Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies.

M Scully 1, S Cataland 2, P Coppo 3, J de la Rubia 4, KD Friedman 5, J Kremer Hovinga6, B Lämmle7, M Matsumoto8, K Pavenski9, E Sadler10, R Sarode 11, H Wu12, on behalf of the international working group for Thrombotic thrombocytopenic purpura (TTP)

1 Department of Haematology, UCL, Cardiometabolic programme-NIHR UCLH/UCL BRC. London, UK
2 Department of Internal Medicine, Ohio State University Hospital, USA
3 Department of Haematology, Saint-Antoine University Hospital, Paris, France
4 Department of Haematology, University Hospital Dr Peset, Valencia, Spain
5 Division of benign Haematology, Medical College of Wisconsin, USA
6 Department of Haematology, Bern University Hospital, Bern, Switzerland
7 Centre for Thrombosis and Haemostasis, University Medical Centre, Mainz, Germany
8 Department of Blood Transfusion Medicine, Nara Medical University, Nara, Japan
9 Department of Laboratory medicine, St. Michael's Hospital/Research Institute, Toronto, Canada
10 Department of Haematology, Washington University School of Medicine, St Louis, USA
11 Department of Pathology, UT Southwestern Medical Centre, Texas, USA
12 Department of Pathology, Ohio State University Hospital, USA
Essentials:

- An international collaboration provide a consensus for clinical definitions
- We standardize terminology in TMAs and thrombotic thrombocytopenic purpura.
- We define TTP, differential diagnosis, monitoring disease and response to treatment.
- We describe requirements for ADAMTS13 assays for diagnosis and follow up of TTP patients.

Abstract: 179 words
Main text: 3483

Running title: Terminology in TTP and TMAs

Key words: ADAMTS13, thrombocytopenia, diagnosis, differential, TMA, TTP

Abstract:

Background Thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS) are two important acute conditions to diagnose. Thrombotic Microangiopathy is a broad pathophysiological process that leads to microangiopathic hemolytic anemia, thrombocytopenia and involves capillary and small vessel platelet aggregates. The most common cause being disseminated intravascular coagulation (DIC), which may be differentiated by abnormal coagulation. Clinically, a number of conditions present with microangiopathic hemolytic anemia and thrombocytopenia (MAHAT), including cancer, infection, transplantation, drugs, autoimmune disease and pre eclampsia (PE) and HELLP (Hemolysis, Elevated Liver enzymes, Low Platelet count) syndrome in pregnancy. Despite overlapping clinical presentations, TTP and HUS have distinct pathophysiology and
treatment pathways. **Objectives:** Presented is a consensus document from an international working group on TTP and associated TMAs (thrombotic microangiopathies). **Methods:** The international working group has proposed definitions and terminology based on published information and consensus based recommendations. **Conclusion:** The consensus aims to aid clinical decisions but also future studies and trials, utilizing standardized definitions. It presents classification of the causes of TMA, and criteria for clinical response, remission and relapse of congenital and immune mediated TTP.

Introduction

The elucidation of the pathophysiology of TTP and HUS, in the past 20 years, has transformed our understanding of the phenotypes, genotypes and therapies for these life-threatening conditions. Work on standardization has been addressed [1], but this document aims to develop robust criteria for future clinical use, studies and trials. Clinical and pathophysiologic features of TTP, atypical Hemolytic Uremic Syndrome (aHUS) and disorders with similar presentations, their investigation and subsequent management vary. This consensus document aims to rationalize and standardize definitions. Conditions often included in the initial differential diagnosis of TTP are discussed. Definitions for remission, refractory and relapsing disease are defined. ADAMTS 13 (*a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13*) assays are central to diagnosis and are discussed. We therefore also describe the minimum requirements for validation of current and future assays.

Methods:

The development of this document involved key international, primarily clinical, experts in TTP and related TMAs. The concept was supported by the European Hematology Association, scientific working group (EHA-SWG), platelet group, who have endorsed this collaboration. Members of the group have met at key international meetings, including EHA, International Society of Thrombosis and Hemostasis (ISTH) and American Society of Hematology
(ASH) and all versions of the document have been reviewed and edited by the authors. Articles were identified by a computer-assisted search of the literature published in English using the National Library of Medicine PubMed database. The authors also undertook a focused review of the available literature. Where there was a lack of robust evidence, the international working group concluded a consensus-based approach was preferable. The conclusions are relevant to both children and adults.

Thrombotic Microangiopathy

The term TMA is a pathological term used to describe occlusive microvascular or macrovascular disease, often with intraluminal thrombus formation, but is also defined clinically by microangiopathic hemolytic anemia and thrombocytopenia (MAHAT). This does not specifically define a condition; therefore further investigations are required to identify the underlying cause for the presentation of a TMA, including TTP (Figure 1).

Pathological Features of TMAs

A number of different pathological entities have been identified, including:

(i) von Willebrand factor (VWF)-platelet thrombosis; seen with severe ADAMTS13 deficiency related to anti-ADAMTS13 antibodies or a congenital absence of ADAMTS13, the hallmark of TTP. The characteristic pathology of TTP is the presence of ultra large VWF multimers and VWF and platelet rich thrombi in arterioles and capillaries[2, 3]. Presentation with large vessel thrombosis (stroke or myocardial infarction) is believed to result from vascular injury caused by thrombosis of the vasa vasorum

(ii) Fibrin-platelet thrombosis; commonly seen in disseminated intravascular coagulation (DIC) [4] but occasionally seen in catastrophic antiphospholipid syndrome (CAPS), heparin induced thrombocytopenia (HIT), and HELLP syndrome.
(iii) **Thrombotic Microangiopathy**: characterized by endothelial swelling or disruption associated with hyalinosis or fibrinoid necrosis, usually without an inflammatory cell infiltrate. Chronic TMA is associated with myointimal proliferation resulting in concentric rings of cells and matrix surrounding small vessels (sometimes termed onion skinning), which can be indistinguishable from the effects of chronic hypertension. Intraluminal thrombosis is frequently present, but is not required for the diagnosis [5]. Examples include MAHAT caused by shiga toxin, complement dysregulation and drugs (eg gemcitabine).

(iv) **Vasculopathy/vasculitis**: changes involve not only endothelial cells and intima, may be autoimmune (e.g. lupus vasculitis [6], scleroderma renal crisis [7]) or infectious (e.g. Rocky Mountain spotted fever [8], viraemia, fungemia). An inflammatory component may be evident.

(v) **Intravascular clusters of cancer cells (tumor cell embolism)** may occur in patients with advanced cancer [9].

Clinical features of TMAs

Peripheral blood film features consistent with MAHA include fragmented red blood cells (schistocytes), polychromasia and anemia. Quantification of fragmentation/schistocytes is not reliably available and remains subjective. Laboratory evidence of hemolysis includes elevated lactate dehydrogenase (LDH), reticulocytosis, low/absent haptoglobin, and a negative direct antiglobulin test. Thrombocytopenia will be evident in the complete blood count (CBC) and on the blood film [10].

Thrombotic thrombocytopenic purpura (TTP)

Definition of TTP: MAHA with moderate or severe thrombocytopenia, with associated organ dysfunction, including neurologic, cardiac, gastrointestinal and renal involvement, although oliguria or anuric renal failure requiring renal replacement therapy is not
typically a feature [10, 11]. TTP is confirmed by a severe deficiency (<10%) of ADAMTS13 activity [2, 3]

TTP is recognized as a multi-organ process with variable clinical features. Anemia may not be immediately obvious. Thrombocytopenia is generally severe (platelet count <30 x10⁹/L), but higher platelet numbers do not exclude the diagnosis.

Presentation with renal failure requiring renal replacement is not a common feature of TTP. However, occasionally patients with multi organ failure may develop an acute kidney injury requiring renal support. Congenital TTP (cTTP) patients may present with acute renal failure [12]. cTTP cases may previously have been misclassified as HUS [13].

Acute TTP presentations may include bleeding symptoms such as bruising, hematuria or thrombotic symptoms associated with neurological or cardiac involvement. In practice, TTP is suspected in:

- Isolated MAHA
- New focal neurological symptoms, seizures or myocardial infarction (MI), with unexplained MAHA
- Prior history of TTP

Confirming a diagnosis of TTP:

Current ADAMTS 13 activity assays provide levels of sensitivity <5% or 1%. However, for the diagnosis of TTP, ADAMTS 13 activity levels < 10% are diagnostic. This is to include antibody mediated cases and cTTP, including late onset cTTP.

The diagnosis of TTP should be confirmed with ADAMTS 13 activity performed on a sample taken prior to initiation of therapy, specifically plasma-
based. Samples taken immediately following plasma therapy may give a falsely raised ADAMTS 13 activity. The presence of anti-ADAMTS 13 IgG antibodies may help confirm TTP in these situations. However, in autoimmune TTP, >75% of patients exhibit <10% ADAMTS 13 activity immediately before the next therapeutic plasma exchange session for several days after starting daily exchange therapy [14].

Assays at diagnosis should include: ADAMTS 13 activity, functional inhibitor based on mixing studies, and/or an anti-ADAMTS 13 IgG. This panel should correctly identify TTP patients in the majority of cases.

Measurement of ADAMTS 13 at regular intervals during treatment and in remission (e.g. weekly during treatment, monthly, then 3 monthly during follow-up period, extending to 6-12 monthly) may provide data in regard to the risk of relapse and persistence of subclinical disease activity [15]. ADAMTS 13 activity <10% with or without a detectable inhibitor is associated with a significant risk of relapse and can guide elective, prophylactic therapy preventing further relapse [16-18] in iTTP.

Congenital TTP (Upshaw-Schulman syndrome) (cTTP): persistent severe deficiency (<10%) of ADAMTS 13 activity, with no evidence of anti-ADAMTS 13 autoantibodies, confirmed by molecular analysis of the *ADAMTS 13* gene confirming a pathogenic homozygous or compound heterozygous mutational defect.

Persistent ADAMTS 13 activity <10% with no detectable anti-ADAMTS 13 IgG antibodies (confirmed in the acute phase and in remission after treatment) suggests a diagnosis of cTTP, especially in the following circumstances:

- Neonates presenting with thrombocytopenia, red cell fragmentation on blood film, often with hyperbilirubinemia.
- Children/ adults if there is a familial antecedent of TTP, especially in siblings from consanguineous parents.
- First TTP episode in adulthood, in particular, during pregnancy.
The diagnosis of cTTP is confirmed following mutational analysis [19-21]. Patients can present in the neonatal period, childhood or adulthood, with presentations typically associated with a trigger, such as infection, vaccination, or dehydration [22]. Pregnancy may precipitate acute manifestations in women with cTTP. Presentation of TTP in pregnancy, often associated with fetal loss, particularly in the 2nd trimester, requires exclusion of late onset cTTP [23-25].

The diagnosis is confirmed if pathogenic ADAMTS 13 mutations are identified. However, many genetic variants are of unknown significance and require expression studies. Infusion of plasma resulting in recovery of ADAMTS 13 activity and the disappearance of ADAMTS 13 activity with a half life of 2-3 days, supports the diagnosis of cTTP [26].

Immune mediated TTP (iTTP):

This defines acquired TTP and can be divided into those cases in which a precipitating cause can or cannot be confirmed. All cases require immediate therapy (TPE and steroids), but differentiating subgroups can help to tailor therapy.

Primary iTTP: This describes acquired autoimmune TTP for which there is no obvious underlying precipitating cause/disease, ADAMTS 13 activity <10% with the presence of ADAMTS 13 autoantibodies.

Primary iTTP accounts for the majority of cases of TTP. The precipitating factor or trigger for primary immune TTP has not been identified, although an underlying genetic risk in Caucasian patients has reported the presence of HLA DQ-7, HLA DRB1*11 & HLA DRB3* [27]

Secondary iTTP: This describes acquired autoimmune TTP for which a defined underlying disorder or trigger can be identified including connective tissue disease (such as systemic lupus erythematosis (SLE)), human immunodeficiency virus infection, cytomegalovirus (CMV) infection and/or a specific precipitating factor
(e.g. pregnancy, drugs). Treatment of the underlying disorder and/or removing the underlying precipitant may be required as well as standard TTP therapy. The presence of severe deficiency (<10%) of ADAMTS 13 activity and ADAMTS 13 autoantibodies confirms a diagnosis of TTP.

Secondary causes include infectious agents such as HIV [28], drugs, such as ticlodipine, quinine, simvastatin [29, 30], trimethoprim [31], pegylated interferon [32], as examples. The association is typically rare and idiosyncratic. Pregnancy or certain autoimmune diseases, such as SLE [33], Sjogren’s syndrome [34] and rheumatoid arthritis (RA) maybe associated with iTTP. Treatment of the underlying precipitant or stopping implicated drugs in conjunction with acute standard therapy (plasma exchange and immunosuppression eg steroids) may be necessary. In HIV associated TTP, plasma exchange is of value, in conjunction with HAART (highly active antiretroviral therapy) [28, 35]. Secondary iTTP constitutes only a small proportion of the overall cases of TTP.

There remain, however, a number of cases that meet the clinical criteria for TTP, but with ADAMTS 13 activity levels that are not severely deficient and in whom an alternative diagnosis cannot be determined. In these patients treatment with plasma exchange, needs to be individualized and continued only if a clear clinical benefit is obvious. Such cases should be discussed with expert centres in TTP/HUS.

Differential diagnosis of TMA

There are a number of conditions that have presenting features (both clinical and laboratory) similar to TTP. ADAMTS 13 assays are essential in their differentiation (Table 1).

Hemolytic Uremic Syndrome (HUS): HUS is defined by MAHAT and renal injury, which is the predominant feature. Thrombocytopenia may not be as severe as in TTP, and anemia at presentation can be variable (Figure 1).
Infection Associated HUS (IA-HUS), often referred to as STEC-HUS describes an infectious etiology associated typically with E. coli 0157:H7, that express Shiga toxin. The TMA presents 5-7 days after the infection with hemorrhagic colitis. E coli 0157: H7 is not the only subtype associated with infection associated HUS. Indeed other subtypes of E coli [36], Salmonella, Shigella, and Campylobacter associated HUS can present similarly.

Complement Mediated HUS (CM-HUS) usually results from defective regulation of the alternative complement pathway [37]. CM-HUS can be triggered by infection (and diarrhea may be evident at presentation), vaccinations, or pregnancy. Heterozygous mutations may be identified, affecting complement regulators including complement factors H (CFH) and I (CFI), complement factor H related protein (CFHR1, 3 and 5), CD46 (MCP), or gain of function mutations in C3 and complement factor B (CFB). CM-HUS associated with anti-complement factor H antibodies (associated with a polymorphic deletion of CFHR1) can also occur, particularly in children, and is responsive to immunosuppressive therapy [38]. CM-HUS is also described associated with defects in other genes, including THBD, which encodes thrombomodulin and with bi-allelic mutation of the DGKE gene that encodes diacyl glycerol kinase ε, which regulates diacyl glycerol activated Protein Kinase C signaling in endothelial cells. While the pathophysiology of DGKE-associated HUS is not completely understood it is not thought to directly involve disruption of complement alternative pathway regulation [39].

Mutational analysis may take weeks to be completed and in 40-50% of cases no mutations are identified [40]. Therefore, treatment decisions must be made on the basis of the clinical presentation and absence of severe ADAMTS 13 deficiency. CM-HUS may respond to plasma exchange but eculizumab, a humanized monoclonal antibody, which binds to and inhibit C5, is more efficacious, except in DGKE-associated disease [41]. In addition, new complement inhibitors are being developed. A C5 polymorphism, described in the Japanese population, is associated with a reduced response to eculizumab [42].
The clinical presentation of CM-HUS can be variable and includes:

- renal failure, MAHAT;
- renal failure with MAHA but a normal platelet count;
- chronic or progressive renal failure, without a history of MAHA;
- severe hypertension, MAHA or thrombocytopenia, with or without renal impairment, often diagnosed by renal biopsy.

In addition to molecular testing, a response to anti-complement therapy may provide confirmation of the diagnosis.

Rare secondary causes have been identified causing HUS [43](Table 1).

Definition of hematological response to treatment

Clinical Response: Sustained normalization of platelet counts above the lower limit of the established reference range (eg >150x10⁹/L) and LDH (<1.5 upper limit of normal (ULN)) after cessation of plasma exchange.

Clinical Remission: Clinical response after cessation of plasma exchange and maintained for greater than 30 days.

Clinical response and clinical remission would be associated with stabilization of parameters if end organ damage is severe or improvement in function with normalization of laboratory parameters.

Exacerbation: reduction in platelet count to below the lower limit of the established reference range (eg<150 x 10⁹/L), increased LDH, and the need to restart plasma exchange within 30 days of the last plasma exchange after a clinical response to plasma exchange.

Relapse: Fall in platelet count to below the lower limit of the established reference range (eg <150 x 10⁹/L), +/- clinical symptoms >30 days after stopping plasma exchange for an acute TTP episode, requiring re-
initiation of therapy. This is usually associated with a new increase in LDH.

In patients achieving a normal platelet count, a >10% reduction within 24 hours may represent impending exacerbation (during a period of daily plasma exchange therapy or within 30 days of stopping plasma exchange) or relapse and requires close monitoring. Exacerbation or relapse may not demonstrate the full spectrum of clinical features seen in the initial acute TTP presentation. ADAMTS 13 activity will be <10% at exacerbation/relapse, either as a persisting deficiency or a de novo deficiency after transient normalisation.

Refractory TTP: Persistent thrombocytopenia, lack of sustained platelet count increment or platelet counts <50 x10⁹/L and persistently raised LDH (>1.5 X ULN) despite 5 plasma exchange [44] and steroid treatment. This would be defined as SEVERE if the platelet count remained < 30 x 10⁹/L.

Normalization of a platelet count is typically above the lower limit of the established reference range (eg >150x10⁹/L), however, country/regional variability relating to the ‘normal range’ should be noted. LDH may not be in the normal laboratory range with clinical response or remission, but decreasing levels with increasing platelet counts is in keeping with clinical response.

The definition of refractory TTP can be challenging. Cases with an initial response, but then a reduced platelet count that is difficult to increase, may be considered refractory and this may occur after 5 plasma exchange procedures. However, the clinical condition is likely to be more stable at this point.

Intensive plasma exchange refers to increased volumes per plasma exchange eg a single volume to 1.5 plasma volume or increased frequency of plasma exchange eg twice daily. Protocols will be institution specific.
During an acute presentation, the definition of refractory disease may require an escalation in therapy. The median time to achieve a clinical response, with daily plasma exchange, is approximately 10-15 days [45]. Patients admitted to an ICU setting with neurological and/or cardiac features may require longer plasma exchange therapy [46]. Patients failing to achieve remission or whose platelet count and LDH initially improve but worsen despite on-going treatment would also be considered to have refractory disease.

Relapsing TTP:

There are a number of identified risk factors that may be associated with or precipitate a relapse of iTTP,

- ADAMTS 13 deficiency (particularly <10% activity)
- Persistent severe ADAMTS 13 deficiency in remission
- Persistent anti-ADAMTS 13 antibodies in remission

or congenital disease

- Pregnancy
- Infection/live vaccinations
- Drugs including drugs of abuse eg. cocaine, alcohol

In iTTP, a severely reduced ADAMTS 13 activity persisting during remission is associated with relapse, particularly when associated with inhibitory autoantibodies [47]. Therapy should be considered to clear antibodies and normalize ADAMTS 13 activity, in patients felt to be at high risk for relapse [16, 18]. Pregnancy [48], infections and live vaccinations in particular may precipitate an acute episode of cTTP. Often, an initial acute TTP episode, even though occurring only in adulthood, is followed by recurrent episodes [49].

Factors relating to severity/prognosis of TTP
- Presence of Anti-ADAMTS 13 IgG antibody associated with severe ADAMTS 13 deficiency
- Raised troponin at presentation
- Presence of neurological features
- Older age
- Low ADAMTS 13 antigen at presentation

There are few predictors of disease severity, but necessity of intubation and ventilation, older age, neurological features [50] and cardiac symptoms and/or raised troponin,[51] with high inhibitor levels/IgG autoantibodies to ADAMTS 13 are key predictors. Ethnicity and ADAMTS 13 activity <10% are associated with exacerbation and relapse respectively. Non Caucasians have increased exacerbation and relapse, but reduced mortality. Inhibitor or anti-ADAMTS 13 IgG levels predicting the severity of disease have not been defined [52], but levels (anti-ADAMTS 13 IgG >50% or > 2 BU/ml) are associated with a poorer outcome [51]. Low ADAMTS 13 antigen level at presentation may be associated with worse clinical outcome in iTTP [53]. Routine laboratory parameters such as platelet count, LDH, and hemoglobin are not predictive of severity, although failure to improve with therapy and hence refractory disease is associated with a worse outcome.

ADAMTS 13 assays:

ADAMTS 13 activity: determines the amount of functional ADAMTS 13 via direct or indirect measurement of VWF cleavage. Current methods include FRETS-VWF73, chromogenic VWF-73 [54], chromogenic VWF-73 [55], FRETS-rVWF71 [56] FRET-VWF86 and SELDI-TOF mass spectrometry [57]. A standard curve using pooled normal plasma (PNP) for each assay plus control samples (e.g. plasma of a cTTP patient for a low range sample; the WHO 1st International Standard ADAMTS 13 [58]), which have undergone in-house calibration.
ADAMTS 13 antigen: determines the amount of ADAMTS 13 protein in plasma. Low levels appear to be associated with poor prognosis [53].

Anti-ADAMTS 13 antibodies: usually IgG but IgM and IgA may be also relevant. Anti-ADAMTS 13 antibodies are measured by ELISA, Western blot or immunoprecipitation. ADAMTS 13 antibodies by ELISA may be seen in 5%-10% of healthy individuals however, this may be manufacturer/assay dependent [59]. ELISA or Western blotting using recombinant ADAMTS 13 to detect anti-ADAMTS 13 in patient’s plasma can assess the presence of anti-ADAMTS 13 antibodies. In-house or commercially available assays should have appropriate validation and controls to include low, medium and high antibody titres.

ADAMTS 13 inhibitor assays: identifies and quantitates anti-ADAMTS 13 antibodies that functionally inhibit ADAMTS 13 in vitro. Functional ADAMTS 13 inhibitors are assessed in classical Bethesda-like mixing studies. Samples are heat-inactivated for 30 minutes at 56°C to abolish endogenous ADAMTS 13, before mixing, at various dilutions, with PNP. After incubation at 37°C for 2 hours, residual ADAMTS 13 activity is measured and the residual activity transformed in Bethesda units, (1BU/ml of inhibitor inhibits 50% of normal plasma ADAMTS 13). For routine purposes it is usually sufficient to titrate up to 2 Bethesda units/ml.

Factors affecting ADAMTS 13 levels

Severe hemolysis with marked hyperbilirubinemia [60] or severe lipemia may give falsely low ADAMTS 13 activity results, particularly when using fluorogenic detection e.g. FRETS [54]; Free hemoglobin in plasma from intravascular hemolysis can also inhibit ADAMTS 13 activity [61].
There is good concordance between assays in the range of severe deficiency of ADAMTS 13 (defined as either <5% or <10%). However assay conditions can affect results. There are numerous variables in quantification of ADAMTS 13 activity levels among different platforms or when performed in different laboratories. Further studies involving large series of plasma samples are needed to evaluate the newly developed commercial kits.

Pre-analytic aspects: specimen type and acceptability criteria

ADAMTS 13 activity can be assessed in citrated plasma, serum or lithium-heparin plasma. While extensive comparisons between these are missing, small series demonstrate equality [62]. EDTA plasma is not suitable for ADAMTS 13 activity testing, as it is an irreversible inhibitor of ADAMTS 13 activity.

Evaluation of assays

- Detection (sensitivity) limit of the method:

 . For ADAMTS 13 activity measurement (defined as the lowest activity that is distinguishable from buffer or heat inactivated plasma respectively): this should be ≤5%, but preferably < 1%.

 . For the detection of inhibitors: difficult to standardize, but a negative control and at least 2 positive antibody controls, which have demonstrated reproducibility with the technique, should be considered. The detection limit is approximately 0.4-0.6 BU/ml.

- Precision of the method: intra-assay reproducibility (within series), inter-assay reproducibility (between run in one given laboratory and also inter-laboratory precision): should have CVs of <10%.

In conclusion, we have developed definitions for TTP and associated TMAs that we hope will promote uniformity in publications, associated studies and clinical trials. The field is ever expanding and the group will be required to undertake a review again in future years.
Acknowledgment

The development of this document involved key international, primarily clinical, experts involved with TTP, HUS and related disorders. The concept was supported by the EHA-SWG platelet group, chaired by the late Dr Roberto Stasi (Rome, Italy and London, UK). Thanks to Professor HM Tsai, Taiwan, for his valuable contribution and review of the manuscript.

Authors included in the International working Group: D Gale (London, uk), Y Fujimura (Nara, Japan), V McDonald (London, UK), F Peyvandi (Milan, Italy), I Scharrer (Mainz, Germany), A Veyradier (Paris, France), JP Westwood (London, UK) have all contributed to this work, but because of limitations of the number of authors, they could not be included in the main authorship in this paper.

Author Contribution: None of the authors have a conflict of interest in relation to this paper.

Concept and design: M Scully, S Cataland, B Lämmle, V McDonald, H Wu

Writing and revision of content: M Scully , S Cataland , P Coppo , J de la Rubia , K Friedman , J Kremer Hovinga, B Lämmle, M Matsumoto , K Pavenski, E Sadler, R Sarode , H Wu, D Gale, JP Westwood

References

26 Furlan M, Robles R, Morselli B, Sandoz P, Lammle B. Recovery and half-life of von Willebrand factor-cleaving protease after plasma therapy in

<table>
<thead>
<tr>
<th>Disease</th>
<th>Summary of Disease</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTP</td>
<td>Acute haematological emergency, requiring prompt diagnosis and treatment. More likely to have neurological/cardiac features-but a multi system disorder.</td>
<td>ADAMTS 13 measured for definitive diagnosis. Plasma exchange is the mainstay of treatment, typically additional immunomodulating therapy required in iTTP.</td>
</tr>
<tr>
<td>HUS</td>
<td>The TMA presents 5-7 days after the infection with haemorrhagic colitis.</td>
<td>Confirmation of infection is serological and/PCR.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A. IA-HUS</td>
<td>CM-HUS can be triggered by infection (and diarrhoea maybe present at presentation), vaccinations, or pregnancy.</td>
<td>Diagnosis may be confirmed by complement mutations eg CFH, CFI, MCP, CFB, C3 or anti CFH antibodies. Homozygous or compound heterozygous diacylglycerol kinase (DGKE) mutations typically do not respond to current complement inhibitors [39] Treatment decisions must be made on the basis of the clinical presentation and absence of severe ADAMTS13 deficiency. A response to anti-complement therapy may provide</td>
</tr>
</tbody>
</table>
C. Streptococcus pneumoniae

This is seen almost exclusively in young children. Typically present with pneumonia. Incidence reduced since polyvalent vaccine (in some countries). Have a DAT positive haemolytic anaemia.

Thomsen-Friedenreich cryptoantigen, present on red cells, platelet, glomeruli and hepatocytes are exposed by neuramindase, produced by all subtypes of Streptococcus pneumoniae. The TF antigen interacts with IgM antibodies, resulting in agglutination. Treatment is supportive, but still washed blood products may be requested [63].

confirmation of the diagnosis.
<table>
<thead>
<tr>
<th>D. Cobalamin C deficiency</th>
<th>A rare cause of HUS that is caused by recessive mutations of the methylmalonic aciduria (cobalamin deficiency) cblC type, with homocystinuria (MMACHC) gene. Presentation is typically within the first year of life [64].</th>
</tr>
</thead>
</table>
| **Connective tissue disease** | MAHAT may be a primary feature. Further systemic features/laboratory testing confirm the diagnosis
Autoimmune screen, tissue biopsy eg SLE, scleroderma, antiphospholipid syndrome, vasculitis (eg ANCA) |
<table>
<thead>
<tr>
<th>Transplantation, either solid organ or bone marrow/ hematopoietic stem cell (HSC):</th>
<th>May present with MAHAT with or without renal involvement. It is typically associated with immunosuppressive therapy, such as Tacrolimus, Ciclosporin A, underlying opportunistic infections (eg CMV, Adenovirus, Aspergillus) or graft-versus-host disease [65], HSC transplant associated TMAs do not have severe ADAMTS13 deficiency (ie <10%). Complement alternative pathway dysregulation may be involved in the pathogenesis of HSCT-TMA. In patients developing TMA post renal transplantation, consideration should be given to possible CM-HUS, which may have been the cause of the initial renal failure and the failed transplanted kidney [66].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disseminated intravascular Coagulation (DIC):</td>
<td>DIC is associated with abnormalities in routine coagulation and CBC screens [67]. DIC is typically due to an underlying precipitant such as sepsis, malignancy, haematological disorders, obstetric complications or trauma.</td>
</tr>
<tr>
<td>Pregnancy associated TMAS</td>
<td>Preeclampsia and HELLP occur in the second half of pregnancy or early post partum.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>A. HELLP syndrome</td>
<td>There are no specific diagnostic clinical or laboratory factors. ADAMTS13 activity is typically normal. HELLP can be divided into type 1, 2 and 3 based on the platelet count (≤50 x10⁹/L, 50-100 x10⁹/L, 100-150 x10⁹/L) [69].</td>
</tr>
<tr>
<td>B. Pre-eclampsia</td>
<td>Defined as de novo hypertension (>140/90 mm Hg) and proteinuria (>0.3 g per 24 hours) after 20 weeks of gestation.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Drugs</td>
<td>Ticlodipine [70] may be associated with autoantibodies to ADAMTS 13, case reports with quinine [71], simvastatin, trimethoprim or interferon. Clopidogrel is not associated with TTP. TMA may occur with gemcitabine, bleomycin, and mitomycin. VEGF inhibitors were associated with features of TMA reminiscent of HUS [72].</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>Caused by alcohol excess, bile duct obstruction or possibly an autoimmune precipitant [73].</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Malignancy</td>
<td>In patients with MAHAT for whom a severe deficiency of ADAMTS13 activity is not confirmed, tumour markers and radiological investigations should be considered [75].</td>
</tr>
</tbody>
</table>

Table 1: Summary of characteristics associated with conditions presenting with microangiopathic haemolytic anaemia and thrombocytopenia (MAHAT)

Figure 1: Differential diagnosis of thrombotic Microangiopathies presenting with MAHAT

Key: MAHA: microangiopathic haemolytic anaemia; MAHAT: MAHA and thrombocytopenia; TTP: thrombotic thrombocytopenic purpura; IA-HUS: Infection associated HUS, PCR: polymerase chain reaction