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Abstract 

Corticosteroids have long been used to treat intraocular inflammation by intravitreal 

injection. We describe dexamethasone loaded poly-DL-lactide-co-glycolide (PLGA) 

microparticles that were fabricated by thermally induced phase separation (TIPS). 

The dexamethasone loaded microparticles were evaluated using a two-compartment, 

in vitro aqueous outflow model of the eye (PK-Eye) that estimates drug clearance 

time from the back of the eye via aqueous outflow by the anterior route. A 

dexamethasone dose of 0.20 ± 0.02 mg in a 50 l volume of TIPS microparticles 

resulted in a clearance t1/2 of 9.6 ± 0.3 days using simulated vitreous in the PK-Eye. 

Since corticosteroids can also clear through the retina, it is necessary to account for 

clearance through the back of the eye. Retinal permeability data, published human 

PK in vivo times and the PK-Eye clearance times were then used to establish in vitro 

in vivo correlations (IVIVCs) for intraocular clearance times of corticosteroid 

formulations. A t1/2 of 48 hours was estimated for the dexamethasone-TIPS 

microparticles, which is almost 9 times longer than that reported for dexamethasone 

suspension in humans. The prediction of human clearance times of permeable 

molecules from the vitreous compartment can be determined by accounting for drug 

permeation and determining the experimental clearance via the anterior aqueous 

outflow pathway using the PK-Eye.  
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1. Introduction 

Intravitreal (IVT) corticosteroids are routinely used in the treatment of sight 

threatening conditions in the back of the eye including diabetic macular edema 

(DME), proliferative vitreoretinopathy, endophthalmitis and uveitis. Administration by 

IVT injection allows the steroids to bypass the blood-retinal barrier (BRB), leading to 

higher drug concentrations close to the site of action in the posterior cavity.1 

Common corticosteroids used to treat ophthalmic conditions include dexamethasone, 

triamcinolone acetonide (TA) and fluocinolone acetonide (FA). Unfortunately, low 

molecular weight, permeable molecules including corticosteroids that are dissolved in 

the vitreous rapidly clear from the eye displaying a relatively short t1/2 that is of a 

matter of hours (i.e. 3-7 hours).2–5 Frequent IVT injections to maintain therapeutic 

drug concentrations can increase the risk of serious adverse reactions including 

retinal detachment, endophthalmitis and vitreous hemorrhage.6  

Steroid suspensions have long been used clinically in an effort to reduce the 

number of IVT injections. Triamcinolone acetonide (TA) is available as a 

preservative-free injectable suspension for intraocular use (Triesence®, Alcon). 

Kenalog® is a TA injectable suspension that is indicated for intramuscular and intra-

articular administration; and has been used off-label for many years7–9 for treating 

both anterior and posterior segment ocular diseases. To further increase the duration 

of action, long-acting corticosteroid implants10 are now clinically available.3,10–15 

Corticosteroids16 are potent, anti-inflammatory agents that are generally stable, 

poorly soluble and slowly dissolving and so are ideal drug substances for use in 

longer acting dosage forms. The volume of the vitreous cavity is approximately 4.2 

mL, so non-sink conditions can be exploited to prolong the release kinetics of IVT 

implants of corticosteroids. Ozurdex® (Allergan, Inc) is a poly(lactic-co-glycolic acid) 

(PLGA) implant, which releases dexamethasone (0.7 mg) over a 6-month period.17  

Formulating a corticosteroid in a PLGA matrix allows better control of drug 

release compared to the dissolution of a free drug suspension. Interestingly, 

Ozurdex® displays a similar PK profile between vitrectomised and non-vitrectomised 

eyes18 whereas suspensions of TA clear more quickly in vitrectomised eyes.19 

However, Ozurdex® is a single depot plug, so there is limited flexibility in reducing the 

duration of action to less than 6-months. Thus, in an effort to exploit the controlled 

release properties of PLGA for IVT administered dexamethasone with the possibility 

of varying the dose and duration of action, we describe the preparation of 

dexamethasone-PLGA microparticles prepared by thermally induced phase 

separation (TIPS).20  
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TIPS has been used to fabricate porous drug vehicles for applications in 

chronic wound therapy, drug delivery and tissue engineering.21 The technique used 

to produce TIPS microsparticles is rapid and provides high encapsulation efficiency 

generating spherical particles with rigid outer surfaces and longer shelf-life.22 The 

encapsulation yield for microparticles containing particulate infliximab was 60.4 ± 

5.9% compared with 37.9 ± 14.4% for microspheres containing an emulsion of 

infliximab.21 Degradable polymeric microparticles can enable a prolonged therapeutic 

concentration to be available while the porous particle surface aids resorption and 

reduces the likelihood of autocatalysis associated with solid microparticles. PLGA 

depots are biodegradable which avoids the need for surgical removal from the eye 

after drug depletion.23 Porous PLGA microparticles are ideal for drug delivery 

because the amount of polymer per microparticle is reduced compared with solid 

microparticles of an equal size.  

A two-compartment in vitro model of the eye, known as the PK-Eye that 

predicts human clearance times caused by the aqueous outflow pathway24 was used 

to determine drug release kinetics of the dexamethasone TIPS microparticles. 

Aqueous outflow (2.0 to 2.5 μL/min)25–29 is the main cause of mass transfer within the 

eye. The aqueous nourishes the avascular lens and cornea with outflow passing 

through the front of the eye. The PK-Eye provides a good estimate of human 

clearance times from the vitreous cavity for protein therapeutics and non-permeable 

low molecular weight molecules from suspension and depots.24 Permeable low 

molecular weight molecules are eliminated from the vitreous cavity by both aqueous 

outflow and permeation through the retina via the retinal-choroid-sclera (RCS) 

pathways. Utilising the PK-Eye to estimate the clearance of low molecular weight, 

retinal permeable compounds such as steroids requires that we combine in vitro 

outflow clearance data from the PK-Eye, published drug permeability and in vivo 

human data, when available, to develop in vitro in vivo correlations (IVIVC). The goal 

of the work described herein was also to develop IVIVC methodology, which can be 

used as a surrogate for in vivo ocular pharmacokinetic studies during preclinical 

optimisation to develop sustained release ocular preparations.  

2. Experimental 

2.1 Materials and instrumentation 

Sodium hyaluronate (solubility: 5.0 mg/mL; 1.8 MDa) was purchased from Aston 

Chemicals (Aylesbury, UK) and agar (solubility: 15.0 mg/mL) was obtained from 

Fluka Analytical (Gillingham, Dorset, UK). Visking dialysis membrane tubing 

(molecular weight cut off (MWCO) 12–14 kDa) was purchased from Medicell 
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International Ltd. (London, UK). PLGA (75:25, Purasorb PDLG 7507 0.63dL/g) was 

obtained from Purac Biomatericals (Gorinchem, The Netherlands). Dexamethasone, 

dimethyl carbonate (DMC >99.9% purity) and dimethylsulphoxide (DMSO) were 

obtained from Sigma-Aldrich (Poole, UK). 

A 16-channel Ismatec peristaltic pump (Michael Smith Engineers Ltd., 

Woking, Surrey, UK) was used to generate fluid flow into the PK-Eye. For 

homogenisation, a T8 Ultra-Turrax homogeniser was used (Ike-Werke, Staufen, 

Germany). Microparticles were fabricated using a Nisco encapsulator Var D unit, 

fitted with a stainless steel sapphire tipped nozzle with a 150 µm orifice (Nisco 

Engineering, Zurich, Switzerland). Scanning electron microscopy (SEM) was 

achieved with a 7401-high resolution Field Emission Scanning Electron Microscope 

(Jeol, Tokyo, Japan). Lyophilisation was conducted using an Edwards Micro Modulyo 

freeze dryer (Thermo Fisher Scientific, Asheville, NC). All analyses were undertaken 

using an Agilent 1200 series HPLC (Agilent Technologies Inc, Santa Clara, CA, 

USA) equipped with Chemstation software (Agilent) and a reverse phase Synergi 

Polar-RP C18, 4 μm, 15 cm column (Phenomenex, Macclesfield, UK). 

2.2 Preparation of the PK-Eye for in vitro studies 

2.2.1 Design of the model 

The design and use of the in vitro PK-Eye model has been previously reported.24 

Briefly, the PK-Eye is fabricated from plastic (polyacrylate) with anterior (~0.2 mL) 

and posterior (~4.2 mL) cavities integrated within the model. A washer with a Visking 

dialysis membrane (MWCO 12-14 kDa) separates the two cavities. The direction of 

flow and the presence of the dialysis membrane only allows solubilised drug to pass 

from the posterior compartment into the anterior compartment. The PK-Eye model 

consists of an inlet port in the posterior cavity for continuous aqueous inflow 

(phosphate buffered saline, PBS pH 7.4) at a rate of 2.0 μL/min and an outlet port 

from the anterior cavity for sample collection. An injection port is present in each 

cavity with a diameter of 2.0-3.0 mm to allow administration of the desired 

formulation into the model. The model was placed in a pre-heated oil bath at 37°C to 

conduct release studies at physiological temperature. 

2.2.2 Preparation of simulated vitreous 

Agar (0.4 g) and hyaluronic acid (HA) (0.5 g) were each separately mixed in 100 mL 

of stirred hot water.30 The agar solution was boiled to completely solubilise the agar. 

After boiling, the hot agar solution was mixed with HA and stirred to give a 

homogenous mixture to which a few drops of 0.02% sodium azide were added. The 

solution was left to cool for 24 hours at ambient temperature (~25°C) and formed into 
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a gel-like consistency. The simulated vitreous was then transferred to the PK-Eye 

model via the injection port in the posterior cavity. This combination of agar and HA 

was found to have a dynamic viscosity of ~0.6 Pa.s,24 similar to average human 

vitreous viscosity, ~0.5 Pa.s.31 

2.3 Preparation of dexamethasone-PLGA TIPS microparticles 

PLGA TIPS microparticles were prepared as previously described.21 A 10% weight 

solution of PLGA (75:25) in DMC (0.5 g PLGA in 5 mL DMC) was prepared with 

magnetic stirring. Dexamethasone (20.0 mg) was dissolved in DMSO (100 µL) and 

this solution was added to a solution of PLGA in DMC (5.0 mL, therefore, 0.04 mg 

dexamethasone per mg of PLGA). The solution was mixed for approximately 10 

seconds using a T8 Ultra-Turrax homogeniser. 

Polymer solution was fed into the encapsulator unit via a syringe at a flow 

rate of 1.5 mL/min. The vibration frequency of the nozzle was kept at 1.80 kHz with 

70% frequency amplitude. Liquid polymer droplets were collected in a polyethylene 

beaker containing liquid nitrogen (500 mL). The frozen polymer droplets from the 

liquid nitrogen were transferred to 50 mL polypropylene containers. Residual DMC 

solvent in the frozen polymer droplets was removed by lyophilisation for 24 hours. 

Therefore, 165 mg of TIPS-dexamethasone PLGA particles contained 6.6 mg of 

dexamethasone. The microparticles used for the experiments were sieved to a size 

range of 250-425 µm and mixed with GranuGEL
®
 (1650 µL) to produce a paste 

containing 165 mg dexamethasone-loaded particles (therefore, 100 µL of 

GranuGEL
®
 contained 0.4 mg of dexamethasone).  

2.4 Characterisation of TIPS microparticles 

2.4.1 Scanning electron microscopy (SEM) 

TIPS microparticles were mounted onto aluminium stubs via adhesive carbon tabs, 

sputter coated with 1-2 nm of gold/palladium alloy for 3 minutes in an argon 

atmosphere using a high resolution ion beam coater (Gatan Model 681) and viewed 

by SEM. 

2.4.2 Encapsulation and in vitro drug release studies with the PK-Eye 

Equivalent amounts of dexamethasone loaded TIPS microparticles were transferred 

to 1.0 mL syringes and pressure was applied to the syringe to pack the particles. To 

obtain dexamethasone loading, the dried, packed dexamethasone TIPS 

microparticles in 0.05 mL volume were then transferred to a glass vial containing 

DMSO (2.5 mL) and vortexed until completely dissolved. The solution was then 

diluted 10 times in PBS, pH 7.4. The mixture was sonicated for 15 minutes and the 
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resulting solution was filtered using a 0.22 µm filter. Dexamethasone concentration 

was determined with HPLC (240 nm). 

The PK-Eye models were assembled using a fresh Visking membrane for 

each model. The posterior cavity of the model was filled with the appropriate vitreous 

substitute (PBS, pH 7.4 or simulated vitreous) and the anterior cavity of the model 

was filled with PBS. Negative controls were conducted with PK-Eye models with the 

vitreous substitutes containing no particles.  

Dexamethasone is poorly water soluble (0.1 mg/mL), so a dexamethasone 

suspension was prepared in water (0.2 mg / 50 µL) to enable direct comparison of 

the clearance profiles of the suspension and TIPS preparations. Dexamethasone 

suspension and dry PLGA TIPS microparticles were injected into the posterior cavity 

of the PK-Eye model. The aqueous outflow was collected from the anterior cavity and 

was used to determine drug concentrations at different time points. Each sample was 

filtered using a 0.22 μm filter before HPLC analysis. 

2.4.3 Dexamethasone quantification by high performance liquid chroma-

tography (HPLC-UV) 

A wavelength of 240 nm was used to detect dexamethasone. The mobile phase 

comprised 0.1 % TFA in water and acetonitrile with a gradient of water:acetonitrile 

changing from 4:1 to 3:7 over 20 min. An injection volume of 10.0 μL and a flow rate 

of 1.0 mL/min were used. Dexamethasone showed a retention time of 9.3 minutes. 

The calibration curve (R2 value of 0.998) was prepared with dexamethasone in PBS, 

pH 7.4 with a concentration range of 0.39 μg/mL to 100 μg/mL. 

2.5 Establishing in vitro-in vivo correlations (IVIVC)  

Use of the PK-Eye model to predict the in vivo drug clearance from the posterior 

compartment was performed with suspensions of two model drugs; triamcinolone 

acetonide (TA) (solubility 25 μg/mL)24 and dexamethasone (0.1 mg/mL). TA (4.0 mg) 

displayed constant concentrations (21-30 μg/mL) in the posterior cavity of the PK-

Eye model.24 In vivo drug clearance data from the posterior compartment was 

obtained from published values obtained from humans.19 The PK-Eye overestimates 

the in vivo clearance times of small molecular weight drugs due to the lack of the 

RCS pathway in the model. Therefore, drug permeation data across the RCS 

pathway was used with anterior aqueous outflow clearance time from the PK-Eye to 

predict in vivo drug clearance. Details are provided in results and discussion.  

2.6 Data analysis 

All data reported were conducted in triplicate (n=3) and results are presented as the 

mean and standard deviation (±STD). The data obtained were plotted using 
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OriginPro 9.1 (software, Origin lab cooperation, USA). Half-life (t1/2) values were 

calculated according to the best fitting model in OriginPro. First-order kinetic rate 

constants (k) were derived from the mono-exponential curve and t1/2 values were 

calculated using the equation: 0.693/k.   

3. Results and Discussion  

3.1 Characterisation of TIPS microparticles 

3.1.1 Scanning electron microscopy (SEM) 

Spherical dexamethasone-loaded TIPS microparticles were observed within the 

sieved size range of 250-425 μm. The surface of the microparticles was smooth, 

peppered with pores that were generally distributed in chevron-like patterns created 

by the freezing of the DMC solvent during fabrication process.32 The pore size at the 

surface of the microparticles was approximately 0.2 - 1.0 μm. A large pore was 

visible on the surface of some of the microparticles, which is a typical feature of TIPS 

microparticles.32 At higher magnification, amorphous features embedded in the 

polymer were evenly distributed across the surface of the microparticles, which were 

likely to consist of dexamethasone since they were not present in unloaded control 

microparticles.   

Figure 1 

3.1.2 Encapsulation and in vitro drug release studies with the PK-Eye 

The loading efficiency of the dexamethasone loaded TIPs microparticles was 

determined prior to evaluation in the PK-Eye. Approximately 0.20 ± 0.02 mg of 

dexamethasone was present in a volume of 50 μL packed dexamethasone TIPS 

microparticles following the method listed on section 2.4.2 (Figure S1). The 

dexamethasone TIPS microparticles were injected into the posterior cavity of the PK-

Eye (Figure S2) using a 1.0 mL syringe fitted with a 23G needle.  

Figures S1-2 

Dry dexamethasone TIPS microparticle formulations and dexamethasone 

suspension (control) were injected at an equivalent dose (0.2 mg) into the posterior 

cavity of the PK-Eye containing simulated vitreous at 37°C (Table 1 and Figure 2). 

The dexamethasone collected from the model outflow was quantified by HPLC (240 

nm UV ansorbance). Dexamethasone TIPS microparticles (0.2 mg) showed a t1/2 of 

9.6 ± 0.3 days in simulated vitreous (Figure 2A). The Cmax and lowest concentration 

of solubilised dexamethasone detected were 9.3 ± 0.1 μg/mL (21 hours) and 1.0 ± 

0.1 μg/mL (425 hours) respectively. After 160 hours, a nearly constant concentration 

of 1.9 ± 0.7 μg/mL of dexamethasone was present from the outflow of the model. By 
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500 hours (~3 weeks), 78.8 ± 1.2 % of the dexamethasone dose had been released. 

The average amount of solubilised dexamethasone released from the anterior cavity 

ranged from ~1.0-3.0 μg/mL from weeks 1 to 3.  

In contrast, an equivalent dose of dexamethasone suspension almost 

completely cleared within 100 hours in simulated vitreous (Figure 2B) from the PK-

Eye. The dexamethasone Cmax was 34 μg/mL at 17.6 hours and elimination followed 

first order kinetics with a t1/2 of 1.0 ± 0.1 days. Similar drug release kinetics was 

observed when half the dose of the dexamethasone suspension (0.1 mg, 50 μL) was 

evaluated in the PK-Eye (t1/2: 1.2 ± 0.03 days, Table 1). 

Table 1 and Figure 2 

Dexamethasone-TIPS microparticles (50 μL) were then evaluated in the PK-

Eye using PBS (pH 7.4) in the posterior cavity (Figure 3) and a t1/2 of 3.1 ± 0.2 days 

was observed. The Cmax and the lowest concentration of solubilised dexamethasone 

detected were 17.7 ± 8.9 μg/mL (~21 hours) and 1.0 ± 0.2 μg/mL (~376 hours) 

respectively. Dexamethasone was still releasing slowly under these conditions with 

~99.0 ± 0.4% being released in 3 weeks. A higher burst effect was seen with these 

particles in PBS compared to simulated vitreous. 

The release of dexamethasone in PBS was significantly faster than in 

simulated vitreous. PLGA undergoes degradation through hydrolysis of its ester 

linkages to lactic and glycolic acid units, and drug release occurs by both diffusion 

and erosion. A higher viscosity medium could slow drug diffusion after release from 

the polymer matrix resulting in longer time periods for the drug to become distributed 

within the vitreous cavity of the PK-Eye. In contrast, the dexamethasone suspension 

(0.1 mg, 50 μL) displayed a t1/2 of 1.3 ± 0.1 days in PBS, which was similar to what 

was observed in simulated vitreous (t1/2 1.2 ± 0.03 days) (Table 1). Simulating the 

composition of physiological fluids in drug release studies improves the capacity to 

determine IVIVCs for modified release delivery systems, as has been observed in 

oral drug delivery,33 so the choice of simulated vitreous is important for matrix 

formulations rather than more simple suspensions that simply dissolve.  

Figure 3 

3.2 Drug clearance in vitro-in vivo correlations (IVIVCs)  

In vitro release studies of ocular formulations have traditionally been conducted in 

water baths with constant agitation, dialysis membranes on a shaker stand or using 

USP 4 flow-through cell dissolution apparatus.34–36 The drawback with these in vitro 

methods is that they do not mimic the human eye in terms of dimensions, 

compartmentalisation and aqueous outflow. Ocular aqueous outflow plays a major 
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role in drug clearance. The PK-Eye was designed to specifically mimic the aqueous 

outflow from the eye which is critical to estimate the clearance of non-permeable 

molecules such as therapeutic proteins.24 The PK-Eye model is also thought to be of 

value for estimating the dissolution rates of suspensions and the release profiles of 

implants from the vitreous cavity. 

Drug elimination from the vitreous cavity occurs through the RCS pathway 

and through the anterior hyaloid membrane into the anterior chamber for rapid 

elimination by aqueous outflow into the conjunctiva. Most low molecular weight drugs 

are permeable and can clear by both the RCS and anterior routes. Large molecular 

weight drugs such as proteins, which are also charged molecules, are not RCS 

permeable, so tend to clear by the anterior outflow route only. Proteins diffuse more 

slowly in the vitreous liquid compared to low molecular weight drugs and proteins 

tend to display t1/2 over a period of days (i.e. 5-10 days). Low molecular weight non-

permeable drugs that are cleared only through the aqueous route will display a 

longer t1/2 (15-30 hours) compared to permeable drugs that are cleared by both the 

anterior and RCS pathways (2-4 hours).37  

Since the PK-Eye only accounts for the anterior clearance pathway, 

evaluation of RCS permeable, molecules such as dexamethasone will result in an 

over estimation of clearance times. Therefore, the clearance times of 

dexamethasone from the TIPS microparticles is an overestimation. It is necessary to 

integrate in vitro clearance data from the PK-Eye with an estimation of clearance by 

the RCS pathway by utilising the permeability characteristics of dexamethasone to 

determine human ocular clearance times. (Kenalog®), a TA suspension (40 mg/mL) 

has long been used clinically, so TA was first used to confirm if the PK-Eye could be 

used to estimate the human clearance time for a molecule that clears by both the 

RCS and anterior pathways.  

3.2.1 Correlating TA clearance from the PK-Eye to human clearance  

Human in vivo elimination t1/2 of IVT administered TA suspension (4.0 mg) is about 

15.6 days (~374 hours),19 whereas the in vitro t1/2 clearance from the PK-Eye is 26-

28 days.24 The total amount of TA leaving the posterior cavity through aqueous 

outflow can be estimated from the total inflow volume circulating through the human 

eye and drug concentration in posterior cavity. With a flow rate of 2.0 µL/min, the 

total volume (flow rate × time) circulating through the posterior cavity over one drug 

t1/2 (~374 hours; ~15.6 days)19 is approximately 44.9 mL. Since TA is injected as a 

suspension, it is always present in excess in the vitreous compartment and exists at 

a constant, steady concentration of ~25 µg/mL which is equivalent to the saturation 
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solubility of the drug.24 The amount of drug eliminated from the posterior cavity 

through only the aqueous outflow over one drug t1/2 is therefore 1.1 mg (44.9 mL × 25 

µg/mL) (Table 2).  

Table 2 
 

Using the vitreal clearance t1/2 of TA in humans (~374 hours), we can estimate 

the amount of TA leaving the posterior compartment through aqueous outflow 

permeation through the RCS pathway. Since 4.0 mg of TA was IVT injected in vivo, 

then after one t1/2 the amount of TA cleared from the posterior segment is 2.0 mg. 

The difference between in vivo and in vitro drug elimination after one t1/2 is 0.878 mg. 

Permeability can be determined from Fick’s First Law. The concentration gradient 

across the RCS pathway can be assumed to be constant since sink conditions exist 

after permeation. The surface area of the RCS was assumed to be equivalent to the 

surface area of the retinal pigment epithelium (RPE) and taken as 1204 mm2.38 Drug 

permeability across the RCS pathway was calculated to be 2.2 × 10-6 cm/sec 

(Equation 1).  

 

   
 

    
=     Equation 1 

 
where J is drug flux, Q is total drug amount clearing from the vitreous (0.878 mg), SA 

is surface area of the RCS pathway (1204 mm2), t is t1/2 (374 hrs), P is drug 

permeability across the RCS pathway and C is drug concentration in donor 

compartment (~25 μg/mL). 

There is limited data on drug permeability across human RCS. To our 

knowledge, the only human permeability data available is that for beta-blockers. A 

study by Kadam et al. (2011) reported the permeability range for eight beta-blockers 

across the human scleral choroidal retinal pigment epithelium (SCRPE) to be 1.34 × 

10-6 to 6.03 × 10-6 cm/sec.39 Our value for TA permeability (2.2 × 10-6 cm/sec) 

determined from published human in vivo clearance data and the PK-Eye model falls 

within this range and is closest to the beta-blockers with similar lipophilicity. Thus by 

combining in vitro drug clearance data from the PK-Eye model with drug permeability 

across the RCS pathway, in vivo drug elimination t1/2 of small molecules existing in 

excess amounts in the vitreous chamber can be predicted.  

3.2.2 Correlating dexamethasone clearance from the PK-Eye to human 

clearance  

In vivo clearance t1/2 of solubilised dexamethasone from the vitreous in humans is 

reported to be 5.5 hours.40 At a 0.2 mg dose, the dexamethasone concentration in 
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the vitreous chamber will be decreasing over time, so the time for the total drug 

amount (Q) to clear via aqueous outflow was calculated using Equation 2 with a time 

point of 17.6 hrs from the release studies.  

       ∫     
 

 

 
Equation 2 

Drug clearance was determined at 17.6 hours since this is the time point 

closest to dexamethasone in vivo t1/2 (5.5 hours), for which we have in vitro drug 

concentrations. Thus at 17.6 hrs, the amount of drug that had cleared the vitreous in 

vitro, was determined to be 79.5 µg (Figure 3B). In vivo, however, the amount of drug 

cleared from the vitreous compartment after 3 t1/2 (17.6/ 5.5 hours) at an equivalent 

injection dose of 200 µg is 175 µg. Therefore, the amount of drug cleared due to 

permeation across the RCS pathway is 95.5 µg. Again, since the drug concentration 

in the vitreous compartment is changing with time, Equation 3 was used to determine 

retinal permeability. 

       ∫     
 

 

 
Equation 3 

Retinal permeability of dexamethasone was calculated to be 3.3 x 10-6 

cm/sec. A value for RCS permeability of dexamethasone in humans could not be 

found, however the reported value in porcine is 2.2 x 10-6 cm/sec.41 This is in close 

agreement to the value we calculate using the PK-Eye.  

3.2.3 Prediction of in vivo clearance of dexamethasone-TIPS microparticles 

Now that we have shown the PK-Eye can provide a good estimate of IVIVCs, we can 

use the model to predict the clearance t1/2 of sustained release IVT implants. At 96 

hours, the amount of dexamethasone slowly released from the TIPS microparticles 

and cleared from the PK-Eye by aqueous outflow was determined using Equation 2 

to be 68.3 µg (Table 3). Drug permeation across the RCS pathway was determined 

using Equation 3 to be 98.1 µg 

Table 3 

 
Assuming first order elimination, the predicted human clearance t1/2 of 

dexamethasone that would be slowly released from the TIPS microparticles was 

calculated to be 48 hours using Equation 4c (Equation derived from Equations 4a 

and 4b). 

 

             

 

Equation 4a          
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            ⁄  

 

      
      

         
 

Equation 4b 
 
 
 

         Equation 4c 

where A0 is initial amount of drug in vitreous chamber; 200 µg, At is drug remaining in 

vitreous chamber (49.7  µg) and t is time (96 hrs). 

The predicted t1/2 of dexamethasone TIPS microparticles (0.2 mg 

dexamethasone dose) is almost 9 times longer than that of an equivalent dose of 

dexamethasone suspension. A dexamethasone TIPS microparticle formulation would 

be expected to require less frequent IVT injection than a dexamethasone suspension. 

Dexamethasone TIPS microparticles are designed to provide sustained drug release 

for an intermediate period of time compared to the dexamethasone Ozurdex® implant. 

Dexamethasone TIPS microparticles thus offer a potential treatment choice for acute 

ocular conditions of the posterior segment that would require steroid treatment over a 

period not lasting more than a month.  

Integrating drug permeation across the RCS pathway with anterior aqueous 

outflow from the PK-Eye can be used as a strategy to predict in vivo drug clearance 

of suspensions and implants from the vitreous compartment. Once a permeable, low-

molecular weight molecule is solubilised in the vitreous, clearance would be 

expected to be relatively quick. Our model can be used with other in vitro or 

computational permeability models to develop IVIVCs that include RCS clearance 

pathways. This is analogous to strategies that are used to develop new dosage 

forms for oral and pulmonary administration. This can provide useful information 

when developing novel ocular implants with respect to determination of drug loading, 

selection of excipients and formulation optimisation. 

The need for animal studies will be reduced thus accelerating the 

development of novel ocular formulations for treating diseases of the posterior 

segment. The PK-Eye model may also be particularly useful for longer term studies, 

especially if long acting formulations of  protein-based drugs are being evaluated 

where anti-drug antibodies (ADAs) would be expected to develop in animal models. 

The PK-Eye estimates the human clearance times of protein therapeutics effectively 

because these charged, large molecular weight drugs are not permeable and clear 

predominantly via aqueous outflow through the anterior chamber.24 The development 

of effective long-acting formulations of proteins is one of the most important issues in 

ocular drug delivery today. In addition, the ability to accurately titrate duration of 

action is important as some drugs such as dexamethasone may have significant side 
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effects in the long term such as an intractable rise in intraocular pressure if delivered 

to the eye for too long a duration. 

Quality control efforts can be facilitated and surrogates for bioequivalence 

studies can be developed for generic drug product approval. Little has been 

published about drug metabolism in the vitreous cavity, so practical strategies using 

the PK-Eye to better account for metabolism in the vitreous may need to be 

developed for some drugs. While estimation of the overall clearance time is important 

for preclinical development, integration of our results with advanced in silico models 

to encompass drug distribution, metabolism and permeability across different 

pathways will add further insight to the fate of drugs from long acting formulations 

developed for the eye. 

4. Conclusions 

In this study, biodegradable dexamethasone loaded PLGA TIPS microparticles were 

fabricated as a sustained intraocular dexamethasone formulation. Using the PK-Eye 

which measures drug clearance by the aqueous outflow pathway, the TIPS-

dexamethasone formulation displayed prolonged drug release compared to free 

dexamethasone at an equivalent dose of 2.0 mg. We combined the drug clearance 

time from the PK-Eye with RCS permeation data to provide a predictive estimate of 

human in vivo clearance for drugs that clear both anteriorly and posteriorly from the 

eye. The human in vivo t1/2 of IVT dexamethasone TIPS microparticles is predicted to 

be 48 hours; almost 9 times longer than dexamethasone. TIPS microparticles have 

the potential to provide sustained dexamethasone release of intermediate duration 

that may be useful where prolonged, but not over extended release of drugs such as 

dexamethasone may be required. The prediction of human clearance times of 

permeable molecules from the vitreous compartment can be determined by 

accounting for drug permeation and determining the experimental clearance via the 

anterior aqueous outflow pathway using the PK-Eye.  
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Figures 

Figure 1. Scanning electron microscopy (SEM) images of dexamethasone loaded 
TIPS microparticles. The particles were spherical and the pore size was 
approximately 1.0 μm in size.  
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Figure 2. Release profiles of dexamethasone TIPS microparticles (0.2 mg, 50 μL) 
and dexamethasone suspension (0.2 mg, 50 μL) in the PK-Eye containing simulated 
vitreous in the posterior cavity at 37°C. The dexamethasone dose was not solubility 
limited and the clearance half-lives (t1/2) were 9.6 ± 0.3 and 1.0 ± 0.1 days for the 
TIPS microparticles and suspension respectively. All results are displayed as the 
average of the triplicate (n=3) and its standard deviation (±STD). 
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Figure 3. Release profile of dexamethasone TIPS microparticles (0.2 mg, 50 μL) in 
the PK-Eye containing PBS, pH 7.4 in the posterior cavity at 37°C. The t1/2 was 3.1 ± 
0.2 days. All results are displayed as the average of the triplicate (n=3) and its 
standard deviation (±STD). 
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Tables 

Table 1: Summary of dexamethasone suspension and TIPS microparticles release kinetics in 
the PK-Eye at 37°C. 
 

 
Type 

Injected Vitreous 
substitute 

Rate 
constant, k 

(day
-1

) 

Half-life,  
t1/2  

(days) 
Mass  
(mg) 

Volume 
 (μL) 

 
Suspension 

0.1 50 PBS, pH 7.4 0.54 ± 0.04 1.3 ± 0.1  

0.1 50 Simulated vitreous 0.60 ± 0.02 1.2 ± 0.03 
0.2 50 Simulated vitreous 0.70 ± 0.07 1.0 ± 0.1 

TIPS 0.2 
0.2 

50 
50 

PBS, pH 7.4 0.22 ± 0.01 3.1 ± 0.2 

Simulated vitreous 0.07 ± 0.002 9.6  ± 0.3 
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Table 2: Development of in vitro in vivo correlation (IVIVC) with triamcinolone acetonide (TA, 
Kenalog

®
, 40 mg/mL) 

 

Parameters In vitro In vivo 

Dose of TA (mg) 4.0 4.0 
t1/2 (days) 2824 15.619 
Value for 1 t1/2 (hours) 674 374 
Concentration of TA in the PK-Eye (μg/mL) ~ 25 - 
Amount of drug eliminated after 1 t1/2 (mg) 1.1 2.0 

Difference between in vitro and in vivo clearance: 0.878 mg 
Abbreviations: mg: milligrams; mL: millilitres, t1/2: half-life μg: micrograms 
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Table 3: Prediction of ocular in vivo t1/2 of dexamethasone-TIPS microparticles   

Parameters Values 

Dose of dexamethasone (µg) 200 

Drug permeability across the RCS pathway (cm/sec) 3.3 ×10-6 
Surface area of RCS (mm2) 38 1204 

Flow rate of aqueous outflow (µL/min) 2.0 

Drug eliminated from the PK-Eye (attributable to aqueous outflow) 
(µg) 

68.3 

Drug permeation across RCS pathway (µg) 82.0 

Total drug cleared from the vitreous chamber (aqueous outflow 
and permeability) (µg) 

150.3 

Abbreviations: RCS: retina-choroid sclera. Note: Drug elimination and permeation was determined at 

96.4 hrs 

 

 




