The hunting of Gazella subgutturosa was a dominant practice for Epipalaeolithic and early Neolithic hunter-gatherers in the east Jordan steppe. The seasonal mobility of this taxon in the Levant is poorly understood, especially for early prehistory when herd movements would have influenced hunter-gatherer use of the steppes. This paper proposes four patterns of seasonal herd mobility for G. subgutturosa centred on Jordan's Azraq Basin.

The four patterns are modelled using oxygen, carbon and strontium stable isotopes. Seasonal environmental signatures of each are understood through carbon and strontium isotopic variation in sixty modern plant specimens collected from twelve selected locations in north Jordan, published data on oxygen isotopes in local precipitation, and the adaptive behaviour of G. subgutturosa. The integrated isotopic datasets provide clear discriminatory markers for each proposed mobility pattern. Results will be applied in future to isotopic data from archaeological gazelle teeth from the Azraq Basin.
The seasonal mobility of prehistoric gazelle herds in the Azraq Basin, Jordan: modelling alternative strategies using stable isotopes
1. Introduction

Stable isotope data retrieved from wild ungulate archaeological teeth have been used to great effect to elicit their seasonal diet and mobility; studies allow informed inference on past hunting strategies, occupation seasonality and settlement patterns (Britton et al 2009; Fenner 2008; Julien et al 2012). Archaeo-isotope data have the potential to provide information on seasonal herd movement that cannot simply be projected on the past from observation of modern herd behaviour due to animal behavioural plasticity (Julien et al 2012); inferences about wildlife behaviour taken from the historical records are also highly problematic when used for predictions about the deep past, due to the effects of human impacts, landscape degradation and range fragmentation (Martin 2000).

Isotopic approaches rest on understanding how environmental influences produce isotopic signatures of seasonal landscapes (Hobson 1999; Hoppe et al 1999). The construction of baselines using modern data provides the most robust understanding of these environmental influences; there are two ways to proceed. One approach is suited to the identification of a wide range of human and animal activities associated with unknown and subtle regional and chronological differences in palaeoecological locations and climatic conditions. This approach aims to map, at high resolution, microscale variation in isotopic ratios throughout the whole study region in all seasons and in different modelled climate regimes (eg Hartman & Danin 2010; Hartman & Richards 2014). The second approach first defines the limits of its enquiry by identifying likely locations, seasonal variation, movement patterns or animal species adaptability before constructing a focused isotopic baseline (eg Balasse et al 2002; Bogaard et al 2014; Britton et al 2009, Elliot et al 2014; Hoppe et al 1999; Julien et al 2012). In this study we take the second approach, modelling isotopic changes expected across the seasons of an annual cycle, along identified broad topographic routes that we hypothesise may have been seasonally traversed by a single ungulate taxon, the gazelle, itself well-studied ethologically.

Our focus is on the steppe/deserts of East Jordan, specifically the Azraq Basin, where a sequence of well-researched sites from the early Epipalaeolithic to early Neolithic (28,000-9000 cal BP) demonstrate often extreme dependence on gazelle hunting (Betts 1993; Martin et al 2016; Garrard and Byrd 2013). Questions abound as to the nature of hunter-gatherer occupation of the steppe/desert areas in prehistory, such as whether the resource base allowed only seasonal use, or more year-round settlement (Garrard and Byrd 2013; Maher et al 2012), and how far back into prehistory gazelle intercept mass-capture techniques extend (Betts 1993). There are therefore compelling reasons for better understanding past gazelle seasonal mobility in the study location. While zooarchaeological data informs on the results of hunting encounters, it cannot inform on prey wider annual mobility.

The study presented here aims to identify and model isotopic variation in the seasonal environments of four alternative hypothesised gazelle mobility patterns in and around the Azraq Basin. There is no
agreement on ancient gazelle herd behaviour and mobility in this area: models of long distance gazelle migration remain influential (Henry 1995; Legge & Rowley-Conwy 1987), while ecological predictions might see herds better adapted to remain year round in a comparatively un-degraded and better resourced landscape (Jones & Richter 2011; Martin 2000; Zohary 1966). In the absence of extant gazelle in the region, and with an adherence to behavioural ecological principles that species mobility is ecologically adaptive rather than fixed (Davies et al 2012), we develop four likely gazelle mobility scenarios, and model the isotopic signatures of gazelle mobility patterns. This is achieved through integration of new isotope data retrieved from modern plants in the Azraq Basin with published datasets. The study establishes a baseline of targeted environmental signatures in preparation for future application with archaeological gazelle dental isotopes.

2. Azraq Basin: background

2.1 The Palaeoenvironment (Fig. 1)

The Azraq Basin centres on an Oasis (c.520masl), an area of saline Quaternary gravel plains with, until recently, spring-fed permanent marshlands, seasonally inundated with wadi run-off (Ames & Cordova 2015). To the west/south-west, Early Tertiary limestone plains grade into hills incised by seasonal streams. Pliocene Basalt boulder fields, also incised by wadi systems, cover the north/northeastern sector, and further west, beyond the Azraq drainage basin, Cretaceous limestone Jordanian Highlands rise to c850masl (Bender 1974).

Since the Last Glacial Maximum (LGM), the dominant weather system in north Jordan has tracked eastwards, bringing rain on south/south-westerly winds in cold seasons and effectively none in highly evaporative hot seasons (Enzel et al 2008). Climate reconstructions suggest LGM effective moisture was greater although cooler than today, but decreased post-LGM (Hunt & Garrard 2013; Jones & Richter 2011). There is no Azraq Basin signature for the Bolling-Allerød and Younger Dryas, but south Levantine evidence indicates a sequence of moist warmer conditions, a cool, drier event, then more humid conditions in the early Holocene (Robinson et al. 2006).

Zohary (1966) argues for species richness in the LGM similar to today but, before over-grazing, more abundant woody thickets fringing waterbodies and annual grasses blanketing interfluvial areas in spring, but less abundant halophytic species in summer. In cooler, moister periods, LGM palaeovegetation zones have been modelled to show an eastward isohyet shift, with mesic woodlands at >400mm, xeric parklands >200mm, steppe >100mm and desert <100mm (Hillman 1996; Hunt & Garrard 2013). Regional zooarchaeological results support this ecological characterization (Martin et al 2016), Irano-Turanic vegetation communities are evident in archaeobotanic assemblages (Colledge 2001), and geoarchaeological evidence shows reduced wetland areas persisting in dryer periods (Jones & Richter 2011).
2.2 Human activity

Extensive archaeological research reveals continuous human presence in the Azraq Basin post-LGM. Smaller sites appear to have been occupied in single seasons by hunter-gatherers, whereas occupation in more than one season was possible at large Early/Middle Epipalaeolithic aggregation sites (Garrard & Byrd 2013). Abandoned by the Late Epipalaeolithic, smaller seasonal sites again emerged to continue into the Neolithic (Richter & Maher 2013).

Zooarchaeology in the Azraq Basin attests to gazelle-rich hunting grounds post-LGM (Martin et al 2016). Gazelle remains are identified where possible to the Persian gazelle (Gazella subgutturosa) (hereafter gazelle) by horn core morphology (Martin et al 2010), rather than to the other steppic species, the Sand gazelle (G. marica, prevalent in Arabia today, Wacher et al 2010). Body part data indicate hunting relatively local to sites, with cull-pattern data suggesting hunting pressure on gazelle herds only in early Neolithic (Martin et al 2016).

2.3 Gazelle seasonal mobility

The focus on gazelle hunting begs questions about their seasonal distribution. Ramsey and Rosen (2016) argue the Oasis provided water-fed resources to humans and prey moving through the area, and in drier periods provided a refuge from the surrounding steppe; certainly, gazelle thrived in the Azraq Basin until local 20\(^\circ\)C extinction. How far herds moved seasonally remains unexplored; their year-round presence could underpin multi-seasonal site occupation and a permanent human presence, whereas a seasonal migration passage would have attracted hunter/gatherers only seasonally.

The debate on gazelle seasonal mobility in the prehistoric Levantine steppes has drawn on indirect indicators: zooarchaeology, ethological reasoning, and historical record analogy. The possibilities are developed into four models, each centring on the Azraq Basin. Each are the subject of isotopic modelling that follows.

3. Four models of gazelle mobility (Fig. 2)

3.1 Year round presence

G. subgutturosa is highly adapted to steppe-desert habitats (Baharav 1981; Heptner et al 1988, 618-622), meeting water needs from food, synchronising birthing to essential grasses florescent in springtime, and selecting plants for moisture in summer. In seasonal climates, animals aggregate in large herds in winter but disperse into small groups in late spring to regulate body temperature, provide security for young, and follow patchier food resources. Regular, small-scale movement (a few km/day) between resource patches is common in well-resourced areas.
3.11 Seasonal aggregation and dispersal local to Azraq Basin (Fig. 2, Pattern 1). In light of past
greater resource availability, Martin (2000) draws on gazelle ethology to argue a year round gazelle
habitat in the Azraq Basin, with a pattern of aggregation in late autumn/over winter nearer the central
Oasis, and localised dispersal in late spring/summer. Following this model, gazelle populations would
have been locally available to hunters year-round.

3.2 Seasonal presence
Gazelle mobility increases as an adaptive response to greater resource patchiness. Movement (15-
20km/few days) follows resources but becomes more linear, usually towards water, often uphill
(Heptner et al 1988, 623). More rapid movement, responding to snow cover or predator danger
crosses resource patches becoming truly migratory (Julien et al 2012). Human presence can lead to
habitat fragmentation, forcing herd migrations between seasonal resource areas (Ito et al 2013). The
following three models have gazelle only seasonally present in the Azraq Basin.

3.21 Westwards summer movement into Jordanian Highlands (Fig. 2, Pattern 2). Many ungulates
move uphill in summer where the plant growing season is longer, returning downhill for winter
movement were identical to those for transhumant herders. Therefore we consider a movement pattern
where gazelle winter near the Oasis, but in summer follow resources along westerly/north-westerly
wadi systems to cooler Jordan Highlands. That said, two isotope studies from prehistoric sites in the
Jordan Highlands show that Natufian gazelle (Shewan 2004) and PPNA domestic caprine
(Makarewicz 2014) remain in their local ecological zone.

3.22 Northward migrations to the mid-Euphrates (Fig 2. Pattern 3). The dominant model of gazelle
seasonal mobility is proposed by Legge and Rowley-Conwy (1987) for the Syrian Euphrates late
Epipalaeolithic. As zooarchaeological analyses indicate highly seasonal, late spring mass kills near
Abu Hureyra, they argue herds migrated 600kms north to the mid-Euphrates (c300masl) in late spring
to give birth in better-watered habitats, then returned south in small groups to winter in the Azraq
Basin. In support of migratory behaviour, the authors draw on ethno-historic accounts of gazelle
racing past human settlements, and suggest this behaviour explains the locations of later widespread
mass-capture ‘desert kite’ structures (Betts 1993).

Many archaeologists have adopted this gazelle migration model (Bar-Oz et al 2011; Goring-Morris
1995, 156), although Early Holocene Göbekli Tepe (Upper Euphrates) gazelle strontium isotope
evidence shows little indication of herd movement extending as far south as the basalt shield - a
barrier before the Azraq Basin (Lang et al 2013, 24). We base our model of seasonal migration on
3.23 South-eastward movement along Wadi Sirhan (Fig. 2, Pattern 4). A second steppic species, G.marica is known from South Arabia, which is linked to the Azraq Oasis along the Sirhan depression. This 300km south-easterly corridor runs along the basalt edge and is fed by wadis and springs, with lake formation in wetter periods (Breeze et al 2016). It is of interest to scholars studying early human movement (Petraglia & Alsharekh 2003), gazelle too could have moved along the string of resource-rich areas (Stimpson et al 2016).

In this fourth scenario, in a reversal of seasonal movement described in the previous two, gazelle movement is modelled from cooler summer grounds around the Oasis, southeast along Wadi Sirhan, to warmer winter grounds around the Nefud Desert.

4. Isotopic variation in the North Jordan landscape

Oxygen, carbon and strontium isotopic ratios have the potential to discriminate between seasonal environments of the four proposed gazelle movement patterns due, respectively, to the region’s climate seasonality (Dansgaard 1964; Rozanski et al 1993), the range of vegetation aridity-management strategies (Ehleringer et al 1997; O’Leary 1988; Vogel et al 1986), and the variety of distinct geological substrates (Faure & Powell 1972).

4.1 The modern landscape

4.11 Oxygen isotopic markers of season and elevation (Fig. 3). Global Natural Isotopes in Precipitation monthly records have partial δ^{18}O data, but the annual trajectory suggests enriched summer peaks in hot, arid seasons contrasting with winter troughs in cold, rainy seasons. Ranges extend from >0.57‰ to -6.32‰ in the Azraq Oasis, and >-3.32‰ to -7.28‰ for Ras Muneef in the Jordanian Highlands (IAEA/WMO 2014). Ras Muneef has more depleted 18O throughout, as expected in a location of greater precipitation, lower temperatures and nearer oceanic precipitation sources. Outside the wet season, 18O depletion exceeds the modelled ~0.28‰/100m rise in elevation (Poage & Chamberlain 2001).

4.12 Carbon isotopic markers of vegetation type. In the study area we can expect most grasses to have C_3 photosynthetic pathways and most C_4 species to be perennial chenopods. Short-lived spring annuals, constituting 80% of Azraq Basin species (Zohary 1974), have C_3 photosynthetic pathways (Bocherens et al 2001; Vogel et al 1986), as do slower growing shrubs and trees; these would return δ^{13}C ~-27‰ (O’Leary 1988). Halophytic chenopods, predominant throughout the arid season, have C_4 photosynthetic pathways with 13C enriched to ~-12‰ (Akhani et al 1997; Shomer-Ilan et al 1981).

Whilst C_4 species do not exhibit water-stress induced δ^{13}C changes during arid seasons, C_3 taxa δ^{13}C might vary as much as 7.7‰ (Heaton 1999; Tieszen & Bboutton 1989); raised water-stress,
temperature, light levels, and elevation enrich 13C, whereas tree canopy and water-body proximity
deplete it. Opportunist annuals have depleted 13C as they complete growth during the wet season,
whereas dry-season growth in other species would have more enriched values (Hartman & Danin
2010).

4.13. Strontium isotopes markers of location. Only the labile fraction of bedrock strontium enters the
food chain. Shewan (2004) identifies a gradient of variation in 87Sr/86Sr in modern plants and small
herbivores consistent with variation in north Jordan geologies; high values (0.70798-0.70829) are
associated with Cretaceous limestone and lower values (0.70702-0.70788) with basalt flows.

4.2 The Palaeolandscape

Regional post-LGM persistence of a seasonal climate is key to understanding isotopic signatures of
past seasonal environments. As modern precipitation and vegetation patterns would have pertained,
seasonal δ^{18}O and δ^{13}C can be expected. However, chronological variation in temperature and aridity
would be expressed as isotopic value shifts; in δ^{18}O this would directly reflect changing temperature
and aridity, whereas in δ^{13}C, shifts would reflect changing C₃ species water-stress, and/or
seasonal/zonal shifts in C₄/C₃ species dominance.

Turning to strontium, soils in arid regimes largely derive from underlying bedrock (Bentley 2006), but
where geologies intersect, upland sediments wash downstream or windborne dust settles (Graustein
1989; Sillen et al 1998), the resultant labile 87Sr/86Sr reflects the contributory mix. In the Azraq Basin
this would be most marked in alluvial areas, where the basalt thins out over underlying Tertiary
limestones, and where south/south-western prevailing winds transport dust onto downwind basalt
fringes. Chronological climate aridity variation affects this mix, notably in windblown dust
contribution. In arid periods dust is transported to the Azraq Basin from as far as North Africa
(average 87Sr/86Sr 0.7085) (Gvirtzman & Wieder 2001; Stein et al 2007), however, its contributory
effect on rendzina soil 87Sr/86Sr is minimal where precipitation is <150mm (Hartman & Richards
2014).

5. The modern baseline

In order to construct an isotopic model of the four gazelle movement patterns, further isotopic
information from a small plant baseline adds detail to published data.

5.1 Methods

Our methods follow those of archaeological isotope scientists (Balasse et al 2002; Bogaard et al 2014;
Elliot et al 2014; Hoppe et al 1999). Uncontaminated plants are readily available and no less useful
than archaeological material (Balasse et al 2014) and in the Levant, provide accurate $^{87}\text{Sr}/^{86}\text{Sr}$
information on labile strontium distribution (Hartman & Richards 2014).

5.11 Collection protocols. Plants were collected for two studies, each determining collection and
analytical protocols (Fig 4, Supp. 1). To define a seasonal $\delta^{13}\text{C}$ signature for gazelle forage, we
collected in the main vegetation, hydrological and topographical settings. Multiple specimens of all
grass and chenopod taxa were collected through field-walking. Their $\delta^{13}\text{C}$ was measured to establish
signatures fine-tuned to the study region. In order to investigate how labile $^{87}\text{Sr}/^{86}\text{Sr}$ might provide
locational signatures, a plant collection was made near key Epipalaeolithic and Neolithic sites that
were located both deep within main regional geologies and where strontium sources were predicted to
be most mixed. All locations avoided modern contaminants derived from traffic, herding, human
occupation, industrial activity and water pollution.

The collection period was restricted to April 2013 and only the current season’s growth was gathered,
controlling for inter-annual atmospheric CO$_2$ variation. It was unnecessary to collect in other seasons
as all C$_3$ grass growth occurs in the wet season and as C$_4$ species have unchanging $\delta^{13}\text{C}$ seasonally.
Specimens were all moderately shallow-rooted, controlling for soil depth $^{87}\text{Sr}/^{86}\text{Sr}$ variation. Three
individual specimens of the same species contributed to each sample.

Each plant was photographed (Supp. 2), and a record made of dimensions, maturity, habit, vegetation
community, bedrock, soil quality, location aspect, current weather and soil conditions, UTM location
and elevation (Supp. 3). Plants were identified using the British Institute for Archaeology in Amman
reference collection and library, then exported with the permission of the Department of Antiquities of
Jordan to UCL Institute of Archaeology for isotopic analyses.

5.12 Analytical protocols. Specimens were washed in Milli-Q water and air-dried in paper bags.
Specimens for carbon isotope analyses were finely chopped, homogenised and freeze-dried before
analysis at UCL Bloomsbury Environmental Isotopes Facilities in a Flash EA 1112 by gas
chromatographic separation linked to a continuous flow IR-mass spectrometer (Thermo Delta V).
Analytical error = 0.1‰. Strontium isotope preparation and analyses were conducted in a clean
laboratory at the Earth Sciences Department, Royal Holloway College UL, by VG354 thermal
ionisation mass spectrometer. Typical $^{87}\text{Sr}/^{86}\text{Sr}$ external reproducibility = ±0.000014 (2sd).

5.2 Results and interpretation (Supp. 4)
5.21 Grass and chenopod collection. Field walking retrieved eight chenopods, eight grasses and two
wetland monocots. All grasses save one have C$_3$ photosynthetic pathways, and all chenopods are C$_4$
halophytes (Supp 4, last column). This species array is consistent with Irano-Turanic plant communities adapted to cold, wet winters and hot, arid summers.

5.22 Carbon isotope results (Fig. 5). The grasses and chenopods fall into two $\delta^{13}C$ groups (P<0.00001). The group to the left (N=10), has $\delta^{13}C$ -30.8‰ – -24.8‰ (mean -28.06±3.4 (2sd)) and the group to the right (N=9) has enriched ^{13}C -14.8‰ – -11.4‰ (mean -13.4±2.52 (2sd)). The $\delta^{13}C$ of each group is consistent with C$_3$ and C$_4$- species, which divide as predicted into monocots and chenopods (with the exception of Cynodon dactylon). Analyses allow $\delta^{13}C$ parameters relevant to regional gazelle feeding to be modelled. After an adjustment of -1.2‰ is made for modern atmospheric carbon dioxide (Friedli et al 1986), (LGM and Early Holocene atmospheric CO2 concentrations are thought to have been broadly similar (Tornero et al 2016)), the means of the two groups are used to establish the $\delta^{13}C$ of C$_3$ monocots at 26.86±3.4 (2sd) and C$_4$ chenopods at -12.2±2.52 (2sd).

5.23 Strontium isotope results (Fig. 6). Analyses of 41 plant samples from 12 locations produced an 87Sr/86Sr 0.70854–0.70764, which falls within published Jordanian limestone and basalt-rich ranges. Intra-sample variation tested in duplicate analyses (N=6) was found to be negligible (2 x 0‰, 3 x 0.00001, 1 x 0.00002).

Twenty-one 87Sr/86Sr results for four locations deep within major geologies range as follows; Cretaceous limestone (location 1, N=3) 0.70845–0.70854 (mean 0.70849±0.00009 (2sd)), Tertiary limestone (location 3, N=6) 0.70807–0.70819 (mean 0.70815±0.00011 (2sd)), Quaternary gravels (locations 4 & 5, N=6) 0.70807–0.70816 (mean 0.70811±0.00007 (2sd)) and basalts (location 11, N=6) 0.70764–0.70778 (mean 0.70772±0.00012 (2sd)). Cretaceous and Tertiary limestone means differ by 0.00034, Quaternary gravels and basalt means by 0.00039, but Tertiary limestones and Quaternary gravels only by 0.00004. In order to define strontium isotopic signatures for the four gazelle mobility patterns, we establish Jordanian Highlands and basalt endmember signatures using the above values. However, we amalgamate Tertiary limestone and Quaternary gravel 87Sr/86Sr signatures (N = 12, mean 0.70813±0.00009 (2sd)) to model together the limestone steppe and its overlying fluvial deposits. Significant variation (Anova) between these three groups P<0.00001.

In order to investigate 87Sr/86Sr signatures in locations with the greatest predicted contributory mix, a further twenty results were retrieved from seven other locations. Results (Fig. 7) are ordered to follow a broad south-west/north-east locational trajectory. The 87Sr/86Sr results along this trajectory are progressively depleted, consistent with predicted changes in contributory endmember mixing and/or windblown dusts.
Wadi Zarqa Ma’in (Fig. 4, location 2) mean $^{87}\text{Sr} / ^{86}\text{Sr}$ is 0.7082, between Tertiary and Cretaceous limestone signatures, which reflects its Highlands-edge location. Wadi Ruwayshid (location 12) mean $^{87}\text{Sr} / ^{86}\text{Sr}$ is 0.7083, a limestone signature reflecting its position on the highly deflated eastern limestone steppe. On the basalt, Wadi el Ghusein (location 9) and Burqu (location 10) have $^{87}\text{Sr} / ^{86}\text{Sr}$ means, respectively 0.70783 and 0.70787, which are higher than the deep basalt endmember signature, but lower than Dhuweila (location 7) and the Tapline Road south of Safawi (location 6) means, respectively, 0.70806 and 0.70795, further west near the basalt edge.

Variation between the $^{87}\text{Sr} / ^{86}\text{Sr}$ signatures of these intermediary points is not significant although, for the purposes of modelling gazelle mobility patterns, they serve as a reminder that individual locations cannot be precisely identified, but do support expected trajectories in $^{87}\text{Sr} / ^{86}\text{Sr}$ accompanying progression from one geology to another.

6. Discussion

6.1 Isotopic modelling of four gazelle mobility patterns

Isotopic signatures can now be applied to the four mobility patterns (Section 3). Each has its own set of seasonal $\delta^{18}\text{O}$, $\delta^{13}\text{C}$ and $^{87}\text{Sr} / ^{86}\text{Sr}$ (Table 1, Fig. 8). Signatures associated with the first model of minimal herd movement throughout the year are, to aid discussion, taken as the starting point.

The shape of each isotopic curve is of key interest, illuminating progressive changes throughout seasons and across geologies. Azraq and Ras Munef $\delta^{18}\text{O}$ in precipitation (Section 4.11) provides guidelines to likely locational seasonal values and elevation effects. The $\delta^{13}\text{C}$ of regional C$_3$ grasses and C$_4$ chenopods (Section 5.22) provide endmembers to modelled curves of seasonally available vegetation suited to gazelle ethology. Labile $^{87}\text{Sr} / ^{86}\text{Sr}$, measured in our plant baseline (Section 5.23) provides endmembers to modelled geological location, alongside guidelines to progressive mixing in the Azraq Basin.

6.11. Seasonal aggregation and dispersal local to Azraq Oasis (Pattern 1)

The modelled annual $\delta^{18}\text{O}$ curve is clearly sinusoidal, with depleted winter troughs and enriched summer peaks, reflecting regional climate seasonality. There is no seasonal signature loss associated with areas of different temperature and aridity. The $\delta^{13}\text{C}$ annual sequence is also sinusoidal as opportunist C$_3$ grasses, dominant after winter rains, flourish before giving way in summer to water-stressed C3 shrubs and arid-adapted C$_4$ halophytes. As this pattern sees minimal movement, $^{87}\text{Sr} / ^{86}\text{Sr}$ remains unchanged throughout the year, with values in the Tertiary Limestone/Quaternary Gravels band.
Table 1. Seasonal changes in $\delta^{18}O$, $\delta^{13}C$ and $^{87}Sr/^{86}Sr$ modelled for proposed gazelle mobility patterns in Figure 2

6.12. Westwards summer movement into Jordanian Highlands (Pattern 2)

In this pattern, gazelle herds overwinter around the Azraq Oasis, therefore winter isotopic signatures are similarly modelled. As summer is spent at higher elevations, enriched ^{18}O and ^{13}C associated with
hot, arid conditions around the Oasis are largely lost and a reduced summer seasonal signature is
modelled. The $^{87}\text{Sr}/^{86}\text{Sr}$ annual sequence is sinusoidal, with values rising in late spring as herds
approach Cretaceous Limestone uplands, then falling with late autumn downhill return.

6.13. Northward migration to the mid-Euphrates (Pattern 3)
In this pattern, as previously, gazelle herds overwinter in the Azraq Basin. The $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ for late
spring and summer further north at higher elevations in the mid-Euphrates, are also lower. However, the $^{87}\text{Sr}/^{86}\text{Sr}$ curve has a very different undulating profile, with values now falling towards those for
basalt, once in spring and again in autumn as herds cross to and from the mid-Euphrates.

6.14. South-eastward movement along Wadi Sirhan (Pattern 4)
Here, summer isotopic signatures are now those of the Azraq Basin, as herds move to this better-
watered location avoiding extreme heat and aridity further south. Winter is spent in the warmer, drier
Nefud where vegetation is more arid-adapted; modelled ^{18}O and ^{13}C remain enriched, losing much of
the depleted seasonal Azraq signature. Away from the Azraq Basin, modelled $^{87}\text{Sr}/^{86}\text{Sr}$ might show a
slight depletion as Wadi Sirhan follows the southern basalt edge. However, given expected Tertiary
limestone dust contribution from the south/southwest, significant seasonal variation is not predicted.

6.2 Application of the model
The combined package of seasonal isotopes for each mobility pattern is unique, able to offer stand-
alone signatures distinguishing each. The strength of studying all three datasets in combination lies in
the interplay of environmental information that reduces each dataset’s interpretive problems; location
may be approached through both $\delta^{18}\text{O}$ and $^{87}\text{Sr}/^{86}\text{Sr}$, seasonality through both $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$. For
example, location, vegetation availability, temperature, humidity or tree cover might underlie $\delta^{13}\text{C}$
variation, but $^{87}\text{Sr}/^{86}\text{Sr}$ constrain location and $\delta^{18}\text{O}$ identifies seasonal stress factors.

Gazelle ethology further constrains interpretation. For example, other seasonal mobility patterns are
unlikely in this region, where birthing requirements restrict seasonal behaviour and where summer
feeding and thermo-regulation largely inform mobility. The most depleted ^{13}C signatures can be
associated with feeding on spring grasses around birthing, and unchanging $^{87}\text{Sr}/^{86}\text{Sr}$ signatures suggest
localised movement rather than longer journeys over the same geology serving no purpose, wasting
energy and compromising thermo-regulation.

This research provides isotopic signatures of four likely seasonal mobility patterns of gazelle herds
hunted by prehistoric occupants of the Azraq Basin. In future, these signatures will be compared to
those in the teeth of archaeological gazelle found on occupation sites. As zooarchaeological analysis
determines hunting was local to occupation sites, further constraints can be placed on $^{87}\text{Sr}/^{86}\text{Sr}$ location signature.

It is not the place of this paper to discuss gazelle dental isotope systematics, however certain aspects will allow strengthened interpretation of our seasonal mobility models in future archaeological application. Firstly, sequential sampling of gazelle teeth will provide an approximate one-year time capsule of isotope results, with individual data-point resolution greater than seasonal. Consequently, at this timescale, intra-tooth isotopic variation will relate to seasonal behaviour which can be associated directly with our annual mobility models. Long-term variation (climate induced dust amount ($^{87}\text{Sr}/^{86}\text{Sr}$), aridity and soil cover ($\delta^{13}\text{C}$), temperature and precipitation ($\delta^{18}\text{O}$)) would not register and can be discounted.

Secondly, $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ will be retrieved from the same enamel carbonate fraction, so a clear seasonal interpretation of the $\delta^{13}\text{C}$ will be provided by the temporally linked $\delta^{18}\text{O}$. Thirdly, archaeological samples will be retrieved from spatially and chronologically identified occupation sites, such that robust sample sizes will allow identification of difference associated with location, long-term climate variation, or human behaviour. Interpretation of $\delta^{18}\text{O}$ in particular is strengthened, as seasonality information, at present modelled on curve shape, might then allow some comparative quantification.

Conclusion

Four patterns of gazelle seasonal mobility in the prehistory of the east Jordanian steppe have been proposed. For each pattern, the seasonal and spatial progression has been identified in modern stable isotopes indicators taken from environmental data. In combination, the data provide distinguishing features for each pattern with clear trajectories associated with any changes in location and with seasonal changes in climate and food availability. The baseline study of strontium isotopes in modern plants is in agreement with predicted mixing effects and provides a modelled trajectory of changing values. This allows each long distance route away from the central Oasis to be identified and to be distinguished from the localised aggregation/ dispersal pattern.

Collection of isotopic data is already underway from 112 gazelle teeth retrieved from 12 archaeological sites which encompass a range of spatial and chronological prehistoric occupations in the Azraq Basin. The baseline described in this paper is intended for use in future research, where it will be an invaluable resource for the interpretation of the archaeological data, such that the seasonal movement of prehistoric gazelle herds, and their availability to hunters can be discussed.
Acknowledgements
We are grateful to Department of Antiquities, Jordan, for allowing specimen collection and export, and Osama Lutfi, Jordanian Government Representative, for fieldwork assistance.

References

Garrard, A., Colledge, S., Martin, L. 1996. The emergence of crop cultivation and caprine herding in the ‘marginal zone’ of the southern Levant. In (Ed.) Harris, D. *The origins and spread of agriculture*
and pastoralism in Eurasia. USA: Smithsonian Institute Press, 204-226.

List of figures

1. Azraq Basin (black line) within Jordan (dotted line), showing geology, isohyets and cited site locations (a. Kharaneh, b. Ain Ghazal, c. Azraq Oasis, d. Shubayqa, e. Dhuweila, f. Wadi Jilat)

2. Modelled routes of four gazelle mobility patterns

3. GNIP Monthly records (A. Azraq, B. Ras Muneef precipitation and temperatures, C. Both, oxygen isotopes in precipitation)

4. Modern plant collection points (numbered) overlying geological features of Jordan (Supp. 1 for details)

5. Carbon stable isotope results for modern plant specimens, with published average $\delta^{13}C$ for C_3 and C_4 species

6. Strontium isotope results for endmembers in and around the Azraq Basin

7. Strontium isotope results for locations with predicted mixed source contributions

8. Predicted changes in seasonal environments of proposed gazelle mobility patterns (Fig. 2) modelled using oxygen, carbon and strontium isotopic data, as outlined in:

 Section 5.22 for $\delta^{13}C$:C_3 monocots 26.86±3.4 (2sd), C_4 chenopods -12.2±2.52 (2sd)

 Section 5.23 for $^{87}Sr/^{86}Sr$: Cretaceous limestone 0.70849±0.00009 (2sd), Tertiary limestone and Quaternary gravel 0.70813±0.00009 (2sd), basalts 0.70772±0.00012 (2sd).

 Seasonal oxygen curves are not assigned values, their shape being used to define seasons or loss of seasonality
Fig 2. MOBILITY PATTERNS MAP

1. Aggregation and dispersal around Azraq Oasis
2. Seasonal movement along wadis up to Jordanian highlands
3. Long distance migration over basalt to middle Euphrates
4. Long distance migration along Wadi Sirhan to the Nefud
Fig 5. CARBON ISOTOPE GRAPH

Click here to download Non-colour figure Fig. 5 Carbon isotope graph.docx
Fig 7. STRONTIUM MIXED SOURCES GRAPH

Cretaceous limestone
0.70849±0.00009 (2σd)

Early Tertiary limestone & Quaternary gravels
0.70813±0.00009 (2σd)

Basalt B4
0.70772±0.00012 (2σd)

Watt Zapp (2)
Tepina Rd (6)
Dhurmeja (7)
Upgangi (8)
Watt Chameri (9)
Burpa (10)
Rumgib (12)
Fig 8. MOBILITY MODEL GRAPHS

Each column shows seasonal isotopic changes. Each starts in late autumn, through winter, spring and summer, and ends in early autumn.
Supplementary 1. Details of modern plant collection locations

<table>
<thead>
<tr>
<th>Plant collection location</th>
<th>UTM (Northern hemisphere)</th>
<th>Geological context</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Upper Wadi Yabis</td>
<td>36°7'59.7" E x 35°8'81.1" N</td>
<td>Cretaceous limestone (c2)</td>
</tr>
<tr>
<td>2 Upper Wadi Zarqa Ma'in</td>
<td>36°7'57.6" E x 35°8'00.2" N</td>
<td>Cretaceous limestone (c2)</td>
</tr>
<tr>
<td>3 Near Wadi Jilat 6</td>
<td>37°2'54.6" E x 33°48'84.4" N</td>
<td>Eocene/Palaeocene limestones/marls (tt1)</td>
</tr>
<tr>
<td>4 Shaumari Wildlife Reserve</td>
<td>37°2°87.4" E x 33°15'55" N</td>
<td>Fluvial deposits draining from limestones/marls (tt1)</td>
</tr>
<tr>
<td>5 Near Kharaneh IV</td>
<td>37°2°58.7" E x 33°12'28" N</td>
<td>Fluvial deposits adjacent to limestones/marls (tt1)</td>
</tr>
<tr>
<td>6 Tapline Road</td>
<td>37°3°16°0" E x 33°51'9" N</td>
<td>Basalts (B5)</td>
</tr>
<tr>
<td>7 Near Dhuweila</td>
<td>37°3°44°3" E x 33°45'7" N</td>
<td>Basalts (B3)</td>
</tr>
<tr>
<td>8 Near Uwaynid 14.18</td>
<td>37°2°85.1" E x 33°18'7" N</td>
<td>Fluvial deposits adjacent to Basalts (B3)</td>
</tr>
<tr>
<td>9 Wadi el Ghusein</td>
<td>37°3°89.6" E x 33°82'8" N</td>
<td>Basalts (B3)</td>
</tr>
<tr>
<td>10 Near Burqu</td>
<td>37°4°02.6" E x 33°08'5" N</td>
<td>Basalts (B4)</td>
</tr>
<tr>
<td>11 Shubayqa</td>
<td>37°3°33.4" E x 33°86'8" N</td>
<td>Basalts (B1)</td>
</tr>
<tr>
<td>12 Wadi Ruwayshid Salih</td>
<td>37°4°44.1" E x 33°99'3" N</td>
<td>Eocene/Palaeocene limestones/marls (tt1)</td>
</tr>
</tbody>
</table>
Supplementary 2. Photographs of all collected plant specimens

<table>
<thead>
<tr>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea fragrantissima (Forssk.) Sch. Bip.</td>
<td>Achillea santolina L.</td>
<td>Aegilops crassa Boiss.</td>
</tr>
<tr>
<td>Anabasis articulata (Forssk.) Moq.</td>
<td>Anthemis sp.</td>
<td>Artemisia herb-alba Asso</td>
</tr>
<tr>
<td>Atriplex halimus L.</td>
<td>Atriplex leucoclada Boiss.</td>
<td>Ballota undulata (Sieber ex Fresen.) Benth.</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Image</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Chenolea arabica Boiss.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon (L.) Pers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farsetia aegyptiaca Turra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gynandriris sisyrichium (L.) Parl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hammada salicornica (Moq.) Iljin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordeum glaucum Steud.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordeum spontaneum K. Koch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus arabicus (Asch. & Buchenau) Adamson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malva parviflora L.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image 1</td>
<td>Image 2</td>
<td>Image 3</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stipa capenis Thunb.</td>
<td>Suaeda sp.</td>
<td>Teucrium polium L.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Traganum nudatum Delile</td>
<td>Trigonella stellata Forssk.</td>
<td></td>
</tr>
<tr>
<td>Specimen Number</td>
<td>Taxa</td>
<td>Date & weather</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>12</td>
<td>Poa trivialis L.</td>
<td>6.4.13 hot</td>
</tr>
<tr>
<td>13</td>
<td>Hammada salicornica (Moq.) Iljin</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Achillea fragrantissima (Forssk.) Sch. Bip.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Hordeum glaucum Steud.</td>
<td>8.4.13 hot and very windy</td>
</tr>
<tr>
<td>18</td>
<td>Malva parviflora L.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Atriplex leucocladia Boiss.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Suaeda sp.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Chenolea arabica Boiss.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Traganum nudatum Delile</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Code</td>
<td>Species</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>24</td>
<td>LM</td>
<td>Malva parviflora L.</td>
</tr>
<tr>
<td>25</td>
<td>LM</td>
<td>Achillea fragrantissima (Forssk.) Sch. Bip.</td>
</tr>
<tr>
<td>26</td>
<td>IR</td>
<td>Hordeum glaucum Steud.</td>
</tr>
<tr>
<td>28</td>
<td>LM</td>
<td>Anabasis articulata (Forssk.) Moq.</td>
</tr>
<tr>
<td>30</td>
<td>IR</td>
<td>Aegilops crassa Boiss.</td>
</tr>
<tr>
<td>31</td>
<td>IR</td>
<td>Phleum paniculatum Huds.?</td>
</tr>
<tr>
<td>32</td>
<td>IR</td>
<td>Hordeum spontaneum K.Koch</td>
</tr>
<tr>
<td>33</td>
<td>IR</td>
<td>Seidlitzia rosmarinus Bunge ex Boiss.</td>
</tr>
<tr>
<td>34</td>
<td>LM</td>
<td>Atriplex halimus L.</td>
</tr>
<tr>
<td>37</td>
<td>LM</td>
<td>Stipa capensis Thunb.</td>
</tr>
<tr>
<td>38</td>
<td>IR</td>
<td>Phalaris minor Retz.</td>
</tr>
<tr>
<td>40</td>
<td>IR</td>
<td>Juncus arcticus (Asch. & Buchenau Adamson)</td>
</tr>
<tr>
<td>41</td>
<td>IR</td>
<td>Phragmites australis (Cav.) Trin. Ex Steud.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IR</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>42</td>
<td>IR</td>
<td>Achillea fragrantissima (Forssk.) Sch. Bip.</td>
</tr>
<tr>
<td>45</td>
<td>IR</td>
<td>Cynodon dactylon (L.) Pers.</td>
</tr>
<tr>
<td>46</td>
<td>IR</td>
<td>Poa bulbosa L.</td>
</tr>
<tr>
<td>47</td>
<td>IR</td>
<td>Trigonella stellata Forssk.</td>
</tr>
<tr>
<td>49</td>
<td>IR</td>
<td>Stipa capensis Thunb.</td>
</tr>
<tr>
<td>51</td>
<td>IR</td>
<td>Seidlitzia rosmarinus Bunge ex Boiss.</td>
</tr>
<tr>
<td>52</td>
<td>LM</td>
<td>Atriplex halimus L.</td>
</tr>
<tr>
<td>57</td>
<td>IR</td>
<td>Hordeum glaucum Steud.</td>
</tr>
<tr>
<td>58</td>
<td>IR</td>
<td>Achillea fragrantissima (Forssk.) Sch. Bip.</td>
</tr>
<tr>
<td>59</td>
<td>IR</td>
<td>Malva parviflora L.</td>
</tr>
<tr>
<td>60</td>
<td>AG</td>
<td>Phlomis fruticosa L.</td>
</tr>
<tr>
<td>61</td>
<td>AG</td>
<td>Salvia heterosulmiana Boiss.</td>
</tr>
<tr>
<td>62</td>
<td>AG</td>
<td>Anthemis sp.</td>
</tr>
<tr>
<td>No.</td>
<td>Code</td>
<td>Species</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>64</td>
<td>AG</td>
<td>Farsetia aegyptiaca Turra</td>
</tr>
<tr>
<td>66</td>
<td>AG</td>
<td>Gynandriris sisyrichium (L.) Parl.</td>
</tr>
<tr>
<td>67</td>
<td>IR</td>
<td>Peganum harmala L.</td>
</tr>
<tr>
<td>74</td>
<td>IR</td>
<td>Artemisia herb-alba Asso</td>
</tr>
<tr>
<td>75</td>
<td>AG</td>
<td>Farsetia aegyptiaca Turra</td>
</tr>
<tr>
<td>76</td>
<td>IR</td>
<td>Achillea fragrantissima (Forssk.) Sch. Bip.</td>
</tr>
<tr>
<td>77</td>
<td>IR</td>
<td>Euphorbia sp.</td>
</tr>
<tr>
<td>78</td>
<td>IR</td>
<td>Artemisia herb-alba Asso</td>
</tr>
<tr>
<td>81</td>
<td>AG</td>
<td>Teucrium polium L.</td>
</tr>
<tr>
<td>83</td>
<td>AG</td>
<td>Achillea santolina L.</td>
</tr>
<tr>
<td>84</td>
<td>AG</td>
<td>Ballota undulata (Sieber ex Fresen.) Benth.</td>
</tr>
</tbody>
</table>

Elevation in meters above sea level.
Supplementary 4. Modern plant δ^{13}C and ^{87}Sr/^{86}Sr results. Details of published plant δ^{13}C data relevant to this research are included. See Fig. 4 for locations

<table>
<thead>
<tr>
<th>Sample</th>
<th>Taxa</th>
<th>Location (in vicinity, not on archaeological sites)</th>
<th>δ^{13}C_{PDB}</th>
<th>Regionally relevant published δ^{13}C_{PDB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Poa trivialis</td>
<td>Wadi Yabis</td>
<td>-29.4</td>
<td>-12.31</td>
</tr>
<tr>
<td>13</td>
<td>Hymenaea salicornica</td>
<td>Wadi Jilat</td>
<td>-12.9</td>
<td>-12.31</td>
</tr>
<tr>
<td>20</td>
<td>Atriplex lanceolata</td>
<td>Wadi Jilat</td>
<td>-14.7</td>
<td>-13.9 to -14.2, -11.5 to -13.6</td>
</tr>
<tr>
<td>21</td>
<td>Suaeda sp.</td>
<td>Wadi Jilat</td>
<td>-11.4</td>
<td>-12.51</td>
</tr>
<tr>
<td>22</td>
<td>Chenopodium abbreviatum</td>
<td>Shubayqa</td>
<td>-12.9</td>
<td>-12.4, -11.70</td>
</tr>
<tr>
<td>28</td>
<td>Anabasis articulata</td>
<td>Shubayqa</td>
<td>-14.6</td>
<td>-11.70</td>
</tr>
<tr>
<td>30</td>
<td>Aegilops crassus</td>
<td>Shubayqa</td>
<td>-28.1</td>
<td>-12.8</td>
</tr>
<tr>
<td>31</td>
<td>Pileum paniculatum</td>
<td>Shubayqa</td>
<td>-28.1</td>
<td>-12.8</td>
</tr>
<tr>
<td>32</td>
<td>Hordeum spontaneum</td>
<td>Shubayqa</td>
<td>-28.5</td>
<td>-12.8</td>
</tr>
<tr>
<td>33</td>
<td>Sisymbrium rosmarinus</td>
<td>Shubayqa</td>
<td>-11.8</td>
<td>-12.6, -12.53</td>
</tr>
<tr>
<td>34</td>
<td>Atriplex halimus</td>
<td>Shuabrea</td>
<td>-14.8</td>
<td>-14.31</td>
</tr>
<tr>
<td>37</td>
<td>Stipa capensis</td>
<td>Shuabrea</td>
<td>-24.8</td>
<td>-14.31</td>
</tr>
<tr>
<td>38</td>
<td>Phalaris minor</td>
<td>Shuabrea</td>
<td>-29.3</td>
<td>-14.31</td>
</tr>
<tr>
<td>40</td>
<td>Juncus arcticus</td>
<td>Azraq wetland</td>
<td>-28.2</td>
<td>-14.31</td>
</tr>
<tr>
<td>41</td>
<td>Phragmites australis</td>
<td>Azraq wetland</td>
<td>-27.3</td>
<td>-25.45</td>
</tr>
<tr>
<td>45</td>
<td>Cynodon dactylon</td>
<td>Dhuweila</td>
<td>-14.0</td>
<td>-15.65</td>
</tr>
<tr>
<td>46</td>
<td>Poa bulbosa</td>
<td>Dhuweila</td>
<td>-26.1</td>
<td>-15.65</td>
</tr>
<tr>
<td>47</td>
<td>Trachicospermum adnatum</td>
<td>Dhuweila</td>
<td>-13.0</td>
<td>-15.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Taxa</th>
<th>Location (in vicinity, not on archaeological sites)</th>
<th>δ^{87}Sr/^{86}Sr</th>
<th>Bedrock geology</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Achillea fragrantissima</td>
<td>3. Wadi Jilat 6,7</td>
<td>0.70807</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>14.2</td>
<td>Achillea fragrantissima</td>
<td>3. Wadi Jilat 6,7</td>
<td>0.70808</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>17.1</td>
<td>Hordeum glaucum</td>
<td>3. Wadi Jilat 6,7</td>
<td>0.70818</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>17.2</td>
<td>Hordeum glaucum</td>
<td>3. Wadi Jilat 6,7</td>
<td>0.70818</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>18.1</td>
<td>Maesa parviflora</td>
<td>3. Wadi Jilat 6,7</td>
<td>0.70819</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>18.2</td>
<td>Maesa parviflora</td>
<td>3. Wadi Jilat 6,7</td>
<td>0.70818</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>24.1</td>
<td>Maesa parviflora</td>
<td>11. Shuabqa</td>
<td>0.70764</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>24.2</td>
<td>Maesa parviflora</td>
<td>11. Shuabqa</td>
<td>0.70766</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>25.1</td>
<td>Achillea fragrantissima</td>
<td>11. Shuabqa</td>
<td>0.70773</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>25.2</td>
<td>Achillea fragrantissima</td>
<td>11. Shuabqa</td>
<td>0.70774</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>26.1</td>
<td>Hordeum glaucum</td>
<td>11. Shuabqa</td>
<td>0.70778</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>26.2</td>
<td>Hordeum glaucum</td>
<td>11. Shuabqa</td>
<td>0.70778</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>32</td>
<td>Hordeum spontaneum</td>
<td>4. Shaumari Wildlife Reserve</td>
<td>0.70816</td>
<td>Fluvial deposits draining Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>34</td>
<td>Atriplex halimus</td>
<td>4. Shaumari Wildlife Reserve</td>
<td>0.70814</td>
<td>Fluvial deposits draining Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>37</td>
<td>Stipa capensis</td>
<td>4. Shaumari Wildlife Reserve</td>
<td>0.70812</td>
<td>Fluvial deposits draining Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>42</td>
<td>Achillea fragrantissima</td>
<td>7. Dhuweila</td>
<td>0.70806</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>47</td>
<td>Trigernella stellata</td>
<td>7. Dhuweila</td>
<td>0.70806</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>49</td>
<td>Stipa capensis</td>
<td>7. Dhuweila</td>
<td>0.70805</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>51</td>
<td>Sisymbrium rosmarinus</td>
<td>8. Uwaynay 14,18</td>
<td>0.70796</td>
<td>Fluvial deposits draining Basalts (Bb)</td>
</tr>
<tr>
<td>52</td>
<td>Atriplex halimus</td>
<td>8. Uwaynay 14,18</td>
<td>0.70794</td>
<td>Fluvial deposits draining Basalts (Bb)</td>
</tr>
<tr>
<td>57</td>
<td>Hordeum glaucum</td>
<td>5. Karanam IV</td>
<td>0.70812</td>
<td>Fluvial deposits draining Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>58</td>
<td>Achillea fragrantissima</td>
<td>5. Karanam IV</td>
<td>0.70807</td>
<td>Fluvial deposits draining Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>59</td>
<td>Maesa parviflora</td>
<td>5. Karanam IV</td>
<td>0.70808</td>
<td>Fluvial deposits draining Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>60</td>
<td>Pheomis fraxina</td>
<td>1. Upper Wadi Yabis</td>
<td>0.70848</td>
<td>Cretaceous limestones (c0)</td>
</tr>
<tr>
<td>61</td>
<td>Salvia hebecymbiflora</td>
<td>1. Upper Wadi Yabis</td>
<td>0.70845</td>
<td>Cretaceous limestones (c0)</td>
</tr>
<tr>
<td>62</td>
<td>Anthemis sp.</td>
<td>1. Upper Wadi Yabis</td>
<td>0.70854</td>
<td>Cretaceous limestones (c0)</td>
</tr>
<tr>
<td>64</td>
<td>Farsetia argyrophylla</td>
<td>12. Wadi Ruwayshid Salh, 20km E of Ruwayshid</td>
<td>0.70831</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>66</td>
<td>Gymnacris asiaticus</td>
<td>12. Wadi Ruwayshid Salh, 20km E of Ruwayshid</td>
<td>0.70831</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>67</td>
<td>Peganum harmala</td>
<td>12. Wadi Ruwayshid Salh, 20km E of Ruwayshid</td>
<td>0.70831</td>
<td>Early Tertiary limestones (t1)</td>
</tr>
<tr>
<td>70</td>
<td>Achillea fragrantissima</td>
<td>10. Burqa</td>
<td>0.70781</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>71</td>
<td>Maesa parviflora</td>
<td>10. Burqa</td>
<td>0.70788</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>72</td>
<td>Atriplex lanceolata</td>
<td>10. Burqa</td>
<td>0.70791</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>74</td>
<td>Artemisia herb-alba</td>
<td>9. Wadi el Ghusein, 74km E of Safawi</td>
<td>0.70783</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>75</td>
<td>Farsetia argyrophylla</td>
<td>9. Wadi el Ghusein, 74km E of Safawi</td>
<td>0.70784</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>76</td>
<td>Achillea fragrantissima</td>
<td>9. Wadi el Ghusein, 74km E of Safawi</td>
<td>0.70783</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>77</td>
<td>Achillea fragrantissima</td>
<td>6. Tapline Road south of Safawi</td>
<td>0.70808</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>79</td>
<td>Artemisia herb-alba</td>
<td>6. Tapline Road south of Safawi</td>
<td>0.70810</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>80</td>
<td>Peganum harmala</td>
<td>6. Tapline Road south of Safawi</td>
<td>0.70805</td>
<td>Basalt (Bb)</td>
</tr>
<tr>
<td>81</td>
<td>Trachycanthus polyanthes</td>
<td>2. Upper Wadi Zanga Ma‘in</td>
<td>0.70818</td>
<td>Cretaceous limestones (c0)</td>
</tr>
<tr>
<td>83</td>
<td>Achillea fragrantissima</td>
<td>2. Upper Wadi Zanga Ma‘in</td>
<td>0.70827</td>
<td>Cretaceous limestones (c0)</td>
</tr>
<tr>
<td>84</td>
<td>Ballota undulata</td>
<td>2. Upper Wadi Zanga Ma‘in</td>
<td>0.70816</td>
<td>Cretaceous limestones (c0)</td>
</tr>
</tbody>
</table>