UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

SLC2A9 is a high-capacity urate transporter in humans

Caulfield, MJ; Munroe, PB; O'Neill, D; Witkowska, K; Charchar, FJ; Doblado, M; Evans, S; ... Cheeseman, C; + view all (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Medicine , 5 (10) , Article E197. 10.1371/journal.pmed.0050197. Green open access

[thumbnail of journal.pmed.0050197.pdf]
Preview
PDF
journal.pmed.0050197.pdf

Download (495kB)

Abstract

BackgroundSerum uric acid levels in humans are influenced by diet, cellular breakdown, and renal elimination, and correlate with blood pressure, metabolic syndrome, diabetes, gout, and cardiovascular disease. Recent genome-wide association scans have found common genetic variants of SLC2A9 to be associated with increased serum urate level and gout. The SLC2A9 gene encodes a facilitative glucose transporter, and it has two splice variants that are highly expressed in the proximal nephron, a key site for urate handling in the kidney. We investigated whether SLC2A9 is a functional urate transporter that contributes to the longstanding association between urate and blood pressure in man.Methods and FindingsWe expressed both SLC2A9 splice variants in Xenopus laevis oocytes and found both isoforms mediate rapid urate fluxes at concentration ranges similar to physiological serum levels (200-500 mu M). Because SLC2A9 is a known facilitative glucose transporter, we also tested whether glucose or fructose influenced urate transport. We found that urate is transported by SLC2A9 at rates 45- to 60-fold faster than glucose, and demonstrated that SLC2A9-mediated urate transport is facilitated by glucose and, to a lesser extent, fructose. In addition, transport is inhibited by the uricosuric benzbromarone in a dose-dependent manner (K-i = 27 mu M). Furthermore, we found urate uptake was at least 2-fold greater in human embryonic kidney (HEK) cells overexpressing SLC2A9 splice variants than nontransfected kidney cells. To confirm that our findings were due to SLC2A9, and not another urate transporter, we showed that urate transport was diminished by SLC2A9-targeted siRNA in a second mammalian cell line. In a cohort of men we showed that genetic variants of SLC2A9 are associated with reduced urinary urate clearance, which fits with common variation at SLC2A9 leading to increased serum urate. We found no evidence of association with hypertension (odds ratio 0.98, 95% confidence interval [CI] 0.9 to 1.05, p > 0.33) by meta-analysis of an SLC2A9 variant in six case-control studies including 11,897 participants. In a separate meta-analysis of four population studies including 11,629 participants we found no association of SLC2A9 with systolic (effect size -0.12 mm Hg, 95% CI -0.68 to 0.43, p = 0.664) or diastolic blood pressure (effect size -0.03 mm Hg, 95% CI -0.39 to 0.31, p = 0.82).ConclusionsThis study provides evidence that SLC2A9 splice variants act as high-capacity urate transporters and is one of the first functional characterisations of findings from genome-wide association scans. We did not find an association of the SLC2A9 gene with blood pressure in this study. Our findings suggest potential pathogenic mechanisms that could offer a new drug target for gout.

Type: Article
Title: SLC2A9 is a high-capacity urate transporter in humans
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pmed.0050197
Publisher version: http://dx.doi.org/10.1371/journal.pmed.0050197
Language: English
Additional information: © 2008 Caulfield et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords: Serum uric-acid, Metabolic syndrome, Glucose transporters, Proximal tubule, Blood-pressure, Hypertension, Kidney, Glut9, Expression, Rat
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health > Epidemiology and Public Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics > Clinical Epidemiology
URI: https://discovery.ucl.ac.uk/id/eprint/154430
Downloads since deposit
119Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item