UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The soft mechanical signature of glial scars in the central nervous system

Moeendarbary, E; Weber, IP; Sheridan, GK; Koser, DE; Soleman, S; Haenzi, B; Bradbury, EJ; ... Franze, K; + view all (2017) The soft mechanical signature of glial scars in the central nervous system. Nature Communications , 8 , Article 147. 10.1038/ncomms14787. Green open access

[thumbnail of Moeendarbary_ncomms14787.pdf]
Preview
Text
Moeendarbary_ncomms14787.pdf - Published Version

Download (14MB) | Preview

Abstract

Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

Type: Article
Title: The soft mechanical signature of glial scars in the central nervous system
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/ncomms14787
Publisher version: http://dx.doi.org/10.1038/ncomms14787
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Keywords: ATOMIC-FORCE MICROSCOPY, SPINAL-CORD-INJURY, SPHERICAL INDENTATION, MYOCARDIAL-INFARCTION, ELASTIC PROPERTIES, AXON REGENERATION, TRACTION FORCES, TISSUE, BRAIN, STIFFNESS
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/1549578
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item