UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Aspects of feasibility of a shipboard algal photobioreactor to capture carbon dioxide emissions

Koutita, K; (2017) Aspects of feasibility of a shipboard algal photobioreactor to capture carbon dioxide emissions. Doctoral thesis , UCL (University College London). Green open access

[img]
Preview
Text
Koutita_PhDThesisFinal-Koutita-19.02.17.pdf

Download (11MB) | Preview

Abstract

The CO2 contribution of shipping to global emissions is about 3.1% and emission reductions are becoming urgent as part of global measures to combat air pollution. This study was the first to investigate the implementation of an algal photobioreactor (PBR) on a ship to treat its gas emissions and produce biomass for commercial purposes. The research examined various aspects of the challenges faced, focusing on the biomass cultivation process of the application. The target was to use the waste streams of the ship (i.e., flue gas, waste heat and wastewater) to fulfil the PBR’s material and energy needs. A PBR configuration is proposed and constructed, considering the additional complications of a shipboard system. Algae from natural surrounding water were cultivated in lab conditions to explore the potential of this approach in a shipboard PBR. A theoretical hydrodynamic model was developed to compute gas hold-up and liquid velocity in airlift PBRs. The different bubble sizes and drag coefficients used were shown to greatly impact the results, but the effect of bubbles is not easily distinguished in the experiments. A model of the effects of light intensity, nutrient concentration and temperature on microalgal growth kinetics was also developed, for use in optimising the operating conditions. Finally, practical aspects of integrating the PBR into the shipboard system were examined. Availability of space in the ballast tanks of tankers and ferries in the existing fleet to accommodate a PBR to treat their total emissions was estimated. The need for a large water mass limits this application, but the comparatively higher potential of tankers for this implementation was demonstrated. Maintaining the PBR’s temperature by sparging with hot flue gas was proven to be unfeasible and a novel heat exchanger design was suggested and modelled, using an input produced by the hydrodynamic model.

Type: Thesis (Doctoral)
Title: Aspects of feasibility of a shipboard algal photobioreactor to capture carbon dioxide emissions
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
URI: http://discovery.ucl.ac.uk/id/eprint/1549659
Downloads since deposit
351Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item