 and 550 °C, each taking approximately 30 minutes. A final deposition using a solution of 

TiCl4 (0.5 ml, 0.005 mol) in 20 ml of anhydrous toluene  was carried out at 500 °C using the same 

conditions as the above reactions in order obtain a control film of TiO2.  

6.2.6. Analytical Methods 

X-ray crystallography, both obtaining and solving the spectra was carried out by Dr. Caroline 

Knapp. Single crystal diffraction patterns were collected on a SuperNova, Dual, Cu, 

Atlas diffractometer. The crystal was kept at 150 K during data collection. Data was processed 

with Olex2,87 the structure was solved with the olex2.solve88 structure solution program using 

Charge Flipping and refined with the ShelXL89 refinement package using Least Squares 

minimisation. X-ray diffraction (XRD) patterns of the deposited films were obtained using a 

Bruker-Axs D8 (GADDS) diffractometer equipped with a monochromated (Kα1 and K𝛼2) Cu X-

ray source and a 2D area X-ray detector with a resolution of 0.01°. The films were analysed with 

a glancing incident angle of 5°. The diffraction patterns obtained were compared with database 

standards. X-ray photoelectron spectroscopy (XPS) was performed using a Thermo ScientificTM 

K-alphaTM spectrometer, with monochromated Al Kα radiation, a dual beam charge 

compensation system and consta pass energy of 50 eV. Survey scans were collected in the 

energy range of 0 – 1200 eV.  

1H and 13C{1H} NMR spectroscopy was carried out on a Bruker A-600 Mz spectrometer, 

operating at 295 K and 600.13 MHz (1H). Signals are reported relative to SiMe4 (δ = 0.00 ppm) 

and the following abbreviations are used s (singlet), d (doublet), t (triplet), q (quartet), m 

(multiplet), b (broad). Deuterated CDCl3 was obtained from GOSS Scientific and was degassed 

and dried over 3 Å molecular sieves. Liquid Chromatography Mass spectroscopy of 10 was 

recorded using a Thermo Finnigan LTQ two-dimensional ion-trap mass spectrometer operating 



191 

in ESI mode. High-resolution peaks were used for the principal peaks Ti (2p), O (1s), C (1s), Si 

(2p) and Cl (2p) with a spot size of 400 μm. Elemental composition was inferred from the 

integral of the peak corresponding to the signal of that particular element. A Renishaw 1000 

spectrometer equipped with a 514 nm laser was used to obtain Raman spectra of the samples. 

The Raman system was calibrated using a silicon reference. Transmission and reflectance 

UV/Vis spectroscopy were performed using a double beam; double monochromated Perkin 

Elmer Lambda 950 UV/vis/NIR Spectrophotometer. The absorption spectra were recorded 

directly on the films as deposited on quartz slides, clamped against an integrating sphere in 

perpendicular position to the beam path. A Labsphere reflectance standard was used as 

reference in the UV/vis measurements. SEM analysis was carried out using secondary electron 

image taken using a JEOL 6301 field-emission instrument (5 kV).  

6.2.7. Photocatalytic Testing 

The photocatalytic activity of the films was measured by their ability to break down stearic acid, 

a layer of which was applied to the films via dip coating from a stock solution of 0.005 M stearic 

acid in dichloromethane. The degradation of the stearic acid was measured by Fourier 

transform infrared (FTIR) spectroscopy in the range 2700–3000 cm−1, using a Perkin Elmer RX-I 

instrument. The area beneath the peaks relating to stretching vibrations of C-H bonds in the 

stearic acid (2820-2970 cm-1) was integrated giving an estimation of the number of molecules 

of stearic acid degraded using a conversion factor reported in the literature (1 cm−1 ≡ 9.7 × 1015 

mol)].256 The photoactivity rates were estimated from line regression of the initial 30–40% 

degradation steps (zero-order kinetics). These rates are expressed as formal quantum efficiency 

(FQE) values, which are defined as the number of acid molecules degraded per incident photon. 

This degradation of the stearic acid is shown in equation 1.  

CH3(CH2)16CO2H + 26O2TiO2                          
(hν≥ Ebg)                 18CO2 + 18H2O   (1) 
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A blacklight-bulb UVA lamp (Vilber-Lourmat) 2 × 8 W, was used to irradiate samples during the 

photocatalytic tests. The irradiance of the UV lamp (4.1 mWcm−2) was measured using a UVX 

meter (UVP). The films were cleaned under wet air conditions under a 365 nm UV lamp for 24 

hours and kept in the dark for another 24 hours prior to the photocatalysis testing.  

6.3. Results and Discussion 

TiCl4 was reacted with methyltrimethylsilyl acetate, trimethylsilyl acetate, silicon tetraacetate 

and bis-trimethylsilyl malonate complexes in hexane at room temperature under nitrogen to 

form 10 [Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)]2, 11, 12 [Ti3O2Cl3(CH3CO2)5 and 13 in good yield. 

Following this, product 10 was deposited onto plain glass using aerosol assisted CVD in toluene 

over a range of temperatures. The films all had excellent coverage, evenly coating the entire 

substrate, and showed good adherence, being resistant to scratching and the ‘Scotch tape test’.  

6.3.1. Reaction of TiCl4 with methyl trimethylsilylacetate to give 

[Ti{OC(OMeCH2SiMe3}Cl3(µ-Cl)]2 [10] 

Methyl trimethylsilyl acetate (Sigma Aldrich, 97%) was added to a solution of TiCl4 and stirred 

under nitrogen to give [Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)] [10], a bright yellow powder in good yield. 

Yellow crystals were grown by layering a solution of 10 in toluene with dichloromethane. NMR 

analysis shows a downfield shifting of all of the proton signals of the uncoordinated ligand, with 

the magnitude of the shift decreasing with distance from the carbonyl group (Figure 98). This 

is indicative of the dative coordination of the ligand to the TiCl4 centre observed for the 

malonate species reacted with TiCl4 in Chapter 3. 

 This hypothesis was confirmed by the X-ray diffraction analysis of the crystal grown. The crystal 

structure of the precursor of [Ti{OC(OMeCH2SiMe3}Cl3(µ-Cl)]2 (10) comprises of a dimeric 

species, bridged by two chloride ligands (Figure 99). Each titanium atom adopts a distorted 

octahedral geometry, having retained all four chlorine atoms, with the silyl acetate molecule 
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coordinating via the carbonyl oxygen. This structure is very common with titanium chloride 

species, seen frequently for complexes of TiCl4 with carbonyl ligands, such as 2-propanone257 

and acetate.258 

 

Figure 98: ¹H NMR spectra of methyl trimethylsilylacetate and the product of its reaction with TiCl4 [10], all peaks 

exhibiting a downfield shift indicating coordination to the titanium metal centre. 
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Figure 99: ORTEP representation of crystal structure of 10 with thermal ellipsoids at the 50% 

probability level. Hydrogen omitted for clarity. 

Table 16: Crystallographic Data and Selected bond lengths angles for the crystal structure of 1a the 
product of reaction TiCl4 and methyltrimethylsilyl acetate [10] 

Structural Data 
 

Selected Bond Angles /˚ 
 

Selected Bond 
 Lengths /Å 

crystal system monoclinic 
 

Cl(21)-Ti(1)-Cl(1) 166.816(18) 
 

Ti(1)-Cl(1) 2.2327(4) 

space group C2/c  Cl(2)-Ti(1)-Cl(1) 88.766(16)  Ti(1)-Cl(2) 2.5157(4) 

a 16.98585(13) 
 

Cl(4)-Ti(1)-Cl(1) 99.810(18) 
 

Ti(1)-Cl(21) 2.4615(4) 

b 15.68339(10) 
 

Cl(4)-Ti(1)-Cl(21) 90.860(16) 
 

Ti(1)-Cl(4) 2.2085(4) 

c 24.15174(15)  Cl(4)-Ti(1)-Cl(2) 169.677(18)  Ti(1)-Cl(3) 2.2349(4) 

α 90  Cl(3)-Ti(1)-Cl(1) 96.526(16)  Ti(1)-O(1) 2.0238(10) 

β 95.1852(6) 
 

Cl(3)-Ti(1)-Cl(21) 89.995(15) 
   

γ 90  Cl(3)-Ti(1)-Cl(2) 88.729(14)    

R1 0.0289 
 

Cl(3) -Ti(1)-Cl(4) 95.930(17) 
   

wR2 0.0756 
 

O(1) -Ti(1)-Cl(1) 87.55(3) 
   

   
O(1) -Ti(1)-Cl(21) 84.11(3) 

   

   O(1) -Ti(1)-Cl(2) 81.33(3)    

   O(1) -Ti(1)-Cl(4) 93.23(3)    
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The Ti-O bond lengths present (Table 16) are 2.0238(10) and 2.0238(10) Å, indicating covalent 

coordination to the titanium centre by the acetate species, as observed with the similar 

structure of di-chloro-bis[(allylacetate-O)trichlorotitanium(IV)].  The Ti-Cl bond lengths to the 

µ-2 bridging chlorides were 2.5157(4) and 2.4615(4) Å, longer than that of the terminal chloride 

ligands, all of which are between 2.20 and 2.25 Å. This is expected due to the electron density 

being shared over two metal centres, which in turn reduces the attractive forces felt between 

the individual titanium centres and the electron cloud around the chlorine.  

The decreased electron density also results in the bridging chlorides lying closer to the other 

ligands. The bond angle between the terminal Cl(3) and the bridging Cl(2) is 88.729(14)˚, 

whereas the angle between two mutually adjacent terminal chlorines Cl(1) and Cl(3) is 

96.526(16)˚. This is due to the reduced electron density around the bridging chlorines resulting 

in a decrease in electronegativity of the ligand and therefore a decreased repulsion between 

the ligands. 

6.3.2. Reaction of TiCl4 with trimethylsilylacetate to give [11] 

Trimethyl silylacetate (TSA) (Sigma Aldrich, 97%) was added to a solution of TiCl4 in hexane 

under an atmosphere of nitrogen and stirred for two hours. The resulting off-white powder was 

washed with hexane and dried under vacuum and a 1H NMR spectrum of 11 was obtained. 

Attempts were made to grow crystals by layering saturated solutions of 11 in CHCl2 and toluene 

with hexane, as well as storing saturated solutions of 11 in CHCl2 and toluene in a freezer for 

one month however in all cases, a white, powdery, non-crystalline precipitate was observed. 

The NMR spectrum of 11 (Figure 100) shows a range of products with the signal at 0.2 ppm in 

the starting material shifting from  0.2 to 0.5 ppm, and the emergence of a range of new peaks 

at 0.55, 2.25, 2.40, 2.48, 2.51, 2.57 and 2.68 ppm. The integrals of these peaks do not align, 

suggesting that a range of products are present. The large peak at 0.5 ppm, is likely to be that 
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of trimethylsilylchloride, the trimethylsilyl (TMS) group having undergone ligand exchange with 

the TiCl4.  TSA is a well used acylating agent and has been shown in the literature to readily 

form trimethylsilyl chloride.259 The peaks in the 2.2 – 2.7 ppm range suggest a number of ethyl 

species could have been formed, perhaps coordinating to the titanium centre in different 

numbers or forming clusters, such as the one shown in Figure 102 (vide infra). This explains the 

difficulty in isolating a crystalline product. It also suggests that this species would be 

inappropriate for use as a TiO2 / SiO2 thin film precursor.  

 

Figure 100: ¹H NMR spectra of trimethylsilylacetate and the product of its reaction with TiCl4 [11], 

showing a series of new peaks suggesting that multiple products form. 

 

6.3.3. Reaction of TiCl4 with silicon tetraacetate to give [Ti3O2Cl3(O2CCH3)5 [12] 

Silicon tetraacetate (STA) (Sigma Aldrich, 96%)  was added to a solution of TiCl4 in hexane and 

stirring for two hours under nitrogen, leading to the precipitation of a pale yellow product 
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[Ti3O2Cl3(O2CCH3)5  [12].  Crystals were obtained by layering a 5 ml saturated solution of 12 in 

anhydrous toluene with 10 ml of anhydrous hexane.  Over a period of one week, pale yellow 

crystals formed.  

As with the previous experiment, the NMR strongly suggests displacement of the acetate 

groups on the silicon by the TiCl4 (Figure 101). The NMR of the starting material shows a single 

major peak at 2.15 ppm with satellites suggesting that the silicon tetraacetate is prone to loss 

of the acetate groups in solution, as well as suggesting strong presence of impurities. The 

product shows a slight shift in the acetate CH3 peak to 2.3 ppm, as well as a broadening that 

could hide the formulation of multiple species. The new peak at 0.1 ppm is very likely to be 

from vacuum grease as there are no methyl silyl species present in the starting material and 

the formation of a methyl silane species in solution is highly unlikely.  

 

Figure 101: ¹H NMR spectra of trimethylsilylacetate and the product of its reaction with TiCl4 [12], 

showing a series of new peaks suggesting that multiple products form. 

 

Unlike 11, crystals of 12 could be grown via solvent layering, suggesting that although the 

reaction does not follow a simple coordination pathway as per 10, a product formed in great 
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enough abundance to nucleate as crystals. These crystals were surprisingly facile to produce, 

meaning it is likely that 12 favours ordered crystalline growth. Analysis of the crystal   revealed 

that rather than the silicon tetraacetate coordinating to the titanium chloride, the titanium 

displaces the silicon, coordinating to the acetate ligand. This leads to the formation of a trimeric 

cluster with two central oxygen atoms, one bridging all three titanium centres, the other 

bridging only two (Figure 102). The bonds between the titanium and the central oxygen atoms 

are all in the region of 1.87 Å, similar to other Ti-O bond lengths calculated for TiOx cluster 

molecules. 260,261 

One titanium atom is coordinated to four acetate groups, with the remaining two coordinated 

to three, each titanium centre retaining one chlorine atom. The two oxygen atoms in the 

carboxylate groups of the acetate ligands coordinate to different metal centres. This leads to 

the formation of highly distorted, six membered rings featuring the two titanium centres linked 

by the central oxygen atom and the carboxylate group of the acetate.  

The Ti-O-C bond angles are all between 132° and 138°, rather than 120° as is conventional for 

a six membered ring, in order to accommodate coordination to both metal centres. This relates 

to the highly differing bond lengths, Ti(1)-O(3) is 1.9697(11) Å, fitting with a dative Ti-O bond 

compared with the considerably shorter C(1)=O(3) bond in the acetate ligand at 1.2806(19) Å.  
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Figure 102: ORTEP representation of crystal structure of 12 with thermal ellipsoids at the 50% probability level. 

Hydrogen omitted for clarity. 

 

Table 17: Crystallographic Data and Selected bond lengths angles for the crystal structure of 1a the product of 

reaction TiCl4 and silicon tetraacetate [12] 

Structural Data  
Selected Bond Angles /˚ 

 
Selected Bond Lengths /Å 

crystal system monoclinic  O(1)-Ti(1)-Cl(1) 175.03(4)   Ti(1)-Cl(1) 2.2820(5) 

space group P21/c  O(1)-Ti(1)-O(3) 87.04(5)   Ti(1)-O(1) 1.8733(11) 

a 8.4469(3)  O(1)-Ti(1)-O(7) 90.44(5)   Ti(1)-O(3) 1.9697(11) 

b 13.6092(4)  O(1)-Ti(1)-O(9) 86.97(5)   Ti(1)-O(5) 1.9929(11) 

c 12.4255(4)  O(3)-Ti(1)-Cl(1) 89.84(4)   Ti(1)-O(7) 1.9889(11) 

α 90.00(5)  O(3)-Ti(1)-O(5) 87.72(5)   Ti(1)-O(9) 1.9603(11) 

β 98.424(3)  O(3)-Ti(1)-O(7) 171.57(5)   Ti(2)-O(1) 1.9868(10) 

γ 90.00(5)  O(5)-Ti(1)-Cl(1) 92.90(4)   Ti(3)-O(1) 1.9885(10) 

R1 2.70  O(7)-Ti(1)-Cl(1) 93.19(4)       

wR2 7.40  O(9)-Ti(1)-Cl(1) 89.69(4)       

   O(9)-Ti(1)-O(3) 98.96(5)       

   O(9)-Ti(1)-O(5) 172.85(5)       

   O(9)-Ti(1)-O(7) 88.93(5)       

   O(7)-C(5)-O(8) 123.06(14)       

   Ti(1)-O(1)-Ti(2) 130.53(5)       

   Ti(1)-O(1)-Ti(3) 130.92(5)       
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The reason for the formation of 12, as well as the likely failure of the other reactions to produce an 

acceptable precursor is the propensity of TiCl4 to simply displace the silicon species, rather than 

coordinating directly to the acetate species carbonyl group. The reaction likely begins with a ligand 

exchange step, the titanium coordinating to the acetate, which in turn leads to the displacement of 

Cl- from the metal centre as unlike the coordination to TiCl4 seen in previous structures, the oxygen 

atom would be negatively charged. This chlorine would be attracted to the newly positive silyl acetate 

species. 

The methyl trimethylsilylacetate ligand used to form 10 features a trimethylsilyl (TMS) group bound 

to carbon, not oxygen.  The carbon oxygen bond of the methyl trimethyl silyl acetate is more stable 

than the silicon oxygen of bond in the trimethylsilylacetate.262  Furthermore there is a far greater 

bond polarity between the carbon-oxygen bond (χC = 3.4 vs χSi = 1.9)263  than the carbon - silicon bond 

(χC = 2.5 vs χSi = 1.9)264. The greater electronegativity of the oxygen facilitates the coordination of the 

titanium leading to  the ligand exchange. 

6.3.4. Reaction of TiCl4 with bis-trimethylsilylmalonate to give [13] 

Bistrimethylsilyl malonate (BTMSM) was added to a solution of TiCl4 in hexane under an atmosphere 

of nitrogen and stirred for two hours. The resulting orange product was washed with hexane and 

dried under vacuum. This material was found to be highly unstable and sensitive to atmospheric 

oxygen and water, breaking down to a white, insoluble powder (presumable TiO2) over time even 

when stored under nitrogen and almost instantaneously if the flask was opened.  This made obtaining 

an NMR spectrum impossible as the white precipitate would crash out of the CDCl3 as soon as the 

solution was made up.  Attempts were made to grow crystals by layering saturated solutions of 13 in 

CHCl2 and toluene with hexane, as well as well as storing saturated solutions of 13 in CHCl2 and 

toluene in a freezer for one month however in all cases, a white, powdery, non crystalline precipitate 

was observed.  
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6.3.5. Characterisation Thin Films 

A range of thin films were deposited from the single source precursor [Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)]2 

[10] in toluene at temperatures 450, 500 and 550 °C. The films were observed to display increasing 

opacity as deposition temperature increased, with those deposited at 450 °C being fully transparent, 

at  500 °C also transparent but with a slight fogginess in places and at 550 °C having a cloudy, almost 

opaque appearance. The film deposited from TiCl4 was largely transparent but somewhat hazy, with 

fogginess around the edges of the substrate. All four films were left undamaged by the “Scotch Tape” 

test. 

The morphology of the films was found to vary considerably with deposition temperature (Figure 

103). The most notable of the films were those deposited at 500 °C. These films consisted of a base 

of cubic grains of approximately 100 nm in diameter as is commonly seen in the deposition of TiO2 

films.265 However on top of this film additional growth in the form of snowflake-like fractal structures 

was observed. These growths also consisted of more homogenised, less defined grains that were 

more reflecting than those upon which they were grown. The micro-fractals ranged in size from 5-50 

µm and appear to grow outward from a central point, from which nucleation occurs. This two tiered 

morphology would result in an increased surface area compared to that of a simple nanostructured 

thin film (Figure 103).  
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Figure 103:  SEM images of the microstructure of film deposited from [Ti{SiMe3CH2CO2Me}Cl3(µ-

Cl)]2 (10) at 500 ˚C at magnifications of x200 (a), 1,200 (b), x15,000 (c)  and 2,600 x (d)  with addition 

of ratios of titanium to silicon at different points in the film, as measured by EDX spectroscopy.  

x15,000 magnified images of films deposited at 550˚C and 450˚C (e) + (f) respectively.
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Films deposited at 450 °C were by comparison extremely flat and featureless, with protruding 

spherical grains of diameter 200 – 500 nm appearing sporadically across the surface. 

Depositions at 550 °C have a more textured morphology consisting of plate-like crystals of 

lengths between 0.5 and 1 µm. Only films deposited at 500 °C showed any sort of fractal 

growth, the others appearing homogenous across the surface. EDX spectroscopy carried out on 

the film deposited at 500 °C showed that the brighter fractal areas (Figure 103) at the top left 

and bottom left contain more titanium that other parts of the film with Ti: Si ratios of 1.67:1 

and 1.50:1 compared with around 1.3:1 for the other parts of the film. This suggests that 

although the surface of the film consisted of a mixture of SiO2 and TiO2 particles, the area of 

fractal growth on top of the films base surface morphology are more titanium rich, potentially 

pure TiO2. 

Side-on SEM images show that film thickness increases with temperature, with the depositions 

at 450 °C giving a film of approximately 600 nm thickness and deposition at 500 °C leading to 

films of around 1 µm. The depositions at 550 °C showed the thickest and also most varied film 

thickness, varying from approximately 1 - 3 µm across the substrate. 

Depth Profile XPS of the thin films showed that the vast majority of the silicon was situated at 

the surface, with films across the temperature range showing between 15-18 at.% silicon at 

surface level (Figure 106). The opposite was true of titanium, with initial concentrations of 

around 20 at.% more than doubling in all three films below surface level to 40 at.%, 48 at.%, 52 

at.% for films deposited at 450, 500 and 550 °C respectively (Figure 104). This is in keeping with 

the EDX data, where the ratio of Ti:Si at the surface of the film was around 1.5:1, as EDX is a 

more penetrative technique than XPS, which would result in it picking up on some of the higher 

concentrations of titanium in the bulk. The bulk ratio of TiO2:SiO2 in films deposited at 500 °C 

is far lower than other films, at 12:1, compared with 21:1 (450 °C) and 24:1 (550 °C). The ratio 
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of TiO2: SiO2 at the surface of the films was highest in the 550 °C deposited film, at 1.68:1, 

whereas with the two lower temperature deposited films this ratio was 1:19 and 0.96 for 500 

°C and 450 °C respectively.  

XPS shows that the percentage of silicon making up the bulk of the film was considerably lower 

than at the surface, with titanium being 12-24 times more abundant. This composition is more 

consistent silicon doped TiO2,266,267 suggesting that the bulk phase of the film is largely Si doped 

TiO2 with a composite of TiO2 and pure phase SiO2 at surface level. 

The XRD patterns of all three films are shown in Figure 104. All were dominated by the peak 

pattern of anatase TiO2, the phase commonly formed at this temperature range. XRD analysis 

of the films showed that the depositions using 10 at 500 and 550 °C lead to the formation of a 

mixed system of anatase and brookite TiO2 polymorphs. Of the three common structures of 

TiO2, brookite is the least studied due to its lower refractive index of approximately 2.5 and 

reddish brown colour being less desirable for use in pigments.268 

 

Figure 104: XRD patterns  of films deposited from AACVD of [Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)]2 (10) at 

various temperatures compared with that of anatase TiO2  (bottom). 
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Figure. 105: Raman Spectra of films deposited from AACVD of [Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)]2 (10) at 
various temperatures compared with that of anatase TiO2  (bottom) 

 
Despite this it does possess a narrower band gap than anatase (2.9 eV), and therefore its 

inclusion could be beneficial to photocatalytic applications. This is confirmed by Raman 

spectroscopy, once again showing that whilst the main TiO2 polymorph deposited was anatase 

TiO2, brookite signals were visible in films deposited from 10 at 500 and 550 °C (Figure 105).  

The film deposited at 450 °C gave a weak Raman spectrum with high background noise. 

 This is most probably due to the relatively low surface concentration of TiO2. Transmission and 

reflectance UV/Vis spectroscopy was carried out on all of the films (Figure 108). The data was 

then used to determine the absorption coefficient in order to construct Tauc plots269 and in 

turn approximate the band gap of the films. The absorbance characteristics of the TiO2-SiO2 

films are strongly affected by the deposition temperature. 
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Figure. 106: Overlay of the depth profile XPS peaks for Si (2p) with darkening colour representing 

deeper penetration below the films surface a), Atomic percentages of titanium and silicon in the 

Composite films as measured using depth profile XPS b). 

 

Figure 107: UV/Vis Absorption spectra of films deposited from AACVD of [Ti{SiMe3CH2CO2Me}Cl3(µ-

Cl)]2 (10) at various temperatures compared with That of anatase TiO2. 
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Figure. 108: Tauc plots of films deposited from AACVD of [Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)]2 (10) at various 

temperatures used to estimate the band gap of these films. 

The film deposited at 550 °C saw the optical band gap reduced from 3.27 to 3.20 eV (Figure 

108). This is a considerable difference in band gap, mirrored in the results of the photocatalysis 

testing (vide infra), especially as the ratio of TiO2:SiO2 in the bulk in the two films is similar.   

Films deposited from 10 at 500 °C also appear to undergo a reduction in the band gap, although 

it is less pronounced than the film deposited at 550 °C, with the band gap estimated to be 3.23 

eV.   The deposition at 450 °C was found to increase the size of the band gap to 3.31 eV. This is 

in agreement with previous studies on TiO2-SiO2 composite thin films. 270 

The presence of SiO2 as a separate phase is unlikely to lead to a reduction  in band gap, due to 

SiO2 having a substantially larger band gap at 9.3 eV.271  

The reduction in band gap from the film deposited from TiCl4 was found to correlate well with 

the results of the photocatalytic testing. The reduction in bandgap for films grown at 550 °C is 

explained by the incorporation of more silicon into the TiO2 lattice at higher temperatures as 

demonstrated in the shifting of the anatase (101) peak of the XRD pattern for the film deposited 
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at 550 °C.   The presence of silicon within the TiO2 lattice leads to a narrowing of the optical 

band gap due to the introduction of strain into the TiO2 lattice, which has previously been 

observed in both theoretical and experimental studies. 272  

6.3.6. Water Contact Angle Measurements 

Water contact angles for the TiO2 film and the three TiO2-SiO2 composites were taken by casting 

a 2.5 µL droplet of water onto the surface and imaging them with a high speed camera. The 

drop shape and contact angle were obtained using FTA3.2 software. The results are shown in 

Figure 109, as well as Table 18.  

The contact angle for the TiO2 film behaves as expected based on previous studies of anatase 

phase TiO2 wettability,206 initially displaying somewhat hydrophilic behaviour, which is greatly 

enhanced by exposure to UV irradiation, the contact angle falling from 73.9° to 11.2°. This 

thought to be due to the presence of surface- OH sites being deprotonated by the UV 

irradiation, as well as the UV catalysed breakdown of organic on the surface that would prevent 

contact with the TiO2 surface.273 This behaviour is not shared with the TiO2 /SiO2 films. All three 

films show no hydrophilicity in their non-irradiated state, with contact angles between 90 and 

110°. Upon irradiation, a minor increase in the hydrophilicity of the films deposited at 500 and 

550 °C was observed, the contact angles decreasing by 6.1° and 6.9° respectively. No discernible 

change was observed in the contact angle of the film deposited at 450 °C. This corresponds 

with the findings from the XPS studies, where the film deposited at 450 °C was observed to 

have the lowest surface concentration of TiO2 as well as the highest SiO2:TiO2 ratio. 

Furthermore the SEM images of the films shows that the films deposited at higher 

temperatures have a protruding microstructure giving increased surface roughness, whereas 

the film deposited at 450 °C has a flat, featureless microstructure that is not conducive to 

wetting.14,274 the lack of UV induced hydrophilicy is supported by the XPS data which shows a 
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considerable amount of SiO2 at the surface of the films, which is considerably reduced just 

below. This would greatly reduce the presence of these acid sites to which the water is able to 

weakly adhere to 

 

 

 

 

 

 

 

 

 

Figure 109: Comparison of the behaviour of water droplets on thin films of TiO2 and the TiO2-SiO2 
composite deposited at 450 °C, 500 °C and 550 °C before UV irradiation (a, c, e and g respectively) and  

after UV irradiation. (b, d, f, h respectively).  

Table 18:  Contact angles of before and after UV irradiation 

Film 
Contact angle before 

irradiation (°) 
Contact angle after 

irradiation (°) 

TiO₂ 72.1 ± 1.5 10.4 ±1.4 
TiO₂ /SiO₂ 450  °C 109.1 ± 1.2 109.9 ± 2.4 
TiO₂ /SiO₂ 500  °C 94.8 ± 1.0 87.4 ± 1.6 

TiO₂ /SiO₂ 550  °C 102.0 ± 0.7 96.1 ± 0.4 
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6.3.7. Photocatalytic Testing 

Photocatalytic degradation of a coat of stearic acid applied to the films under λ = 365 nm UV 

irradiation was carried out on the films over the course of three hours (Figure 110). It was 

observed that of the three depositions, two yielded films that displayed a greater propensity to 

break down the organic material than the TiO2 deposited in an equivalent manner, via AACVD 

of TiCl4. The formal quantum efficiency (FQE) of TiO2 deposited from TiCl4 was 9.04 x10-5 which 

is slightly lower than values found in the literature for undoped TiO2
238 and can be explained by 

the patchier nature of the films.  Figure 110 shows that the TiO2-SiO2 films deposited from 10 

improved as photocatalysts with deposition temperature. At 450 °C the film deposited gave an 

FQE of 4.4532 x10-5, roughly half that of the plain TiO2. Films deposited at 500 °C give an FQE 

of 1.6764x10-4 81% superior to that of TiO2 from TiCl4. 

 

Figure 110: Bar graph showing the Formal Quantum Efficiency (FQE)  of films deposited from AACVD 

of [Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)] (1) at various temperatures compared with That of anatase TiO2  and 

plain glass, as measured by the UV catalysed decomposition of the stearic acid on the films surface. 
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The optically opaque films deposited at 550 °C performed best with an FQE of 3.0662x10-4, an 

improvement of over 250% above the film deposited from TiCl4 with air. UV/Vis analysis 

suggests that in the case of the 500 °C deposited film the improved photocatalytic activity was 

not the result of tuning the optical properties of the film, as the band gap was effectively the 

same as the undoped TiO2. It is more likely that the improved performance is in fact the result 

of the surface area of the film being greater due to the small grain size and the fractal structures 

growing on top providing a greater capacity for catalysis.  

Depositing at 550 °C saw a narrowing of the band gap to 2.93 eV, compared with the 3.15 eV 

observed for pure TiO2. This is reflected in its improved catalytic activity. Reducing the 

difference in energy between the highest occupied state and lowest unoccupied state means 

that more electrons are capable of overcoming the energy barrier to excitation, resulting in the 

formation of a greater number of positive holes in the valence band migrating to the film 

surface. This in turn leads to an increase in the rate at which surface organics are decomposed. 

The lowering of the band gap is likely a combination of the incorporation of the silicon which 

distorts the matrix to lower the band gap, and the presence of small amounts of brookite in the 

film. This is further corroborated by the shifting of the anatase peaks observed into the XRD of 

the film deposited at 550 °C, not seen in any of the other films.  
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Figure 111: Overlay of the FT-IR spectra of the stearic acid on the surface of the 500 ˚C film over a two 

hour period of UV irradiation with spectra taken every 20 minutes 

 

6.4. Conclusion 

A novel precursor for the deposition of TiO2 / SiO2 composite films has been synthesised by 

reacting TiCl4 with methyl trimethylsilyl acetate to give a chloro-bridged dimeric species 

[Ti{SiMe3CH2CO2Me}Cl3(µ-Cl)]2 [10] . The structure of the precursor was confirmed using single 

crystal X-ray crystallography. Using the aerosol assisted chemical vapour deposition technique, 

films were successfully deposited at 450, 500 and 550 °C from a solution of 10 using nitrogen 

as a carrier gas and a flow of air entering the reactor in order to oxidise the precursor.  

The resulting films were found to have ratios of TiO2: SiO2 of between 2:1 and 1:1 at the surface 

and 12:1 and 24:1 in the bulk. In films deposited at higher temperatures the films were found 
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to contain both Anatase and Brookite phases of TiO2. SEM revealed a novel morphology of 

‘microfractals’ of material nucleating out from central points across the films surface, leading 

to improved surface area.  

Studying the UV catalysed decomposition of stearic acid on the films surface; it was revealed 

that films deposited at 500 °C and 550 °C showed formal quantum efficiencies 73% and 150% 

higher than TiO2 films deposited via the same method using TiCl4 as a precursor. This work 

shows that SiO2 has potential as an additive for improving photocatalytic efficiency of TiO2 thin 

films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7 
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Derivatives of VOCl3 and Their Uses in Materials 

Synthesis 

7. Introduction 

7.1.1. VO2 Thin Films 

Monoclinic vanadium dioxide thin films and nanoparticles for energy saving, infrared radiation 

reflecting windows has come under considerable attention in the literature, due to its 

considerable potential to help curtail energy intensive means of heating and cooling homes, 

thereby reducing pressure on the world’s non-renewable energy resources.275–278 By 

developing windows that can promote and prevent heat loss at different temperatures the 

need to use such resources can be lessened, reducing both household bills and global energy 

usage. 

The monoclinic phase of vanadium(IV) oxide (VO2 (M)) undergoes a structural transition to the 

rutile vanadium(IV) oxide (VO2 (R)) at 68˚C.  The temperature at which this change occurs is 

known as the metal to semiconductor transition temperature (MST). This phenomenon, in 

which the permittivity of electromagnetic radiation is dependent on temperature, is known as 

thermochromism.203,279 VO2 (M) is of particular interest as its MST is relatively close to room 

temperature, unlike other thermochromic VxOy species, such as V 2O3.280 Below the MST, VO2 

(M) is a semiconductor that transmits infrared and ultraviolet radiation consistently, whereas 

above the MST, VO2 (R) exhibits metallic conduction, reflecting in the same region.281 This 

property is crucial in the design of smart window coatings, that are transmissive of sunlight at 

low temperatures, but reflective at high temperatures, thus alleviating the use of expensive 

and energy-intensive air conditioning units in hot countries (Figure 112).282 
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Figure 112: Diagram of the behaviour of visible and near infrared radiation upon contact with a 

VO2(M) coated window, at below (left) and above (right) the MST275 

Although close to room temperature, the MST must still be reduced in order to make the 

application applicable to everyday life. The most common means of achieving this reduction is 

the incorporation of dopant atoms into the VO2 matrix. Tungsten is by far the most widespread 

and effective dopant in lowering the MST. Furthermore, incorporation of tungsten lends the 

windows a blue green tint as a result of a narrowing of the optical band gap due to lattice strain, 

altering the absorption of energy in d-d transitions that give the material its colour. This  masks 

the less aesthetically acceptable brown/ yellow of VO2 (M).146,282–284 Other dopants such as: 

niobium,285 fluorine,286 magnesium287 and molybdenum288 have also been shown to reduce the 

MST. The incorporation of higher valence atoms with large atomic radii, such as tungsten, is 

thought to reduce the MST by introducing distortions into the VO2 lattice around the dopant 

atom centre,289 as well as introducing areas of greater electron density into the system.290 
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The production of thin films of VO2 (M) is synthetically challenging due to the large number of 

stable oxide polymorphs of vanadium that can form under CVD conditons.280 This has led to a 

wide variety of methods for the synthesis of VO2 (M) thin films and nanoparticles.291–293 Thin 

films of VO2 have been very well studied, with highly effective thermochromic VO2 (M) and 

doped VO2 (M) films deposited on a variety of substrates.129,291,294 The scarcity of low molecular 

weight, volatile precursors containing vanadium(IV), suitable for APCVD has led to the use of 

air-sensitive VCl4 295,296 and stable [VO(acac)2]297
  precursors. VOCl3 is also a well used VO2 (M) 

thin film precursor in APCVD, even though the vanadium present is in the +5 oxidation 

state.295,298  

Thin films of VO2 (M) have also been deposited via aerosol assisted chemical vapour deposition 

(AACVD) methods.220,299,300 The advantage of AACVD is that a wider range of precursors can be 

employed, giving a greater scope to tailor the vanadium precursor, potentially leading to the 

formation of more effective thin films.144 

Synthetic methods for nanoparticles formation vary greatly.292,293,301 Vanadium oxide 

nanoparticles have been synthesised using a variety of methods, including pyrolysis,302 sol-

gel,303 hydrothermal methods304 and ball milling305  for use in coatings. Hydrothermal (and sol-

gel methods) have been shown to produce highly crystalline VO2 (M) nanostructures, from 

vanadium precursors in the presence of reducing agents.301,191,306 Manipulating the 

environment inside the high temperature synthesis vessel by tailoring the amount of oxygen 

present preventing the over/under oxidation of  vanadium(IV) species is crucial in nanoparticle 

synthesis, a technique that is employed here as well, in the AACVD of the VO2 thin films. 307–309 

The majority of VO2 (M) synthesis focuses on a vanadium precursor that is reacted with an 

oxygen-containing species in situ. This work however, shows the fabrication of doped and 
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undoped VO2 (M) thin films using AACVD, and surfactant controlled anisotropic vanadium oxide 

nanomaterials from the previously synthesised single source precursor dichloro(oxo) 

Vanadium(V) diethyl malonate [{VOCl2(CH2(COOEt2)}4] (6). The films were doped with tungsten 

by adding small amounts of tungsten(VI) hexaphenoxide [W(OPh)6] to the precusor solution, 

and a lowering of the MST was observed. Vanadium oxide nanostructures were synthesised by 

the thermal decomposition of 6 in the presence of a high boiling point solvent (1-octadecene) 

and structure directing surfactants (oleic acid and oleylamine). The structure of 6 was 

determined by X-ray crystallography, elemental analysis and 1H NMR spectroscopy in chapter 

4. Thin films and nanostructures were characterised using X-ray diffraction (XRD), scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron 

spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDS). Thermochromic 

measurements were measured using UV-Vis spectroscopy with a variable temperature stage. 

7.1.2.  Synthesis of Vanadium Carbide and Vanadium Nitride  

Vanadium nitride (VN) and vanadium carbide (VC) are the subject of investigation by materials 

scientists due to their exceptional hardness, high melting points, high thermal conductivities 

and solid lubricating properties.310 The Vickers hardness of VC311,312 has been measured at 2600 

- 3200 kg mm-2 considerably harder than tungsten carbide313
 and similar to titanium carbide 

(2400 kg mm-2 &  1900 - 3200 kg mm-2 respectively)314
 as well as a measured Young’s modulus 

comparable with that of tungsten carbide.311,315,316
 VN exhibits similar properties, with a Vickers 

hardness of 1500 kg mm-2 and a melting point (2619 K) comparable to VC (3103 K).310,317
 

VN is widely used to harden steel, with the surface of the steel treated in such a way that a thin 

layer of VN is present by annealing at high temperatures under a flow of nitrogen. This increases 
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wear resistance for use in high performance steels.
318,319

 VN is also a strong coupled 

superconductor, with potential use in supercapacitors.320
 

VN is often synthesised by controlled direct nitridation of vanadium containing species using 

nitrogen or ammonia gas at varying temperatures. Using this technique, foams of VN were 

formed through the nitridation of vanadium oxides with ammonia gas with high control over 

morphology.321
 Other methods that have proved successful include microwave synthesis,322,323 

hydrothermal synthesis324
 and high temperature plasma routes.325

 

VN thin films have been synthesised using molecular precursors with pre formed V-N bonds, 

for instance V(NEt2)5, with a carrier gas composed of 10% NH3 in He using AACVD326. VN has 

also been produced from a variety of molecular precursors including the direct reaction of 

vanadium tetrachloride with sodium amide,327 ammonia328  and hexamethyldisilazane329
 

vanadium-urea complexes,330 as well as chloroimidovanadium compounds and metal oxide 

nanoparticles with cyanamide and urea.331 

VC has been shown to be a highly effective additive to tungsten carbide in improving the 

hardness and thermal conductivity of highly durable ceramic-metal “cermet” composites,332 

and an ideal material for improving the wear resistance of tools.333
 Furthermore, precipitation 

of vanadium carbide nanoparticles into ferrite-martensite dual phase steel has been shown to 

lead to a consistent improvement to Vickers hardness over a range of synthesis conditions.334–

336
 It has been reported that depositing a layer of vanadium carbide onto the surface of high 

carbon steel via a salt bath improves its surface hardness by six times.337
 Similar results have 

been reported for VC coatings deposited onto a die steel substrate via high temperature 

reactive diffusion using NH4Cl/ferro-vanadium/naphthalene precursor with surface hardness 

improved approximately fivefold.338 
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There are numerous methods for the synthesis of vanadium carbide nanoparticles. 

Preparations can involve vanadium(V) oxide (V2O5) with various carbonaceous species at high 

temperatures in a reducing gaseous environment.332,339,340 Refluxing V2O5 powder in n-

dodecane has been shown to produce VC nanoparticles.341
 Furthermore V2O5 can be 

decomposed with magnesium filings and acetone in an autoclave.336,342–344
 Nanostructured thin 

films of vanadium carbide have been deposited using the CVD of single source precursors such 

as vanadocene345 and cyclopentadienyl vanadium tetracarbonyl.346
  

In this study, the products of the experiments involving VOCl3 and the bidentate ligands 2,4-

pentadione, diethyl malonate, and diethyl succinate (5, 6 and 7) were used as precursors for 

vanadium nitride and carbide formation. Each of the precursors was converted to vanadium 

nitride and carbide via heating in a furnace under an inert atmosphere at 1200 °C, similar 

temperatures to those used in the formation of austenitic steel. 347,348
 Conversion to the carbide 

or nitride was dependent on the carrier gas used, with argon giving a carbide and nitrogen 

predictably producing a nitride species. The conversion of the precursor molecules to vanadium 

carbide/ nitride was determined by X-ray diffraction (XRD) (carried out by Dr. Michael Powell), 

X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and 

transmission electron microscopy (TEM) (carried out by Dr. Joseph Bear). 

7.2. Formation of VO2 (M) thin films and VOx Nanoparticles Using the Single Source 

Precursor [{VOCl2(CH2(COOEt2)}4] (6) 

Solutions of [{VOCl2(CH2(COOEt2)}4] [6] in toluene were used to deposit films across a range of 

temperatures, resulting in the deposition of thermochromic VO2(M). Preliminary attempts 

were made to deposit in the same way with dichloro(oxo)(diethyl succinate) vanadium(IV) [7] 

and dichloro(oxo)(2,4-pentanedione) vanadium(V) [5], however the films deposited by, these 
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precursors were found to be thinner and more uneven than those from 6. This is likely due to 

the higher stability of 5 and the lower solubility of 7 in toluene. 

7.2.1.  Experimental  

[VOCl2(CH2(COOEt2)}]4 [6]  was synthesised as described in  Chapter 3. Oleic acid (techn. grade, 

90%), oleylamine (techn. grade, 70%), 1-octadecene (techn. grade, 90%) (dried over sodium) 

and 1,2-tetradecanediol (techn. grade, 90%) were purchased from Sigma Aldrich Ltd. and used 

as received. Laboratory solvents were purchased from Sigma Aldrich Ltd. and were of analytical 

grade. The solvents were dried over activated alumina via the Grubbs method using anhydrous 

engineering equipment, ensuring that the concentration of water in the solvents was below 5 

– 10 ppm.83 Deuterated chloroform (CDCl3) was obtained from GOSS Scientific and was 

degassed and dried over 3 Å molecular sieves. 

 

 

7.2.2. Deposition of Thin Films 

All films were deposited using AACVD. Compound 6 (0.30 g, 0.25 mmol) was dissolved in  

anhydrous toluene (20 ml) and transferred to a glass bubbler under nitrogen using a cannula. 

The resulting solution was atomized for 5 minutes to ensure complete solvation of the 

precursor. An aerosol was generated using a piezoelectric humidifier (Ultrasonic Liquids 

Atomizer LIQUIFOG®). The depositions were carried out using a carrier gas of 2% O2 in N2 at a 

flow rate of 3 L min-1. A separate 1 L min-1 flow of air was introduce via a second inlet in the 

baffle, from the house line fitted with a filter. The glass substrate was standard float glass of 4 
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mm thickness. A top plate of the same glass was suspended 0.5 cm above the substrate to 

ensure a laminar flow of the precursor/solvent vapour. Depositions were carried out at 540 °C, 

550 °C and 560 °C, each taking approximately 30 minutes.  

7.2.3. Tungsten Doping 

Tungsten doping was affected by the addition of tungsten(VI) ethoxide [W(OEt)6] or  

tungsten(VI) hexaphenoxide [W(OPh)6] into the precursor solution prior to an AACVD 

deposition. The amounts used in each depsotion, as well as the atomic percentage of W present 

in the precursor solution, are detailed in Table 19. [W(OEt)6] was purchaseed from Sigma 

Aldrich and added unmodifed to the precursor solution. [W(OPh)6] was synthesised using a 

literature procedure first published by Cross et al.349 

7.2.4. Synthesis of Nanoparticles 

Nanoparticle samples were prepared using the thermal decomposition of 6 in the presence of 

high boiling point solvents and alkyl surfactants. Compound 6 (0.5 g, 0.41 mmol) was weighed 

out into a nitrogen-purged three-necked 250 ml flask with a condensor. 1-octadecene (dried 

over sodium) (20 ml), oleylamine,  oleic acid and 1,4-tetradecanediol were added in varying 

amounts as described in Table 20. The flask was put under vacuum and then back filled with 

nitrogen 3x to purge any residual water from the system. Following this the flask was heated 

to the required synthesis temperature at a heating rate of 3.3 °C min-1 under a flow of nitrogen. 

Once reached, the reaction temperature was maintained for 1 hour before allowing the mixture 

to cool to room temperature. The reaction remained under nitrogen until completely cooled. 

The nanoparticles were precipitated with ethanol (ca. 100 ml) and centrifuged at 3000 × g. This 

was repeated three times in order to ensure maximum purity before the products were stored 
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in a vacuum dessicator overnight to remove any residual moisture. Due to the presence of the 

alkyl surfactants, the nanomaterials exhibited a high level of dispersibility in organic solvents 

such as chloroform and n-hexane.  

7.2.5. Annealing to produce VC + VN powders  

Samples were annealed in a tube furnace under a constant argon flow of 0.6 L min-1 for 10 

hours at 550 °C at a heating rate of 10 °C min-1 and allowed to cool to room temperature 

naturally under argon flow before analysis. 

7.2.6. Results and Discussion 

7.2.7.  Film deposition 

All films were deposited using AACVD, in which the precursor is dissolved in a suitable solvent, 

from which an aerosol was generated using a piezoelectric mister. The precursor-containing 

aerosol droplets were transported into the reaction vessel via a flow of carrier gas, at which 

point the high temperature inside the reactor causes the solvent to evaporate bringing the 

precursor in contact with the substrate. The precursor was then free to decompose, nucleate 

and grow crystals to form a thin film. In all the depositions, toluene was used as a solvent.  The 

precursor for both the VO2 film and the tungsten dopant were both dissolved in the same 

solution and transported to the reactor using a carrier gas consisting of 98% nitrogen and 2% 

oxygen. It was found that in order to encourage film deposition and to attain VO2 (M), a 

separate oxygen source had to be introduced in the form of a separate flow of air from the 

house line, in order to counteract the reducing nature of an almost total azotic atmosphere.  
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Key depositions using solutions of 6 in toluene are denoted in Table 19. The best results were 

found to be at 550 ˚C using a carrier gas of 2% O2 in N2 at a flow rate of 3 L min-1. (experiments 

3 + 4). Depositing using the same conditions but with the temperature lowered to  500 ˚C 

yielded patchy films whilst at 600 ˚C the temperature was too high encouraging the full 

oxidation of the product, giving V2VO5thin films (experiments 1 and 7 respectively). The films 

deposited at 550 ˚C  were of good coverage and pale yellow in colour, with some darker, 

metallic patches formed at higher concentrations of 6. The optimum concentration of 6 was 

found to be 0.3 g in 20 ml of toluene, or a concentration of 0.533 mol dm-3
 (experiment 4).   

Following the optimising of the precursor concentration and successful formation of 

thermochromic VO2 (M), depositions were carried out at 540 and 560 ˚C in order to ensure the 

process was fully optimised. Thermochromic testing with UV/Vis spectroscopy found neither 

film performed as well as the one deposited at 550 ˚C. Films deposited under these conditions, 

over the temperature range of 540 to 560 ˚C displayed good optical transparency as well as 

durability, passing the Scotch tape test. They were however fairly easy to remove by scratching 

with a coin. Films deposited outside this temperature range on the other hand showed poor 

adherence and were more powdery.  
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Table 19: AACVD depositions carried out using [VOCl₂(DEM)]₄ [6] with and without the presence of tungsten dopants. 

No. Amount 

of [VOCl₂(DEM)]₄ 
[6] (g) 

Amount 

of W(OEt)₆ 
(g) 

Amount of   
W(OPh)₆   

(g) 

V:W 
proportion 

Flow Rate    of 
carrier (2%O₂ in 

N₂) (L min¯¹ ) 

Temp 

˚C 

Observations 

1 0.5 0 0 0.00 2 500 Patchy + uneven mixed phase film 

2 0.5 0 0 0.00 2 550 Thermochromic VO₂ covers half substrate 

3 0.5 0 0 0.00 3 550 Thermochromic VO₂ full coverage 

4 0.3 0 0 0.00 3 550 thermochromic VO₂ full coverage + film thinner and more 
transparent than 3 

5 0.3 0 0 0.00 3 540 thermochromic VO₂ full coverage, less thermochromic than 4 

6 0.3 0 0 0.00 3 560 thermochromic VO₂ full coverage, less thermochromic than 4 

7 0.3 0 0 0.00 3 600 Full coverage of black V₂O₅ 

8 0.3 0.032 0 0.066 3 550 Blue film, not thermochromic 

9 0.3 0.022 0 0.045 3 550 Yellow VO2 film. thermochromism not observed 

10 0.3 0.028 0 0.058 3 550 Weakly thermochromic film Tc = 60˚C 

11 0.5 0 0.025 0.019 3 550 Termochromic film Tc = 60˚C 

12 0.5 0 0.018 0.014 3 550 Yellow VO2 film. thermochromism not observed 

13 0.5 0 0.03 0.023 3 550 Thermochromic film Tc = 40˚C 

14 0.5 0 0.05 0.038 3 550 Thermochromic film Tc = 30˚C 
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Tungsten was doped into the films over a range of concentrations (Table 19) by adding small 

amounts of tungsten(VI) ethoxide [W(OEt)6] or tungsten(IV) hexaphenoxide [W(OPh)6] into 

the precursor solution. The concentration of [W(OEt)6] as a percentage of 6 present in the 

precursor solution ranged from 4.5 to 6.6%, whereas the concentration of [W(OPh)6] in the 

solutions ranged from 1.8 to 5.0%.  The W doped films each had greater optical transparency 

than the undoped films deposited at the same temperature, with colours ranging from pale 

yellow to azure, becoming more blue with increased concentration. All W doped films were 

fairly adherent, resisting the “Scotch Tape” test.250,350 [W(OPh)6] was observed to be the 

superior tungsten dopant precursor of the two,  as the MST was found to be far less sensitive 

to the presence of the precursor, giving a ‘larger window’ with which to alter the 

concentration.  

The thermochromic transition  (MST) was observed to decrease linearly from 60 ˚C to 30 ˚C 

as the amount of [W(OPh)6] added to the solution increased from 0.025 to 0.05 g. The use of 

[W(OEt)5] resulted in not enough dopant present at 0.022 to having far too much at 0.032 g, 

which made finding the ideal amount highly challenging. This is partially due to the far greater 

molecular weight of [W(OPh)6]  than [W(OEt)6] (746 g mol-1  and 454 g mol-1  respectively), 

meaning that the amount of actual tungsten per gram of precursor is lower allowing for more 

control. [W(OPh)6]  is also more soluble in toluene, allowing for better incorporation into the  

VO2  film and therefore resulting in more even coverage as well as being a more reliable 

precursor with greater reproducibility.  

SEM images were obtained for films of VO2 deposited at 550˚C, both with and without the 

incorporation of tungsten into VO2 film. The W-free film consisted of highly disordered rod-

like particles of width approximately 50 nm and length 300 - 500m (Figure 113a).   
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Figure 113: SEM images of the VO2 film deposited from [6] in toluene at  550 °C using a 2% O2 in N2 

carrier gas with no dopant (a), 2.8% [W(OEt)6]  (b) and 5.0% [W(OPh)6 ] (c).
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Figure 114: XRD patterns of the VO2 film deposited from [6] in toluene at  550 °C using a 2% O2 in N2 

carrier gas, both with and without 5.0% [W(OPh)6]. 

 

Figure 115: XPS scans of: a) V 2p3/2 of a VO2 (M) thin film from the AACVD of [{VOCl2(CH2(COOEt2)}4] [6] 

at 550 ˚C (showing V(IV) at lower binding energy (thin solid line) vs. V(V) (dotted line)), b) V 2p3/2 of a W-

doped VO2 (M) thin film (film 12) at 550 ˚C and c)  corresponding W4f scan.
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Incorporation of tungsten into the film appears to greatly alter the morphology, with the film 

depositing densely packed, rounded, vertical protrusions with a width of around 100 nm (Figure 

113b). This is in keeping with the more smooth and even appearance of the doped films. 

XRD patterns were referenced against those of VO2 (M) (ICSD: 34033), VO2 (A) (ICSD: 51213), 

VO2 (B) (ICSD: 199) V2O5(ICSD: 15798) and V2O3 (ICSD: 1473). Films deposited at 550°C were 

found to be exclusively VO2 (M) as seen in Figure 114. Tungsten incorporation induces a slight 

shift in the XRD pattern (27.8° for undoped VO2 versus 27.9° for W-doped) and a loss of 

crystallinity. This, coupled with the lowering of the MST is highly indicative of successful doping. 

Typical XPS data from VO2 (M) and W-doped VO2 (M) thin films are shown in Figure 115. The V 

2p spectra are split into two regions which were then fitted with two separate environments 

as it was clear that more than one oxidation state was present. The visible shoulders of the 

main V 2p3/2 peak indicate the presence of V(IV) in the films. XPS is highly surface sensitive, and 

the VO2 on the surface of the films had fully oxided, creating a thin layer as V2O5, as a higher 

proportion of V2O5 was present at the surface than in the film, hence a large V(V) peak. The 

fitted peak positions of 516.5 eV and 516.7 eV for V 2p3/2 in the undoped and doped films 

respectively are indicative of V(IV) in VO2.44 The second feature at higher binding energy in both 

spectra (518.1 eV and 518.2 eV respectively) can be attributed  to V2O5. 44 

The W 4f environment showed the presence of only one oxidation state. This gave a value of 

35.28 eV (W 4f7/2) and 37.38 eV (W 4f5/2) which is consistent with W(VI). This has been 

previously seen for W-doped VO2 in both thin film and nanoparticle synthesis.275, 283, ,351 

Variable temperature transmission UV/Vis spectroscopy was carried out on the films deposited 

from 6 in order to determine whether the films underwent the structural transition associated 
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with VO2 (M) (Figure 6). A spectrum was taken of the film at room temperature. Following this 

the films were rapidly heated to 90 ˚C and the measurement repeated. The films were then 

cooled to room temperature and the initial measurement repeated to ensure that the sample 

has remained in the same position throughout the heating as heating the ample can cause the 

sample to slip downward in the heater cell, which would affect the UV/Vis data. 

 

Figure 116:  Variable temperature UV/Vis/NIR spectra showing the change in optical properties of thin 

films of undoped and W-doped VO2 thin films deposited by AACVD of synthesised vanadium precursor 

solutions. Solar modulation values (ΔTsol) for each film have been included in the Figure. a) VO2 (M) 

film deposited at 540 ˚C, b) 550 ˚C, c) 560 ˚C and d) W-doped VO2 (M) thin film deposited at 550 ˚C. 

Films deposited at 550 ˚C showed by far the highest MST, with the transmittance at 2500 nm 

falling from 60% to around 2% when the sample was heated from room temperature to 90 ˚C. 

Films deposited at 560 ˚C demonstrated similar characteristics at room temperature to those 

deposited at 550 ˚C. However heating the samples reveals that the monoclinic phase of the VO2 
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is less pure, roughly halving the transmission to 30%. The VO2 film deposited at 540 ˚C was the 

least effective by a considerable margin, seeing a reduction in transmission from 50% to 40% 

at 2500 nm. These measurements reveal that the optimum temperature for the formation of 

monoclinic VO2 from 6 was 550 ˚C. 

Solar modulation calculations (ΔTsol) were performed as described by Taylor et al.352 Solar 

modulation values take into account the effect that gases, such as CO2 and H2O, have on the 

intensity of solar radiation at ground level. This gives a value which can be used to give a better 

representation of the absolute change in the optical properties of the material. The majority of 

the energy in the solar spectrum, at ground level, is accounted for by the UV/Visible region 

(380-780 nm); this leaves a maximum change of ca. 20% for the near IR region (780-2500 nm). 

When comparing the solar modulation values for the VO2 films, it can be seen that the sample 

deposited at 550 °C shows a solar modulation of 15.9% which is close to the maximum allowed 

solar modulation and is comparable to the best results seen for VO2 thin films by other research 

groups.353 

7.2.8. VOx Nanoparticle Synthesis and Characterisation 

 [{VOCl2(CH2(COOEt2)}4] 6 was additionally used to produce nanoparticles, via thermal 

decomposition in a high boiling point solvent with structure-directing surfactants under an 

atmosphere of nitrogen. This follows the standard procedure for many nanoparticle synthesis 

in which a long chain unsaturated alcohol is coordinated to a metal species, which is then 

decomposed at high temperatures to form surfactant capped nanoparticles that are easily 

dispersed in organic solvents.354–356 Paik et al. has used a similar methodology to synthesise VOx 

nanocrystals from VOCl3 in the presence of oleylamine and octadecanol, resulting in mixed-

phase VOx nanocrystals.357 In that case the synthesised particles were flash-annealed at 500 ˚C 
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for 5 minutes in air at 1 mTorr in order to convert to  thermochromic VO2 (M). The reacton is 

facilitated by the reaction of VOCl3 with the 1-octadecanol, allowing for the formation of 

vanadium-oxygen bonds.358,359 In this synthesis, alcohol is absent, the V-O bonds instead  were 

provided by the diester species.  

The decomposition of 6 in the presence of surfactants in  a high boiling point solvent was carried 

out repeatedly, differing the ratios of the two surfactants, as well as the  temperature and the 

inclusion of a fatty alcohol, 1,4-tetradecanediol (Table 20). All reactions were undertaken in 20 

ml of dry 1-octadecene (dried over sodium) and after 3 vacuum/re-fill purge cycles with 

nitrogen. The reaction was heated from room temperature to the target temperature at a rate 

of 3.3 °C min-1 under dynamic nitrogen, during which the reaction mixture was observed to 

darken in colour gradually from green to black. The addition of oleylamine also induced a colour 

change of the precursor to blue, presumably due to complexation with the vanadium centre, 

as a probable result of a d→d transition due to the formation of an octahedral complex. 

Following subsequent cooling to room temperature, the particles were precipitated with 

ethanol and separated by centrifugation. All samples gave black precipitates that were readily 

dispersable in organic solvents, with the exception of sample G.  

TEM analysis clearly demonstrates the extent to which the nanoparticle morpholgy is effected 

by the ratios of surfacant used. Oleylamine was observed to have the most pronounced effect, 

promoting the growth of spine-like structures as well as nanoparticles which were not seen in 

its absence (Figure 7a and 7b). Oleic acid purely promoted particle growth only (Figure 7g and 

7h). Mixtures of oleic acid and oleylamine were found to be the most effective at generating 

readily dispersible products, with the optimum blend of equimolar amounts of oleic acid and 

oleylamine a commonly used in iron oxide nanoparticle syntesis.360 
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Table 20: Compiled reaction conditions for the formation of VOx 

nanoparticles using [6] (*No reaction, non-colloidal blue solution formed.  

ǂAddition of 1,4-tetradecanediol). 

Sample  

Synthesis 

temperature  °C 

Oleylamine 

mmol 

Oleic acid  

mmol 

A 320 6 6 

B 320 9 3 

C 320 3 9 

D 320 0 12 

E 320 12 0 

F 280 6 6 

G* 240 6 6 

Hǂ 320 6 6 

 

In samples A, F, G and H, the “6:6“ blend produced a mixture of mainly spine-like structures of 

50-100 nm in length with some round particles also present. These features were preserved on 

annealing in nitrogen for 8 hours, but were not as pronounced in sample F, in which the 

synthesis temperature is lower (280 °C), suggesting a degree of temperature dependance on 

the formation of elongated spines as well as surfactant. However, the features re-emerged with 

annealing treatment at 550 °C under nitrogen for 10 hours (Figure 117d) and e)). Sample G, in 

which the synthesis temperature was reduced to 240 °C was evidently lower than the 

nucleation temperature for this system as no nanoparticles were produced. 

It proved demanding to gather detailed TEM analysis of the as-synthesised VOx nanostructures, 

in particular the lattice plane imaging; due to the presence of high carbon contamination, 

caused by surfactant layers and decomposition products from the precusor itself. The latter 

was in evidence through the presence of chlorine by EDS (Figure 117, c) and f).  
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Sample A and F were both annealed in order to induce the formation of VO2 (M). However, 

analysis of lattice planes in both of the the annealed samples (Figure 117e) gave a d-spacing of 

0.326 nm corresponding to the <111> plane of vanadium oxide (V4O9, ICSD 15041), confirming 

that heat treactment had an identical effect on both samples despite intial differences with 

synthesis temperatures. It also suggests that the samples were slightly over-oxidised in the 

annealing process when trying to synthesise VO2 (M).  

The addition of an oxygen source, 1,4-tetradecanediol in sample H with a „6,6“  blend of oleic 

acid and oleylamine did not induce a phase transformation to VO2 (M). Instead , the addition 

of 1,4-tetradecanediol prevented the structure-directing effects of oleylamine from taking 

effect, giving  almost exclusively particulate material (Figure 117i). 

EDS spectra showed the persistance of chlorine in the system as a consequence of the 

precursor. It also showed the reduction in carbon from the heavily carbon contaminated pre-

annealed samples versus post annealed samples. Atomic percentages of vanadium and oxygen 

in the samples are shown in able 3. The at% ratios of V:O for sample A and F pre-anneal was 

26.20 : 73.80 and 1.91 : 98.09 respectively, with heat treatment dramatically effecting sample 

F with the ratio changing to 26.22 : 73.78. The ratio for sample A however, was relatively 

unchanged (26.40 : 73.60). The very high ratio of oxygen to vanadium in sample G can be 

attributed to the high levels of carbon contamination obtained from the presence of the 

surfactants. 
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Figure 117: TEM images and EDS spectra of sample A, pre-annealing (a and b)  and post annealing (d 

and e). C and G are the  EDS spectra of the pre-annealed and post annealed sample 1 respectively. 

Also shown are TEM images of samples B, C and H (g, h and i repectively). 

The lack of phase transition to VO2 (M) with thermal treatment at elevated temperatures was 

confirmed by XRD analysis. The XRD pattern did not match the standard of VO2 forming a 

different species. Once again this is likely the result of the high level of carbon contamination 

from the remnants of the oleic acid/oleylamine ligand system. 
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Table 21: EDS at% ratios of vanadium to oxygen in nanomaterial samples. 
Bracketed quantities are those in the annealed spectra. 

Sample number V / at% O / at% 

A 26.2 (26.4) 73.8 (73.6) 

B 9.66 90.34 

C 1.82 98.18 

D 0.18 99.82 

E 28.95 71.05 

F 1.91 (26.22) 98.09 (73.78) 

H 10.21 89.79 

 

Figure 118: PXRD diffraction patterns for as synthesised powders, a) and b) and following annealing 

treatment, c) and d). λ= 0.7093 Å. 

Powder X-ray Diffraction (PXRD) was performed on the as-synthesised and the post-annealed 

nanoparticle samples (Figure 118).  The as-synthesised nanoparticles, Figure 118 a) and b), have 

only a few diffraction patterns and it was not possible to confirm the phase of the material from 
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these. The broad reflections between 5-12° 2θ also suggest that there was a large amorphous 

component to the samples. 

The post-annealed samples, Figure 118c and d), have a greater number of more intense 

diffraction peaks in the data, with less broadening suggesting that the annealing has resulted 

in  improved crystallinity. Phase analysis of these samples suggested a mix of Magneli phases, 

with V3O7 – 22.2° (0,2,0), V4O9 – 11.1° (1,0,2), 16.5° (1,1,3) and V5O9 – 5.2° (0,0,1), 24.1° (2,1,1) 

and 28.8° (2,0,3) lattice planes all being identified in the data. The formation of multiple 

oxidation states in annealed vanadium samples is relatively commonplace.360,361 

Figure 119: XPS scans of: a) V 2p of Sample 1, VO2 nanomaterials before annealing and b) after 

annealing showing V(IV) at lower binding energy (thin solid line) vs. V(V) (dotted line). 

X-ray photoelectron spectrcopy was also used to compare the samples before and after 

annealing. The XPS spectra of  the V 2p region in Sample 1 pre (Figure 119a) and post (Figure 

119b) anneal show  similar profiles to the thin films in Figure 115, with V(IV) peaks reported at 

516.5 eV and 516.3 eV for non-annealed and annealed samples respectively (V 2p3/2) and 

assigned as VO2. The V(V) peaks, at 517.7 eV and 517.8 eV respectively were again assigned as 

V2O5.362 
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7.3. Using adducts of VOCl3 and 2,4 pentadione, diethyl malonate and diethyl 

succinate as  precursors for Vanadium Nitride and Carbide 

7.3.1.  Experimental 

All precursors were synthesised as described in Chapter 4. All other starting materials were 

purchased from Sigma Aldrich and used without further purification. The solvents were dried 

over activated alumina by the Grubbs method using anhydrous engineering equipment, such 

that the water concentration was 5 – 10 ppm.83 All products were synthesised under an 

atmosphere of nitrogen obtained from BOC in anhydrous solvents using standard Schlenk 

techniques.  

7.3.1.2.  Synthesis of vanadium nitride and carbide powders 

Vanadium nitride and carbide powders were synthesised by weighing out ~ 0.2 g of compounds 

5, 6 and 7 in a nitrogen filled glove box onto ceramic bricks. The samples were sealed with a 

layer of laboratory film before removal from the glovebox. The samples were then transferred 

immediately to a tube furnace. The samples were purged with a flow of nitrogen (for vanadium 

nitride, BOC, 99.9%) or argon (for vanadium carbide, BOC “pureshield” 99.9%) at room 

temperature for 30 minutes (flow rate 40 cm min-1) before heating to 1200 °C (heating rate 20 

°C min-1) for 24 hours. The samples were then allowed to cool to room temperature under the 

flow of inert gas. 
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7.3.2.  Results and Discussion 

Compounds 5, 6 and 7, as synthesised in chapter 4 were heated to temperatures akin to those 

used in steel tempering under oxygen free flows of inert gases nitrogen and argon in order to 

obtain VN and VC powders respectively. These powders were analysed by XPS, XRD and TEM in 

order to deduce their composition and particulate size.   

7.3.2.1.  Synthesis And Characterisation Of Vanadium Nitride Powders 

Vanadium nitride powders were synthesised by annealing compounds 5, 6 and 7 under nitrogen 

gas flow at 1200 °C for 24 hours. It is necessary to treat vanadium species at such high 

temperatures to illicit the formation of vanadium nitride due to the intrinsic stability of various 

vanadium oxides such as V2O5.  

It was initially the intention of the experiment to produce VC powder from the decomposition 

of the precursors, with the ligands acting as the carbon sources, with probable inclusion of 

some carbon species from the lab film. However compounds 5, 6 and 7 showed near complete 

transformation to vanadium nitride at 1200 °C as evidenced by the XRD patterns in Figure 120a. 

The XRD patterns were compared to a VN standard (ICSD 22321), all samples were shown to 

be phase pure with only diffraction peaks for VN visible. Annealing at the lower temperature of 

1000 °C for 24 hours yielded mixed phases with some VN so it was necessary to perform the 

reaction at 1200 °C in order for the reaction to reach completion. Yu et al.363  determined the 

reaction mechanism for the reaction of vanadium(III) oxide (V2O3) and carbon in the presence 

of nitrogen gas at elevated temperatures (up to 1180 °C). Nitridation was simultaneous with 

carbothermal reduction, from V2O3 to V8C7 to VN, and was completed at lower temperatures 

than just V2O3 in nitrogen. Compounds 5, 6 and 7 were able to decompose in a similar way to 
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this under a  nitrogen gas atmosphere due to the presence of oxygen and carbon in the 

precursor compounds.  

 

Figure 120:  Composite Figure for the VN sample derived from complex 6. a) shows XRD patterns of VN 

derived from complex 6 compared to a VN ICSD standard (22321). b)shows an EDS spectrum 

demonstrating the presence of vanadium and nitrogen with little carbon present. Copper emanated 

from the copper mesh TEM grid. b) Fitted N1s XPS spectrum showing the regions assigned as VN and 

VC. ) d) is an HRTEM image of a VN crystal with the <111> plane of VN highlighted. 
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Ortega et al.364 followed the progress of the reaction of by measuring the partial pressures of 

evolved carbon monoxide, supporting the V2O5–V2O4-VO2–V2O3–VO0.9-VN pathway, despite the 

difficulty in the detection of V0.9. 

XPS analysis, Figure 120b) showed the presence of vanadium nitride in both the N 1s and 

V 2p3/2 at 397.2 and 513.6 eV respectively. These match with literature values.365 The XPS also 

showed evidence for vanadium carbide and oxidised vanadium(V) The carbide was likely due 

to excess carbon presence in the precursor and the V(V) signal is typical for vanadium, as the 

vanadium at the surface will readily oxidise when exposed to air.366 

TEM analysis of all VN samples showed the formation of large, polydisperse crystallites of VN 

(42.9 ± 17.0 nm (sample derived from 5), 88.4 ± 47.7 nm (sample derived from 6) and 72.4 ± 

71.4 nm (sample derived from 7). Small amounts of crystalline carbon was also present around 

the edges of the VN crystallites, resulting from the film used to seal the samples burning within 

the furnace. HRTEM analysis of all samples demonstrated the presence of VN, via analysis of 

the d-spacings. Several d-spacings were indexed (Figure 120 d) with the <111> plane of VN 

present and identifiable in all samples, with d-spacings from the samples derived from 

compounds 5,6 and 7: 0.24 nm, 0.2 nm and 0.23 nm respectively. 

EDS analysis indicated the presence of nitrogen and vanadium with low amounts of carbon 

(Figure 120 a) and in all samples analysed. Quantitative EDS analysis in all samples showed a 

ca. 50:50 at% ratio, indicative of the formation of VN. The presence of residual carbon species 

presented difficulties in integrating the nitrogen peak as their EDS fingerprints appear in the 

same region of the spectrum. The relatively low amount of carbon in the sample and the large 

VN crystallites allowed for accurate confirmation of a 50:50 at% ratio of V:N, and therefore 

conformation of the VN empirical formula. 
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7.3.3.  Synthesis and characterisation of vanadium carbide powders 

Vanadium carbide powders were synthesised by annealing compounds 5, 6 and 7 under an 

argon flow at 1200 °C for 24 hours, yielding a black powder. The VC derived from compound  

showed excellent conversion as evidenced by XRD analysis in Figure 121a). The samples 

produced were phase pure, with only diffraction peaks for VC present in the patterns compared 

to a VC ICSD standard (159870). Powders derived from 5 and 7 show evidence of a partial 

transformation to VC, however phase purity could not be attained. Figure 121 d shows an 

HRTEM image of a VC crystal with the <111> plane of VC highlighted. 

XPS analysis (Figure 121c) showed the presence of vanadium carbide in both the C1s and V 2p3/2 

at 282.8 and 513.7 eV respectively. These are in agreement with literature values.367 The C1s 

showed several other environments, which were matched to C-C, C-O and C-OR- with these 

environments being more intense than the V-C signal. This was also reflected in the V 2p signal, 

which was significantly weaker than the C1s, this was attributed to the formation of a carbon 

‘shell’ around the VC particles during annealing.  

TEM analysis of all VC samples showed the formation of large, polydisperse crystallites of VC 

(42.9 ± 17.0 nm , 88.4 ± 47.7 nm and 72.4 ± 71.4 nm from samples derived from 5, 6 and 7 

respectively. These are similar distributions to those obtained for VN. A large amount of 

crystalline carbon was detected in these particles, moreso than in the VN equivalents.  
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Figure 121:  Composite Figure for the VC sample derived from 6. a) shows XRD patterns of VC derived 

from 6 b) shows an EDS spectrum demonstrating the presence of vanadium and high levels of carbon. 

copper emanated from the copper mesh TEM grid. c) shows the fitted V 2p XPS spectrum showing the 

regions assigned as VC and VO.d) is an HRTEM image of a VC crystal with the <111> plane of VC 

highlighted. 
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HRTEM analysis of all samples demonstrated the presence of VN, via analysis of the d-spacings. 

Several d-spacings were indexed (Figure 121 e) and Figure S2 b) and d)), with the <111> plane 

of VC identified in all samples, with d-spacings from the samples derived from compounds 5, 6 

and 7 : 0.22 nm, 0.22 nm and 0.23 nm respectively. 

EDS analysis indicated the presence of carbon and vanadium with high amounts of carbon 

(Figure 121b) in all samples analysed. Quantitative EDS analysis showed a small difference in 

each of the samples. The sample derived from 5 showed a ca. 95:5 at% ratio of C:V, the sample 

derived from 6 a ca. 90:10 at% ratio, and the sample derived from 7 a ca. 85:15 at% ratio. The 

carbon film on the TEM grid skews the ratio in favour of carbon, but the carbon-rich nature of 

the structures produced was confirmed by quantitative XPS giving ratios of 94.3 carbon : 5.7 

vanadium for the sample derived from 5. 

7.4. Conclusions 

[{VOCl2(CH2(COOEt2)}4] (6) has shown synthetic verstility as a precursor for the  AACVD of 

vanadium oxide thin films and nanocrystals. Firstly, 6 was shown to be a highly effective 

precursor for the formation of thermochromic VO2 (M) thin films onto glass by AACVD. VO2 (M) 

films produced at 550 ˚C were shown to have superior solar modulation when compared to 

films produced at 540 ˚C and 560 ˚C and compare favourably with literature values (15.9%). 

This suggests that although a very effective precursor for themochromic VO2(M), the window 

for such characteristics is very narrow, with the purity  of the monoclinic phase being greatly 

reduced by varying temperature by only 10 ̊ C  in either direction. The thermochromic switching 

temperature was reduced through the addition of W(OEt)6 or W(OPh)6 to the precursor 

solution, reducing the MST to  ~30 ˚C. This demonstrates the viability of the AACVD method 
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when using a designed molecular precursor to form thermochromic materials with tunable 

properties. 

[{VOCl2(CH2(COOEt2)}4] (6)  was also decomposed in the presence of alkyl surfactants at 

elevated temperatures in an inert atmosphere. It was shown that different surfactants affected 

the shape of the final product, with oleylamine promoting "spine-like" growth, and oleic acid 

particulate material. Although the heat-induced phase tansformation to VO2 (M) was ultimately 

unsuccessful, control over shape and size of the resultant nanomaterials via  manipulation of 

surfactant type and concentration in the decomposition of [6] was deonstrated.  

Complexes 5, 6 and 7 were also evaluated for their propensity to form VN and VC on annealing 

at 1200 °C under nitrogen and argon gas respectively. All samples converted to VN at 1200 °C 

under nitrogen, but complex 6 was the only molecule shown to be a viable precursor for both 

VC and VN. 
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Chapter 8 

Conclusions 

This thesis tackles the industrial problem of metal chlorides separation in a number of ways 

using laboratory scale chemical techniques, some of which were developed purely for the 

study, some of which were well established. The reactivity of TiCl4 and VOCl3 with ester groups 

was analysed in the solid, liquid and gas phases separately. The results of these studies, 

corroborate on several points, although the techniques involved vary greatly.  

 Firstly the solid state phase, TiCl4 and VOCl3 were reacted with diesters and triesters. The 

resulting compounds were characterised using NMR spectroscopy and X-ray crystallography. 

This lead to the discovery that coordination to a diester species results in the loss of chlorine 

from the vanadium centre but not the TiCl4 all cases. It was inferred fron this that although the 

TiCl4 may coordinate in the gas phase to the triglyceride group of the oil, the reaction was so 

reversible in the gas phase that it would readily able to break away from the molecule, in a way 

that the VOCl3 could not, explaining the preferential reactivity. 

The flow cell experiment was a liquid and gas phase study, focussing not on the separation 

itself, but on potential side products. The gaseous TiCl4, VOCl3 or mixture was pushed through 

the chamber with the agitated oil, the gaseous species interacting with the droplets kicked up 

before distilling into the top of the apparatus. Analysis of the resulting product lead to the 

discovery that the TiCl4 does react with the glyceride group, chlorinating the species by 

displacing the two side ester groups, leaving the central intact. This is corroborated by the 

glycerol tribenzoate TiCl4 complex [4], which shows the two side groups coordinated to the 

same titanium centre, with a second titanium atom coordinating to the central ester groups of 
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a different molecule. This reaction would be unfavourable in the gas phase and so it is likely 

that the reaction simply reverses, however in some cases a titanium centre is able to undergo 

exchange with the glycerol, coordinating resulting in a species that has a low enough boiling 

point to distil over. This explains the issues that occur later in the plant with furnace fowling, as 

well as why studies by Huntsman Pigments and Additives found that changing the oil did not 

alter the problem, as all of the oils tested were triglyceride based.   

The final study involved in situ gas spectroscopy measurements. The finding of this work 

appeared to correlate well with the initial experiments. Although the ester used had only one 

carbonyl group present it was observed that it took coordination of two to a single titanium 

centre to result in chlorine loss, where as with VOCl3 the relationship between ethyl acetate 

coordination and chlorine loss is 1:1.  It should be noted that the high temperatures and the in-

situ nature of the study means that the species formed should be considered intermediates.  

This work has therefore shown that the gas phase reactions of TiCl4 and VOCl3 in the Chloride 

Process can be modelled using simpler structures, giving the same conclusions in the solid and 

gas phases.  

Future work in this field would likely involve broadening the scope of the mass spectrometer 

CVD apparatus to investigate other common inorganic reactions. The most effective precursors 

in the field would be those with as few atoms present as possible, and also with only one type 

of ligand, however the results with titanium isopropoxide and butyltin trichloride would 

suggest that more complex precursors can be studied successfully. Species such as aluminium 

oxychloride, trimethylindium, trimethylgallium and ferrocene would all be promising 

candidates. 
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Another possible study could involve changing the oxidation source. Ethyl acetate worked well 

in this study due to its similarity to part of the oils used in the Chloride Process but simpler 

oxygen sources, such as water and oxygen itself, could also be investigated if the amounts 

entering the system could be monitored and controlled closely. A separate study on the effect 

of moisture on SiO2 film growth carried out using the same instrument and reactor proved 

highly successful.  
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