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Abstract 

 

Although manganese is required as an essential trace element excessive amounts are 

neurotoxic and lead to manganism, an extrapyramidal movement disorder associated 

with deposition of manganese in the basal ganglia. Recently, we have identified the 

first inborn error of manganese metabolism caused by mutations in SLC30A10, 

encoding a manganese transporter facilitating biliary manganese excretion. Treatment 

is limited to chelation therapy with intravenous disodium calcium edetate which is 

burdensome due to its route of administration and associated with high socioeconomic 

costs. 

 

Whole exome sequencing in patients with inherited hypermanganesaemia and early-

onset parkinsonism-dystonia but absent SLC30A10 mutations identified SLC39A14 as 

a novel disease gene associated with manganese dyshomeostasis. Zebrafish loss-of-

function mutants for slc30a10 (slc30a10U800) and slc39a14 (slc39a14U801) were 

generated using TALEN and CRISPR/Cas9 genome editing technologies in order to 

model these Mn transporter defects in vivo. Both mutants demonstrate prominent 

manganese accumulation during larval development. Adult slc39a14U801 mutants show 

significantly increased brain manganese levels similar to the human phenotype. During 

larval stages slc39a14U801 mutants display increased sensitivity to manganese toxicity, 

reduced locomotor activity and visual impairment upon manganese exposure. This 

phenotype is accompanied by a reduction of tyrosine hydroxylase positive cells in the 

ventral diencephalon suggesting an involvement of dopaminergic circuits. RNA 

sequencing further identified genes involved in neurotransmitter release and signalling, 

phototransduction, circadian clock, and hypoxia inducible factor (HIF) signalling to be 

affected by manganese dyshomeostasis. 

 

In summary, slc30a10U800 and slc39A14U801 zebrafish mutants provide disease models 

of inherited manganese transporter defects that allow the study of disease 

mechanisms to identify novel therapeutic targets with the view to improve clinical 

treatment strategies. 
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Chapter 1. Introduction 

1.1 Manganese and its role in disease processes 

Manganese (Mn) is an essential trace element that is pivotal for normal cell function 

and metabolism. As such, Mn is involved in amino acid, lipid, protein and carbohydrate 

metabolism as well as protein glycosylation, immune function, regulation of blood 

sugar, production of cell energy, reproduction, digestion, bone growth and blood 

clotting1-3.  

 

Our diet is the major source of Mn which is present ubiquitously in a variety of foods. 

The gut tightly controls the body Mn load by limiting the absorption of ingested Mn from 

the intestine. Following Mn absorption, any excess Mn present in the portal circulation 

is promptly excreted into the bile by the liver, the key regulator of Mn elimination. A 

significant fraction of biliary excreted Mn undergoes enterohepatic circulation3. 

Increased dietary exposure to Mn induces homeostatic adaptation and leads to 

reduced gastrointestinal Mn absorption and increased biliary excretion of Mn4-7. Mn 

absorption is also affected by several dietary factors such as the presence of other 

trace elements8. Particularly important is its interaction with iron (Fe)9. High intake of Fe 

reduces blood Mn levels while Fe deficiency anaemia enhances intestinal Mn 

absorption6,10,11.  

 

Nutritional Mn deficiency has not been described in humans. This has been attributed 

to its ubiquitous presence in the diet. However, experimental models of Mn deficiency 

have suggested that low levels of Mn cause poor bone growth, skeletal abnormalities, 

ataxia and abnormal glucose tolerance12. Furthermore, erythematous skin changes and 

altered mood have been observed in subjects on experimental low Mn diets13,14. 

Mutations in SLC39A8 have recently been associated with an inherited Mn depletion 

syndrome causing cerebellar atrophy, hypotonia, epilepsy, strabismus, developmental 

delay, short stature and skeletal dysplasia15,16. Biochemically, this disorder is 

accompanied by dysglycosylation resembling a type II congenital disorder of 

glycosylation (CDG) due to dysfunction of Mn dependent enzymes such as the beta 

1,4 glycosyltransferase involved in galactosylation of glycoproteins16. Treatment with 

daily galactose to improve the impaired galactosylation completely normalises the 
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hypoglycosylated transferrin pattern. Early dietary galactose treatment in combination 

with manganese supplementation may therefore be an effective treatment strategy16.  

 

While an essential trace metal, excessive amounts of Mn are neurotoxic and cause a 

movement disorder known as “manganism”. Mn accumulates in the basal ganglia and 

causes distinct neurotoxic effects. The first description of Mn neurotoxicity was 

published by Couper in 1837 describing a case series of five Mn ore crushers who 

suffered from parkinsonian symptoms including tremor in the extremities, gait 

disturbance and whispering speech17. Rodier further described Mn poisoning in 151 

workers of Moroccan mines a century later18. Manganism has since been extensively 

characterised; this parkinsonian syndrome can be divided into three overlapping 

stages: An initial stage of emotional and cognitive disturbances with impaired fine 

motor coordination, followed by a second stage with worsening psychotic behaviour, 

slurred speech, clumsiness and mask-like facies. During the final stage, patients 

develop disabling limb rigidity, dystonia, impairment of balance and a characteristic 

cock-walk gait19,20. While some symptoms overlap with idiopathic Parkinson’s disease 

such as bradykinesia, there are a number of dissimilarities including (a) less frequent 

resting tremor, (b) more frequent dystonia, (c) a particular propensity to fall backward, 

(d) failure to achieve a sustained therapeutic response to levodopa, and (e) failure to 

show a reduction in fluorodopa uptake by positron emission tomography (PET)21,22.  

 

Excessive Mn accumulation in the brain can occur either through Mn overexposure or 

through impaired hepatobiliary excretion. The predominant route of exposure in 

occupational settings is the inhalation of Mn laden dust during mining, welding, 

smelting or battery manufacturing. Individuals living near ferroalloy industries or in 

areas with high use of methylcyclopentadienyl Mn tricarbonyl (MMT), a gasoline fuel 

additive, are at risk of airborne Mn exposure and accumulate increased levels of Mn. 

Whether inhaled Mn is directly taken up via the olfactory or trigeminal nerve, 

transported across the pulmonary epithelium or ingested following mucociliary 

clearance from the lungs has still to be elucidated3,23-25. Excessive dietary exposure to 

Mn can lead to increased absorption and accumulation of Mn in the brain and has been 

described in communities receiving drinking water with a high Mn content26,27. High 

doses of Mn in parenteral nutrition that bypass gut and liver control mechanisms can 

also lead to Mn neurotoxicity28-30. Similarly, cases of Mn poisoning have been observed 

in intravenous methcathinone drug-addicts who use potassium permanganate as the 
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oxidant in the synthesis of the drug31-34. Mn accumulation in end stage liver disease 

occurs due to impaired hepatic function that leads to insufficient biliary excretion of Mn 

and subsequent accumulation of Mn in the basal ganglia, a condition described as 

acquired hepatocerebral degeneration (AHD)35.  

 

Mn toxicity also plays a role in the pathogenesis of other neurodegenerative disorders 

such as Parkinson’s disease36,37. Several early-onset parkinsonism genes including 

PARK2 (Parkin), and PARK9 (ATP13A2) are associated with Mn dyshomeostasis. 

Affected patients share common neuropathological features of Mn neurotoxicity, 

including oxidative stress and mitochondrial dysfunction, impaired autophagy, and 

altered alpha-synuclein aggregation. Indeed, Parkin and ATP13A2 are postulated to 

protect dopaminergic cells from Mn toxicity38-40. Furthermore, polymorphisms in 

ATP13A2 are associated with increased susceptibility to Mn toxicity41. Alpha-synuclein 

is also suggested to act as an intracellular Mn store42, and Mn exposure promotes 

alpha-synuclein oligomerization and enhances cellular toxicity43-45. 

 

Recently, our group has identified the first inherited Mn overload syndrome caused by 

loss-of-function mutations in the Mn transporter gene SLC30A1046. SLC30A10 is 

localised at the plasma membrane and facilitates export of Mn from the cell in brain 

and liver47. Mutations in SLC30A10 lead to accumulation of Mn in liver and brain 

associated with an extrapyramidal movement disorder and chronic liver disease that 

may progress to cirrhosis46,48-50. 

 

1.2 Inherited hypermanganesaemia with dystonia- 

parkinsonism caused by mutations in SLC30A10 

Our work and that of others have shown that recessive loss-of-function mutations in 

SLC30A10 cause a movement disorder and chronic liver disease reminiscent of 

Wilson’s disease46,48-50. As with acquired causes of hypermanganesaemia, the 

magnetic resonance imaging (MRI) is pathognomonic for Mn accumulation with T1 

weighted hyperintensity of the basal ganglia and white matter51,52. Further 

characteristics include haematological abnormalities such as polycythaemia and 

abnormal Fe indices. While liver toxicity appears to be a major contributor to the 

mortality of this disease, liver disease has not been reported in cases of chronic 
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environmental manganism. In animal models, however, Mn has been shown to 

promote intrahepatic cholestasis and induce hepatocellular necrosis53,54. Furthermore, 

acute Mn poisoning has been reported to cause fatal hepatic failure in humans and 

dogs55,56. Depending on the time of disease onset, two distinct phenotypes caused by 

mutations in SLC30A10 can be distinguished; a childhood-onset form with predominant 

dystonia and an adult-onset form with predominant parkinsonism48,57.  

 

1.2.1 Clinical phenotype 

The majority of affected individuals with SLC30A10 deficiency present with gait 

disturbance within the first ten years of life. Motor symptoms include dystonia causing a 

characteristic high stepping gait (“cock-walk”), painful limb spasms and fine motor 

impairment as well as dysarthria, truncal ataxia, bradykinesia and retropulsion46,48. 

Fewer cases develop spastic paraparesis and typical pyramidal tract signs58,59. Motor 

impairment is progressive and many patients experience loss of ambulation. Some 

individuals show signs of motor neuropathy with distal weakness and areflexia58. 

Intellect appears normal and affected individuals attend mainstream schools.  

 

To date, a single sibship with adult-onset parkinsonism has been described. Two 

brothers presented at the age of 47 and 57 years with progressive gait disturbance and 

bradykinesia. Neurological examination revealed hypomimia, monotone speech, mild 

rigidity, global bradykinesia, wide-based gait with freezing and starting hesitation, and 

moderate postural instability without evidence of tremor, dystonia, or cerebellar and 

pyramidal disturbances. Treatment attempts with L-dopa and dopamine agonists, as 

used in idiopathic Parkinson’s disease, were unsuccessful48.  

 

In both childhood and adult-onset forms, neurological symptoms are accompanied by 

polycythaemia, defined by an abnormally increased haemoglobin (Hb) level, that can 

precede the manifestation of the movement disorder. Hb values often exceed 20 g/dL; 

however, individuals remain asymptomatic without evidence of ischaemic 

complications. Polycythaemia is thought to occur due to increased erythropoietin 

(EPO) gene expression that regulates erythropoiesis50. Transition metals such as Mn, 

cobalt (Co) and nickel (Ni) are known to activate DNA binding of hypoxia inducible 

factor (HIF) to EPO60,61. HIF is a heterodimeric transcription factor that mediates the 

transcription of O2-regulated genes in response to hypoxia. It consists of an O2 
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sensitive alpha subunit (HIFα) and a constitutively expressed beta subunit (HIFβ). 

Three alpha subunits exist, HIF-1α, HIF-2α and HIF-3α. While HIF-1α and HIF-2α 

function as transcriptional activators of hypoxia dependent genes, the role of HIF-3α is 

less understood and may have opposing effects62. During normoxia the HIFα subunit 

forms a complex with von Hippel-Lindau protein (vHL) which is subsequently 

ubiquitinated and degraded in proteasomes. Binding of vHL is facilitated by the action 

of O2 dependent prolylhydroxylases (PHD) that convert proline to hydroxyproline. Three 

PHD enzymes exist, PHD-1 (EGLN2), PHD-2 (EGLN1) and PHD-3 (EGLN3).63 During 

hypoxia and exposure to transition metals the vHL-HIFα complex does not form and 

HIF can induce EPO gene expression60,61,64 (Figure 1.1).  
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Figure 1.1 Mn induces erythropoietin gene expression. 

Schematic demonstrating the effects of divalent metals such as Mn2+, Co2+ and Ni2+ on 

the transcription of EPO. Under physiological conditions HIFα is hydroxylated by O2 

and Fe2+ dependent prolyl-4-hydroxylases (PHD) with subsequent ubiquitination by the 

VHL-E3-ubiquitin ligase complex that targets HIFα for proteasomal degradation. 

Hypoxia and the presence of high concentrations of divalent metals including Mn2+ 

prevents prolylhydroxylation leading to stabilisation of HIFα, nuclear translocation and 

HIFα/β dimerisation. HIFα/β heterodimers bind to the hypoxia-responsible element 

(HRE) upstream of the EPO gene leading to increased EPO transcription. Adapted 

from Haase et al.62.  
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Given the interdependency of Mn and Fe transport11, it is not surprising that abnormal 

Fe indices are a feature of this disorder. Hallmarks of inherited hypermanganesaemia 

are low serum ferritin and Fe levels and elevated total iron binding capacity (TIBC)46.  

 

Hepatic involvement is variable in this disorder. While some patients die of cirrhosis 

associated complications in adolescence / early adulthood, others survive into late 

adulthood without liver disease. Hence, liver disease is not pathognomonic for this 

disease but when present should further suggest the diagnosis. To date, the majority of 

identified individuals have some evidence of hepatic involvement including 

hepatomegaly, raised liver transaminases and unconjugated hyperbilirubinaemia46. 

However, pure neurological phenotypes presenting with dystonia alone can occur. 

Furthermore, marked intrafamilial phenotypic variability has been observed. Within one 

family, two siblings have survived into late adulthood with an isolated movement 

disorder while their sister died of liver failure at the age of 46 years with minimal 

neurological symptoms48,58. Factors determining an individual’s susceptibility for liver 

disease progression have yet to be identified and are likely to involve genetic and 

environmental aspects.  

 

1.2.2 Diagnosis 

Diagnosis of inherited hypermanganesaemia is suggested by the typical clinical 

findings, biochemical characteristics and MRI brain appearances. While whole blood 

Mn levels are not usually part of the diagnostic work-up of dystonia or parkinsonism, 

the association of an extrapyramidal movement disorder, chronic liver disease and 

polycythaemia together with T1 hyperintensity of the basal ganglia should prompt 

determination of whole blood Mn levels. In the majority of affected individuals reported 

to date whole blood Mn levels are elevated above 1,000 nmol/L (reference range <320 

nmol/L), hence, whole blood Mn seems to be a reliable disease marker. However, 

blood Mn levels are affected by chelation therapy and Fe treatment and should be 

interpreted together with other disease parameters57.  

 

Brain MRI appearances are pathognomonic for the disease and are similar to those 

seen in acquired cases of hypermanganesaemia. Mn accumulation in the basal ganglia 

causes T1 hyperintensities affecting the globus pallidus, putamen, caudate, 

subthalamic and dentate nuclei while the thalamus and ventral pons are spared. When 
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the disease is extensive, white matter and anterior pituitary involvement can also be 

observed. T2-weighted images may show changes, however, to a much lesser extent 

and are often reported as normal46,48 (Figure 1.2). Improvement of blood Mn levels 

during can lead to normalisation of the MRI brain appearances following months of 

treatment51.  

 

 

Figure 1.2 Representative MRI brain scan of a patient with SLC30A10 deficiency. 

(A) Transaxial T1-weighted images: Abnormally high signal return from all white matter 

as well as more prominent signal return from the putamen and globus pallidus 

bilaterally (red arrows). (B) Transaxial T2-weighted images: Abnormally low signal 

returned from the globus pallidus (red arrows) in the same distribution as the regions of 

highest signal returned on T1-weighted images. From Tuschl et al.46. 
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Liver ultrasound and MRI can be helpful to assess liver involvement and severity of 

cirrhosis. Liver MRI in a patient with SLC30A10 deficiency shows marked 

hyperintensity due to the deposition of Mn (Figure 1.3).  

 

 

Figure 1.3 Hepatic Mn deposition causes marked hyperintensity of the liver on 

T1-weighted imaging. 

Transverse abdominal T1-weighted MR images of an individual with (i) SLC30A10 

deficiency compared to (ii) a healthy control subject. Signal intensity of the liver (yellow 

arrow) is compared to that of the spleen (blue arrow). From Tuschl et al.65  

 

 

Liver biopsies performed in individuals with progressive liver disease has confirmed 

accumulation of Mn. Histologically, various degrees of liver fibrosis, steatosis and 

cirrhosis have been reported46,48. Rhodanine staining for Mn is positive and the liver Mn 

level is above the normal range of 1-2 µg Mn / g wet weight50 (Figure 1.4).  
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Figure 1.4 Liver histology of a patient with SLC30A10 deficiency. 

(A) Reticulin stain x40 (visualising collagen fibres), (B) Haematoxylin and eosin stain 

x100 (H&E) (nucleus and cytoplasm staining), and (C) H&E x200 of a fragmented liver 

biopsy shows bridging fibrosis and cirrhosis. (D) Rhodanine stain x400 shows scanty 

granular positive staining for copper (Cu) and/or Mn. From Tuschl et al.50.  
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Mutation analysis of SLC30A10 confirms the diagnosis. To date, 13 different mutations 

in SLC30A10 have been described in 13 families46,48,49 (Figure 1.5). The mutation 

found in the sibship with adult-onset parkinsonism affects the terminal 3’ end of the 

coding sequence resulting in a protein that is truncated by only the last 49 amino acids 

(family M in Figure 1.5). It is possible that this mutant allele produces a protein with 

residual function causing a milder phenotype46,48.  

 

 

Figure 1.5 Reported mutations in SLC30A10 identified in families affected by 

inherited hypermanganesaemia with dystonia-parkinsonism. 

Table showing the SLC30A10 mutations identified to date. Family A-D and I-L are from 

Tuschl et al.46, Family E-H and M from Quadri et al.48,49. Genomic structure of the 

exons (blue boxes) and introns (black line) of SLC30A10. Positions of identified 

mutations are displayed below (not drawn to scale). The large deletion spanning exon 

3 and 4 in family A is indicated by a bracket.  



Chapter 1 Introduction 

 

 33 

1.2.3 Treatment 

Chelation therapy with intravenous disodium calcium edetate (Na2CaEDTA) has 

proven effective in childhood and adult-onset forms of SLC30A10 related 

parkinsonism-dystonia46,48. Response to an initial five-day course of twice-daily 

disodium calcium edetate at 20 mg/kg/dose (maximum 2 g/day) markedly increased 

urinary Mn excretion suggesting effective chelation of Mn50. Na2CaEDTA is given 

intravenously because of poor enteral absorption. Long-term treatment with monthly 

five-day courses of Na2CaEDTA (20 mg/kg/dose twice daily) led to significant reduction 

of whole blood Mn levels, normalisation of Hb and Fe indices, and improvement of MRI 

brain appearances. Biochemical changes were accompanied by clinical recovery with 

normalisation of gait, increased mobility, improved fine motor movements and halt of 

liver disease progression48,51. Na2CaEDTA has the potential to cause nephrotoxicity 

and can impair the homeostasis of other heavy metals such as copper (Cu) and zinc 

(Zn)66. However, in cases of inherited hypermanganesaemia it has proved an effective 

and safe chelator with minimal adverse effects. Nephrotoxicity was not observed even 

during long term treatment. A mild decrease in blood Zn levels was corrected using low 

dose Zn supplementation. Other heavy metal concentrations remained stable. While on 

treatment, monitoring of serum electrolytes including calcium, phosphate and 

magnesium, renal and liver function, full blood count, and serum concentrations of 

trace metals such as Zn, Cu, and selenium (Se) is recommended57.  

 

In cases of inherited hypermanganesaemia Fe indices are suggestive of Fe depletion, 

hence, optimisation of Fe intake was attempted in order to lower intestinal Mn uptake. 

Indeed, Fe supplementation alone and in addition to chelation therapy effectively 

lowered blood Mn and further reduced the body Mn load50,67. This is attributed to the 

interdependency of Fe and Mn levels in states of deficiency as mentioned above11.  

 

Other chelation agents including D-Penicillamine and para-aminosalicylic acid (PASA) 

have been used with little effect50,68. A single individual has been treated with 

dimercaptosuccinic acid (DMSA) and Fe leading to a marked improvement of 

neurological symptoms (data from personal communication). Whether this effect is due 

to the chelating action of DMSA or Fe supplementation itself is debatable.  

In cases of end stage liver disease liver transplantation should be considered. 

However, to date transplantation has not been attempted in individuals with inherited 

hypermanganesaemia, hence, no data on the outcome is available.  
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Although SLC30A10 transporter deficiency responds well to chelation therapy with 

Na2CaEDTA, the treatment is burdensome due to the requirement for intravenous 

administration and monthly hospital admissions associated with high socioeconomic 

costs. Moreover, repeated or long-term vascular access carries the risk of infections 

and is associated with considerable discomfort. Therefore, the identification of an 

effective oral chelation agent would be favourable that will allow uncomplicated 

treatment of any patient affected with SLC30A10 deficiency. 
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1.3 Mn transport and homeostasis 

The recent identification of inherited Mn transportopathies caused by loss-of-function 

mutations in SLC30A10 and SLC39A8 has contributed hugely to our understanding 

how Mn homeostasis is regulated in humans15,16,46,48,49. The mechanisms of Mn 

homeostasis and Mn transport have been the subject of many studies, however, the 

exact routes of Mn transfer across the cell remain controversial. Numerous 

transporters have the ability to transport Mn in vitro including SLC39A8 and 

SLC39A14, DMT1, transferrin/transferrin receptor, calcium channels, Mn citrate shuttle, 

SLC30A10, ferroportin, secretory pathway and sarco-endoplasmic reticulum Ca2+ 

ATPases and ATP13A2 (Figure 1.6). 

 

 

Figure 1.6 Transporters potentially involved in Mn trafficking across the cell. 

DMT1; Divalent metal transporter 1. Tf; Transferrin. TfR; Transferrin receptor. Glu R; 

Glutamate receptor. SO Ca2+; Store operated Ca2+ channel. VR Ca2+; Voltage 

Regulated Ca2+ Channel. Fpn; Ferroportin. 
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1.3.1 Mn uptake 

Current literature suggests the following transporters to play a role in Mn uptake: 

 

1.3.1.1 SLC39A8 and SLC39A14 

SLC39A8 and SLC39A14, also known as Zrt, Irt-like protein 8 and 14 (ZIP8 and 14) 

are both members of the solute carrier-39 family and transport divalent metals. They 

are expressed in tissues involved in the regulation of Mn homeostasis including 

duodenum, liver, brain, lungs and kidney. In vitro studies have shown that they are 

capable of transfering Mn, Fe, Zn and cadmium (Cd) into the cell. ZIP8 and ZIP14 are 

Mn2+/HCO3
- symporters that use a HCO3

- gradient across the plasma membrane as the 

driving force for Mn uptake69-72. Given that both transporters are localised on apical 

surfaces of brain capillaries and transport Mn2+ with high affinity it is plausible that they 

facilitate Mn uptake into the brain70,73,74. Studies on the function of ZIP8 and ZIP14 

have shown that they also play a role in the absorption of Mn in the liver and the 

proximal tubule in the kidney69,70. The recent discovery that mutations in SLC39A8 

cause a deficiency syndrome with low Mn blood levels suggests that this transporter is 

a major facilitator of Mn uptake into the organism15,16.  

 

1.3.1.2 Divalent Metal Transporter 1 

Divalent Metal Transporter 1 (DMT1) transports both Mn and Fe, and also a range of 

other cations, and acts as H+ - symporter that transports one H+ and one divalent 

cation in the same direction75. It is ubiquitously present in human tissues with high 

levels of DMT1 found in the duodenum and the brain. DMT1 is thought to contribute to 

absorption of Mn into the enterocyte in the proximal small bowel. DMT1 expression is 

regulated by Fe status leading to increased DMT1 expression at the enterocyte 

membrane during Fe deficiency76. Consequently, in Fe deficiency, Mn absorption 

across the intestine is increased with subsequent Mn accumulation in the brain. 

Conversely, diets high in Mn lead to decreased plasma Fe levels with an increase in 

transferrin (Tf) and total iron binding capacity11,77. Mutations in SLC11A2, the gene 

encoding DMT1, in the microcytic (mk) mice and Belgrade (b/b) rats affect both Mn and 

Fe transport across the intestine and result in severe microcytic anaemia78-80. 
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Additionally, DMT1 has been suggested to transfer divalent Mn2+ at the blood brain 

barrier. However, there is contradictory data as to whether DMT1 is actually expressed 

in capillary endothelial cells78,81. Furthermore, it has been shown that Mn2+ uptake 

requires a neutral pH which is not consistent with the acidic pH optimum required for 

DMT1 facilitated uptake82. On the other hand, highest expression levels of DMT1 in the 

brain are found in the dopamine rich areas of the basal ganglia, the brain regions most 

affected by Mn toxicity83. In addition, DMT1 expression is induced upon Mn exposure 

which is associated with increased dopaminergic neurotoxicity84. Furthermore, DMT1 is 

involved in the endosomal uptake of Mn via the transferrin receptor (TfR)85.  

 

1.3.1.3 Transferrin/Transferrin Receptor 

Mn3+ has a high affinity for transferrin (Tf) and in the blood around 20% of total Mn is 

bound to Tf as Mn3+. Binding of the Tf-Mn3+ complex to the Tf receptor (TfR) at the 

plasma membrane causes internalisation of the Tf-TfR complex into endosomal 

vesicles. The endosomal V-ATPase facilitates acidification of the vesicle and leads to 

release of the metal, followed by conversion of Mn3+ to Mn2+ and activation of 

endosomal DMT1 with subsequent uptake of Mn into the cytosol86,87. Tf and DMT1 co-

localise at the endosomal membrane at the blood brain barrier supporting the theory of 

Tf dependent uptake of Mn85.  

 

1.3.1.4 Ca2+ channels 

The relative contribution of Ca2+ channels to Mn transport into the brain has still to be 

determined. Evidence suggests that both voltage-regulated and store-operated Ca2+ 

channels mediate brain Mn influx88,89. The ionotropic glutamate receptor channel is yet 

another candidate proposed to facilitate Mn uptake into the brain90.  

 

1.3.1.5 Mn citrate shuttle 

Mn citrate represents the major non-protein bound species of Mn to enter the brain at 

the blood brain barrier. The influx transfer coefficient for Mn citrate was shown to be 

greater than that of Mn2+ alone and Tf-Mn3+ 91.  
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1.3.2 Mn export 

The following transporters have been shown to facilitate Mn export: 

 

1.3.2.1 SLC30A10 

Recently, we have identified SLC30A10 as a key player in the regulation of Mn 

homeostasis46,48. Recognised as the disease causing gene in an inherited Mn overload 

syndrome, it is thought to mediate Mn export at the cell membrane47. SLC30A10 

belongs to the cation diffusion facilitator (CDF) family of divalent metal ion 

transporters92. They share the same structure of six TMDs with cytosolic N and C 

termini and a conserved cation efflux domain at the C terminus (Figure 1.7).  

 

 

Figure 1.7 SLC30A10 protein structure. 

Schematic of SLC30A10 showing its six TMDs (orange and blue cylinders) interlinked 

by intracellular and extracellular loops. TMD I, II, III and VI are postulated by the 

transmembrane protein topology prediction tool MemSatSVM (http://bioinf. 

cs.ucl.ac.uk/psipred/?memsatsvm=1) to form a pore.  

 

 

Sequence homology with transporters from the same family has suggested a role of 

SLC30A10 in Zn transport93. However, our recent work examining its function in the Mn 

sensitive yeast strain ∆pmr1 has confirmed its ability to transport Mn and protect cells 

from Mn toxicity. pmr1 (plasma membrane ATPase-related) encodes a P-type Ca2+ 

/Mn2+ ATPase located at the Golgi membrane that is involved in the transport of Mn2+ 

from the cytosol into the Golgi. Deletion of pmr1 leads to accumulation of Mn in the 

cytosol and increased sensitivity of cells to high concentrations of Mn94. Transformation 

http://bioinf/
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of ∆pmr1 yeast with human SLC30A10 rescues growth under high Mn concentration 

while mutations in SLC30A10 abolish the effect46 (Figure 1.8).  

 

 

Figure 1.8 Human SLC30A10 protects ∆pmr1 yeast from Mn toxicity. 

Image showing yeast strains grown on media without (left) and with 1.5mM MnCl2 

(right) supplementation. Each strain was spotted at a density of 105, 5 x 104, 104, 5 x 

103 and 103 cells (a–e). While wild-type BY4743 cells grow normal on either medium, 

the ∆pmr1 strain shows growth inhibition upon MnCl2 exposure. Human SLC30A10 

rescues growth of ∆pmr1 on Mn supplemented medium while the missense mutation 

(Leu89Pro) or nonsense mutation (Thr196Profs*17) abolish the effect. ZRC1 (yeast 

orthologue to SLC30A1 and SLC30A10 with metal affinity to Zn only), and ZRC1 

(Asn44Ile) (mutation altering metal specificity from Zn to Mn and Fe)94 were used as 

negative and positive controls, respectively. Taken from Tuschl et al.46.  

 

 

The alteration in the metal binding affinity of the transporter was attributed to 

evolutionary changes of the amino acid sequence of the protein46. Studies in yeast 

have shown that a single amino acid change in ZRC1 (Asn44Ile), the yeast orthologue 

of SLC30A1 and SLC30A10, alters the metal specificity of the transporter. While ZRC1 

has affinity to Zn, the Asn44Ile mutation changes its affinity from Zn to Mn and Fe94. In 
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the SLC30A10 protein, the key structures required for Zn binding such as a histidine 

rich region in the cytosolic loop between TMD IV and V and a conserved HxxxD motif 

in TMD II are altered. The HxxxD motif in TMD II is replaced by an asparagine while 

the histidine rich region is replaced by sequences rich in arginines, lysines and serines. 

An absence of the histidine rich region has also been observed in another plant Mn 

transporter called ShCDF8. ShCDF8 shares a conserved cytosolic cysteine residue at 

TMD IV with SLC30A10 that is absent in other Zn specific transporters of the CDF 

family48. 

  

Studies investigating the subcellular localisation of SLC30A10 in human 

neuroblastoma SH-SY5Y cells have shown it localises to the Golgi. High extracellular 

Zn concentrations cause the redistribution of SLC30A10 to the plasma membrane95. 

More recently, Leyva-Illades and co-workers showed that SLC30A10 localises to the 

cell membrane in HeLa cells and C. elegans where it functions as a Mn efflux 

transporter and protects against Mn toxicity47. Mutations in SLC30A10 affect the 

intracellular trafficking of the transporter from the endoplasmic reticulum to the cell 

membrane and impair its efflux function47. SLC30A10 is highly expressed in the small 

intestine, liver and brain tissues consistent with Mn accumulation seen in these tissues 

in humans with SLC30A10 mutations95. High concentrations of Mn lead to increased 

SLC30A10 transcription and protein expression in HepG2 hepatocellular carcinoma 

cells consistent with a role of SLC30A10 in the detoxification of Mn from the 

cytoplasm48.  

 

1.3.2.2 Ferroportin 

Efflux of Mn from the enterocyte is believed to occur via Ferroportin (Fpn). Once 

absorbed into the portal circulation, the majority of Mn (approximately 80%), becomes 

bound to β-globulin and albumin as bivalent Mn2+. Some is oxidised to Mn3+ by 

ceruloplasmin and bound to transferrin as trivalent Mn3+ 96. The cytoplasmic Fe 

exporter ferroportin has been shown to act as an effective mediator of Mn efflux. 

Ferroportin is highly expressed at the plasma membrane of all relevant Fe exporting 

cells such as enterocytes, hepatocytes and macrophages, and is also present in 

neurons and oligodendrocytes. Mn exposure significantly increases ferroportin 

expression with subsequent reduction of total cell Mn and attenuated Mn toxicity97,98. 

Patients with mutations in the ferroportin gene SLC40A1 develop haemochromatosis 
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type 4 with Fe overload within the reticuloendothelial system99. However, the effect on 

Mn homeostasis has not been studied in humans. Ferroportin deficient flatiron (ffe) 

mice show reduced blood, hepatic and bile Mn levels. Furthermore, expression of wild-

type Fpn reverses Mn-induced cytotoxicity in dopaminergic SH-SY5Y cells and human 

embryonic kidney (HEK293) cells while mutant protein fails to confer protection100. 

Hepcidin, a peptide hormone produced by the liver, plays a pivotal role in systemic Fe 

homeostasis by regulating the activity of ferroportin. High Fe levels and inflammation 

increase hepcidin expression followed by internalisation and degradation of the 

hepcidin-ferroportin complex101. Recently, Mn has also been shown to induce hepcidin 

expression in hepatocytes providing a further link between Mn and Fe homeostasis102.  

 

1.3.2.3 SPCA and SERCA 

The Secretory Pathway Ca2+/Mn2+ATPases SPCA1 and SPCA2 localised at the Golgi 

provide an alternative route of cytosolic Mn detoxification. Both pumps have high 

affinity for Ca2+ and Mn2+ ions and sequester these ions into the Golgi. Overexpression 

of SPCA1 facilitates Mn accumulation in the Golgi and increases cell viability103. While 

SPCA1 is ubiquitously expressed, SPCA2 has a more restricted expression pattern 

limited to the gastrointestinal tract, brain and testes. Monoallelic mutations in SPCA1 

are known to cause Hailey-Hailey disease, a blistering skin disorder, while biallelic 

sequence changes with complete loss of function are thought to be incompatible with 

life104,105. Mice exposed to high levels of Mn accumulate this metal in areas of the brain 

that show high expression of SPCA1 further supporting a role of SPCA1 in Mn 

detoxification106. Similarly, SPCA1 has been shown to facilitate Mn detoxification in the 

liver by sequestering Mn into the Golgi and early endosomes107.  

 

The sarco/endoplasmic reticulum Ca2+ ATPases (SERCA) have also been suggested 

to transport both Ca2+ and Mn2+, however, Mn2+ is only a weak competitor of Ca2+ for 

the transport sites108-110. 

 

1.3.2.4 ATP13A2 

The discovery of ATP13A2 (PARK9) as the gene affected in a rare form of juvenile- 

onset Parkinson’s disease, also known as Kufor-Rakeb Syndrome, has provided an 

additional insight into Mn trafficking. ATP13A2 encodes a P5-type cation-transporting 
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ATPase located at the lysosome that protects cells from Mn-induced toxicity. 

Overexpression of ATP13A2 leads to decreased levels of intracellular Mn. Expression 

of ATP13A2 is found to be highest in the substantia nigra, the region of dopaminergic 

neuron loss in Parkinson’s disease. Exposure to excess Mn further induces ATP13A2 

gene expression followed by sequestration of Mn into the lysosome38,40,111,112. 
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1.4 Mechanisms of Mn toxicity 

While it has long been recognised that Mn causes neurotoxicity the exact mechanisms 

leading to neurodegeneration and neuronal dysfunction have not been identified. Mn 

has been shown to affect dopamine, gamma aminobutyric acid (GABA) and glutamate 

neurotransmitter signalling, induce oxidative stress and mitochondrial dysfunction, and 

affect autophagy and apoptosis22,113. 

 

1.4.1 Mn and its effect on dopamine neurotransmission 

Mn neurotoxicity causes an extrapyramidal motor disorder that resembles idiopathic 

Parkinson’s disease. However, it remains debatable whether manganism and 

Parkinson’s disease share common cellular mechanisms114. The hallmark of 

Parkinson’s disease is the degeneration of the nigrostriatal dopaminergic neurons in 

the substantia nigra pars compacta that innervate the caudate and putamen. This is 

consistent with a loss of dopamine transporter (DAT) levels and reduced dopa 

decarboxylase activity in the substantia nigra in single-photon emission computed 

tomography (SPECT) and PET studies of Parkinson’s disease patients114,115. In 

contrast, the most significant effects of Mn toxicity occur in the striatum while synthesis 

of dopamine and DAT levels in the substantia nigra are preserved in most 

cases22,116,117 (Figure 1.9).  

 

Figure 1.9 Basal ganglia 

pathways affected in 

manganism and idiopathic 

Parkinson’s disease. 

Red: nigrostriatal dopaminergic 

neurons. Striatum = Caudate + 

Putamen. Blue: projections to the 

cortex.  
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While some studies have described a loss of dopaminergic neurons within the 

substantia nigra upon Mn exposure118, the majority of studies report intact pre-synaptic 

dopaminergic neurons22,119. Given the overlapping clinical symptoms between 

manganism and Parkinson’s disease, it is likely that dopamine neurotransmission is 

affected in both conditions. However, the disturbance most probably occurs at different 

points within the complex neuronal pathways in the basal ganglia120. PET studies in 

patients with manganism showed that nigrostriatal neurons are not degenerated121. 

Indeed, recent studies have confirmed that chronic Mn exposure significantly impacts 

on amphetamine-induced dopamine release in the striatum while the neurons in the 

substantia nigra remain intact. Furthermore, a significant decrease in DAT levels in the 

striatum was observed in Mn exposed primates and rats119,122. Mn was also found to 

decrease dopamine uptake and dopamine efflux in DAT transfected HEK293 cells by 

promoting redistribution of DAT from the cell surface to the internal compartment of the 

cell120. Other studies showed that expression of postsynaptic D2-dopamine receptors 

(D2R) is down-regulated in the basal ganglia and the midbrain following Mn 

exposure84,123,124. In Parkinson’s disease on the other hand the level of postsynaptic 

D2Rs is either unaffected or increased. Overall, there is increasing evidence that Mn 

neurotoxicity causes abnormal dopaminergic signalling while dopamine neuron 

integrity within the substantia nigra remains preserved119. This is consistent with the 

fact that in patients with mutations in SLC30A10, Mn toxicity is reversible to some 

degree with removal of Mn by chelation therapy50. 

 

Intrastriatal Mn injections in the rat brain have been found to cause dopaminergic  

neuron loss125. Studies in C. elegans have shown that Mn has the ability to induce 

dopaminergic specific neurodegeneration. This neurotoxicity is dependent on the 

presence of extracellular dopamine and requires functional dopamine reuptake via 

DAT126. It was concluded that dopamine is required for Mn toxicity to occur and that Mn 

and dopamine work together synergistically resulting in selective dopaminergic 

neurotoxicity. Mn was suggested to mediate oxidation of extracellular dopamine which, 

after uptake via DAT, causes oxidative injury and degeneration of dopaminergic 

neurons127.  
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1.4.2 Effects of Mn on Glutamine, Glutamate and γ-Aminobutyric acid (GABA) 

signalling 

Glutamine is an important precursor in the brain for the synthesis of both the excitatory 

neurotransmitter glutamate and the inhibitory neurotransmitter γ-aminobutyric acid 

(GABA), and plays a critical role in neuron-glia interactions128. Glutamate and GABA 

neurons both project widely within the basal ganglia and are involved in the regulation 

of motor coordination. Astrocytes facilitate the regulation of glutamate-glutamine 

cycling between astrocytes and neurons and have in fact been shown to accumulate 

Mn to a much higher extent than neurons129-132. Mn exposure impairs astrocytic 

glutamine transport by reducing the expression of specific glutamine transporters with 

subsequent decrease in glutamine uptake128. Mn is thought to promote ubiquitination 

and degradation of the transporter protein by a mechanism involving the protein kinase 

C (PKC) signalling pathway133. In addition, the uptake of glutamate via the astrocytic 

glutamate:aspartate transporter (GLAST) is affected by Mn, leading to increased 

extracellular glutamate levels and neuronal excitability134. This is consistent with the 

finding of N-methyl-D-aspartate (NMDA) excitotoxic lesions following the local 

intrastriatal injection of MnCl2 into rat striatum125. Glutamate further augments Mn 

induced toxicity as both Mn and glutamate toxicity affect Ca2+ accumulation in the 

mitochondria promoting cell death135.  

 

Upon Mn exposure, extracellular GABA concentrations are increased due to altered 

expression levels of GABA transporters and receptors causing reduced uptake of 

GABA136,137. The authors suggest that the increased extracellular levels of GABA in the 

striatum affect the activity of the GABA projections to the substantia nigra, thus 

facilitating increased inhibition and impaired striatal dopamine release via the 

nigrostriatal pathway. Consistent with these findings, magnetic resonance 

spectroscopy (MRS) studies in Mn exposed workers confirmed raised levels of GABA 

in the thalamus and adjacent brain regions138.  

 

 

 



Chapter 1 Introduction 

 

 46 

1.4.3 Effects of Mn on oxidative stress and mitochondrial dysfunction 

Exposure to high levels of Mn has been shown to be involved in the production of 

reactive oxygen species (ROS) and enhanced oxidative stress. The most common 

ROS include the superoxide radical (O2̇
-), hydrogen peroxide (H2O2) and hydroxyl 

radical (OH˙) leading to damage of nucleic acids, proteins and phospholipids139-141. 

Within the cell, Mn preferentially concentrates in the mitochondria via the Ca2+ 

uniporter142. Long term Mn exposure increases oxidative stress markers including p38 

mitogen-activated protein kinase (MAPK) phosphorylation and caspase activity in the 

striatum143. Furthermore, intracellular levels and activation of antioxidants such as 

glutathione and catalase are augmented following Mn exposure144-146. Consistent with a 

role of Mn in the production of oxidative stress, treatment of Mn exposed cells with 

antioxidants attenuates Mn toxicity143,147,148. The basal ganglia are areas in the brain 

with high oxidative activity promoting oxidation from Mn2+ to Mn3+, the species with a 

greater pro-oxidant potential, augmenting the auto-oxidation of dopamine149. Dopamine 

auto-oxidation leads to the formation of quinones that are cytotoxic150. The main 

species of Mn in the mitochondria is Mn2+ bound to ATP130. Mn2+ is thought to directly 

interfere with oxidative phosphorylation causing ROS production142. However, the exact 

pathways that lead to Mn induced production of ROS are still unknown. It is suggested 

that the first step in ROS generation is the production of O2̇
 ̶ that can be converted to 

H2O2 by the Mn and Cu/Zn superoxide dismutase in the mitochondria and cytoplasm, 

respectively. H2O2 can be further converted to OH˙ in the presence of Mn or other 

transition metals139,151.  

 

Recent work demonstrates that Mn exposure in rats leads to decreased complex I 

activity that can be prevented by treatment with Edaravone, a radical scavenger, 

further suggesting that ROS overproduction leads to oxidative stress and mitochondrial 

dysfunction152. Mn2+ also interferes with Ca2+ homeostasis within the mitochondria by 

occupying Ca2+ binding sites. Together with the generation of oxidative stress this 

leads to the induction of a process named mitochondrial permeability transition (MPT). 

Opening of a permeability transition pore (PTP) mediates increased solubility of the 

mitochondrial membrane for ions and protons causing rapid swelling and ultrastructural 

changes associated with loss of the mitochondrial inner membrane potential, impaired 

oxidative phosphorylation and ATP synthesis thereby inducing apoptosis and 

contributing to neurodegeneration130,131,139.  
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1.4.4 Role of Mn in neuroinflammation 

Whilst Mn can affect neurons directly through oxidative damage and mitochondrial 

dysfunction, Mn has also been shown to enhance neurotoxicity by activation of glial 

cells and subsequent release of inflammatory cytokines and non-neuronal ROS. Mn 

has the ability to induce the release of interleukin (IL) -1β, IL-6 and tumor necrosis 

factor α (TNF-α) from microglial cells153. Mn induced neuronal injury has been shown to 

require the presence of astrocytes confirming the crucial role of astrocytes in Mn 

neurotoxicity. This is further supported by the significantly higher levels of Mn 

accumulating in astrocytes during Mn exposure compared with neurons132. In addition, 

Mn has been shown to alter astrocyte morphology and lead to Alzheimer type II 

astrocytosis in the globus pallidus154. This is associated with increased production of 

nitric oxide (NO) and increased expression of NO synthase in astrocytes155. Mn 

potentiates cytokine-induced expression of NO synthase and production of NO in 

astrocytes via activation of soluble guanylate cyclase leading to extracellular signal-

regulated kinases (ERK) – dependent enhancement of NF-kappaB signalling156. 

Overall, inflammation of glial cells within the basal ganglia with subsequent neurotoxic 

injury seems to be an important mechanism of Mn toxicity. 
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1.5 Zebrafish as a disease model 

Given the complexities of the mechanisms involved in Mn toxicity and homeostasis, a 

simpler in vivo model may facilitate the study of Mn metabolism and the effects of Mn 

accumulation. Zebrafish have been shown to be an excellent vertebrate model 

organism for monogenetic human disease157-159.  

 

Over the past decades, the zebrafish has become a powerful vertebrate model for the 

study of neurodegenerative and metabolic human diseases. Several inherited 

metabolic disorders have been successfully modelled in zebrafish including aromatic L-

amino acid decarboxylase deficiency, maple syrup urine disease, multiple acyl-CoA 

dehydrogenase deficiency, late infantile neuronal ceroid lipofuscinosis, Niemann Pick 

disease type C and congenital disorder of glycosylation caused by phosphomannose 

isomerase deficiency160-165. Zebrafish have also proven a valuable tool in the study of 

neurodegenerative disorders with later disease onset including amyotrophic lateral 

sclerosis and Alzheimer’s disease166-168. In addition, zebrafish have been used to 

analyse the effects of environmental metal toxins and the function of metal transporters 

such as DMT1 as well as having provided an ideal experimental tool to uncover novel 

mechanisms of trace metal homeostasis 169,170. Indeed, trace mineral transporter 

systems are highly conserved across vertebrate organisms including zebrafish making 

them a powerful model to study metal metabolism171.  

 

Zebrafish offer several advantages over other animal models including i) transparency 

and ex utero development of embryos allowing non-invasive observation and live 

imaging; ii) large numbers of eggs and embryos available for manipulation and high-

throughput screening; iii) low costs of maintenance, iv) the availability of transgenic 

lines expressing fluorescent proteins allowing visualisation of different cell types and 

the study of organ morphology in vivo, v) available tools for precise genome 

modification including transcription activator-like effector nucleases (TALENs), 

clustered regularly interspaced short palindromic repeats (CRISPR) / Cas9 system and 

zinc finger nucleases (ZFN)157,172. Furthermore, many pharmacological targets in 

zebrafish have been shown to be highly similar to those in humans. This together with 

the large number of embryos available per experiment makes zebrafish an ideal model 

for drug discovery172-174. Zebrafish embryos are permeable to low molecular weight 

chemical compounds, and therefore drugs and small molecules can simply be added to 
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the water for drug testing and toxicological studies including studies of metal 

toxicity174,175.  

 

The zebrafish genome is now fully sequenced and shares a considerable degree of 

homology with the human genome confirming the suitability of zebrafish for genetic 

studies; it has been estimated that 70% of human genes have at least one zebrafish 

orthologue176. In particular, advances in genome editing methods such as TALENs and 

CRISPR/Cas9 system are now allowing us to uncover the role of disease causing 

genes and their involvement in disease processes in a cost and time efficient manner. 

These approaches have been shown to be highly efficient in generating powerful gene 

knockout models and more recently even gene knock-in animals168,177-182. 

 

1.5.1 Transcription activator-like effector nucleases (TALENs) 

Transcription activator-like effectors (TALEs) are specific DNA binding proteins found 

in Xanthomonas bacteria that allow the modulation of host gene expression. TALE 

proteins consist of a varying number of 34-amino-acid repeats 

(LTPDQVVAIASXXGGKQALETVQRLLPVLCQDHG) that mediate binding to a specific 

DNA target sequence (Figure 1.10). The residues at positions 12 and 13 (XX) in each 

34 amino-acid repeat, the ‘repeat-variable di-residue’ (RVD), bind to a specific base of 

the target DNA. When the RVD consists of an asparagine and isoleucine (NI) it 

recognises the nucleotide ‘A’, a histidine and aspartic acid (HD) the ‘C’, an asparagine 

and glycine (NG) the ‘T’ and two asparagines (NN) the ‘G’. Therefore, a specific 

sequence of RVDs determines the target nucleotide sequence. Such a TALE repeat 

array can be de novo synthesised and fused to a FokI nuclease at the C-terminus 

which creates a transcription activator-like effector nuclease (TALEN)179,181,183-188. A pair 

of TALENs binding opposing DNA strands across a spacer region of 14 to 18 bases 

will cause the dimerisation of the FokI nuclease and result in a double strand break 

(DSB) of the target DNA. DSBs are repaired primarily by non-homologous end joining 

(NHEJ) which is error prone and often results in small insertions or deletions (indels) 

thereby causing gene disruption, or by homologous recombination (HR) which can be 

utilised for the insertion and replacement of DNA sequences when a template DNA is 

presented simultaneously184,189. TALENs have been successfully used in zebrafish to 

generate heritable gene mutations that are passed efficiently through the germline179-

181,183,186.  
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Figure 1.10 TALEN structure. 

(a) Schematic diagram of a single TALEN arm. The TAL effector (blue) is fused to a 

FokI nuclease (red) and contains a sequence of 34 amino-acid repeats (orange) that 

determines the target DNA sequence. Each 34 amino-acid repeat contains a repeat-

variable di-residues (RVD) at position 12 and 13 (red circle). The four RVDs HD, NI, 

NG and NN within the repeat sequence specifically bind to one of the four nucleotides 

C, A, T and G, respectively. NLS, nuclear localisation signal. (b) Two monomeric 

TALENs bind to the target DNA sequence (red) allowing the dimerization of FokI in the 

spacer region (blue) and subsequent DNA cleavage. Adapted from Cermak et al.184  

 

1.5.2 CRISPR/Cas9 genome editing 

The clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas system is 

a bacterial immune system facilitating acquired resistance to invading viruses and 

plasmids. Foreign DNA fragments, also called “spacers”, are integrated into the 

bacterial CRISPR locus with subsequent transcription into CRISPR repeat-spacer 

arrays (crRNAs) that are annealed to a transactivating crRNA (tracrRNA) that facilitates 

sequence specific cleavage of foreign DNA through the Cas9 nuclease. The Cas9 

nuclease only successfully binds to the target sequence if it is followed by a 

protospacer adjacent motif (PAM) sequence (-NGG-)185,190. A single engineered guide 

RNA (gRNA) can be synthesised in vitro that contains a genome specific sequence 

followed by the sequence of the crRNA and tracrRNA (Figure 1.11). Injection of the 
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gRNA together with an mRNA encoding the Cas9 nuclease into a zebrafish embryo 

leads to double strand DNA breaks that are subsequently repaired by NHEJ or HR 

which can be utilised for site specific genome editing177-179,191.  

 

 

Figure 1.11 Mechanism of gRNA/Cas9 DNA cleavage. 

The gRNA consists of a sequence complementary to a specific genomic locus and a 

backbone sequence containing the crRNA and tracrRNA, and allows recognition of 

genome specific sequences that are adjacent to a PAM sequence (5’-NGG-3’). 

Subsequently, the Cas9 nuclease site-specifically cleaves dsDNA. 
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1.6 Aims and scope of this thesis 

As discussed in this Chapter, there is increasing evidence that Mn plays an important 

role as a neurotoxin both in environmental exposure and in inherited dystonia-

parkinsonism. Mn toxicity seems to affect the balance of several neurotransmitters in 

the basal ganglia, cause neuroinflammation and oxidative stress192. However, to what 

extent each of these pathways contributes to Mn neurotoxicity remains unknown. We 

have made an important contribution towards a better understanding of Mn 

homeostasis by the discovery of SLC30A10 as a crucial Mn transporter46. 

Nevertheless, further research is required to elucidate the mechanisms of Mn toxicity 

and transport and subsequently translate these findings into potential treatments and 

biomarkers for Mn related neurodegenerative disorders. In this thesis I attempt to shed 

more light on these unanswered questions.  

This thesis aims to  

 delineate the phenotypic and genotypic spectrum of inherited Mn transporter 

defects in any new patients presenting with the clinical characteristics of inherited 

hypermanganesaemia. 

 develop disease models of inherited Mn transportopathies to elucidate disease 

mechanisms. Because zebrafish are an excellent model in which to study 

neurodegenerative disorders and amenable to genetic modification as described 

above in Section 1.5 they were used to generate loss-of-function mutants of Mn 

transporter genes.   

 assess the phenotype of Mn transportopathy zebrafish mutants to elucidate the 

pathological processes underlying Mn associated neurotoxicity. 

Ultimately, this thesis aims to provide new insights into the pathogenesis of Mn related 

disease with the view to identify novel therapeutic targets and compounds with 

disease-modifying potential.  
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Chapter 2. Materials & Methods 

2.1 Reagents 

Unless otherwise stated general laboratory chemicals were purchased from Sigma-

Aldrich. Protocols for standard laboratory solutions are listed in Appendix 9.2. 

 

2.2 Subjects 

Patients sharing a neurological phenotype characteristic of Mn deposition in the basal 

ganglia associated with typical MRI brain appearances were analysed in this study. 

Informed consent for DNA storage and genetic analyses was obtained from all subjects 

or parents. The research protocol was approved by the West London Research Ethics 

Committee (10/H0711/51). 

 

2.3 Molecular biology 

2.3.1 Genomic DNA extraction 

DNA extraction from human blood samples (1 mL) was performed using the Gentra 

Puregene Blood Kit (Qiagen) according to the manufacturer’s instructions in a final 

volume of 50 μL DNA hydration solution. DNA concentration was determined using a 

NanoDrop 2000C spectrometer (ThermoScientific). A 260/280 ratio ≥1.8 was accepted 

as pure for DNA. 

For DNA extraction from zebrafish embryos, larvae and fin clips the HotSHOT method 

was used193. In brief, samples were incubated in 25 μL (for embryos) or 50 μL (for 

larvae and fin clips) base solution (1.25 M KOH and 10 mM EDTA) at 95°C for 30 

minutes followed by addition of 25 or 50 μL neutralisation solution (2M Tris HCl). 1 μL 

of this mix was used for downstream applications such as PCR without further 

quantification. 
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2.3.2 PCR and Sanger sequencing 

Standard PCR was performed using recombinant Taq polymerase (Invitrogen) 

according to the manufacturer’s instructions with the addition of betaine, a PCR 

enhancing agent: 

 

10 x PCR buffer    2.5 μL 

50 mM MgCl2     0.75 μL 

10 mM dNTP Mix (Promega)   0.5 μL 

10 μM forward primer    1.25 μL 

10 μM reverse primer    1.25 μL 

5 M betaine     2.5 μL 

MQ H2O     17.5 μL 

Template DNA (50 ng/μL)   1 μL 

Taq polymerase    0.25 μL 

 Total volume     25 μL 

 

Thermocycling conditions:  

 Initial denaturation   95°C  5 min 

   Denaturation  95°C  30 sec 

 35 cycles Annealing  a°C  30 sec 

   Extension  72°C  b sec 

 Final extension    72°C  5 min 

a specific annealing temperature 

b 30 sec per 500 bp 

 

 

For PCR amplification requiring a proof reading DNA polymerase the Q5 High-Fidelity 

DNA polymerase (New England Biolabs, NEB) was used according to the 

manufacturer’s recommendations: 
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5 x Q5 reaction buffer    5 μL 

5X Q5 High GC Enhancer   5 μL 

10 mM dNTP Mix (Promega)   0.5 μL 

10 μM forward primer    1.25 μL 

10 μM reverse primer    1.25 μL 

MQ H2O     10.75 μL 

Template DNA    1 μL 

Q5 High-Fidelity DNA polymerase  0.25 μL 

Total volume     25 μL 

 

Thermocycling conditions:  

 Initial denaturation    98°C  30 sec 

   Denaturation  98°C  10 sec 

 35 cycles Annealing  a°C  30 sec 

   Extension  72°C  b sec 

 Final extension    72°C  2 min 

a specific annealing temperature 

b 15 sec per 500 bp 

 

PCR products were run on a 1-2% agarose gel (depending on the product size) 

prepared in 1 x Tris base, acetic acid and EDTA buffer (TAE, Appendix 9.2) with 1 μL 

ethidium bromide (10 mg/mL) per 50 mL gel solution at 100-120 volts in 1 x TAE. 

Amplicon sizes were determined by comparison to standard DNA markers (100 bp or 1 

kb ladder, Promega). DNA bands were visualised by ultraviolet illumination. 

 

For direct sequencing, PCR products were cleaned up using ExoSap: 

 

 PCR product      10 μL 

 SAP buffer      0.25 μL 

Shrimp Alkaline Phosphatase (Affymetrix)  1 μL 

Exonuclease I (NEB)     0.5 μL 

Total volume      12 μL 

 

The reactions were incubated at 37°C for 15 min followed by an inactivation step of 

80°C for 15 min.  
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Sanger sequencing was performed using a commercial provider service 

(SourceBioScience). Alternatively, the BigDye Terminator v1.1 Cycle Sequencing Kit 

(Applied Biosystems) was used according to the following protocol: 

 

 DNA template    3 μL 

 5 μM primer    1 μL 

 5 x BigDye sequencing buffer  1.5 μL 

 BigDye reaction mix v1.1  0.5 μL 

 Total volume    6 μL 

 

Thermocycling conditions: 

Initial denaturation    95°C  2 min 

   Denaturation  95°C  20 sec 

 35 cycles Annealing  50°C  10 sec 

   Extension  60°C  3 min 

 

Subsequently, the DNA was precipitated in a 96 well plate by adding 2 μL 3M sodium 

acetate (pH 5.2) and 50 μL 100% ethanol to each sample. Following 20 min incubation 

at room temperature the plate was centrifuged for 40 min at >10,000 x g, the 

supernatant discarded, the samples washed in 50 μL 70% ethanol and centrifuged for 

10 min at >10,000 x g. The supernatant was discarded and the plate centrifuged 

upside down on tissue paper for 1 min at 1,000 x g. The precipitated DNA was 

resuspended in 10 μL of 0.1 x TE buffer.  

 

Sequencing was performed on an ABI 3730 DNA Analyzer (Applied Biosystems) and 

the data analysed using Sequencher 5.2.4 software (Genecodes).  

 

Population frequencies of identified sequence changes were obtained from the 

dbSNP194 (http://www.ncbi.nlm.nih.gov/SNP/), 1000 Genomes (http://www.1000 

genomes.org/) and ExAc (http://exac.broadinstitute.org/) databases. The ExPASy 

translate tool was used to predict the translation of a given nucleotide sequence to that 

of a protein (http://web.expasy.org/translate/). Amino acid alignments were generated 

using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) or UniProt software 

(http://www.uniprot.org/). To predict transporter protein structures, the MEMSAT3 & 

MEMSAT-SVM membrane helix prediction tool were used (http://bioinf. 

http://bioinf/
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cs.ucl.ac.uk/psipred/). The Basic Local Alignment Search Tool (BLAST, 

www.ncbi.nlm.nih.gov/BLAST/) was used to identify specific genomic sequences. 

PolyPeakParser software195 (http://yosttools.genetics.utah.edu/ PolyPeakParser/) was 

used to separate the chromatogram data of CRISPR induced indel mutations identified 

in the F1 fish.  

 

 

Primers used for PCR and sequencing of human SLC30A10 and SLC39A14 are listed 

in Table 2.1 and 2.2. 

 

 

Primer Sequence (5’ → 3’) Predicted 

amplicon 

size (bp) 

Annealing 

temp. (°C) 

hSLC30A10_5UTRFw AAGAGAGACATCGGCTCGTG 360 62 

hSLC30A10_5UTRRv GTGAGCACCAGCATGAAGAG   

hSLC30A10_Exon1Fw1 ACAATCTGGGAGGCGGGTA 497 62 

hSLC30A10_Exon1Rv1 GACCAACAGCCCCAGGAC   

hSLC30A10_Exon1Fw2 CTTCAGCGCCACCTACGG 498 62 

hSLC30A10_Exon1Rv2 GTGGGAGGAGGAAGGAAGG   

hSLC30A10_Exon2Fw TACTGTTCTGAGCTGTGGGT 480 62 

hSLC30A10_Exon2Rv CCTCAGGATCAATGCAGTGA   

hSLC30A10_Exon3Fw CCTGCAGGTCAGAATCTTCC 554 62 

hSLC30A10_Exon3Rv GCTTGTCCTTTGGCCTGA   

hSLC30A10_Exon4Fw1 GCAGCCATTTTGGTGAGAAT 391 62 

hSLC30A10_Exon4Rv1 CAACACAGCTGCTTAGCACA   

hSLC30A10_Exon4Fw2 TCCACAATGTGACCATCCAG 474 62 

hSLC30A10_Exon4Rv2 AACAGCCAACCCCTAGTGAA   

hSLC30A10_3UTRFw GTGGGCCCTCTCTAGACACA 546 62 

hSLC30A10_3UTRRv TGATCTCACCTGAGCATTAGC   

Table 2.1 Primer sequences and annealing temperatures for PCR and 

sequencing of human SLC30A10. 

Primers were designed to amplify all coding exons and intron/exon boundaries of 

transcript NM_018713.
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Primer Sequence (5’ → 3’) Predicted 

amplicon 

size (bp) 

Annealing 

temp. (°C) 

hSLC39A14_Exon2Fw TCAAGAAGGAGCAGAGAAGCA 480 60 

hSLC39A14_Exon2Rv AGACAGGGAACCCTGAGAGG   

hSLC39A14_Exon3Fw TCCTCTGGGAAGGCTGAGTA 371 62 

hSLC39A14_Exon3Rv CATTCAGTGAGGAGCAGCAG   

hSLC39A14_Exon4aFw GAGTGTCCCCACCCTCAGT 298 60 

hSLC39A14_Exon4aRv GTAGGGGAGGAGGGGATTG   

hSLC39A14_Exon4bFw GGCATGTGCCTTCTCTCC 300 60 

hSLC39A14_Exon4bRv CCTTCTATCCAAACGGAGGTC   

hSLC39A14_Exon5Fw AGGGGGATCAGTAAAGATGCT 242 60 

hSLC39A14_Exon5Rv TGTTTGAGATGGGTGTTTTCC   

hSLC39A14_Exon6Fw AGCAGGTGCTCAATCAGGTT 328 60 

hSLC39A14_Exon6Rv ACCATGTGCCCTCAAGGTAA   

hSLC39A14_Exon7Fw GGCTTACCTTGAGGGCACAT 377 60 

hSLC39A14_Exon7Rv GCACTGTGAAGACAGGGAGA   

hSLC39A14_Exon8Fw CCATGCCCATCTTACTCTTCC 299 60 

hSLC39A14_Exon8Rv ACCTAACATCCATCCCCTTAG   

hSLC39A14_Exon9aFw TTGCCCTGGACTTACAAGATG 297 60 

hSLC39A14_Exon9aRv GTGGTGCATTGTGGATGGT   

hSLC39A14_Exon9bFw CGGCCATGTTTATGTTTTTG 299 60 

hSLC39A14_Exon9bRv CATCATGCAGTTAGGAAATACCA   

Table 2.2 Primer sequences and annealing temperatures for PCR and 

sequencing of human SLC39A14. 

Primers were designed to amplify all coding exons and intron/exon boundaries of 

transcripts NM_001128431.2, NM_015359.4 and NM_001135154.1.  
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Primers used for PCR with subsequent restriction enzyme digestion (Section 2.3.5), 

and TOPO TA cloning for sequencing (Section 2.3.9) of TALEN or CRISPR target 

regions are listed in Table 2.3. 

 

 

Primer Sequence (5’ → 3’) Predicted 

amplicon 

size (bp) 

Annealing 

temp. (°C) 

zfSLC30A10_Exon1Fw TCCGGGCGCTTCTCCTTC 459 60 

zfSLC30A10_Exon1Rv CAGGGAGTGTGTTTCCCGC   

zfSLC30A10_Exon3Fw CCTGCATGTGCTGAATGACG 214 60 

zfSLC30A10_Exon3Rv GTCCTCGGGGCTCATCTG   

zfSLC39A14_Exon5Fw AACCCCAAACATCTGAACAGT 330 55 

zfSLC39A14_Exon5Rv ACCGGAACAGACCATCAGTT   

zfSLC30A10_Del1_3Fw TCGGACTCCTTCAACATGCT ~230 56 

zfSLC30A10_Del1_3Rv CAGGTCCTCGGGGCTCAT   

zfSLC39A14_Del5_8Fw AACCCCAAACATCTGAACAGT ~300 56 

zfSLC39A14_Del5_8Rv TCAGCATGACGTCTCTTACCA   

zfSLC39A14_Del5_9Fw AACCCCAAACATCTGAACAGT ~280 56 

zfSLC39A14_Del5_9Rv ATCCAAGCTGTATCTGTCCAG   

Table 2.3 Primer sequences and annealing temperatures for PCR and 

sequencing of TALEN/CRISPR target regions. 

The last three primer pairs amplify the region around the deletions generated by double 

injection of TALENs/CRISPRs. ~, approximate (amplicon size depends on size of 

deletion). 
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2.3.3 Whole exome sequencing (WES) 

WES was performed in generous collaboration with Prof Olaf Bodamer at the 

University of Miami.  

Library construction and capture hybridisation were performed using the SureSelect XT 

Human All Exon V5 Kit (Agilent Technologies) according to the manufacturer’s 

protocol. Samples were barcoded post-capture to allow for multiplexing of four samples 

per HiSeq2000 lane. Cluster generation took place on the Illumina cBot according to 

the manufacturer’s recommendations. Sequencing occurred on the Illumina HiSeq2000 

using the reagents provided in the Illumina TruSeq PE Cluster Kit v3 and the TruSeq 

SBS Kit-HS (200 cycle) kit. 82 million pass filter paired-end reads per sample were 

generated for an average read depth of 79% at 20 x. Variants were called based on 

dbSNP139194 and annotation based on SeattleSeq Annotation 137 version 8.01. 

Filtering was performed using the in-house developed software GEMapp196. 

 

2.3.4 DNA purification 

Where purified DNA was required for downstream applications such as cloning or in 

vitro transcription, samples were either purified using the QIAquick or MinElute PCR 

purification kit (Qiagen) or extracted from an agarose gel using the QIAquick Gel 

Extraction kit (Qiagen) according to the manufacturer’s protocol. Final elution was done 

in 30 μL H2O (10 μL for MinElute columns). 

 

2.3.5 Restriction enzyme digestion 

Restriction enzymes purchased from NEB or Promega were used according to the 

manufacturer’s recommendations. Typically, 10 units of enzyme were used per 1 μg 

plasmidic DNA or PCR reaction and incubated at the specified temperature for a 

minimum of 2 hours. Acetylated bovine serum albumin (BSA) was added to Promega 

enzyme reactions at a final concentration of 0.1 μg/μL. Complete digestion was verified 

against undigested plasmid DNA or PCR product on a 1-2% agarose gel depending on 

the size of the expected products. Digested plasmid DNA was purified using the 

QIAquick or MinElute PCR purification kit (Section 2.3.4). 
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2.3.6 Total RNA isolation, reverse transcription and RT-PCR 

Total RNA extraction from human tissues or pools of zebrafish embryos/larvae was 

performed using the TRIzol protocol (Life Technologies). In brief, 1 mL TRIzol was 

added to 100 mg tissue or 500 μL TRIzol to 30 embryos/larvae. Tissues were 

homogenized using a glass homogeniser; zebrafish embryos/larvae were taken 

through a 27 gauge needle until the lysate looked uniform. After incubation for 5 min at 

room temperature 100 μL chloroform was added, the solution mixed vigorously and 

centrifuged at 12,000 x g for 15 min at 4°C to allow the separation of the sample into a 

clear upper aqueous phase containing the RNA, a white interphase containing the DNA 

and a red lower organic layer containing the proteins. The RNA was precipitated from 

200 μL of the aqueous phase by mixing with 170 μL isopropyl alcohol, incubation for 10 

min at room temperature and subsequent centrifugation at 12,000 x g for 10 min at 4°C. 

The supernatant was discarded and the RNA pellet washed with 1 mL 75% ethanol. 

After centrifugation at 7,500 x g for 5 min at 4°C the supernatant was discarded and 

the RNA pellet rehydrated in 20 μL of RNase free H2O. To avoid genomic DNA 

contamination, samples were treated with DNase I (NEB) at 37°C for 15 min according 

to the following protocol: 

 

 Total RNA  20 μL  

 10 x DNase buffer 10 μL  

 RNase free H2O 68 μL  

 DNase   2 μL 

 Total volume  100 μL 

 

The RNA was purified using the RNeasy Mini Kit according to the manufacturer’s 

protocol. RNA was eluted in 30 μL RNase free H2O. The RNA concentration was 

quantified by measuring the absorbance of the solution at 260/280 on a NanoDrop 

2000C spectrophotometer (Thermo Scientific). 260/280 and 260/230 ratios of 2-2.2 and 

≥2.0, respectively, assessing possible contamination with protein and organic solvents 

such as phenol, were accepted as pure for RNA.  

 

For reverse transcription the SuperScript III reverse transcriptase (Invitrogen) was used. 

1 μg total RNA was mixed with 1 μL oligo(dT)20 primers (50 μM), 1 μL dNTP mix and 

RNase free H2O to a final volume of 13 μL. After a 5 min incubation at 65°C to 
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denature the RNA secondary structure and a 1 min incubation on ice to let the primers 

anneal the following reagents were added: 

 

5X First-Strand Buffer     4 μl 

0.1 M DTT      1 μl 

RNaseOUT Recombinant RNase Inhibitor  1 μl 

SuperScript III RT      1 μl 

Total volume      20 μL 

 

The reaction was incubated at 50°C for 60 min to facilitate extension. Finally, the 

enzymes were inactivated at 70°C for 15 min. 

 

The resulting cDNA was diluted 1:5 with nuclease free H2O and 1 μl used for RT-PCR 

amplification. Additionally, a human cDNA panel from heart, brain, lung, liver, kidney 

and pancreas was purchased from Clontech. Fetal cDNA from placenta, skin, brain, 

heart, kidney, intestine and liver were kindly provided by the BabyBioBank at UCL 

Institute of Child Health, London, UK.  
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Primers used for RT-PCR are listed in Table 2.4. 

 

Primer Sequence (5’ → 3’) Predicted 

amplicon size 

(bp) 

cDNA/gDNA 

Annealing 

temp. (°C) 

zfSLC30A10_RT_5UTRFw CGAGGAGAACCACAGGTGATCT 1361/ 60 

zfSLC30A10_RT_3UTRRv ACAGCACACACTCCTGCATT 4488  

zfSLC30A10_Iso2Fw GTGTGTAGAGCCGCTGGTGT 209/ 60 

zfSLC30A10_Exon3Rv CGGCCACACATAGAACAGAG 396  

hSLC39A14_RT_Exon4aFw GACCGTCATCTCCCTCTGCT 139/ 64 

hSLC39A14_RT_Exon5Rv CCAAACACCACTGCAGACTTGG 2773  

hSLC39A14_RT_Exon3Fw CGGAGAACCAGGAAAACGAGG 109/ 64 

hSLC39A14_RT_Exon4bRv GAGGCCAGGTTAATCAGTGAG 1558  

hSLC39A14_RT_Exon6Fw GTGCTTCCTTCACTGTGTCA 165/ 58 

hSLC39A14_RT_Exon7Rv CGTTGAGCAGGATGACAAAG 1475  

zfSLC39A14_RT_Exon3Fw CCCTAGACCCACTGAAGCTG 240/ 58 

zfSLC39A14_RT_Exon5Rv GCGGACTTGGGCACATAATA >22kb  

hHPRT_Fw CCACGAAAGTGTTGGATATAAGC 205/  58 

hHPRT_Rv GGCGATGTCAATAGGACTCCAGA 1721  

Table 2.4 Primer sequences for RT-PCR. 

Primers were designed to span an intron/exon boundary. HPRT, hypoxanthine-guanine 

phosphoribosyltransferase. 
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2.3.7 Quantitative real time PCR (qRT-PCR) 

qRT-PCR was performed using GoTaq qPCR Master Mix (Promega) according to the 

following protocol: 

 

cDNA (diluted 1:5)   2 μL 

10 μM forward primer   1 μL 

10 μM reverse primer   1 μL 

Nuclease free H2O   6 μL 

GoTaq qPCR Master Mix  10 μL 

 Total volume    20 μL 

 

All samples were run in triplicates. For each primer pair a non-template control (NTC) 

sample was included containing H2O instead of template DNA to exclude DNA 

contamination of the reagents. qRT-PCR was carried out on a CFX96 Touch Real-

Time PCR Detection System (BioRad) with the following thermocycling conditions:  

 

Initial denaturation   94°C 2 min 

   Denaturation  94°C 15 sec 

40 cycles Annealing  60°C 30 sec 

Extension  72°C 30 sec  

 

Primers were designed to span at least one intron/exon boundary to allow detection of 

genomic DNA contamination. The amplification efficiency (E) for each primer pair was 

calculated by standard curve analysis in Microsoft Excel using 1:5 serial dilutions over 

five samples (1:1, 1:5, 1:25, 1:125, 1:625) according to the following formula: 

 

E (%) = (10^(-1/slope)-1)*100 

 

Only primer pairs with R2 values >0.99 and amplification efficiencies between 90% and 

110% were used (Table 2.5). 

 

Relative quantification of gene expression was determined using the 2−∆∆Ct method197, 

with elongation factor 1α (ef1α) as a reference gene. Statistical analysis was performed 

using Student’s two tailed t test on individual ∆Ct values. 



Chapter 2 Materials and Methods 

 

 65 

Amplicon Primer Sequence (5’ → 3’) Predicted 

amplicon 

size (bp) 

E (%) 

slc39a14 

transcript 1 

Fw CCTTTTACAAGCGGTTGCTGC 133 97.6 

Rv GCGGACTTGGGCACATAATA 

slc39a14 

transcript 2 

Fw CGCGGTTCATGCGCAGAGTT 136 97.8 

Rv GCGGACTTGGGCACATAATA 

slc39a14 all 

transcripts 

Fw CCCTAGACCCACTGAAGCTG 240 101.5 

Rv GCGGACTTGGGCACATAATA 

ef1α Fw GTACTTCTCAGGCTGACTGTG 136 98.2 

Rv ACGATCAGCTGTTTCACTCC 

DMT1 Fw TTCCCAGCAAACAACGAGAC 101 106.9 

 Rv CCCACAGCCCAGATGTAGAG   

slc39a8 Fw GCCTGCCCTTACACTTCTTC 104 109.4 

 Rv GCAGCCAAGTTAATCACCGT   

tfr1a QuantiTect Primer Assay (Qiagen, QT02189621) 

tfr1b QuantiTect Primer Assay (Qiagen, QT02196558) 

Table 2.5 Primers used for qRT-PCR. 

E, amplification efficiency.  

 

 

2.3.8 Conventional molecular cloning 

For conventional cloning into pBSK or pCS2+ plasmids, inserts were PCR amplified 

using phosphorylated primers and the product ligated into a linearised, 

dephosphorylated vector. Primers were phosphorylated using T4 polynucleotide kinase 

(PNK) (Promega) according to the following protocol: 

 

100 µM primer   5 µL 

 10 x T4 PNK buffer  4 µL  

 10 mM ATP   4 µL 

 MQ H2O   25 µL 

 T4 PNK (10 units/ µL)  2 µL 

 Total volume   40 µL 
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The reaction was incubated at 37°C for 30 min. 2 µL of each primer was used for PCR 

with Q5 High-Fidelity DNA polymerase (NEB) (Section 2.3.2). The product was gel 

purified using the QIAquick Gel Extraction kit (Qiagen) (Section 2.3.4). Simultaneous 

vector dephosphorylation and blunt linearisation was performed using the 

thermosensitive alkaline phosphatase (TSAP) (Promega) and EcoRV (for pBSK-) and 

StuI (for pCS2+), respectively: 

 

Vector (1 µg/ µL)   1 µL 

 10 x restriction enzyme buffer 2 µL 

 Acetylated BSA (10 µg/µL)  0.2 µL 

 EcoRV/StuI    1.5 µL 

 TSAP     1 µL 

 MQ H2O    14.3 µL 

 Total volume    20 µL 

 

Samples were incubated at 37°C for 15 min followed by heat inactivation of the 

enzymes at 74°C for 15 min. Complete digestion was confirmed on a 1% agarose gel 

and the linearised vector purified using the QIAquick PCR purification kit (Qiagen) 

(Section 2.3.4). 

 

Ligation of the phosphorylated PCR amplicon into the dephosphorylated vector was 

performed according to the following calculation using a ratio of 3:1 insert to vector: 

 

vector (ng)  X  insert (kb)    3 

____________________     X     ___ =   ng insert 

vector (kb)     1 

 

Typically, 50 ng vector was used for ligation with the Quick T4 DNA ligase (NEB): 

 

 vector + insert + MQ H2O  10 µL 

 2 x Quick ligation buffer  10 µL 

 Quick T4 DNA ligase   1 µL 

 Total volume    20 µL 
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The reaction was incubated for 5 min at room temperature and kept on ice until 

transformation of XL10-Gold ultracompetent E. coli cells (prepared by the Biosciences 

Molecular Biology Unit, UCL). 

 

2.3.9 TOPO TA cloning for sequencing 

Taq polymerase amplified PCR products were cloned into the pCRII-TOPO TA vector 

(Invitrogen) according to the manufacturer’s protocol: 

 

 Gel purified PCR product   4 μL 

Salt Solution supplied by manufacturer 1 μL 

pCRII-TOPO TA vector   1 μL 

 Total volume     6 µL 

 

The reaction was incubated at room temperature for 30 min and kept on ice until 

transformation of One Shot TOP10 Competent E. coli cells (Invitrogen) (Section 

2.3.11). Plasmid mini-preparations (Section 2.3.13) were sequenced using generic 

M13 primers (Section 2.3.22). 

 

2.3.10 In-Fusion cloning 

To generate C-terminally enhanced green fluorescent protein (EGFP) tagged 

constructs of human SLC39A14 the In-Fusion HD Cloning Kit (Clontech) was used. In 

brief, pCS2+ constructs of human SLC39A14 transcript 1 or 2 were PCR amplified 

using a gene specific reverse primer just upstream of the stop codon and a vector 

specific forward primer upstream of the simian virus 40 (SV40) polyA site to generate a 

linearised vector containing the open reading frame of SLC39A14 transcript 1 and 2. 

Similarly, the EGFP sequence together with a 5’ flexible linker 

(GGTGGATCAGGAGGTGGCGGAAGTGGTGGAGGGAGCTCAGGA) was PCR 

amplified using primers with 15 bp overhangs homologous to the pCS2+ constructs 

(Table 2.6). 
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Table 2.6 Primer used for In-Fusion cloning. 

Primers used to amplify and linearise the vector constructs were positioned to eliminate 

the stop codon (grey). The primers amplifying the EGFP sequence with a 5’ linker 

contain 15 bp overhangs (underlined) complementary to the ends of the linearised 

vector. 

 

 

PCR was performed using CloneAmp HiFi PCR Premix (Clontech) according to the 

following protocol: 

 

 2 x CloneAmp HiFi PCR Premix  12.5 μL 

 10 μM forward primer    2.5 μL 

 10 μM reverse primer    2.5 μL 

 Plasmid DNA     1 μL 

 MQ H2O     6.5 μL 

 Total volume     25 µL 

 

Thermocycling conditions:  

   98°C  10 sec 

 35 cycles 55°C  15 sec 

   72°C  1 min 

 

The PCR products were purified using the QIAquick PCR purification kit (Section 

2.3.4). 

Primer Sequence (5’ → 3’) 

InfFw_pCS2_hSLC39A14 GCCTCTCGAGCCTCTAGAACT 

InfRv_pCS2_hSLC39A14 CCCAATCTGGATCTGTCCTGA 

InfFW_EGFP CAGATCCAGATTGGGGGTGGATCAGGAGGTGGC 

InfRV_EGFP AGAGGCTCGAGAGGCTTACTTGTACAGCTCGTCCATGC 
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Ligation was performed according to the following protocol: 

 

5 x In-Fusion HD Enzyme Premix  2 µL  

Linearised vector     x µL (50-200 ng) 

Purified PCR fragment    x µL (10-200 ng) 

dH2O       x µL 

 Total volume     10 µL 

 

The reaction was incubated at 50°C for 15 min and kept on ice until transformation of 

Stellar Competent E. coli cells (Clontech). 

 

2.3.11 Transformation of competent E. coli cells 

Competent cells (25 µL) were thawed on ice, mixed gently with 2 µL of the cloning 

reaction and incubated on ice for 30 min. For transformation the cells were heat-

shocked at 42°C for 

- 30 sec: One Shot TOP10 Competent E. coli cells (Invitrogen) 

XL10-Gold ultracompetent E. coli cells  

- 45 sec: Stellar Competent E. coli cells (Clontech) 

and immediately incubated on ice for 1-2 min. 250 µL S.O.C medium (Invitrogen) was 

added followed by incubation and shaking at 220 rpm at 37°C for 1 hour. 50 to 100 µL 

of cells were plated on Luria Bertani (LB) agar (Appendix 8.1) containing the 

appropriate antibiotic and incubated overnight at 37°C. 

 

2.3.12 Colony PCR 

To screen for positive bacterial colonies containing the correct size insert, single 

colonies were picked with a pipette tip and resuspended in 50 µL MQ H2O. PCR was 

performed using 4 µL resuspended colony and Taq polymerase (Section 2.3.2), and 

gel verified. 20 µL of a resuspended positive colony was cultured in 3-5 mL LB broth at 

37°C containing the appropriate antibiotic with shaking at 220 rpm for 12-16 hours 

followed by plasmid preparation the next day. 
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2.3.13 Plasmid preparation 

Plasmidic DNA was isolated using the QIAprep Spin Miniprep Kit (Qiagen) according to 

the manufacturer’s recommendations. DNA was eluted in 30 µL MQ H2O with an 

average yield of 200-300 ng/µL. If required, plasmid midi- and maxi- preparations were 

prepared by the Biosciences Molecular Biology Unit, UCL. 

2.3.14 In vitro transcription of capped RNA 

mRNA for injection into zebrafish embryos was prepared using the mMESSAGE 

mMACHINE Kit (Ambion) according to the manufacturer’s recommendations and 1µg 

of linearised and purified plasmid DNA (Section 2.3.5): 

 

 Nuclease-free Water   X (adjust to final volume of 20 μL) 

2 x NTP/CAP    10 μL 

10 x Reaction Buffer   2 μL 

Linear template DNA (1 μg)  X μL 

Enzyme mix    2 μL 

Total volume    20 μL 

 

Reactions were incubated at 37°C for a minimum of 2 hours followed by addition of      

1 μL TURBO DNase and incubation at 37°C for 15 min to digest the template DNA.  

 

For plasmids that did not contain a SV40 polyA sequence polyA tailing was performed 

using the polyA tailing kit (Ambion) according to the manufacturer’s protocol: 

 

mMESSAGE mMACHINE reaction  20 μL 

Nuclease-free Water    36 μL 

5X E-PAP Buffer    20 μL 

25 mM MnCl2     10 μL 

10 mM ATP 10 μL (0.5 µL kept as minus 

enzyme control to run on agarose 

gel) 

E-PAP enzyme    4 μL 

Total volume     100 μL 
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Reactions were incubated at 37°C for 1 hour and purified using the RNeasy Mini Kit 

(Qiagen). RNA samples were analysed on a 1% agarose gel to exclude contamination 

with DNA and ensure that the polyA tail had attached (linearised plasmid DNA and the 

minus enzyme control RNA were run as controls). RNA concentration was determined 

on a NanoDrop 2000C spectrophotometer (Thermo Scientific). 260/280 and 260/230 

ratios ≥2.0 were accepted as pure for RNA. 

 

2.3.15 Probe synthesis for in situ hybridisation 

To generate digoxigenin (DIG) labelled RNA probes linearised plasmids containing the 

desired insert and promoter sequence or PCR amplified linear DNA with the correct 

promoter overhangs were used as templates for in vitro transcription according to 

Thisse and Thisse 2008198 (Table 2.7). 

 

Probe Orientation Plasmid & 

insert 

RE Primers used for PCR P Size 

(bp) 

slc30a10 antisense 

 

pBSK-, 

slc30a10 

5’→3’ 

NruI − T3 1109 

 sense 

 

BglII  T7 1099 

slc30a10 antisense − − Fw AATTAACCCTCACTAAAGGG 

CCTGCATGTGCTGAATGACG 

T7 706 

 sense − − Rv TAATACGACTCACTATAGGG 

ACAGCACACACTCCTGCATT 

T3 706 

slc30a10 

transcript 2 

antisense − − Fw CGTGTTTGGGTCACGAGTAA  

Rv TAATACGACTCACTATAGGG 

GCGCTCCATCTTTCTCAGTC 

T7 719 

slc39a14 antisense 

 

pBSK-, 

slc39a14 

5’→Exon 8B 

HindIII − T3 970 

 sense 

 

EcoRI  T7 970 

slc39a14 antisense − − Fw AATTAACCCTCACTAAAGGG 

TCTCTGTGTTCACTGGTCGG 

T7 940 

 sense − − Rv TAATACGACTCACTATAGGG 

TGGTGAGTACAAGCATTATGGC 

T3 940 

Table 2.7 DNA templates and primers used for in vitro transcription to generate 

in situ hybridisation probes. 

RE, restriction enzyme. P, promoter. Primers contain RNA polymerase promoter 

sequences (underlined). 
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For each gene two probes spanning a different part of the transcript were designed. In 

vitro transcription was performed using T3/T7 RNA polymerase (Promega) according 

to the manufacturer’s recommendations: 

 

Linearised plasmidic DNA (2 µg)  X μL 

5X Transcription buffer    4 μL 

0.1 M DTT     2 μL 

DIG-RNA labelling mix (Roche)  2 μL 

RNAse inhibitor    1 μL 

MQ Water      adjust to final volume of 20 μL 

RNA polymerase     1.5 μL 

Total volume     20 μL 

 

The reactions were incubated at 37°C for a minimum of 2 hours. To digest the template 

DNA 1 µL RNase free DNase (Promega) was added followed by incubation at 37°C for 

20 min. The probes were purified and quantified as described in Section 2.3.14.  

 

2.3.16 5’ and 3’ rapid amplification of cDNA ends (RACE) 

To verify the sequences of slc39a14 transcripts in zebrafish the FirstChoice RLM (RNA 

Ligase Mediated) – RACE Kit (Ambion) was used according to the manufacturer’s 

protocol.  

In brief, total RNA was extracted from zebrafish larvae at 5 days post fertilisation (dpf) 

(Section 2.3.6). For 5’ RACE total RNA was treated with Calf Intestinal Alkaline 

Phosphatase (CIP) to remove free 5'-phosphates from molecules such as ribosomal 

RNA, fragmented mRNA, tRNA, and contaminating genomic DNA (the cap structure 

found on intact 5' ends of mRNA is not affected by CIP):  
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Total RNA (10 μg)  X μL 

 10 x CIP buffer  2 μL 

 CIP    2 μL 

 Nuclease free H2O  X μL 

 Total volume   20 μL 

 

The reaction was incubated at 37°C for 1 hour. To terminate the CIP reaction the RNA 

was purified using phenol:chloroform extraction: 

 

 Reaction   20 μL 

 Ammonium acetate  15 μL 

Nuclease free H2O  115 μL 

Acid phenol:chloroform 150 μL 

Total volume   200 μL 

 

Following centrifugation at >10,000 x g for 5 min the aqueous (top) phase was 

transferred to a new tube. 150 μL chloroform were added to the aqueous phase and 

after centrifugation for another 5 min again transferred to a new tube. RNA was 

precipitated by addition of 150 μL isopropranol, incubation on ice for 10 min and 

centrifugation at >10,000 x g for 20 min. The pellet was washed in 500 μL cold 70% 

ethanol and air dried after centrifugation for 5 min. RNA was resuspended in 11 μL 

nuclease free H2O. 

 

The RNA was then treated with Tobacco Acid Pyrophosphatase (TAP) to remove the 

cap structure from full-length mRNA, leaving a 5'-monophosphate:  

 

RNA treated with CIP  5 μL 

 10X TAP buffer  1 μL 

 TAP    2 μL 

 Nuclease free H2O  2 μL 

 Total volume   10 μL 

 

The reaction was incubated at 37°C for 1 hour.  
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A 45 base RNA adapter oligonucleotide was ligated to the RNA population using T4 

RNA ligase. The adapter cannot ligate to dephosphorylated RNA because these 

molecules lack the 5'-phosphate necessary for ligation:  

 

CIP/TAP-treated RNA   2 μL 

5' RACE Adapter   1 μL 

10X RNA Ligase Buffer  1 μL 

T4 RNA Ligase (2.5 U/μL)  2 μL 

Nuclease free H2O   4 μL 

Total volume    10 μL 

 

The reaction was incubated at 37°C for 1 hour. Subsequent to this, random-primed 

reverse transcription was performed according to the following protocol and the 

reaction incubated at 42°C for 1 hour: 

 

Ligated RNA    2 μL 

dNTP Mix    4 μL 

Random Decamers   2 μL 

10 x RT Buffer    2 μL 

RNase Inhibitor   1 μL 

M-MLV Reverse Transcriptase 1 μL 

Nuclease free water   8 μL 

Total volume    20 μL 

 

For 3’ RACE cDNA was synthesized from total RNA using the supplied 3' RACE 

adapter and the reaction was incubated at 42°C for 1 hour: 

 

Total RNA (1 μg)    2 μL 

dNTP Mix    4 μL 

3' RACE adapter   2 μL 

10 x RT Buffer    2 μL 

RNase Inhibitor   1 μL 

M-MLV Reverse Transcriptase 1 μL 

Nuclease free Water   8 μL 

 Total volume    20 μL 
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Nested PCR then amplified the 5' and 3’ ends using the 5’ RACE and 3’ RACE 

combined with gene specific outer and inner primers (Figure 2.1, Table 2.8). PCR was 

performed using Q5 High-Fidelity DNA polymerase (Section 2.3.2). For the inner PCR 

primers were phosphorylated to allow cloning into pBSK- as described above (Section 

2.3.8). The PCR products were run on a 1% agarose gel and all visualised bands gel 

purified for subsequent cloning and sequencing. 

 

 

Figure 2.1 Primer positions for 5’ and 3’ RACE. 

Outer primers are highlighted in orange, inner primers in salmon. 

 

 

 Sequence (5’ → 3’) 

5’ RACE zfslc39a14 outer CCAGCGCAATGTAGAGGAAC 

5’ RACE zfslc39a14 inner GCAGGATCACAAAATCACCCA 

3’ RACE zfslc39a14 outer ACTAATCCCAGAGGCCTTCG 

3’ RACE zfslc39a14 inner CATGGGCACAGTCACTTTCC 

Table 2.8 slc39a14 gene specific primers used for 5’ and 3’ RACE. 
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2.3.17 TALEN mRNA design and synthesis 

The FLASH TALEN library was obtained from the Joung laboratory and the TALEN 

arrays assembled according to the published protocol187,188. The library consists of 376 

plasmids that encode one (α and β), two (βγ, βγ* and δε*), three (βγδ) or four (βγδε) 

TAL effector repeats consisting of all possible combinations of the NI, NN, HD or NG 

repeat variable di-residues (RVDs) (Figure 2.2).  

 

 

Figure 2.2 Overview of the FLASH assembly method. 

(a) Plasmids encode the four possible RVDs. (b) Ligation steps of the FLASH 

assembly method: The biotinylated (red) single TAL effector repeat (α unit) is bound to 

the streptavidin coated magnetic bead (blue). Additional DNA fragments encoding 

three or four TAL effector repeats are ligated until the full length of the TALEN array is 

assembled. 

 

 

Two TALEN arms targeting a conserved region within the first exon of zebrafish 

slc30a10 were designed using the Zifit software (http://zifit.partners.org/ZiFiT/). The 

spacer region was chosen to contain a restriction enzyme site for EarI to facilitate 

screening of induced mutations by restriction enzyme digest (Figure 2.3). 
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Figure 2.3 TALEN binding sites and EarI recognition and cut site. 

Schematic showing the genomic sequence of part of exon 1 of zebrafish slc30a10 with 

each TALEN binding site highlighted in yellow and the two TALEN arrays marked by a 

red arrow. The EarI recognition site is underlined, the cut site marked with a red 

triangle. 

 

 

The TALEN arrays were assembled according to the protocol in Appendix 9.3. In 

summary, the four 130 bp α-unit DNA fragments were amplified from each α-unit 

plasmid using the Herculase II Fusion DNA polymerase (Agilent) and oJS2581 and 

oJS2582 primers (Table 2.9). The resulting 5’ biotinylated PCR products were digested 

with BsaI-HF (NEB) to generate four base-pair overhangs. To generate the DNA 

fragments encoding the βγδε (extension fragment) and βγδ (termination fragment) 

repeats, each of these plasmids was digested with BbsI followed by serial restriction 

digests of XbaI, BamHI-HF and SalI-HF (all NEB) to cleave the plasmid backbone and 

avoid interference with subsequent ligations. The four TALEN expression vectors 

encoding one of four possible RVDs were linearised with BsmBI (NEB).  

 

All steps of the FLASH assembly were performed in a 96 well plate with the use of a 

SPRIplate 96-ring magnet (Beckman Coulter Genomics) and a DynaMag-96 side 

magnet (Life Technologies). The magnets facilitate mixing and washing of the bead 

bound fragments. The biotinylated α unit fragments were ligated to the first βγδε 

fragments using Quick T4 DNA ligase and bound to Dynabeads MyOne C1 

streptavidin-coated magnetic beads (Life Technologies). The bead bound α-βγδε 

fragments were digested with BsaI-HF (NEB) to prepare the 3’ end of the DNA 

fragments for the subsequent ligation step. By repeating the digestion and ligation 

steps, each extension and termination fragment is ligated to assemble the complete 

DNA fragment encoding the TALE repeat array (Figure 2.2). Each ligation and BsaIHF 
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digestion step was followed by a wash in 1X B&W (bind and wash) buffer and a wash 

in 1X bovine serum albumin (BSA).   

 

Final digestion with BbsI (NEB) released the full length fragments. The purified DNA 

fragments were ligated into one of four BsmBI (NEB) digested TALEN expression 

vectors encoding one of four possible RVDs using Quick T4 DNA ligase. Ligation 

products were transformed into chemically competent XL-10 Gold E. coli cells and 

clones grown on LB Agar plates containing Ampicillin at 37°C overnight.  

 

Bacterial colonies of each TALEN arm were selected and screened by colony PCR 

using primers oSQT34 and oSQT35 (Table 2.9, Section 2.3.12). Clones showing a 

correct size band of 2168 bp were cultured in LB medium containing Ampicillin at 37°C 

overnight. Following plasmid mini-preparation (Section 2.3.13) the inserts were 

sequenced using primers oSQT1, oSQT3 and oJS2980 (Table 2.9). 

 

Plasmids containing the correct DNA sequence were linearised with PmeI (NEB) 

(Section 2.3.5) and capped mRNA was synthesised using the mMESSAGE 

mMACHINE T7 and polyA tailing kit (Section 2.3.14). 

 

 

Primer Sequence 5’ → 3’ 

oJS2581 Biotin–TCTAGAGAAGACAAGAACCTGACC 

oJS2582 GGATCCGGTCTCTTAAGGCCGTGG 

oSQT34 GACGGTGGCTGTCAAATACCAAGATATG 

oSQT35 TCTCCTCCAGTTCACTTTTGACTAGTTGGG 

oSQT1 AGTAACAGCGGTAGAGGCAG 

oSQT3 ATTGGGCTACGATGGACTCC 

oJS2980 TTAATTCAATATATTCATGAGGCAC 

Table 2.9 Primers used for PCR and sequence verification of the TALEN arrays. 
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2.3.18 Generation of CRISPR gRNAs and Cas9 nuclease mRNA 

The CRISPR design tool (http://crispr.mit.edu/) was used to identify a 20 nucleotide 

target sequence that is followed by a PAM sequence (5’-NGG-3’) in the genomic 

sequence of the desired gene. Oligonucleotides with compatible overhangs (Table 

2.10) for cloning into the DR274 vector (Addgene) were annealed according to the 

following protocol177,178: 

  

Oligonucleotide 1 (100 μM)  1 μL 

 Oligonucleotide 2 (100 μM)  1 μL 

 10 x annealing buffer   5 μL 

 MQ H2O    43 μL 

 Total volume    50 μL 

 

10 x annealing buffer:  1M Tris, pH 8.0  400 μL 

    1M MgCl2   200 μL 

    5M NaCl   100 μL 

    0.5M EDTA, pH 8.0  20 μL 

    MQ H2O   280 μL 

    Total volume   1 mL 

 

The reaction mix was incubated at: 

 95°C   5 min 

 95°C → 25°C   decrease by 1°C every 30 sec 

 4°C   Hold 

 

 

Target Oligonucleotide 1 (5’ → 3’) Oligonucleotide 2 (5’ → 3’) 

slc30a10 exon 3 TAGGTTTCTTTGAGCAGCGGCG AAACCGCCGCTGCTCAAAGAAA 

slc39a14 exon 5 TAGGCCTTCGGGTTTGACCCCA AAACTGGGGTCAAACCCGAAGG 

slc39a14 exon 8 TAGGGCATGGGCTTTGGCATCC AAACGGATGCCAAAGCCCATGC 

slc39a14 exon 9 TAGGTCAGTCGTGAGGAAGAGG AAACCCTCTTCCTCACGACTGA 

Table 2.10 Oligonucleotide sequences used to generate DNA templates for 

CRISPR gRNAs. 

The target sequence is highlighted in bold. The overhangs required for directional 

cloning are underlined. 
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The DR274 vector (Addgene) that harbours a T7 promoter sequence positioned 

upstream of a sequence encoding the gRNA backbone was linearised using BSAI-HF 

(NEB) (Section 2.3.5). Following purification with the QIAquick PCR purification kit 

(Section 2.3.4) the annealed oligonucleotides were ligated into the DR274 vector 

according to the following protocol: 

 

 Linearised DR274 vector (5 ng/μL)  1 μL 

 Annealed oligonucleotides   3 μL 

 2 x Quick ligation buffer (NEB)  5 μL 

Quick T4 DNA ligase (NEB)   1 μL 

 Total volume     10 μL 

 

The reaction was incubated at room temperature for 15 min and kept on ice until 

transformation of XL10-Gold ultracompetent E. coli cells (Section 2.3.11). Clones were 

screened by colony PCR using M13 forward primer and oligo 1 primers (Section 

2.3.12), and plasmid mini-preparations (Section 2.3.13) from positive clones sequence 

verified. A DR274 plasmid containing the correct insert was digested with DraI 

(Section 2.3.5) and the gRNA generated by in vitro transcription using the HiScribe T7 

High Yield RNA Synthesis Kit (NEB) according to the following protocol: 

 

Nuclease free water    X μl 

10X Reaction Buffer    1.5 μl 

ATP (100 mM)    1.5 μl 

GTP (100 mM)    1.5 μl 

UTP (100 mM)    1.5 μl 

CTP (100 mM)   1.5 μl 

Template DNA (1 μg)    X μl  

T7 RNA polymerase Mix   1.5 μl 

Total reaction volume   20 μl 

 

The reaction was incubated at 37°C overnight prior to DNase I (NEB) digestion to 

remove the template DNA: 
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In vitro transcription reaction  20 μl 

 Nuclease free H2O   70 μl 

 10 x DNase buffer   10 μl 

 DNase I      2 μl 

 Total volume    100 μl 

 

The digestion reaction was incubated at 37°C for 15 min followed by purification using 

the RNeasy MiniKit (Qiagen). 

 

To generate the Cas9 nuclease mRNA the pT3TS-nCas9n plasmid (Addgene) was 

used191. The plasmid was linearised with XbaI (NEB) (Section 2.3.5) and capped 

mRNA generated with the mMessage mMachine T3 Transcription Kit (Ambion) 

followed by polyadenylation with the polyA tailing kit (both Ambion) (Section 2.3.14). 

The synthesised mRNA was purified using the RNeasy MiniKit (Qiagen). 

 

2.3.19 High resolution melting analysis (HRMA) 

To screen for TALEN/CRISPR induced mutations HRMA was set up on a CFX96 

Touch Real-Time PCR Detection System (BioRad)181. HRMA allows the identification 

of variations in dsDNA sequences through detection of small differences in melting 

(dissociation) curves following PCR using a fluorescent dsDNA binding dye on a real-

time PCR machine.  

PCR Primers were designed to generate short amplicons of less than 120 bp in order 

to achieve optimal discrimination of mutant and wild-type sequence (Table 2.11).  

 

TALEN/CRISPR Forward primer (5’ → 3’) Reverse primer (5’ → 3’) Size 

(bp) 

slc30a10 exon 1 TGCTTCTCCATCAGCATGGAG GTCTATCGCCTGCGGCATCGCG 57 

slc30a10 exon 3 ATCATCATCCTGTCCTCCGC GTCCTCGGGGCTCATCTG 75 

slc39a14 exon 5 CCCTGTATGTAGGCCTTCGG CCAAACACGACTGCGGACTTGG 82 

slc39a14 exon 8 TAACTTCCTGTCAGCCTGCT TGTAGAGGAACATGCCACCG 113 

slc39a14 exon 9 GTTTGTCCATATCTCTGCAGTTT GCATTCTGGAGGGCGAAAG 106 

Table 2.11 Primers used for HRMA. 

The predicted amplicon size is given in the last column. 
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Genomic DNA extracted from zebrafish embryos/fin clips (Section 2.3.1) was PCR 

amplified according to the following protocol: 

 

 2 x Precision Melt Supermix (Biorad)  5 μl 

 Primermix (2 μM each primer)  1 μl 

 Genomic DNA     1 μl 

 MQ H2O     3 μl 

 Total volume     10 μl 

 

Thermocycling conditions: 

 Initial denaturation    95°C   2 min 

   Denaturation   95°C  10 sec 

40 cycles Annealing   60°C  30 sec 

   Extension   72°C  30 sec 

 

HRMA: 

 Heteroduplex formation   95°C  30 sec 

       60°C  1 min 

 High resolution melting 65 → 95°C: increase by 0.2°C /10 sec 

 

A minimum of 4 wild-type samples and a non-template control was run for each primer 

pair. Data was analysed with BioRad Precision Melt Analysis software and the melt 

curve from TALEN/CRISPR injected zebrafish compared to un-injected wild-types. 

HRM analysis software identifies the areas of stable pre- and post-melt fluorescence 

intensity of the melting curves and normalises them to relative values between 1.0 and 

0 to detect subtle differences in the melting profile, generating “normalised melt curves”. 

The data are plotted as “difference curves” to visually magnify differences between the 

melt profiles of different genotypes. 

 

2.3.20 KASP genotyping 

For rapid genotyping of the generated mutant lines KASP assays were used (LGC 

Genomics)199. In this approach, allelic discrimination is achieved through competitive 

annealing of two allele-specific forward primers, each containing a unique tail 

sequence that corresponds with a distinctly labelled fluorescent resonance energy 
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transfer (FRET) cassette; HEX for the mutant allele, FAM for the wild-type allele. The 

reverse primer is common to both alleles (Table 2.12). The KASP Mastermix contains 

the two universal FRET cassettes (FAM and HEX), the ROX passive reference dye, 

Taq polymerase, free nucleotides and MgCl2 in an optimised buffer solution. 

 

Mutant Wildtype allele  

(FAM, 5’→ 3’) 

Mutant allele 

(HEX, 5’ → 3’) 

Common primer  

(5’ → 3’) 

slc30a10U800 GCTTCTCCATCAGC

ATGGAGT 

GCTTCTCCATCA

GCATGGAGG 

CGTYGTCTATCGCC

TGCGGCAT 

slc39a14U801 GGCACATAATAATC

CTCCATGGG 

GGGCACATAATA

ATCCTCCATGGT 

CCCTGTATGTAGGC

CTTCGGGTT 

Table 2.12 KASP primers used for genotyping of mutant lines. 

 

 

PCR amplification was performed according to the following protocol:  

 

2 x KASP mastermix  3.89 μl 

 KASP assay   0.11 μl 

 MQ H2O    3 μl 

 DNA    1 μl 

 Total volume   8 μl 

 

Thermocycling conditions:  

 

 Initial denaturation  94°C   15 min 

10 cycles   94°C    20 sec 

61°C → 55.6°C 60 sec, decrease by 0.6°C 

per cycle 

26 cycles   94°C    20 sec 

55°C   60 sec 

 

Fluorescence was quantified on a CFX96 Touch Real-Time PCR Detection System 

(Biorad) at 37°C for 1 min and the allelic discrimination plot generated using Biorad 

CFX Manager Software. 
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2.3.21 Yeast complementation studies 

Yeast complementation studies were performed using Gateway cloning (Invitrogen) as 

described previously46.  

The full length coding sequence of zebrafish slc30a10 was amplified using the 

I.M.A.G.E. slc30a10 cDNA clone (Source BioScience, IRBOp991B11105D) as a 

template, Platinum Pfx DNA Polymerase (Invitrogen) and attB site introducing primers 

(Table 2.13) according to the following protocol: 

 

10X Pfx Amplification Buffer   5 μl 

10 mM dNTP mixture (Promega)  1.5 μl 

50 mM MgSO4    1 μl 

Forward primer (10 μM)   1.5 μl 

Reverse primer (10 μM)   1.5 μl 

Template DNA    1 μl 

MQ H2O     38.1 μl 

Platinum Pfx DNA polymerase  0.4 μl 

 Total volume     50 μl 

 

Thermocycling conditions: 

 

 Initial denaturation   94°C   5 min 

   Denaturation  94°C   15 sec 

35 cycles:  Annealing  55 °C  30 sec 

Extension  68 °C  90 sec 

 

The amplicon was gel purified using the QIAquick Gel Extraction Kit (Section 2.3.4).  
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 Sequence 5’ → 3’ 

zf slc30a10 

attB1 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAA

AAATGGGCCGCTACAGCGGGAAGACC 

zf slc30a10 

attB2 

GGGGACCACTTTGTACAAGAAAGCTGGGTTCTAGAGTTTGGAGC

TGTGTGTGCA 

Table 2.13 Primers used to generate an attB PCR product of zebrafish slc30a10. 

The attB1 and 2 sequences are marked in grey, the Shine Dalgarno sequence 

(ribosomal binding site in prokaryotic mRNA to initiate protein synthesis) in bold and 

the yeast consensus sequence is underlined. The start and stop codon are highlighted 

in yellow and green, respectively. 

 

 

Subsequent to this a slc30a10 entry clone was generated by performing a BP 

recombination reaction that was incubated at 25°C for 1 hour:  

 

attB-PCR product (40 ng)  1 μL 

pDONR vector (150 ng/µl)  1 μL 

TE Buffer (Appendix 9.2)  6 μL 

BP Clonase II enzyme  2 μL 

Total volume    10 μL 

 

This was followed by addition of 1 μL Proteinase K and incubation at 37°C for 10 min. 

One Shot TOP10 Competent E. coli cells were transformed with 1 µL of the BP 

recombination reaction (Section 2.3.11). 

 

An entry clone with the correct insert sequence was used to perform the LR 

recombination reaction: 

 

Entry clone (50-150 ng)   1 µL 

Destination vector (150 ng/µL)  1 µL 

 (pYesDEST52) 

TE Buffer, pH 8.0    6 μL 

LR Clonase II enzyme   2 µL 

Total volume     10 µL 
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The reaction was incubated at 25°C for 1 hour followed by addition of 1 μL Proteinase 

K and incubation at 37°C for 10 min. One Shot TOP10 Competent E. coli cells were 

transformed with 1 µL of the LR recombination reaction (Section 2.3.11). An 

expression clone with the correct insert sequence was used for transformation of 

competent yeast cells. 

 

Wild type BY4743 saccharomyces cerevisiae (Mat a/α his3∆1/ his3∆1 leu2∆0/ leu2∆0 

lys2∆0/+ met15∆0/+ ura3∆0/ ura3∆0) and ∆pmr1::KanMX strains in the BY4743 

background were obtained from Open Biosystems. Yeast strains transformed with 

empty pYesDEST52 vector, human SLC30A10, ZRC1 and ZRC1 (N44I) had been 

prepared previously7. All yeast strains were streaked out on SC-Ura medium (0.67% 

yeast nitrogen base without amino acids, 2% glucose and 0.13% amino acid drop-out 

mixture without Uracil) and incubated at 30°C for 2 days. Competent ∆pmr1::KanMX 

cells (50 µL) were transformed with 1 µg of zebrafish slc30a10 vector DNA by adding 

500 µL of Solution III (S.c. EasyComp Transformation Kit, Invitrogen) and incubating at 

30°C for 1 hour. Expression clones were selected on SC-Ura medium containing 2% 

glucose at 30°C for 2 days.  

 

Strains were inoculated in SC-Ura induction medium containing 2% galactose and 1% 

raffinose. High Mn Agar plates were prepared by adding MnCl2 to the medium at a 

concentration of 2 mM (1 M stock in H2O). 105, 5 x 104, 2.5 x 104, 104 and 7.5 x 103 

cells of each strain were spotted onto SC-Ura plates supplemented with or without 2 

mM MnCl2 and incubated at 30°C for six days. 
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2.3.22 Vectors and constructs used 

Table 2.14 lists the vectors used and constructs generated in this thesis. Table 2.15 

lists the sequences of generic primers that were used to sequence the vector inserts. 

 

Vector Insert Ab Primers Promoter Other 

pBSK- − Amp M13F, 

M13R 

T7, T3 − 

 zfslc30a10 5’→3’    cloned from cDNA  

(3 dpf) 

 zfslc39a14 5’ → 

Exon 8 (5’RACE) 

   cloned from cDNA  

(5 dpf) 

 zfslc39a14 Exon 6 → 

3’ (3’RACE) 

   cloned from cDNA  

(5 dpf) 

pCS2+ − Amp SP6, 

M13R 

SP6, T3, 

CMV 

SV40 polyA 

 hSLC39A14 Iso1    cloned from fetal liver 

cDNA  hSLC39A14 Iso2    

 hSLC39A14 Iso1-

EGFP 

    

 hSLC39A14 Iso2-

EGFP 

    

pME18S-

FL3 

zfslc30a10 cDNA 

NM_001128234.1 

Amp pME18S

F/R 

SV40 IMAGE clone, SV40 

polyA 

IRBOp991B11105D 

pCRII-TOPO 

TA 

− Amp/

Kan 

M13F, 

M13R 

SP6, T7 − 

DR274 gRNA backbone Kan M13F T7 − 

pT3TS-

nCas9n 

Cas9 Amp M13F, 

M13R 

T3 − 

pDONR221 − Kan M13F, 

M13R 

− Gateway, attP1/2 

 hSLC30A10    Entry clone 

 zfslc30a10    Entry clone 

 zrc1    Entry clone 

 zrc1 N44I    Entry clone 
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pYes dest52 − Amp GAL1, 

CYC1 

T7,GAL1 Gateway, attR1/2, 

URA3 

 hSLC30A10    Expression clone 

 zfslc30a10    Expression clone 

 zrc1    Expression clone 

 zrc1 N44I    Expression clone 

Table 2.14 Vectors and constructs used. 

For each vector the antibiotic resistance (Ab), sequencing primers and promoters are 

given, followed by a list of generated constructs with the specific insert. Amp, 

ampicillin; Kan, kanamycin. For TALEN plasmids see Section 2.3.17. Iso, isoform. dpf, 

days post fertilisation.  

 

 

 

Generic sequencing primers Sequence 5’ → 3’ 

M13Fw GTAAAACGACGGCCAGT 

M13Rv AACAGCTATGACCATG 

SP6 ATTTAGGTGACACTATAG 

GAL1 AATATACCTCTATACTTTAACGTC 

CYC1 GCGTGAATGTAAGCGTGAC 

pME18SF CTTCT GCTCT AAAAG CTGCG 

pME18SR CGACCTGCAGCTCGAGCACA 

Table 2.15 Generic sequencing primers used to sequence the vector inserts. 
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2.4 Embryology 

2.4.1 Zebrafish husbandry 

The wild-type zebrafish strains AB and Tuebingen were used for all experiments. 

Zebrafish were kept on a 14 hour light, 10 hour dark cycle in reverse osmosis water 

supplemented with sodium bicarbonate and sea salt (Tropic Marin) that was 

maintained with the following parameters: pH 7 to 8, conductivity 425 µS, temperature 

28.5°C, ammonia 0 ppm, nitrite 0 ppm, nitrate 0 to 5 ppm, exchange rate of 10% per 

day. Embryos were obtained by natural spawning and staging was performed 

according to standard criteria200. Up to five dpf, embryos were kept in petri-dishes (50 

embryos per dish) containing fishwater supplemented with methylene blue (2 mL of 

0.1% methylene blue in 1 L of system-water) to reduce the growth of bacteria or 

fungus. For in situ hybridisation experiments, 1-phenyl 2-thiourea (PTU, Appendix 

9.2), an inhibitor of tyrosinase, was added at 24 hours post fertilisation (hpf) at a final 

concentration of 0.003% to block melanogenesis. Anaesthesia was performed using 

tricaine methanesulfonate (MS-222, Appendix 9.2) at a concentration of 50 µg/mL in 

fishwater. 

 

2.4.2 Injection procedure 

Embryos at the 1 cell stage were aligned against a glass slide in a petri dish. RNA 

injections were performed into the yolk at a volume of approximately 1-2 nl using a 

borosilicate glass capillary needle (Clarke) attached to a Picospritzer III injector 

(Science Products) (Figure 2.4). The final injection concentration was procedure 

specific and is as detailed in Table 2.16. ,  

 

RNA Concentration per embryo 

TALEN mRNA (each) 100 - 200 pg 

CRISPR gRNA  50 -100 pg 

Cas9 nuclease mRNA 150 - 300 pg 

slc39a14-EGFP mRNA (Iso1/2) 50 - 100 pg 

membrane mCherry mRNA 50 pg 

Table 2.16 RNA concentrations used for injection of zebrafish embryos. 
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For Na2CaEDTA cardiac injections, larvae between 2 and 4 dpf anaesthetised in 

fishwater with MS-222 were mounted on their left side (Figure 2.4) in 1.5% low melting 

point agarose (made up in fishwater with MS-222) in a petri dish with a 1.5% agarose 

coating. Anaesthetised larvae were directly injected into the heart with 1 nl at the 

required concentration using a borosilicate glass capillary needle attached to the 

Picospritzer III injector. Following injection, larvae were carefully removed from the 

agarose using Tungsten needles and transferred back to fishwater without MS-222. 

This procedure was repeated daily between 2 and 4 dpf. 

 

 

Figure 2.4 Zebrafish embryo and larval injection. 

Schematic showing the injection position within the yolk of 1 cell stage embryos (left) 

and the heart of zebrafish larvae (right). 

 

 

2.4.3 Generation of stable mutant lines using TALEN or CRISPR genome editing 

Following injection of TALEN mRNA or CRISPR gRNA/Cas9 mRNA and confirmation 

of successful mutagenesis, injected embryos were raised to adulthood. Adult F0 fish 

were outcrossed to a wild-type strain (AB or Tuebingen) and embryos screened for 

mutations. Embryos from founder fish (F0) that transmitted mutations to their progeny 

were raised to adulthood (F1) and fin-clipped to identify specific mutations by cloning 

and sequencing (Section 2.3.9). A heterozygous carrier fish harbouring a frameshift 
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mutation was picked to generate a stable mutant line by outcrossing to a wild-type fish. 

The resulting F2 generation was fin-clipped to identify heterozygous carrier fish using 

the KASP assay (Section 2.3.20) and the progeny of an incross raised to adulthood 

(Figure 2.5).  

 

 

Figure 2.5 Generation of a stable mutant line. 

TALEN or CRISPR injected F0 fish are mosaic for mutations in somatic and germ cells 

(indicated by a red bolt). If germline mutagenesis has occurred mutations are 

transmitted to the F1 generation. A F1 heterozygous carrier fish (+/-) harbouring a 

desired mutation is then outcrossed to a wild-type (WT) fish generating heterozygous 

F2 fish with identical mutations. Incross of the F2 generation produces homozygous 

mutant embryos that can be used for subsequent experiments.  

 

Unless otherwise stated, maternal-zygotic mutants from an incross of homozygous 

adult mutants were used for experiments in this thesis. This ensures that loss-of-gene 

function is not rescued through maternal transcripts. The progeny of adult wild-type 

siblings was used as wild-type control animals.   
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2.4.4 Environmental Mn exposure 

Zebrafish treatments with MnCl2 were performed by adding MnCl2 directly to the 

fishwater. To determine the median lethal concentration (LC50) 20 wild-type and 

slc39a14U801 mutant zebrafish larvae were placed in each well of a six well plate 

containing 10 mL of fishwater. MnCl2 was added at various concentrations from 2 dpf 

and lethality was assessed until 5 dpf. The LC50 was calculated by Probit Analysis 

using the IBM SPSS Statistics package version 21.  

 

2.4.5 Whole mount in situ hybridisation 

Whole mount in situ hybridisation was performed according to standard protocols198. 

Embryos/larvae were fixed at the required time points in 4% paraformaldehyde (PFA, 

Appendix 9.2) at 4°C overnight. They were subsequently stored in 100% methanol at -

20°C for a minimum of 24 hours before whole mount in situ hybridisation. Embryos 

were gradually rehydrated by replacing the 100% methanol with 5 min washes of i) 

75% methanol / 25% PBST [Phosphate buffered saline (PBS) / 0.1% Tween-20], ii) 

50% methanol / 50% PBST, iii) 25% methanol / 75% PBST and iv) 100% PBST (4 x 5 

min). Embryos older than 2 somite stage (ss) were permeabilised by treatment with 

protein kinase (PK, 10 mg/mL, 1000 x stock solution). Length of time of 

permeabilisation and concentration of PK was dependent on the embryo/larval 

developmental stage as detailed below: 

 

2-10ss   in and out 1x PK 

10-15ss  1 min 1x PK 

16-26ss  2 min 1x PK 

24hpf   10 min 1x PK 

30hpf   20 min 1x PK 

36-48hpf  35 min 1x PK 

2.5dpf   35 min 1.5x PK 

3dpf   35 min 2x PK 

4dpf   35 min 3x PK 

5dpf   35 min 4x PK 
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Following PK digestion, embryos were refixed in 4% PFA (20 min) and washed in 

PBST (5 x 5 min). Prehybridisation was performed in hybridisation mix (Hyb+, 

Appendix 9.2) at 70°C for 2 hours followed by probe hybridisation at a concentration of 

50-100 ng/µL in Hyb+ at 70°C overnight. 

 

Hyb+ was gradually changed to 0.2x saline-sodium citrate buffer (SSC, Appendix 9.2) 

through a series of 15 minute washes at 70°C: i) 75% Hyb- (Appendix 9.2) / 25% 2x 

SSC, ii) 50% Hyb- / 50% 2x SSC, iii) 25% Hyb- / 75% 2x SSC, iv) 2x SSC; followed by 

2 x 30 min washes in 0.2x SSC. The 0.2X SSC was then replaced with PBST through 

a series of 10 minute washes at room temperature: i) 75% 0.2xSSC / 25% PBST, ii) 

50% 0.2xSSC / 50% PBST, iii) 25% 0.2xSSC / 75% PBST, iv) 100% PBST. Embryos 

were subsequently incubated in blocking solution (MABlock, Appendix 9.2) at room 

temperature for several hours followed by incubation in polyclonal anti-digoxigenin-

alkaline phosphatase (AP) antibody (Roche) at a concentration of 1:2,000 in blocking 

solution at 4°C overnight.  

 

Following washes in PBST (6 x 15 min) and staining buffer (3 x 5 min) the embryos 

were developed by incubation in 4-nitro blue tetrazolium chloride (NBT, 1 µL/mL 

staining buffer) (Roche) and 5-bromo-4-chloro-3-indolyl-phosphate, toluidine-salt 

(BCIP, 3.5 µL/mL) (Roche). Development was assessed under the microscope and 

once strong staining had occurred embryos were washed in stop solution (Appendix 

9.2) followed by fixation in 4% PFA for 30 min. For long-term storage embryos were 

placed in 100% methanol and stored at -20°C. 

 

Prior to imaging, embryos were taken to 80% glycerol and mounted in a droplet of 80% 

glycerol on a hanging drop microscope slide (Fisher Scientific). Images were taken on 

a Nikon Eclipse E1000 microscope using the Openlab 4.0.2 software package. 

 

2.4.6 Sectioning of whole mount in situ hybridisation samples 

Embryos/larvae were embedded using the JB-4 embedding kit (Sigma-Aldrich) 

according to the manufacturer’s recommendations. Embryos were left to overstain for 

at least 24 hours. After fixation in 4% PFA for 2 hours and 3 washes in PBST the 

embryos were washed in MQ H2O in glass dishes (3 x 10 min). The samples were 

dehydrated through washes of i) 30% ethanol / 70% H2O, ii) 50% ethanol / 50% H2O, 
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iii) 70% ethanol / 30% H2O, iv) 95% ethanol / 5% H2O and v) 100% ethanol. The 

embryos were incubated in a 1:1 mix of activated Solution A (0.36 g benzoyl peroxide 

in 25 mL of Solution A) and 100% ethanol for 1 hour at room temperature followed by 

incubation in 100% activated Solution A at 4°C overnight on a shaker. The embryos 

were then mounted in embedding moulds filled with 175 µl of plastic resin (40 µL of 

Solution B to 960 µL of activated solution A). The samples were dried in a plastic 

container with a constant flow of nitrogen gas for 15 min. Once the samples had 

hardened the following day they were mounted on microtome blocks using cold-curing 

resin (Technovit, 500 µL liquid were added to powder filling a 1.5 mL microcentrifuge 

tube to the 1 mL mark).  

 

Samples were sectioned at 10 µm thickness using a Leica Jung RM2055 microtome. 

Sections were placed in a drop of distilled water on a multispot microscope slide and 

airdried on a hotplate. Finally, the sections were counterstained with 0.002% neutral 

red solution and imaged using a Nikon Eclipse E1000 microscope and the Openlab 

4.0.2 software package. 

 

2.4.7 Immunofluorescence and confocal imaging 

Embryos / larvae fixed in 4% PFA and stored in 100% methanol were rehydrated using 

PBS + 0.5% Triton-X100 (PBSTr), permeabilised with PK and postfixed as described 

above (Section 2.4.5). Dissected brains from 5 dpf larvae were permeabilised using 1 

x PK for 15 min. The samples were then incubated in blocking solution [10% normal 

goat serum, 1% dimethylsulfoxide (DMSO), 0.5% Triton X-100 in PBS] for a minimum 

of 1 hour at room temperature followed by overnight incubation in primary antibody in 

blocking solution at the required concentration at 4°C. The next day, the samples were 

washed for 6 x 30 min in PBSTr followed by incubation in secondary antibody at a 

concentration of 1:200 in PBSTr and 6 x 30 min washes in PBSTr. For nuclear staining 

4',6-diamidino-2-phenylindole (DAPI, 10 mg/mL) was added to one of the PBSTr 

washes at a concentration of 1:1000. For zebrafish brains, toto-3 iodide was used as a 

nuclear stain at a concentration of 1:5000. The toto-3 iodide was added directly to the 

secondary antibody and incubated at room temperature overnight. Samples were kept 

in PBS and mounted in 1.5 % low melting point agarose in PBS. Alternatively, 

zebrafish brains were taken through a dilution series of glycerol/PBS to 80% 

glycerol/PBS and mounted in 1% agarose in 80% glycerol/PBS. Images were obtained 
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either on a Leica TCS SPE or SP8vis confocal microscope using a 25x 0.95 water-

immersion/dipping objective or a 40x glycerol immersion objective. Z-stacks were 

acquired in 1 μm intervals and maximum-intensity projections generated with Fiji 

software. 

 

Primary Antibody Isotype Company Catalogue 

number 

Concentration 

GFP Chicken 

polyclonal 

Abcam Ab13970 1:500 

RFP Rabbit 

polyclonal 

MBL PM005 1:1000 

Tyrosine 

Hydroxylase 

Mouse IgG1 Millipore MAB318 1:1000 

Secondary 

Antibody 

Isotype Company Catalogue 

number 

Concentration 

Chicken Alexa 

Fluor 488 

Goat IgG Life 

Technologies 

A-11039 1:200 

Rabbit Alexa Fluor 

568 

Goat IgG Life 

Technologies 

A-11011 1:200 

Mouse Alexa Fluor 

568 

Goat IgG Life 

Technologies 

A-11031 1:200 

Table 2.17 Primary and secondary antibodies used for immunofluorescence. 

GFP, green fluorescent protein; RFP, red fluorescent protein. 

 

2.4.8 Apoptosis analysis 

The TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick End Labelling) assay 

was used to examine apoptosis in Mn exposed wild-type and mutant slc39a14U801 

brains at 5 dpf. One of the hallmarks of apoptosis is the endonucleolytic fragmentation 

of DNA from 180 to 200 bp201. The DNA strand breaks are detected by enzymatic 

labelling of the DNA ends using terminal deoxynucleotidyl transferase (TdT) and 

digoxigenin labelled nucleotides. 

In brief, PFA fixed zebrafish brains in 100% methanol were rehydrated and 

permeabilised as described (Sections 2.4.5 and 2.4.7). Following washes in PBSTr, 
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the samples were incubated at -20°C in pre-chilled ethanol:acetone (2:1) for 10 min 

followed by 3 x 5 min washes in PBSTr. After 1 hour incubation in Apoptag 

equilibration buffer (Millipore) the samples were incubated in 35 µL of TdT enzyme mix 

[24 µL reaction buffer, 12 µL TdT enzyme (both Millipore), 1 µL 10% Triton-X100] at 

37°C overnight. This was followed by four washes in PBSTr and incubation in blocking 

solution for more than two hours at room temperature. Subsequently, the samples 

were incubated with polyclonal Anti-Digoxigenin-AP  antibody (Roche) at a 

concentration of 1:2,000 in blocking solution at 4°C overnight and the samples 

developed as described for whole mount in situ hybridisation (Section 2.4.5).  

 

2.4.9 Locomotor behaviour analysis 

The behavioural assay was conducted as described previously202 (Figure 2.6). In brief, 

zebrafish embryos and larvae were raised in a 14h:10h light:dark cycle. Single larvae 

were transferred to each well of a flat-bottom, clear polystyrene 96 well plate 

(Whatman) in 650 µL fish water at 4 dpf. The 96-well plate was maintained at a 

constant temperature (28.5°C) and exposed to a 14h:10h white light:dark schedule with 

constant infrared illumination within a custom-modified Zebrabox (Viewpoint 

LifeSciences). Fish water was refilled daily to maintain appropriate water levels. The 

locomotor behaviour of zebrafish larvae was tracked from 4 to 7 or 8 dpf using an 

automated video tracking system (Viewpoint LifeSciences). Larval movement was 

recorded using Videotrack Quantization mode. The following Videotrack detection 

parameters were empirically defined for each Zebrabox to ensure clean detection of 

larval movement with minimal noise: a detection threshold to distinguish the dark 

larvae from the white background (pixels darker than this threshold that change were 

detected as movement) and a freeze threshold (change of pixel number required to 

constitute movement rather than random pixel noise). Data was collected for each 

individual larva as total seconds spent moving per minute. A custom-designed Matlab 

code (kindly provided by Dr Jason Rihel, Department of Cell and Develomental Biology, 

UCL) was used to extract the following data: 

- Total activity: measured for each day and night as average activity per 10 

min. 

- Total sleep: sleep is defined as a continuous period of inactivity lasting at 

least one minute. Total sleep was measured for each day and night period 

given as average sleep per 10 min. 
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- Average waking activity: measures the average activity only during periods 

of waking activity (given as average activity per waking minute). This is 

calculated by dividing the total activity by the total active minutes (total time 

minus total sleep time).  

 

 

Figure 2.6 Locomotor behaviour analysis setup. 

The movement of single larvae in a 96 well plate was continuously tracked and 

recorded between 4 and 7 dpf. A Matlab code was used to extract various activity and 

sleep parameters from the data collected from each larva (seconds of movement per 

minute). The data is plotted against the recorded time. The black and white bars 

indicate day and night periods, respectively. 

 

Statistical analysis was performed using GraphPad Prism 5.0 Software. Mn exposure 

was achieved by adding MnCl2 (50 µM) directly to the fish water. Results from 
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genotypically presorted larvae were confirmed by analysis of a heterozygous in-cross 

with subsequent genotyping. 

2.4.10 Optokinetic response (OKR) 

The OKR was examined using a custom-built rig to track horizontal eye movements in 

response to whole-field motion stimuli. Larvae at 4 dpf were immobilised in 1.5% 

agarose in a 35 mm petri dish and analysed at 5 dpf. The agarose surrounding the 

eyes was removed to allow normal eye movements. Sinusoidal gratings with spatial 

frequencies of 0.05, 0.1, 0.13 and 0.16 cycles/degree were presented on a cylindrical 

diffusive screen 25 mm from the centre of the fish’s head. Gratings had a constant 

velocity of 10 degrees/second and changed direction and/or spatial frequency every 20 

seconds. Eye movements were tracked under infrared illumination (720 nm) at 60 Hz 

using a Flea3 USB machine vision camera and custom-written software. A custom-

designed Matlab code (kindly provided by Dr Isaac Bianco, Department of Cell and 

Developmental Biology, UCL) was used to determine the eye velocity (degrees per 

second). 

 

 

2.5 Metal determination using inductively coupled plasma – 

mass spectrometry ICP-MS 

2.5.1 Blood samples 

50 µL of EDTA blood were added to 1.95 mL of 3% nitric acid (Fisher) and incubated at 

85°C for four hours in 10 mL Falocn tubes. After centrifugation at >10,000 x g the 

supernatant was analysed by ICP-MS.  

2.5.2 Zebrafish larvae 

Ten larvae of the same genotype, anaesthetised with MS-222, were pooled and 

washed several times with dH2O. Samples were digested in 1 mL 3% nitric acid in 0.5 

mL Eppendorf tubes at 85°C overnight followed by a final 95°C incubation step for 2 

hours.  
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2.5.3 Zebrafish tissues 

Tissues (brain and abdominal viscera including intestine, liver, pancreas and spleen) 

dissected from adult zebrafish were digested in concentrated nitric acid at room 

temperature overnight and subsequent incubation at 95°C for 30 minutes. Samples 

were diluted with ICP-MS grade H2O (Fluka) to a final nitric acid concentration of 3%. 

Samples from four zebrafish of the same genotype were combined to ensure metal 

concentrations exceeded the limit of detection.  

2.5.4 Cell culture samples 

Transiently transfected HEK293 cells or stable cell lines were incubated in culture 

medium containing 1 µM MnCl2 for 15 and 30 minutes, respectively. Following 2 

washes with ice-cold PBS, cells were harvested in 500 µl PBS using a cell scraper and 

transferred to a microcentrifuge tube. The cell pellets were washed once in 250 µl ICP-

MS grade H2O and lysed by repeated freeze-thawing using an ethanol dry ice and 

37°C water bath. The protein concentration was determined using BCA reagent 

(Thermo Scientific) and the cell lysates digested in 3% nitric acid in a final volume of 1 

mL. Digestion was carried out at 85°C overnight and 95°C for 2 hours the following day.  

2.5.5 ICP-MS analysis 

ICP-MS analysis was done in collaboration with Dr Alaa Abdul-Sada at the Department 

of Chemistry, Sussex University. 

The metal ion isotopes Mn-55, Fe-56, Zn-66 and Cd-111 were measured by an Agilent 

7500 Series ICP-MS, and germanium (Ge)-72 was used as internal standard. 

Calibration solutions were prepared for each element between 0 and 200 ng/mL. A 

blank sample was run for each analysed condition to correct for background 

contamination originating from the reagents used. 
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2.6 RNA sequencing 

2.6.1 Preparation of larvae for RNA and DNA extraction 

The progeny of an in-cross of slc39a14U801 +/- fish were raised under standard 

conditions. MnCl2 at a concentration of 20 µM was added to the fishwater from 2 to 5 

dpf. After 72 hours of exposure single larvae were collected in the wells of a 96 well 

plate, immediately frozen on dry ice and stored at -80°C. RNA and DNA extraction, and 

KASP genotyping were performed at the Wellcome Trust Sanger Institute according to 

local protocols.   

 

2.6.2 RNA sequencing 

A polyA enriched RNA sequencing method was used by Dr Elisabeth Busch-Nentwich 

at the Wellcome Trust Sanger Institute according to local protocols. The subsequent 

bioinformatic analysis mapped each identified transcript to the closest annotated gene 

and determined a p-value for each differentially expressed gene. Only differentially 

expressed genes with a p-value below 0.05 were considered statistically significant. 

Anatomical gene enrichment analysis using local bioinformatics analysis software was 

based on data from the Zebrafish Information Network (ZFIN; http://zfin.org/).  

Inidividual differentially expressed genes were analysed for their link with Mn 

homeostasis using online databases such as ZFIN, Online Mendelian Inheritance in 

Man (OMIM;http://www.ncbi.nlm.nih.gov/omim) and Pubmed (http://www.ncbi.nlm.nih. 

gov/pubmed) to determine those that may play an important role in the 

pathophysiology of Mn toxicity and SLC39A14 deficiency.  

 

 

2.7 Statistical analysis 

Wherever possible, a minimum of three biological replicates were analysed in each 

experiment. Statistical analysis including student’s t-test, one and two way ANOVA 

were performed using GraphPad Prism 5.0 Software or IBM SPSS Statistics package 

version 21. Probit regression analysis was done using IBM SPSS Statistics package 

version 21. 

http://zfin.org/
http://www.ncbi.nlm.nih/
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Chapter 3. Clinical phenotype and genetics of 

SLC30A10 deficiency 

3.1 Introduction 

SLC30A10 deficiency, the first ever identified inborn error of Mn metabolism, was only 

described recently46,48. SLC30A10 is a Mn exporter localised at the cell membrane of 

hepatocytes and neurons allowing the cellular detoxification of Mn47,48. Mutations in 

SLC30A10 lead to impaired hepatic Mn excretion resulting in accumulation of Mn in the 

liver and brain46,48. Mn deposition in the brain causes distinct MRI brain features 

including T1 hyperintensity of the basal ganglia, the cerebral and cerebellar white 

matter and dorsal pons with sparing of the ventral pons51. The affinity of Mn to 

particular brain regions is shared by acquired and inherited forms of Mn overload, 

however, the mechanism behind this phenomenon is still unkown51,203.   

 

SLC30A10 deficiency affects children from as early as the first years of life with 

parkinsonism-dystonia but can also present in adulthood with parkinsonism resembling 

Parkinson’s disease. Neurological symptoms are accompanied by haematological 

characteristics including polycythaemia and depleted iron stores, and a variable degree 

of liver disease46,48-50. The movement disorder is similar to the one seen in manganism 

due to chronic environmental Mn overexposure, however, manganism lacks the 

development of polycythaemia and cirrhosis22. Acute Mn overexposure on the other 

hand can cause liver failure due to acute hepatic necrosis53-56.  

 

To date, 22 patients from 13 families have been diagnosed with SLC30A10 deficiency, 

all carrying different homozygous sequence changes in SLC30A10, including missense, 

nonsense and frameshift mutations as well as deletions46,48,49. It is possible that a 

genotype-phenotype relationship exists; a single sibship with adult-onset parkinsonism 

has been described carrying a homozygous frameshift mutation in the last exon of 

SLC30A10 that only removes the last 49 of the 485 amino acid protein48. Given the 

small number of patients identified to date it is likely that the full phenotypic spectrum of 

this disorder is yet unknown.  

 

Treatment of SLC30A10 deficiency aims to reduce the body Mn load with chelation 

therapy and minimise gastrointestinal Mn abosorption by optimising iron levels46,57. The 
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only effective chelation agent used to date is disodium calcium edetate (Na2CaEDTA). 

It is given intravenously as a five day course every four weeks thereby significantly 

adding to the disease burden, socioeconomic costs and complications associated with 

long-term vascular access46,57.    

 

This work aimed to add to our previously published work46 on the phenotypic and 

genotypic spectrum of SLC30A10 deficiency by performing mutation analysis of 

SLC30A10 in any new patients presenting with clinical characteristics of inherited 

hypermanganesaemia including dystonia-parkinsonism and typical MRI brain 

appearances of hyperintensity of the basal ganglia and white matter on T1-weighted 

images46,48.  
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3.2 Case presentations 

The clinical features of studied patients are detailed below (Table 3.1). 

 

Subject G Origin CS Onset D/P PC ↑ 

LFTs 

T1 

HI 

Blood Mn 

N-II-1 F Brazil N* 7 y Y Y Y Y 9 µg/L (<2) 

O-II-1 M Yemen N* 2 y Y Y N Y 4 µg/L (1.5-2.5) 

O-II-2 M   3 y Y Y N Y N/A 

O-II-3 F   7 y Y Y N N/A 3.5 µg/L (1.5-2.5) 

O-II-4 M   -# N# Y N N/A N/A 

P-II-2 F Turkey Y 1.5 y Y Y Y Y 3528 mol/L (<273) 

Q-II-2 M Guam Y 2 y Y Y Y Y 25 µg/L (0-2) 

R-II-1 M Pakistan Y 7 y Y Y N Y 1511 nmol/L (<320) 

R-II-2 M   11 y Y Y N Y 14972 nmol/L (<320) 

R-II-3 M   6 y Y Y N Y 539 nmol/L (<320) 

S-II-2 M Macedonia N/A 1.5 y Y Y Y N/A N/A 

T-II-1 F India N/A 36 y Y N N Y 56 µg/L (4.2-16.5) 

U-II-1 F Australia N/A 32 y (Y)^ N N N 410 nmol/L         (100-

300) 

V-II-1 M Serbia N 10 y (Y)+ N N Y 16.4 µg/L (<16) 

W-II-1 M Portugal N 13 y Y N Y Y 1001 nmol/L  

(187-209) 

X-II-1 F UK N 14 y N N Y Y 263 nmol/L  

(73-210) 

Y-II-1 F Yemen Y 7 m Y N N Y N/A 

Y-II-4 F   7 m Y N N Y 8101 nmol/L (<320) 

Z-II-1 M Spain Y 10 m Y N N Y 965 nmol/L (<145.6) 

Table 3.1 Clinical characteristics of individuals with suspected SLC30A10 

deficiency. 

Individual families are numbered N to Z with each affected sibling listed. *Regions 

where cases of SLC30A10 deficiency have been diagnosed previously. #Currently only 

affected with asymptomatic polycythaemia. ^Isolated dystonic tremor of left hand. 

+Episodic bradykinesia. Laboratory reference ranges for blood Mn levels are given in 

parentheses. G, gender. CS, consanguinity. D/P, dystonia-parkinsonism. PC, 

polycythaemia. LFT, liver function tests. T1 HI, basal ganglia hyperintensity on T1 

weighted MR imaging. F, female. M, male. N, no. Y, yes. N/A, not available. 
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Family N  

The family described originates from São Paulo, Brazil, the same geopgraphical region 

where two cases of inherited hypermanganesaemia have been identified previously46. 

The affected patient (N-II-1) is a girl born to non-consanguineous parents who 

presented at the age of seven years with progressive generalised dystonia, sardonic 

smile, “cock-walk” gait, cog-wheel sign in her upper extremities and mild chorea 

particularly in her toes and fingers204. Unlike recently reported cases of inherited 

hypermanganesaemia due to SLC30A10 mutations, this affected girl has also shown 

progressive cognitive decline. 

Polycythaemia with Hb values above 23 g/dL (reference range 11-16 g/dL) was 

detected, and whole blood Mn was raised at 9 ng/dL (reference range <2 ng/dL). Her 

liver enzymes were deranged; aspartate transaminase (AST) measured 63 U/L 

(reference range <32 U/L), alanine aminotransferase (ALT) 57 U/L (reference range 

<33 U/L), alkaline phosphatase (ALP) 594 U/L (reference range <300 U/L) and 

gamma-glutamyltransferase (GGT) 46 U/L (reference range <40 U/L). Liver biopsy 

showed a diffuse portal lymphocytic inflammatory infiltrate with parenchymal 

perivenular fibrosis, expansion of sinusoids and foci of necrosis. MRI brain was 

characteristic of Mn deposition with hyperintensity of the basal ganglia including the 

globus pallidus, putamen, caudate and dentate nucleus (Figure 3.1) on T1-weighted 

imaging. There was no history of environmental Mn exposure.  

 

Figure 3.1 Neuroradiological 

appearances of individual N-II-I. 

Transverse T1 weighted MRI show 

bilateral hyperintense signal changes 

in the globus pallidus (A), midbrain (B) 

and pontine tegmentum (C). The 

sagittal image demonstrates T1 

hyperintensity of the cerebellar dentate 

nuclei and the dorsal pons with 

sparing of the ventral pons (D). From 

Avelino et al.204. 

 

 



Chapter 3 Results 

 

 105 

Family O 

The four affected children are from a non-consanguineous Arabic marriage with both 

parents originating from the same village in Yemen. A family with mutations in 

SLC30A10 has been reported in this geographical region previously46; a degree of 

consanguinity within the family and with the previously described family cannot be 

excluded. Three of the four affected children presented at the age of two (O-II-1), three 

(O-II-2) and seven (O-II-3) years, respectively, with generalised dystonia and gait 

disturbance. Whole blood Mn levels were raised above 3.5 ng/dL (reference range 1.5 

to 2.5 ng/dL). All affected siblings presented with polycythaemia, however, liver 

function tests were reported as normal. The MRI brain scan was consistent with Mn 

deposition in the basal ganglia. The youngest affected sibling has remained 

asymptomatic to date. The only abnormality found is significant polycythaemia. 

 

Family P 

The affected girl (P-II-2) was born as the second child to first cousin parents of Turkish 

ancestry. She presented at the age of one year and six months with difficulty walking. 

Neurological examination at the age of three years revealed generalized dystonia 

particularly prominent in the lower extremities. She was unable to stand and walk 

without support. Mild hyperbilirubinaemia (total bilirubin 1.8 mg/dL, reference range 

0.2-1.2 mg/dL), polycythaemia (Hb 23.4 g/dL, reference range 9-16 g/dL), and liver 

dysfunction (AST 78 U/L, reference range 5-42 U/L; ALT 130 U/L, reference range 5-

45 U/L) were detected. Whole blood Mn levels were raised (3528 nmol/L, reference 

range <273 nmol/L). T1 hyperintensities of the basal ganglia including the caudate and 

lentiform nuclei, and dentate nuclei were consistent with Mn deposition. Liver biopsy 

confirmed portal fibrosis. Her most recent neurological examination at the age of 7 

years showed additional severe dysarthria and mild to moderate cognitive deficit. 

 

Family Q 

The affected boy (Q-II-2) was born at term to consanguineous parents in Guam. The 

maternal grandmother and the paternal grandfather are first cousins. He presented at 

the age of two years when he started running but had difficulties with balance. At four 

years of age his brain MRI confirmed T1 hyperintense signal return within the globus 

pallidus. He had elevated serum Cu levels, but normal coeruloplasmin. Neurological 

examination revealed dystonia in all four limbs, spasticity with mild left hemiparesis but 

no dysarthria/dysphagia. He reportedly is keeping up cognitively at school. Serum Mn 
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levels were raised at 25 μg/dL (reference range 0-2 μg/dL) and he was polycythaemic 

(Hb 17.7 g/dL, reference range 9-16 g/dL). While ferritin and Fe levels were normal he 

had a high TIBC of 508 μg/dL (reference range 228-428 μg/dL). Liver transaminases 

were raised (AST 98 U/L, reference range 5-42 U/L; ALT 89 U/L, reference range 5-45 

U/L) and a liver ultrasound was suggestive of liver cirrhosis.  

 

Family R 

This large consanguineous family originates from Sind, Pakistan with three of twelve 

siblings affected with typical features of dystonia, polycythaemia and 

hypermanganesemia (R-II-1 to R-II-3)205. Affected siblings presented between 6 and 11 

years with difficulty walking, four limb dystonia and slurred speech but absent liver 

disease. Hb ranged from 16.4 to 20.7 g/dL (reference range 13-16 g/dL), blood Mn 

levels were between 539 nmol/L and 14972 nmol/L (reference range <320 nmol/L). In 

individual R-II-2, ferritin was at the lower end of normal at 13.2 ng/mL (reference range 

7-140 ng/mL) and erythropoietin was raised at 18.55 mU/mL (reference range 3.3-

16.6). MR brain imaging showed the typical T1 hyperintense changes in the globus 

pallidus (Figure 3.2), dentate nuclei and white matter in sibling O-II-2. The two 

youngest affected siblings (R-II-1 and R-II-2) were commenced on chelation therapy 

with Na2CaEDTA and Fe supplementation. Following five cycles of chelation, Mn levels 

reduced from 14972 to 1777 nmol/L in individual R-II-2 while they remained almost 

unchanged in individual R-II-1 (from 1511 to 1481 nmol/L). Polycythaemia in both 

siblings worsened with Hb levels of 21 and 23.6 g/dL, respectively. Given the risk of 

thrombotic events they were both treated with phlebotomy to reduce the haematocrit. 

Due to unavailability of Na2CaEDTA both siblings’ chelation therapy was changed to D-

Penicillamine which led to further improvement of dystonia and stabilisation of Mn 

blood levels (from 1481 to 673 nmol/L in individual R-II-1 and from 1777 to 1092 

nmol/L in individual R-II-2). 
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Figure 3.2 Neuroradiological appearances of individual R-II-2. 

(a) T1-weighted imaging. Arrows indicating bilateral hyperintense signals in the globus 

pallidus along with mild cystic changes in this region. (b) T2-weighted imaging shows 

hypointense signal return in the corresponding region. From Mukhtiar et al.205.  

 

 

Family S 

The affected boy (S-II-2) was born as the second child to healthy parents of 

Macedonian ancestry. After a normal initial development he presented at the age of 

one year and six months with hypotonia and abnormal posturing during a febrile illness. 

He was also noted to have abnormal liver function tests. Subsequent to this he 

developed torsion dystonia and pyramidal tract involvement and became wheelchair 

bound by the age of six years. A liver biopsy at the age of three years showed 

micronodular cirrhosis. Plasma Cu levels were slightly raised, however, liver stains for 

Cu and Fe were negative. Polycythaemia with Hb values between 17 and 20 g/dL were 

treated with repeated phlebotomies. Intellectual development has been normal. This 

patient is now in his early twenties and has advanced liver disease. He has 

experienced severe complications including oesophageal bleeding. Unfortunately, the 

result from blood Mn measurements and brain MRI are not available.  

 

Family T 

This lady (T-II-1) presented at the age of 37 years with anxiety disorder, hallucinations, 

insomnia and anaemia. Nine months into treatment with antidepressants and 

antipsychotics she developed slurred speech and generalised limb stiffness and 

dystonia. She was commenced on treatment for atypical parkinsonism including 

carbi/levodopa, trihexyphenidyl, tetrabenazene, clonazepam and baclofen with minimal 
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improvement of dystonia and dysarthria. Whole blood Mn levels were raised at 56 μg/L 

(reference range 4.2-16.5 μg/L). Polycythaemia is absent in this patient; her highest Hb 

level was 14.5 g/dL. Liver enzyme studies were normal, however, MRI of the liver was 

suggestive of early cirrhosis. Fe indices were indicative of Fe depletion (ferritin 6.9 

ng/mL, reference range 10-291 ng/mL; Fe 23 μg/dL, reference range 50-170 μg/dL; 

TIBC 256 μg/dL, reference range 250-425 μg/dL). MRI brain imaging showed mild 

hyperintensity of bilateral globus pallidus, however, to a much lesser extent than 

previously observed in patients with SLC30A10 deficiency (Figure 3.3). T1 

hyperintensity of the white matter was absent. 

 

 

Figure 3.3 Neuroradiological appearances of individual T-II-I. 

Mild features consistent with Mn deposition are present on transverse T1 weighted MR 

images (A) with some T1 shortening in the globus pallidus which is accompanied by T2 

hypointensity (B). The prominent T1 hyperintensity of the cerebral white matter and 

dorsal pons with sparing of the ventral pons normally observed in SLC30A10 

deficiency is absent on sagittal imaging (C). 

 

 

Family U 

This 33 year old lady (U-II-1) presented with a one year history of dystonic tremor of 

her left hand. MR brain imaging showed some signal reduction in the right basal 

ganglia on T2 weighted images. Hb and liver function tests were normal. Blood Mn 

levels were raised at 0.41 μmol/L (reference range 0.1-0.3 μmol/L). 

 

 

 



Chapter 3 Results 

 

 109 

Family V 

The affected boy (V-II-1) was born at term as the only child to healthy, non-

consanguineous Serbian parents. He presented at the age of ten years with attention 

problems at school. Following scoliosis surgery at the age of 16 years he developed 

auditory and visual hallucinations, stupor and bradykinesia that lasted for two to three 

days. These symptoms have recurred on several occasions over the following years. 

He is now 20 years old and between episodes shows mild to moderate cognitive 

decline, hallucinations, anxiety and mild dysarthria. Whole blood Mn level was at the 

upper limit of normal (16.4 μg/L, reference range <16.5 μg/L). MRI brain appearances 

were consistent with Mn deposition showing bilateral hyperintense signal changes of 

the globus pallidus on T1 weighted images (Figure 3.4). There was no polycythaemia 

(Hb 12.4 g/dL, reference range 9-16 g/dL) and liver function tests were normal. Liver 

ultrasound was suggestive of early liver cirrhosis. 

 

 

Figure 3.4 Neuroradiological appearances of individual V-II-I. 

Transverse (A) and coronal (B) T1 weighted MR images show bilateral hyperintense 

signal changes in the globus pallidus with corresponding hypointense changes on T2 

(C) suggestive of Mn deposition. 

 

 

Family W 

This affected boy (W-II-1) was born at term to healthy non-consanguineous parents of 

Portuguese ancestry. He presented at the age of 13 years with mild learning difficulty 

and attention deficit hyperactivity disorder. Three years later he was noted to have 

splenomegaly and mild palmar erythema. Liver enzyme tests including ALT, AST and 

lactate dehydrogenase (LDH) were deranged and a liver ultrasound was suggestive of 
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liver cirrhosis. The whole blood Mn level was raised at 1001 nmol/L (reference range 

187-209). Polycythaemia was absent (highest Hb 13.6 g/dL, reference range 9-16 

g/dL). Neurological examination revealed mild dystonia and dysdiadochokinesis in the 

left arm and a somewhat unsteady gait. Aside from mild hyperintense changes of 

bilateral globus pallidus on T1 weighted images the MRI brain did not show the 

characteristic changes usually observed in SLC30A10 deficiency (Figure 3.5). 

 

 

Figure 3.5 Neuroradiological appearances of individual W-II-I. 

Some degree of Mn deposition is present in the globus pallidus on transverse imaging 

suggested by T1 hyperintensity (A) and T2 hypointensity (B). There is no white matter 

involvement (C). 

 

 

Family X 

The affected girl (X-II-1) was born at term to healthy non-consanguineous parents of 

British ancestry. She was diagnosed with auto-immune hepatitis and 

polyendocrinopathy with ovarian and adrenal involvement at the age of 14 years. She 

responded well to treatment with Azathioprine and her liver function tests normalised. 

Liver biopsy showed a mild degree of fibrosis. She had no neurological symptoms. MR 

brain imaging showed an abnormally high T1 signal in the globus pallidus, subthalamic 

nuclei and substantia nigra which could not be explained by the degree of liver disease. 

Whole blood Mn was mildly raised at 263 nmol/L (reference range 73-210 nmol/L). She 

was never polycythaemic (latest Hb 9.6 g/dL, reference range 9-16 g/dL). 
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Family Y 

Family Y originate from Yemen. The parents are first cousins and have two affected 

and two unaffected daughters. One sister (Y-II-1) presented with generalised dystonia 

and dysphagia at the age of seven months and, unfortunately, passed away at the age 

of thirteen months. The cause of death is unknown. The second affected girl (Y-II-4) 

presented at the age of seven months with loss of motor milestones following a normal 

birth and normal initial psychomotor development. She became increasingly irritable 

and lethargic, and developed central hypotonia, generalised dystonia and dysphagia. 

She showed no pyramidal tract signs, and hearing and vision appeared normal. MRI 

brain showed extensive T1 hyperintensity of the globus pallidus, dentate nucleus and 

white matter which was accompanied by T2 hypointensity (Figure 3.6). Unfortunately, 

she was lost to follow up after her initial consultation and there is no further information 

available on her progress. 

 

 

Figure 3.6 Neuroradiological appearances of individual Y-II-4. 

(a) Transverse T1-weighted (b) Sagittal T1-weighted (c) Transverse T2-weighted MR 

brain imaging. There is marked hyperintensity of the globus pallidus (orange arrows in 

a and b), dentate nucleus (green arrow in b) and white matter (red arrows in a and b) 

on T1-weighted imaging with corresponding T2 hypointensity of the globus pallidus 

(turquoise arrows in c).  

 

 

Family Z 

The affected boy (Z-II-1) of Spanish ancestry was the only child of first cousin parents. 

He presented at the age of ten months with global developmental delay, macrocephaly, 

marked global hypotonia with normal reflexes, poor spontaneous movements and 
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some dystonic neck movements. He suffered from thermal dysregulation episodes and 

developed severe generalised dystonia unresponsive to drug treatment. At four years 

of age he died of septic shock following E. coli bronchopneumonia. 

 

Hypermanganesemia was persistent with values four to twenty times that of normal. 

Neither parent had hypermanganesemia and environmental Mn exposure was ruled 

out. Mn deposition was visible on MR brain imaging with additional cerebral and 

cerebellar atrophy (Figure 3.7). He was found to have a slightly elevated creatine 

kinase (CK) with normal electromyography. Metabolic screening included plasma 

amino acids, urine organic acids, cerebrospinal fluid (CSF) neurotransmitter amine 

metabolites and transferrin isoelectric focusing, all of which was negative. The only 

metabolic abnormality found was an impairment of the mitochondrial respiratory chain 

with deficiencies of complex III and V in muscle. Molecular analysis for recessive 

mitochondrial DNA mutations was negative. 

 

 

Figure 3.7 Neuroradiological appearances of Individual Z-II-1. 

(a) Coronal T1-weighted (b) Transverse T1-weighted (c) Saggital T1-weighted MR 

brain imaging. There is marked hyperintensity of the globus pallidus (orange arrows in 

a and b), dentate nucleus (green arrow in c) and white matter (red arrows in a and b).  

Saggital imaging demonstrates hyperintensity of the dorsal pons with sparing of the 

ventral pons (turquoise arrow in c). Additionally, there is marked cerebral and 

cerebellar atrophy demonstrated by a thinning of the corpus callosum (white arrow in c) 

and widening of the extracerebral space and ventricles (a-c).   
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3.3 Novel mutations identified in SLC30A10  

Sanger sequencing of the coding exons and intron/exon boundaries of SLC30A10 in 

the above patients identified homozygous missense, nonsense or frameshift mutations 

in all individuals who presented with hypermanganesaemia and associated 

polycythaemia and typical MRI brain appearances that included white matter 

involvement (family N to S) (Table 3.2, Section 2.3.2).  

Table 3.2 SLC30A10 mutations identified in individuals with clinical phenotypes 

suggestive of inherited hypermanganesaemia. 

*Individual S-II-2 carries a homozygous deletion involving part of the 5’UTR, the first 

and second exon. PC, polycythaemia. Y, yes. N, no. 

 

 

Where polycythaemia or MRI features suggestive of Mn deposition were absent, no 

SLC30A10 mutations were found (family T to Z) indicating that polycythaemia together 

with distinctive MRI brain features are diagnostic markers for this disease. Identified 

Subject Exon cDNA change Amino acid change PC 

N-II-1 3 922C>T Gln308* Y 

O-II-1 1 266T>C Leu89Pro Y 

O-II-2 1 266T>C Leu89Pro Y 

O-II-3 1 266T>C Leu89Pro Y 

O-II-4 1 266T>C Leu89Pro Y 

P-II-2 4 1188dup Leu397Thrfs*15 Y 

Q-II-2 3 870_872del  Ile291del Y 

R-II-1 4 1006C>T His336Tyr Y 

R-II-2 4 1006C>T His336Tyr Y 

R-II-3 4 1006C>T His336Tyr Y 

S-II-2 5’UTR→2 Deletion*  Y 

T-II-1 No mutation identified N 

U-II-1 No mutation identified N 

V-II-1 No mutation identified N 

W-II-1 No mutation identified N 

X-II-1 No mutation identified N 

Y-II-2 No mutation identified N 

Z-II-1 No mutation identified N 
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mutations in family N and O have previously been observed in affected individuals from 

the same geographical region suggesting a possible founder effect46. It was possible to 

confirm segregation of the mutations detected in parental samples from all of the 

families except for patients Q-II-2 and S-II-2 for whom parental DNA was not available. 

Amino acid changes either affect highly conserved regions or cause significant 

truncation of the protein (Figure 3.8).  
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Figure 3.8 SLC30A10 mutations affect evolutionary conserved protein domains. 

Graph showing the evolutionary conservation data of SLC30A10 and positions of newly 

identified amino acid changes. TMDs are marked in grey. Positions with single, fully 

conserved residues are marked with an asterisk (*). Conservation between groups of 

strongly and weakly similar properties is indicated by a colon (;) and a period (.), 

respectively. Amino acid substitutions are marked in colour: p.Leu89Pro (yellow), 

p.Arg239Lys (red), p.Ile291del (blue), p.Gln308* (orange), p.His336Tyr (purple), 

Leu397Thrfs*15 (green). 
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Individual S-II-2 appears to carry a homozygous deletion of part of the 5’UTR, the first 

and the second exon of SLC30A10 which did not amplify by PCR (Figure 3.9). All of 

the other regions of SLC30A10 amplified successfully and Sanger sequencing did not 

identify a mutation. 

 

 

Figure 3.9 5’UTR, exon 1 and 2 of SLC30A10 do not amplify in subject S-II-2.  

Gel electrophoresis image of the PCR amplicons of the 5’UTR, exon 1 and 2 of 

SL30A10 of individual S-II-2, control subject 1 and control subject 2. Exon 1 is covered 

by amplicon 1_1 and 1_2, respectively. For individual S-II-2 the bands of the correct 

size are absent for 5’UTR, exon 1 and 2 (marked by asterisks). L, 500 bp ladder. NTC, 

non template control. 

 

 

In order to identify the exact position of the deletion, multiple loci around the suspected 

deletion within SLC30A10 and its neighbouring gene EPRS encoding the glutamyl-

prolyl-tRNA synthetase were PCR amplified from both patient and control DNA. The 

results suggest that the deleted genomic sequence lies within a 6100 bp spanning 

region (Figures 3.10 and 3.11). Primers within this region have been designed and 

tested, however, they failed to amplify control DNA. Also, an initial attempt to amplify 

the whole 6100 bp spanning region for subsequent cloning was unsuccessful. 

Additional work is required to further delineate the locus of the deletion, and amplify 

and sequence this region to define the exact position.  
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Figure 3.10 Location of the presumed deletion within SLC30A10 in individual     

S-II-2. 

Schematic of the chromosomal location of SLC30A10 and its neighbouring gene EPRS 

on chromosome 1 (not drawn to scale). Gel electrophoresis image below showing the 

amplicons from a region upstream in the 5’UTR of SLC30A10 and two regions within 

the neighbouring gene EPRS encoding the glutamyl-prolyl-tRNA synthetase (EPRS1, 

EPRS2). Given that exon 3 and 4 and loci upstream in the 5’UTR of SLC30A10 and 

EPRS are present in the patient DNA the deletion must span across part of the 5’UTR, 

exon 1 and 2 of SLC30A10 (indicated by a red box).  
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Figure 3.11 Individual S-II-2 carries a homozygous deletion within a region of 

6100 bp around exon 1 and 2 of SLC30A10. 

Gel electrophoresis image of PCR amplicons of loci neighbouring SLC30A10 exon 1 

and 2. The positions of the amplicons are given in the table below. Amplification of 

these loci in individual S-II-2 suggest that the deletion (arrow) locates to a region 

between amplicon 6 and 7, genomic position 219.931.109 and 219.925.025 (marked in 

red). 
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3.4 Discussion  

3.4.1 Further delineation of the clinical characteristics of SLC30A10 deficiency  

Eleven individuals from six different families out of the 19 patients investigated were 

shown to have homozygous mutations in SLC30A10. Together with previously reported 

cases46,48,49, a total of 36 patients from 19 families with SLC30A10 deficiency are now 

known.    

 

All eleven subjects presented in early childhood between 1.5 and 11 years of age with 

a dystonic movement disorder and hypermanganesaemia. No case with adult-onset 

parkinsonism was identified. So far, the majority of patients with SLC30A10 mutations 

manifest early-onset forms. Only one sibship with adult-onset parkinsonism has been 

reported in the literature so far48. Both subjects were initially diagnosed with 

Parkinson’s disease, however, they failed to respond to treatment with Levodopa or 

Dopamine agonists. SLC30A10 mutation screening of Parkinson’s disease patients 

with poor response to drug treatment may identify further late-onset cases in the future. 

Review of the MRI brain appearances for changes associated with manganese 

deposition (discussed below) in such patients may highlight affected individuals.      

 

Consistent with previous reports all individuals with SLC30A10 mutations had 

significant polycythaemia46,48,49. Subject O-II-4 presented with polycythaemia prior to 

the manifestation of dystonia, hence, it is likely that polycythaemia precedes 

neurological disease. Mn is known to induce EPO gene expression61,206 (discussed in 

Sections 1.2.1 and 4.7). Increased EPO levels were confirmed in affected siblings 

from family R and is consistent with previous reports50. Individuals with 

hypermanganesaemia and absent polycythaemia screened negative for mutations in 

SLC30A10. Polycythaemia is therefore an important diagnostic hallmark of this 

disorder. Polycythaemia in the context of a movement disorder should therefore prompt 

the analysis of whole blood Mn levels. It is possible that some cases of idiopathic 

polycythaemia with absent mutations in the common disease gene JAK2207-209 may 

carry mutations in SLC30A10 that cause a milder disease phenotype. It would 

therefore be interesting to perform SLC30A10 mutation screening in a cohort of 

patients with polycythaemia rubra vera and no identified genetic cause.   
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The raised hepatic manganese concentrations in patients with SLC30A10 deficiency is 

the likely cause for the observed polycythaemia. Hepatic manganese content was 

measured in two subjects and shown to be elevated 2- and 9-fold, respectively50,210. 

Transition metals such as manganese, cobalt and nickel are known to induce HIF-1 

activation211. Consistent with this observation erythropoietin levels have been found to 

be raised in several patients with SLC30A10 deficiency46.   

 

Another haematological feature of SLC30A10 deficiency is that of depleted Fe stores. 

Unfortunately, for most patients studied here this information is not available. However, 

where analysed they consistently show an increased TIBC and low ferritin. Iron 

deficiency may further contribute to HIF pathway activation and increased 

erythropoietin gene expression212.     

 

MRI brain appearances were similar to those previously described46,48-51,58,204 and 

included hyperintensity on T1-weighted imaging of the globus pallidus and dentate 

nucleus, the cerebellar white matter and dorsal pons with sparing of the ventral pons. 

T1 signal changes were accompanied by hypointensity on T2-weighted imaging. These 

changes are characteristic of Mn deposition and occur because Mn, a paramagnetic 

metal, causes signal enhancement on T1 and attenuation on T2 weighted images213,214. 

MRI changes in inherited Mn transporter deficiencies are more pronounced than in 

acquired manganism where T2 images are often reported as normal52,203,215. The T1 

hyperintensity of the pons with sparing of the ventral pons has only been observed in 

inherited Mn transporter defects caused by SLC30A10 and SLC39A14 mutations 

(described in Chapter 4)46,48-51,65. These MRI brain changes appear to be 

pathognomonic for inherited Mn transportopathies. Indeed, individuals studied who did 

not share the typical MRI changes were found to be negative for mutations in 

SLC30A10. 

 

As previously observed, liver involvement is variable46,48,50,57. While individuals from 

four families showed raised liver enzymes those from two families did not have signs of 

liver disease. Liver involvement ranged from mild transaminitis in the majority of 

patients to severe liver disease in individual S-II-2 who experienced severe 

complications including oesophageal bleeding. It is still unknown what factors make an 

individual more susceptible to liver disease and why some patients remain unaffected.   
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From the newly identified indiviudals with SLC30A10 mutations described above only 

those from one family have received treatment with Na2CaEDTA according to standard 

protocols57. The high costs and requirement for hospitalisation remain the main 

obstacle for initiation of treatment. Two affected individuals from family R showed a 

good response to chelation therapy with Na2CaEDTA leading to improvement of Mn 

levels and mobility. However, due to financial constraints Na2CaEDTA had to be 

stopped and was replaced with oral D-Penicillamine. Mn levels and neurological 

symptoms are reported to have improved further205. There is evidence that D-

Penicillamine mobilises Mn with increased urinary excretion of Mn evident in patients 

with SLC30A10 deficiency, however, to a lesser degree than that is observed with 

Na2CaEDTA51. A positive response to D-Penicillamine has been observed in a patient 

with SLC30A10 deficiency previously (F-II-1 in Tuschl et al., 201246). This patient was 

also found to have an increased 24 hour urinary Cu excretion presumably due to a 

heterozygous mutation in ATP7B, the gene affected in Wilson’s disease216 (data from 

personal communication). Several patients with SLC30A10 deficiency have shown 

mildly raised Cu levels50,210. It is therefore plausible that D-Penicillamine may reduce 

both Mn and Cu levels in this disorder with subsequent improvement of clinical 

symptoms. Other reports in the literature suggest that para-aminosalicylic acid (PASA) 

may be an efficacious chelator with Mn binding capacity217-219. An individual with 

manganism showed an improvement of neurological symptoms following repeated 

courses of intravenous application218. Unlike Na2CaEDTA, para-aminosalicylic acid is 

absorbed in the gastrointestinal tract, hence, oral administration is possible. Therefore, 

para-aminosalicylic is a promising candidate for testing its Mn chelation ability in vivo. 

In addition, dimercaptosuccinic acid has been suggested as a Mn chelator, however, 

there is considerable uncertainty about its efficacy220,221. In a single individual with 

SLC30A10 deficiency dimercaptosuccinic acid led to an imrovement of blood Mn levels. 

However, this patient was simultaneously treated with iron supplementation which may 

solely contribute to the change of blood Mn level observed (data from personal 

communication). 

 

Post-mortem studies of a patient with SLC30A10 deficiency showed substantial 

neurodegenerative changes of the basal ganglia including neuronal loss, astrocytosis, 

myelin loss and spongiosis210. However, reversibility of neurological symptoms in 

response to Na2CaEDTA implies that in addition to neuronal death, Mn toxicity must 

cause circuit dysfunction by interference with some unknown aspects of neuronal 
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function (as discussed in Section 6.5.2). Furthermore, SLC30A10 plays a role in signal 

transduction by increasing the phosphorylation of mitogen-activated protein kinase 

(MEK) and ERK1 and 2 involved in the regulation of transcription and translation222. 

Hence, SLC30A10 mutations might directly impair signalling pathways.  

In summary, SLC30A10 deficiency causes hypermanganesaemia associated with 

polycythaemia and Mn deposition in the brain causing a parkinsonian movement 

disorder. While these features are pathognomonic for SLC30A10 deficiency liver 

disease is variable and does not occur in every patient. Polycythaemia is an important 

diagnostic feature and should point towards a diagnosis in the presence of a 

parkinsonian movement disorder. At present, Na2CaEDTA remains the only proven 

efficacious chelation agent able to reverse neurological symptoms. 

 

 

3.4.2  Expansion of the genetic spectrum of SLC30A10 deficiency 

SLC30A10 mutations described in Section 3.3 include two known changes; a 

homozygous nonsense mutation in exon 3 in patient N-II-1 (Gln308*) and a missense 

mutation in exon 1 in patients O-II-1 to O-II-4 (Leu89Pro). These mutations have 

previously been observed in affected individuals from the same geographical region 

suggesting a possible founder effect.  Four novel mutations were identified in family P 

to S including a homozygous frameshift mutation in exon 4 (Leu397Thrfs*15), an in-

frame deletion in exon 3 (Ile291del), a missense change in exon 4 (His336Tyr) and a 

large deletion affecting the 5’UTR to exon 2 that will require further delineation. These 

changes have not been reported in the population previously. Wherever possible 

segregation of these changes within the families were confirmed. Given the unique 

clinical phenotype of hypermanganesaemia associated with dystonia, polycythaemia 

and cirrhosis we can be confident that these mutations are disease causing.     

 

Including the mutations identified here, there are now a total of 17 homozygous 

mutations in patients with SLC30A10 deficiency known to date46,48,49. Mutations have 

been identified in all of the four exons of SLC30A10 and encompass a range of 

missense, nonsense, frameshift and deletion mutations. Some of the deletions span 

several exons as in the case of individual S-II-2 reported here. The mutation identified 

in the sibship with adult-onset parkinsonism reported by Quadri et al. remains the one 

situated closest to the end of the protein sequence48. Therefore, it is possible that part 
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of the function of this mutated protein (Val425Ile) is maintained leading to manifestation 

of the disease in later life. This would suggest a genotype-phenotype relation to some 

degree. These two patients remain the only ones who have presented with adult-onset 

parkinsonism. Despite its rarity, SLC30A10 deficiency is an important differential 

diagnosis in adult patients with parkinsonism poorly responsive to L-Dopa treatment. 

The features of cerebral Mn deposition on MRI are not well known and blood Mn levels 

are not part of routine blood tests, hence, it is likely that some cases of SLC3010 

deficiency are missed.        

 

Rather surprisingly, no compound heterozygous mutations have been identified to date. 

This may be due to incomplete penetrance of mutations in the compound heterozygous 

state as observed for other autosomal recessive disorders such as trichothiodystrophy 

or familial Mediterranean fever caused by mutations in the Xpd and MEVF gene, 

respectively 223,224. Amelioration of disease symptoms or later disease onset are 

observed. At the same time, compound mutations can be associated with more severe 

disease phenotypes as seen in long QT syndrome225. Compound heterozygous 

mutations may therefore be embryonic lethal due to deleterious effect on gene function. 

 

Given its role in Mn transport it is not surprising that non-coding polymorphisms in 

SLC30A10 have been reported to be associated with increased Mn blood levels and 

increased sway velocity in cohorts with environmental Mn exposure226,227. Neurological 

function is affected independent of blood Mn concentrations suggesting that blood Mn 

levels may not reflect the degree of Mn deposition in the brain227. This is consistent 

with observations in patients with SLC30A10 deficiency whose blood Mn levels do not 

necessarily correlate with the degree of neurological impairment46,57.  

 

In conclusion, only homozygous recessive mutations in SLC30A10 have been 

identified in patients with hereditary hypermanganesaemia with dystonia, 

polycythaemia and cirrhosis to date. Non-coding polymorphisms are associated with 

altered Mn blood levels and neurological function.  
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Chapter 4. Identification of a new Mn transporter 

defect - SLC39A14 deficiency  

4.1 Introduction 

Affected individuals from family Y and Z who had screened negative for SLC30A10 

mutations shared a severe clinical phenotype with disease onset in infancy. Marked Mn 

deposition was evident on MR brain imaging and blood Mn levels were significantly 

raised (Section 3.2). They had an isolated neurological phenotype with rapidly 

progressive parkinsonism-dystonia without evidence of liver disease, polycythaemia or 

altered iron parameters. Given that the affected children had a similar clinical 

phenotype and were from consanguineous marriages it was possible that they shared 

a novel autosomal recessively inherited disorder of Mn metabolism, hence, they were 

investigated further using whole exome sequencing.   

 

4.2 Whole exome sequencing identifies SLC39A14 as a novel 

disease gene  

Whole exome sequencing of patient Y-II-4 and Z-II-1 including bionformatical analysis 

was completed by Prof Olaf Bodamer at the University of Miami (Section 2.3.3). The 

data was filtered for Mn associated genes using the locally developed software 

GEMapp196. For individual Y-II-4 homozygous sequence changes were found in five 

Mn related genes (ITSN2, DNAJC27, NRXN1, ETS2 and SLC39A14), for individual Z-

II-1 in three Mn related genes (MEX3D, ANO6 and SLC39A14).  As only SLC39A14 

was shared by both patients it appeared to be a strong candidate gene. Subject Y-II-4 

was found to have a nonsense mutation (E105X) in SLC39A14 predicted to truncate 

the protein by 387 amino acids while subject Z-II-1 was identified to have a missense 

change (G383R) affecting the highly conserved metal binding domain EEXPHEXGD. 

Both mutations were confirmed by Sanger sequencing (Section 2.3.2).  

 

Subsequently, a homozygous frameshift mutation in SLC39A14 (S160Cfs*5) was also 

found in a third patient, C-II-2, with hypermanganesaemia and parkinsonism-dystonia 

but absent mutations in SLC30A10 (for clinical details see Section 4.4) using Sanger 

sequencing (Section 2.3.2). The S160Cfs*5 mutation, caused by a two base pair 
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deletion within exon 4A, is predicted to solely affect isoform 2. The clinical phenotype 

of this subject, however, is similar to that of the other two patients.  

 

Further five individuals from two families (family A and B, clinical details in Section 4.4) 

were identified by Dr Manju Kurian, UCL Institute of Child Health, to have mutations in 

SLC39A14. Subsequently, work in this thesis is based on all five families thanks to the 

kind collaboration and provision of samples by Dr Manju Kurian. The mutations 

identified include two homozygous missense changes, F98V in family A and N469K in 

family B, affecting highly conserved amino acid residues.  

 

SLC39A14 mutations of all investigated patients are listed in Table 4.1 and Figure 4.1. 

Where DNA of parents was available the segregation of the mutations within the family 

was verified (Figure 4.1).  

 

Subject Exon cDNA change Amino acid change Isoform 

Y-II-1a a a a a 

Y-II-4 3 313G>T Glu105* 1-3 

Z-II-1 7 1147G>A Gly383Arg 1-3 

A-II-1 3 292T>G Phe98Val 1-3 

A-II-2 3 292T>G Phe98Val 1-3 

B-II-2 9A 1407C>G Asn469Lys 1-3 

B-II-3 9A 1407C>G Asn469Lys 1-3 

B-II-4 9A 1407C>G Asn469Lys 1-3 

C-II-2 4A 477_478del Ser160Cysfs*5 2 

Table 4.1 List of SLC39A14 mutations in individuals with hypermanganesaemia 

and early-onset dystonia-parkinsonism. 

Nucleotide and amino acid changes refer to transcript 2 (NM_015359.4) and protein 

isoform 2 (NP_056174.2) and are listed together with the exon and isoform affected. 

aDNA of this subject was not available for mutation testing; the clinical phenotype was 

similar to her sibling suggesting that they were both affected by the same disorder.  
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Figure 4.1 Pedigrees and sequence chromatograms of affected individuals with 

homozygous mutations in SLC39A14. 

Affected individuals are indicated by black shading. Squares represent males, circles 

females, and a double line a consanguineous union. Mutated bases are boxed in black. 

For each family, the top chromatogram shows the wild-type SLC39A14 sequence and 

the chromatogram below the homozygous SLC39A14 mutation identified in the 

affected individuals. Parental studies for families A-C and Y demonstrate that both 

parents are heterozygous carriers of the identified mutation. 
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All identified changes are novel variants that have not been reported in the literature 

previously including the dbSNP, 1000 Genomes Project and ExAc databases (Section 

2.3.2). They affect highly conserved domains of the protein or are predicted to lead to 

significant truncation of the protein (Figure 4.2).  
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Human           MKLLLLHPAFQSCLLLTLLGLWRTTPEAHASSLGAPAISAASFLQDLIHRYGEGDSLTLQ 60 

Chimpanzee      --MKLLHPAFQSCLLLTLLGLWRTTPEAHASSPGAPAISAASFLQDLIHRYGEGDSLTLQ 58 

Mouse           --MKRLHPALPSCLLLVLFGIWRTAPQTHASSAGLPPLSATSFLEDLMDRYGKNDSLTLT 58 

Chicken         -------MANPAVLLLLLSLRWVPA----GSDAVLPQLSAASFVQDLLRRYGGGEALSLE 49 

Zebrafish       MTLRRASGCRQLTLTIGLALTLGLLQWPIGDVRGQDGASPAQVLQELLTRYGDNASISVP 60 

                --------.    * : *           ..       *.:..:::*: *** . ::::  

 

Human           QLKALLNHLDVGVGRGNVTQHVQGHRNLSTCFSSGDLFTAHNFSEQSRIGSSELQEFCPT 120 

Chimpanzee      QLKALLNHLDVGVGRGNVTQHVQGHRNLSTCFSSGDLFTAHNFSEQSRIGSSELQEFCPT 118 

Mouse           QLKSLLDHLHVGVGRDNVSQPKEGPRNLSTCFSSGDLFAAHNLSERSQIGASEFQEFCPT 118 

Chicken         QLKALLNRLDVGVGRSNGSRP---HANLSRCFSSAELFAVHNLSEGSVLGAAELRAFCPA 106 

Zebrafish       QLRSLLVRLNGGQSEDHDSKTQPTRTNASKCLA-ADTLAVYGMSEQSRIDERGLQQICPT 119 

                **::** :*. * ...: ::      * * *:: .: ::.:.:** * :.   :: :**: 

 

Human           ILQQLDSRACTSENQENEENEQTEEGRPSAVEVWGFGFLSVSLINLASLLGVLVLPCTEK 180 

Chimpanzee      ILQQLDSRACTSENQENEENEQTEEGRPSAVEVWGYGLLCVTIISLCSLLGASVVPFKKK 178 

Mouse           ILQQLDSQACTSENQKSEENEQTEEGKPSAIEVWGYGFLCVTVISLCSLMGASVVPFMKK 178 

Chicken         VLQQLESAACAAENLENEENEQTEEGRPSAAEVWGFGFLSVSMINVASLLGLLIVPCTRK 166 

Zebrafish       MIQQLDSQACKTQ--PNQESESSP--RPTEAEVWGYSILSVTLVSAFALTGVFVVPLMRT 175 

                ::***:* ** ::   .:*.*.:   :*:  ****:.:*.*:::.  :* *  ::*- .. 

 

Human           AFFSRVLTYFIALSIGTLLSNALFQLIPEAFGFNPLEDYYVSKSAVVFGGFYLFFFTEKI 240 

Chimpanzee      TFYKRLLLYFIALAIGTLYSNALFQLIPEAFGFNPLEDYYVSKSAVVFGGFYLFFFTEKI 238 

Mouse           TFYKRLLLYFIALAIGTLYSNALFQLIPEAFGFNP-QDNYVSKSAVVFGGFYLFFFTEKI 237 

Chicken         AFFSRILTFFIALSIGTLLSNALFQLIPEAFGFNPQEDYYVSKSAVVFGGFYLFFFTEKI 226 

Zebrafish       RFMRRVLVYFIALSIGTLLSTAILQLLPEAFGFDPMEDYYVPKSAVVFGGFYLFFFTEKI 235 

                 *  *:* :****:**** *.*::**:******:* :* **.****************** 

 

Human           LKILLKQKNE--HHHGHSHYASESLP-SKKDQEEGVMEKLQNGDLD-HMIPQHCSSELDG 296 

Chimpanzee      LKILLKQKNE--HHHGHSHYASESLP-SKKDQEEGVMEKLQNGDLD-HMIPQHCSSELDG 294 

Mouse           LKMLLKQKNE--HHHGHNHFTSETLP-SKKDQEEGVTEKLQNGDLD-HMIPQHCNSELDG 293 

Chicken         LKMLLKQKDP--HHHGHSHYSTEALP-SRKDREEGVTEKLQNGDLD-HMIP-HVANEMEC 281 

Zebrafish       LKMILKPKDTGGHGHGHSHFPAERYANSNGDLEDGVMEKLQNGEAGGAALP---RAEADG 292 

                **::** *:   * ***.*:.:*  . *. * *:** ******: .   :*     * :  

 

Human           KAPMVDEKVIVGSLSVQDLQAS----QSACYWLKGVRYSDIGTLAWMITLSDGLHNFIDG 352 

Chimpanzee      KAPMVDEKVIVGSLSVQDLQAS----QSACYWLKGVRYSDIGTLAWMITLSDGLHNFIDG 350 

Mouse           KAPGTDEKVIVNSMSVQDLQAS----QSACYWLKGVRYSDIGTLAWMITLSDGLHNFIDG 349 

Chicken         KSPPGDEKVVVGSLSVQDLQAS----QSACYWLKEVRYSDIGTLAWMITLSDGLHNFIDG 337 

Zebrafish       RGVGEDDKMLSTGQTVQDTQSSGGGGTGGCYWLKGRAYSDIGTLAWMITLSDGLHNFIDG 352 

                :.   *:*::  . :*** *:*     ..*****   *********************** 

 

Human           LAIGASFTVSVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLG 412 

Chimpanzee      LAIGASFTVSVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLG 410 

Mouse           LAIGASFTVSVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLG 409 

Chicken         LAIGASFTVSVFQGISTSVAILCEEFPHELGDFVILLNAGMTIRQALFFNFISACCCYVG 397 

Zebrafish       LAIGASFTASVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLG 412 

                ********.********************************:*:*******:******:* 

 

Human           LAFGILAGSHFSANWIFALAGGMFLYISLADMFPEMNEVCQEDERKGS--ILIPFIIQNL 470 

Chimpanzee      LAFGILAGSHFSANWIFALAGGMFLYISLADMFPEMNEVCQEDERKGS--ILIPFVIQNL 468 

Mouse           LAFGILAGSHFSANWIFALAGGMFLYIALADMFPEMNEVCQEDEKNDS--FLVPFVIQNL 467 

Chicken         LAFGIVAGSHFSANWIFALAGGMFLYIALADMFPEMNEVSREDEQNGS--ALITFAIQNA 455 

Zebrafish       MGFGILAGNNFSPNWIFALAGGMFLYIALADMFPEMNEVSREEEEAGGSGFLLTFALQNA 472 

                :.***:**.:**.**************:***********.:*:*. ..  -*:.* :**- 

 

Human           GLLTGFTIMVVLTMYSGQIQIG 492 

Chimpanzee      GLLTGFTIMVVLTMYSGQIQIG 490 

Mouse           GLLTGFSIMLVLTMYSGQIQIG 489 

Chicken         GLLTGFTIMVLLTMYSGQIQIG 477 

Zebrafish       GLLTGFAIMLVLTIYSGQIQLG 494 

                ******:**::**:******:* 

 

Figure 4.2 Evolutionary conservation data for SLC39A14. 

ClustalW software (http://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to generate 

the alignment. Residues identical to the human SLC39A14 sequence are marked with 

an asterisk (*). Conservation between amino acids of strongly and weakly similar 

properties is indicated by a colon (:) and a period (.), respectively. Putative protein 
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domains are highlighted and include a signalling peptide (position 1-30; purple; 

numbering according to the human protein sequence), eight TMDs (position 156-177, 

186-211, 225-245, 337-359, 365-389, 397-420, 427-450, 465-487; grey), a histidine-

rich region (position 251-257, turquoise), and the LIV subfamily of ZIP transporters 

(LZT) consensus motif (375-384; turquoise). Amino acids affected by missense 

mutations are highlighted in yellow (F98V, G383R, N469K) and those pertaining to 

truncating mutations in green (E105X, S160Cfs*5). Protein sequences used to 

generate this alignment are NP_056174.2 (human, isoform 2), XP_531112.3 

(chimpanzee), NP_659057.2 (mouse), XP_427108.3 (chicken), and XP_005171823.1 

(zebrafish). 

 

 

The G383R mutation lies within the EEXPHEXGD motif required for metal 

binding228,229. Because this missense mutation (c.1147G>A) affects the last base of 

exon seven it was possible that this nucleotide substitution leads to abnormal splicing.   

RT-PCR was performed to assess whether an unspliced transcript is present (Section 

2.3.6). RNA was extracted from a post mortem liver sample from patient D-II-1 to 

generate cDNA. Fetal liver, known to express SLC39A14 was used as a control 

sample. RT-PCR confirmed that normal splicing is unaffected (Figure 4.3). 

 

Figure 4.3 The c.1147G>A 

mutation does not affect 

normal splicing. 

Gel electrophoresis image of 

RT-PCR amplicons from liver 

cDNA from individual D-II-1 

and control fetal liver. Both 

show a single band of 165 bp 

confirming normal mRNA 

splicing. Primers used span 

SLC39A14 exon 6 and exon 7. Genomic and unspliced cDNA are predicted to 

generate a 1475 bp amplicon, whilst normally spliced cDNA produces a 165 bp 

amplicon. Hypoxanthine-guanine phosphoribosyltransferase (HPRT) was used as a 

housekeeping control gene. L, 100 bp ladder (Promega). NTC, non-template control. 
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4.3 Properties of SLC39A14  

Prior to this work, mutations in SLC39A14 had not been reported in humans. 

SLC39A14 is a divalent cation transporter that belongs to the LIV-1 subfamily whose 

members contain eight transmembrane domains (TMDs), a histidine-rich motif 

(HXHXHX), and a metalloprotease motif (H/EEXPHEXGD) required for metal 

transport228,230 (Figure 4.4).  

 

 

Figure 4.4 SLC39A14 protein structure. 

Schematic of SLC39A14 showing its eight TMDs (pink and blue cylinders) interlinked 

by intracellular and extracellular loops228,230. TMD II, III, IV and VII (pink) are postulated 

by the transmembrane protein topology prediction tool MemSatSVM 

(http://bioinf.cs.ucl.ac.uk/psipred/?memsatsvm=1) to form a pore. The histidine-rich 

(HXHXHX) and metalloprotease motif (EEXPHEXGD) are highlighted in orange. 

Patient mutations are marked in red. 

 

 

Human SLC39A14 encodes three isoforms due to alternative splicing of exon four (4A 

and 4B) and nine (9A and 9B), respectively70 (Figure 4.5). Isoform 1 (NP_001121903) 

is encoded by two different transcripts that have an alternative 5’UTR 

(NM_001128431.2 and NM_001135153.1). Isoform 2 (NP_056174) is encoded by one 

transcript only (NM_015359.4). Isoform 1 and 2 span 492 amino acids and differ by 20 

amino acids encoded by an alternatively spliced exon four (4A and 4B). Transcript 

NM_001135154.1 which encodes isoform 3 (NP_001128626) has an alternative exon 

nine but shares the remaining protein sequence with isoform 1. 
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Figure 4.5 Schematic of the human SLC39A14 gene. 

SLC39A14 is composed of nine exons, two of which (exon 4 and 9) can be 

alternatively spliced to generate three isoforms. Coding exons in grey, untranslated 

regions unshaded (not drawn to scale).   

 

 

While most SLC39 transporters are specific for Zn there is substantive evidence that 

SLC39A14 also transports other metal ions such as Mn, Fe and Cd. The altered metal 

specificity might be caused by an amino acid change from histidine (H) to glutamate 

(E) within the metalloprotease motif EEXPHEXGD70,228-232. Given its known role in Mn 

transport SLC39A14 it seemed plausible that loss-of-function of this gene leads to the 

phenotype observed in the studied patient cohort.  

 

4.4 Clinical presentation 

This cohort of nine patients from five consanguineous families shared common clinical 

features. Following an uncomplicated birth and normal initial development, affected 

individuals presented with loss of developmental milestones, progressive dystonia and 

dysphagia between six months and three years. By the age of seven to ten years they 

had developed severe generalised dystonia, spasticity, pyramidal tract signs, limb 

contractures and scoliosis, and loss of ambulation. There appeared to be relative 

cognitive sparing with only a mild degree of learning disability. 

 

Patient demographics and whole blood Mn levels are summarised in Table 4.2. Case 

descriptions for family Y and Z can be found in Section 3.2.  
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Subject Gender Consan- 

guinity 

Origin Age of 

onset 

Current 

age 

Whole blood Mn 

(73-325 nmol/L) 

Y-II-1* F Y Yemen 7m † (13m) N/A 

Y-II-4 F   7m 3 8101 

Z-II-1 M Y Spain 10m † (4y) 965# 

A-II-1 F Y Yemen 7m 13 2887 

A-II-2 F   6m † (7y) N/A 

B-II-2 F Y Lebanon 2y 17y 2280 

B-II-3 F   2y 16y 3830 

B-II-4 M   2y 9y 1260 

C-II-2 F Y India 3y 5y 962 

Table 4.2 Demographics of individuals affected with hypermanganesaemia 

associated infantile dystonia-parkinsonism. 

Individual families are numbered A-C and Y-Z with each affected sibling listed. F, 

female. M, male. Y, yes. m, months. y, years. †, deceased. N/A, not available. *DNA of 

this subject was not available for mutation testing although her clinical phenotype was 

similar to her sibling suggesting that they were both affected by the same disorder. 

Reference range for whole blood Mn is given in parantheses. #Mn estimation 

performed in different hospital laboratory, reference range <145.6 nmol/L. 

 

 

Family A 

Family A are of Yemeni origin. Parents are distantly related with two affected daughters. 

The older sibling was reported to have onset of severe neurological deterioration from 

seven months of age. Her clinical features at the age of nine years included 

progressive spasticity, dystonia, mental retardation and microcephaly. She was 

wheelchair bound and had increased tone in all four limbs with prominent spasticity, 

especially at the ankles. Reflexes were brisk throughout with evidence of ankle clonus. 

She tracked with her eyes and had prominent dystonia particularly affecting her mouth 

and face. The second younger female sibling had disease onset at a similar age to her 

older sister. Examination at seven years old revealed that she was alert and 

responsive, seated in a supportive wheelchair, non-ambulatory, non-verbal, and unable 

to follow commands. She tracked with her eyes. She did not have the facial dystonia 

described in her older sister. Her facial movements were scant but symmetrical. She 
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had prominent spasticity in all 4 limbs and increased reflexes and clonus in both ankles. 

She died at the age of eight years from a respiratory infection. 

 

Family B 

Family B are of Lebanese origin with consanguineous first cousin parents. There are 

three affected children (17 year old girl, 16 year old girl and a 9 year old boy) and three 

unaffected children (all boys). All children were born following a normal pregnancy and 

birth and developmental milestones were normal until two to three years of age. All 

three affected children show a homogeneous clinical presentation predominated by a 

progressive and severe generalised dystonia. Initial presentation in all three children 

was with an abnormality in gait (unsteadiness and difficulty in independent walking) 

associated with lower limb dystonia, with features of symmetrical lower limb postural 

dystonia, toe walking, scissoring and plantar flexion. Over the next six to twelve months 

ambulation became increasingly difficult and the dystonia became more generalized in 

nature with involvement of the upper limbs (dystonic posturing, fisting). Oromandibular 

dystonia is also a prominent feature in all three children. Loss of ambulation occurred 

between seven and ten years of age and all children developed limb contractures and 

scoliosis. All three children developed acquired microcephaly. There are no cerebellar 

features clinically and neuropsychiatric features have not been evident. There appears 

to be relative cognitive sparing (psychometric testing has not been impossible) 

although still a mild degree of learning disability is present in all children. 

Ophthalmological assessment, visual evoked response and electroretinogram are 

unremarkable. None of the children have shown clinical response to medication 

including levodopa therapy, trihexyphenidyl and benzodiazepines. 

 

Family C 

Parents are second degree cousins from India and have one affected and one 

unaffected child. The affected girl was born in good condition following an 

uncomplicated pregnancy by routine caesarean section. Her early developmental 

milestones were normal. She had two episodes of seizures at one and a half years of 

age for which she was started on Valproate. After remaining seizure free for two years 

Valproate was tapered and stopped. At the age of three years she presented with 

clumsiness while writing and drawing. Shortly after, she developed toe walking and lost 

her ability to stand and walk unaided. At the age of four years she showed marked 

hypomimia, dystonic posturing of both lower limbs, bilateral ankle contractures, tremor 
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in her upper limbs and athetoid movements in both hands. She had increased tone in 

all four limbs and pyramidal tract signs including increased tendon reflexes and 

bilateral extensor plantar reflexes. There was no sign of cerebellar dysfunction. Nerve 

conduction studies and evoked potentials were normal. Treatment with anti-dystonic 

medications including baclofen, tetrabenazine and levodopa did not lead to significant 

improvement of symptoms. After a diagnosis of hypermanganesemia was made at the 

age of four years she was commenced on monthly Na2CaEDTA infusions. Chelation 

treatment lead to cessation of tremors and athetoid movements in her upper limbs and 

improvement of dystonic posturing of both lower limbs. Despite remaining dystonia in 

her lower limbs she is able to walk independently wearing ankle foot orthoses. 

Currently, she receives monthly five day courses of Na2CaEDTA (500 mg BD), Zn, 

vitamin E and C supplements, Carbi/Levodopa and Baclofen. 

 

4.5 Diagnostic features of SLC39A14 deficiency 

Alongside the distinctive clinical phenotype with early-onset parkinsonism-dystonia all 

affected individuals shared characteristic MRI brain appearances. These were 

consistent with Mn deposition within the basal ganglia similar to SLC30A10 deficiency 

(Figure 4.6). Within the deep grey matter, T1 hyperintensity affected the globus 

pallidus and, to a lesser extent, the striatum, with thalamic sparing. Generalised 

hyperintensity on T1-weighted imaging indicated extensive white matter involvement 

including the cerebellum, spinal cord and dorsal pons, with sparing of the ventral pons. 

Sagittal T1-weighted sequences showed a hyperintense signal of the pituitary gland. 

Axial T2-weighted imaging including T2, T2* and FLAIR sequences demonstrated 

hypointensity of the globus pallidus reminiscent of neurodegeneration with brain iron 

accumulation (NBIA), which was progressive in one patient on serial imaging (Figure 

4.7). Because of the prominent T2 changes resembling Fe deposition affected 

individuals from family A and B were initially diagnosed as NBIA. In addition to the 

features of Mn deposition some patients had evidence of both cerebral and cerebellar 

atrophy. Computed tomography (CT) imaging of the brain on the other hand was 

normal as demonstrated in individual C-II-2 (Figure 4.7). The severity of the 

characteristic MRI brain features of SLC39A14 deficiency is compared between 

affected individuals in Table 4.3.  
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Figure 4.1 Mutations in human SLC39A14 cause deposition of Mn in the globus 

pallidus associated with pathognomonic MRI brain appearances. 

Representative MR brain images are shown for affected individual C-II-2 aged 3 years 

(i-iv) and B-II-2 aged 17 years (v-viii); (i, v, axial T1; ii, vi, sagittal T1; iii, vii, axial T2; 

and iv, viii, axial T2* weighted imaging). Generalised hyperintensity is seen on T1-

weighted imaging of the cerebral white matter, globus pallidus (i and v, yellow arrow) 

and striatum (i and v, blue arrows), pituitary gland (ii and vi, blue arrow), dorsal pons (ii 

and vi, pink arrow) and cerebellum (ii and vi, yellow arrow). Hypointensity of the globus 

pallidus was also evident on T2- (iii, vii) and T2*- (iv, viii) weighted imaging (yellow 

arrows). 
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Figure 4.2 Additional neuroradiological MRI brain features of individuals with 

mutations in SLC39A14. 

(a) Serial T2-weighted imaging of individual A-II-1 shows progressive signal 

hypointensity within the globus pallidus. Images taken at age 3y3m (i, axial T2), 6y3m 

(ii, axial T2*) and 9y9m (iii, axial T2*). (b) and (c) Some patients develop pronounced 

cerebral and cerebellar atrophy demonstrated by a thinning of the corpus callosum and 

widening of the extracerebral space and ventricles (indicated by yellow arrows). (b) 

Sagittal T1-weighted imaging of individual A-II-1 at age (i) 3y3m (ii) 6y3m and (iii) 

9y9m; axial T1-weighted imaging at age 6y3m (iv). Note hyperintense signal within the 

basal ganglia associated with central pallidal signal hypointensity due to extreme T2 

effects dominating the central region of the pallidum on the T1-weighted image. (c) 

Sagittal and axial T1-weighted imaging (i, ii) of individual Z-II-1 at age 3y. (d) CT brain 

imaging of individual C-II-2 aged 3y is normal. 
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Table 4.1 Neuroradiological 

features of individuals with 

mutations in SLC39A14. 

Table comparing the grade of 

MRI brain characteristics 

between affected indiviuals. 

1Generalised white matter 

changes including involvement 

of the cerebellum, spinal cord, 

dorsal pons with sparing of the 

ventral pons. 2Evidence of 

progressive cerebral atrophy 

especially involving frontal lobe 

and corpus callosum. 3T2-

weighted hypointensity 

associated with a central 

hyperintensity, similar to the 

eye-of-the-tiger sign, possibly 

due to “T1-shine through”. N/A 

– not available. (-) radiological 

feature absent. (+/-) radiological 

feature borderline. (+) 

radiological feature present. 

(++) radiological feature 

strongly present. (+++) 

radiological feature very 

strongly present. 
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Consistent with MRI brain appearances of Mn deposition, whole blood Mn levels were 

raised in all affected children up to 25 times that of normal (482 to 8,101 nmol/L, 

reference range 73-325 nmol/L) (Table 4.2). Because SLC39A14 has been reported 

previously to transport other metal ions including Fe, Zn and Cd69,70,72,222,230-237 metal 

blood levels were assessed in two affected individuals (A-II-1 and Z-II-4) using ICP-MS 

(Section 2.5.1). While Mn levels were significantly raised Fe, Cu, Zn and Cd levels 

were within the normal range (Table 4.4). Compared to published reference ranges a 

mild decrease in Zn levels was found for individual Z-II-4. However, as the level lies 

within the reference range of controls analysed using this method it is unlikely that this 

is of significance. Heterozygous carrier state in parents Z-I-I and Z-I-II did not affect Mn 

levels. These results suggest that in vivo the major role of SLC39A14 is that of Mn 

transport with a less dominant role for other divalent metals. 

 

 

ng/mL Controls Patients Parents Published 

  A-II-1 Z-II-4 Z-I-1 Z-I-2 Reference* 

Mn  6.69-11.29  159 445 15.1 12.2 5-12.8 

Fe  409-462  434 397 370 386 236-614 

Cu 635-1,096  1,130 944 770 1,108 590-1470 

Zn 4,364-5,284  5,076 4,580 5,804 5,424 4800-7800 

Cd 0.35  1.42 0.18 0 0.89 0.15-2.04 

Table 4.2 Mn is the sole metal deranged in SLC39A14 deficiency. 

Table showing whole blood metal levels determined using ICP-MS in two affected 

individuals A-II-1 (F98V) and Z-II-4 (E105X), three healthy control subjects and parents 

heterozygous for the E105X mutation (Z-I-1 and Z-I-2). *published reference 

ranges238,239. Both affected individuals show markedly raised whole blood Mn levels 

while other divalent metal levels (Fe, Cu, Zn and Cd) are normal. Abnormal metal 

levels in red.  

 

 

In contrast to SLC30A10 deficiency, children with SLC39A14 mutations did not develop 

haematological abnormalities. Polycythaemia was absent and Fe indices including 

TIBC and ferritin were normal. Furthermore, they did not show signs of liver disease. 

Unfortunately, liver tissue samples were not available to determine hepatic Mn 

concentrations. However, liver MRI of individual E-II-4 demonstrated T1 normointensity 
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indicating that Mn does not accumulate in the liver in this disorder. Liver MRIs from 

individual B-II-4 was compared to that of a patient with SLC30A10 deficiency and a 

healthy control subject (Figure 4.8).  

 

 

Figure 4.3 There is no evidence of hepatic Mn accumulation in patients with 

SLC39A14 mutations. 

Transverse abdominal T1-weighted MR images of an individual with (i) SLC30A10 

deficiency, (ii) subject B-II-4 with SLC39A14 deficiency and (iii) a healthy control 

individual. The extensive T1 signal hyperintensity caused by hepatic Mn deposition in 

SLC30A10 deficiency (i) is absent in individual B-II-2 (ii). However, there appears to be 

a mild degree of T1 hyperintensity when compared to a control subject (iii). Signal 

intensity of the liver (yellow arrow) is compared to that of the spleen (blue arrow). 

 

 

Histopathological analysis (performed at the Department of Histopathology, Great 

Ormond Street Hospital) of brain tissue samples from a post mortem examination of 

individual D-II-1 showed marked neuronal loss in the globus pallidus with relatively 

good preservation of neurons in the caudate nucleus, putamen, thalamus and cerebral 

cortex (Figure 4.9). There was similar severe neuronal loss and gliosis in the dentate 

nucleus of the cerebellum with relative preservation of the cortex. Patchy loss of myelin 

was found in the cerebral and cerebellar white matter associated with coarse vacuoles 

and patchy axonal loss. As some of the brain MRI features appeared to be similar to 

those seen in NBIA, neuropathological markers for NBIA were analysed. However, 

NBIA characteristics including Fe deposition, axonal spheroids, tau and α-synuclein240 

were not observed.  
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Figure 4.4 Histopathological features of SLC39A14 deficiency. 

(i) H&E staining of the globus pallidus shows marked neuronal loss which is not 

accompanied by significant stainable Fe on Perls’ stain (not shown). (ii) H&E staining 

of the dentate nucleus of the cerebellum shows similar severe neuronal loss and gliosis 

with relative preservation of the cortex. (iii) There is patchy loss of myelin staining 

(LFB/CV, Luxol fast blue/Cresyl violet) from the cerebral and cerebellar (not shown) 

white matter associated with coarse vacuoles (some over 50 μm) and patchy axonal 

loss (on neurofilament staining – not shown). Scale bar, 100 μm. 

 

 

4.6 Na2CaEDTA effectively lowers whole blood Mn levels and 

can lead to improvement of clinical symptoms 

In an attempt to reduce the systemic Mn load, individuals C-II-2 and E-II-2 were 

commenced on four weekly chelation therapy with intravenous Na2CaEDTA according 

to a protocol previously published for the treatment of SLC30A10 deficiency50,57 

(Section 1.2.3). Individual C-II-2, who was started early on in the disease course at the 

age of five years, tolerated chelation therapy well without notable side effects and 

showed a dramatic clinical improvement. After six months of monthly Na2CaEDTA 

courses (500 mg twice daily for five consecutive days) upper limb tremors and athetoid 

movements had ceased and lower limb dystonia improved so that she has now 

regained the ability to walk independently with foot orthoses. For subject E-II-2 

Na2CaEDTA (20 mg/kg once daily) administration led to a marked increase in urinary 

Mn excretion accompanied by a reduction of whole blood Mn levels (Figures 4.10 and 

4.11). Despite the apparent mobilisation of Mn stores she has not shown an immediate 

clinical response but has continued to deteriorate with worsening tremor and stiffness. 
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Figure 4.5 Na2CaEDTA increases urinary Mn excretion and reduces whole blood 

Mn in a patient with SLC39A14 deficiency (E-II-2). 

Graph showing the urinary Mn/creatinine ratio and whole blood Mn levels over five 

days of chelation therapy. Na2CaEDTA (20 mg/kg) was given intravenously once daily 

(indicated by red arrow). Crea, creatinine. Whole blood Mn levels measured on day 1 

and 5 of treatment are displayed below.  

 

 

Figure 4.6 Whole blood Mn levels and urinary Mn excretion over four courses of 

Na2CaEDTA treatment in individual E-II-2. 

Graph showing urinary Mn/Crea ratio (red) and whole blood Mn levels (blue) of subject 

E-II-2 during four cycles of chelation therapy. Arrows indicate timing of Na2CaEDTA 

infusions. Administration of Na2CaEDTA led to a significant increase in urinary Mn 

excretion accompanied by a drop in whole blood Mn levels. Crea, creatinine. 
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4.7 SLC39A14 is a Mn uptake transporter at the cell 

membrane; isoform 1 and 2 show differences in tissue 

expression, Mn transport ability and transcriptional 

regulation 

4.7.1 Tissue expression 

To analyse the cellular localisation of SLC39A14 immunostaining in post mortem liver 

sections from an individual unaffected by this disorder was performed using an 

antibody to region 250 to 344 of the amino acid sequence that is shared by all three 

isoforms (performed at the Department of Histopathology, Great Ormond Street 

Hospital). SLC39A14 localised to the cell membrane and cytoplasmic structures of 

hepatocytes in a punctate pattern (Figure 4.12i) consistent with previous studies in 

HepG2 cells that detected SLC39A14 at the plasma membrane and in endosomes241. 

Similarly, SLC39A14 localised to the cell membrane and cytoplasm in neurons of the 

globus pallidus (immunohistochemistry was performed at the Department of Pathology, 

Oregon Health & Science University) (Figure 4.12ii).  

 

 

Figure 4.7 SLC39A14 localises to the cell membrane and the cytoplasm of 

hepatocytes and neuronal cells in the globus pallidus. 

Immunostaining for SLC39A14 (all isoforms) in (i) healthy control liver shows cell 

membrane expression (yellow arrow) and punctate cytoplasmic staining (dashed 

arrow); scale bar 50µm; Abcam anti-SLC39A14 antibody (ab106568, 1:100); and in (ii) 

globus pallidus from a healthy control shows positively stained large neurons; scale bar 

100µm; Novus anti-SLC39A14 antibody (NBP1-81551, 1:1,000). 
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Given that individual C-II-1 carries mutations that only affect isoform 2, tissue 

expression, subcellular localisation and function of both SLC39A14 isoform 1 and 2 

were examined to ascertain whether they might play different roles in Mn transport. 

The isoforms differ only by 20 amino acids encoded by exon 4B and 4A, respectively 

(Figures 4.2 and 4.13).  

 

 

 

Exon4A      TGTGGGGCTTTGGTTTTCTCAGTGTCTCACTGATTAACCTGGCCTCTCTCCTGGGAGTCC 60 

Exon4B      TGTGGGGATACGGTCTCCTCTGTGTGACCGTCATCTCCCTCTGCTCCCTCCTGGGGGCCA 60 

            ******* *  *** * *** ****  *  * **   ***   *** ******** * *  

 

Exon4A      TCGTCCTGCCCTGCACAGAGAAAGCGTTTTTCAGCCGTGTGCTCACTTACTTCATCGCCC 120 

Exon4B      GCGTGGTGCCCTTCATGAAGAAGACCTTTTACAAGAGGCTGCTGCTCTACTTCATAGCTC 120 

             ***  ****** **   ****  * **** **   *  ****    ******** ** * 

 

Exon4A      TGTCCATTGGAACGCTGCTGTCTAACGCGCTATTCCAGCTCATCCCAGAG 170 

Exon4B      TGGCGATTGGAACCCTCTACTCCAACGCCCTCTTCCAGCTCATCCCGGAG 170 

            ** * ******** **    ** ***** ** ************** *** 

Figure 4.8 Alignment of human SLC39A14 exon 4A and 4B. 

Nucleotide sequences used to generate this alignment are NM_015359.4 (exon 4A) 

encoding isoform 2 and NM_001128431.2 (exon 4B) encoding isoform 1. Nucleotides 

differing between the two exons are highlighted in yellow. Primers used for RT-PCR 

are underlined. 

 

 

 

mRNA expression of the two transcripts encoding isoform 1 and 2 was assessed in 

fetal and adult human tissues using RT-PCR (Section 2.3.6). Differences in mRNA 

expression between isoform 1 and 2 were observed. While transcript 1 was 

ubiquitously expressed in the tissues examined transcript 2 expression was restricted 

to liver, intestine, kidney, lung and pancreas, and was not present within the brain 

(Figure 4.14).  
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Figure 4.9 SLC39A14 isoform 1 and 2 are differentially expressed in human 

tissues. 

Gel electrophoresis images of RT-PCR amplicons of SLC39A14 isoform 1 and 2 from 

adult (top) and fetal (bottom) human tissues. *absent expression in brain, heart, 

skeletal muscle and skin. Amplicons for isoform 1 and 2 span 139 and 109bp, 

respectively. Hypoxanthine-guanine phosphoribosyl-transferase (HPRT) was used as a 

housekeeping gene. L, 100bp ladder (Promega). 
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To examine whether differences in the subcellular localisation of human SLC39A14 

isoform 1 and 2 exist EGFP-tagged SLC39A14 constructs were overexpressed in 

zebrafish embryos (Sections 2.3.10 and 2.4.7). SLC39A14 mRNA of transcript 1 or 2 

was co-injected with mRNA encoding membrane mCherry in one cell stage embryos 

and expression analysed at 6 hpf. Expression of either isoform did not reveal 

differences in subcellular localisation. Both isoforms localised to the cell membrane 

and the cytoplasm, however, isoform 2 appeared less pronounced within the cytoplasm 

(Figure 4.15). 
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Figure 4.10 SLC39A14 isoform 1 and 2 are expressed on the cell membrane and 

within the cytoplasm of zebrafish embryos at 6 hpf. 

Confocal images demonstrating the subcellular localisation of EGFP-tagged human 

SLC39A14 isoform 1 and 2 expressed in zebrafish embryos. Colocalisation of the 

immunostaining for EGFP and mCherry at 6hpf shows that both isoforms are 

expressed at the cell membrane (colocalisation with membrane mCherry) and in the 

cytoplasm. DAPI was used as a nuclear stain. Scale bar 50µm. 
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4.7.2 Mn transport efficacy 

To investigate functional differences in Mn transport between isoform 1 and 2, Mn 

levels were measured by ICP-MS in HEK293 cells transfected with wild-type constructs 

of SLC39A14 isoform 1 and 2, and empty vector (Sections 2.3.8 and 2.5.4). This work 

was done in collaboration with Dr Manju Kurian at UCL Institute of Child Health who 

performed the cell culture and transient transfections. Exposure to 1 μM MnCl2 in the 

medium for 15 and 30 minutes led to a marked increase in Mn levels for both isoforms 

when compared to the empty vector control. These results confirm that both isoforms 

facilitate Mn uptake. Cells transfected with isoform 2 have significantly higher Mn levels 

than those transfected with isoform 1 suggesting a greater ability of isoform 2 to 

transport Mn (Figure 4.17). The observed results were almost identical for the two time 

points examined (15 and 30 minutes). This seems unlikely to reflect cell saturation for 

isoform 1 as isoform 2 shows greater Mn accumulation.   

 

 

 

Figure 4.11 SLC39A14 isoform 2 has a greater ability of Mn uptake compared to 

isoform 1. 

Graph showing Mn uptake in HEK293 cells transiently transfected with wild-type 

SLC39A14 isoform 1 and 2, and empty pCS2+ vector following 15 and 30 minutes of 

MnCl2 (1µM) exposure. Data are presented as means ± standard deviation (s.d.) from 

two independent experiments. Statistical analysis was performed using one way 

ANOVA (p<0.0001) and Tukey’s multiple comparison test (***p<0.001). 
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4.7.3 Transcriptional regulation 

In other contexts, expression of metal transporters is controlled by the concentration of 

their substrate at transcriptional level to ensure tight regulation of metal levels and 

prevent toxic accumulation. For instance in yeast, expression of the ZRT1 and ZRT2 

genes, both encoding Zn transporters required for Zn uptake, is induced upon Zn 

depletion242. A similar effect is observed for the Fe transporters Fet3, Ftr1, and Fet4 for 

which gene expression is increased in response to low Fe243. To investigate whether 

Mn has an effect on the transcriptional regulation of slc39a14 expression, transcript 

levels were assessed by qRT-PCR in zebrafish larvae exposed to MnCl2 (Section 

2.3.7). Acute exposure to MnCl2 (500 µM) for 24 hours at four dpf led to a significant 

increase in slc39a14 expression in 5 dpf larvae (Figure 4.18.i). The increase in gene 

expression appeared to be caused by up-regulation of mRNA levels of transcript 2 with 

a 4.6 fold rise while levels of transcript 1 remained unchanged. Transcriptional 

regulation of slc39a14 by its substrate is therefore likely to contribute to Mn 

homeostasis. Subacute MnCl2 exposure of 50 µM for 72 hours on the other hand did 

not significantly affect slc39a14 transcript levels (Figure 4.18.ii).  
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Figure 4.12 Mn exposure affects transcriptional regulation of slc39a14. 

Graph showing slc39a14 transcript levels assessed by qRT-PCR in 5 dpf zebrafish 

larvae after exposure to (i) 500 µM MnCl2 for 24 hours (p=0.035 [all transcripts], p=0.41 

[transcript 1], p=0.005 [transcript 2]) and (ii) 50 µM MnCl2 for 72 hours. (p=0.9 [all 

transcripts], p=0.21 [transcript 1], p=0.15 [transcript 2]. Data are presented as means ± 

s.d. from three independent experiments. Statistical analysis was performed using 

Student’s two tailed t test on individual ∆Ct values (*p<0.05, **p<0.01). 
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4.8 Discussion 

4.8.1  SLC39A14 deficiency – a novel Mn transportopathy 

In this work, SLC39A14 was identified as a pivotal Mn transporter that, when mutated, 

causes a novel autosomal recessive neurodegenerative disorder associated with 

dysregulation of Mn homeostasis. The clinical phenotype is characterised by 

hypermanganesemia and prominent cerebral Mn toxicity. Neuronal loss within the 

basal ganglia, particularly the globus pallidus, leads to progressive generalised 

dystonia associated with severe physical disability and premature death in childhood. 

Identified mutations include three missense, one nonsense and one frameshift 

mutation, and are predicted to affect transporter function either through nonsense 

mediated mRNA decay, protein truncation or impairment of transporter activity. 

Interestingly, one individual carries mutations that solely affect SLC39A14 isoform 2 

while the clinical phenotype does not differ from the rest of the patients.  

 

The patient cohort consisted of nine individuals from five consanguineous families who 

shared a consistent clinical phenotype with early-onset dystonia-parkinsonism causing 

delayed developmental milestones, loss of ambulation, dysphagia and severe 

spasticity. The dystonic-hypokinetic movement disorder is similar to that seen in 

SLC30A10 deficiency suggesting a shared pathophysiology due to Mn deposition in 

the basal ganglia46,48-50. Disease onset appears to be slightly earlier in SLC39A14 

deficiency with five children presenting within infancy. In SLC30A10 deficiency on the 

other hand disease onset has been reported to occur after the first year of life. 

Furthermore, disease progression seems more rapid in SLC39A14 deficiency with 

severe dystonia and dysphagia developing already during infancy. Three of the nine 

children reported here died following complications due to advanced neurological 

disease within the first few years of life.    

 

Similar to SLC30A10 deficiency46,48-51 the MRI brain appearances are pathognomonic 

of Mn deposition and include hyperintensity of the basal ganglia, the cerebral white 

matter and pons with sparing of the ventral pons on T1-weighted imaging. The T1 

hyperintensity is accompanied by pronounced hypointensity on T2-weighted imaging 

so that for some patients a misdiagnosis of NBIA was made initially. Fe deposition 
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equally causes T2 hypointensity240 and, hence, NBIA is an important differential 

diagnosis for SLC39A14 deficiency.   

 

Histopathological findings of SLC39A14 deficiency are similar to SLC30A10 deficiency 

and include severe neuronal loss of the globus pallidus and dentate nucleus, and a 

vacuolated myelopathy210. On the other hand, neuropathological characteristics of 

NBIA including axonal spheroids, tau and α-synuclein are not observed240.   

 

Although SLC39A14 has been shown to transport a range of divalent metals in 

vitro69,70,72,222,230-237,241 affected individuals presented with an increase in blood Mn 

levels while Fe, Zn and Cd, possible substrates of this transporter, were normal. Blood 

Mn was dramatically raised in all patients with levels up to ten times that of normal. 

This suggests that regulation of Mn homeostasis is the main function of SLC39A14 in 

vivo.       

 

While hypermanganesaemia and neurological disease associated with characteristic 

MRI brain appearances are shared by both SLC39A14 and SLC30A10 deficiency 

important differences between the two Mn transportopathies exist that allow differential 

diagnosis. Patients with SLC39A14 deficiency do not develop polycythaemia, abnormal 

Fe indices or liver disease. The absence of haematological abnormalities in SLC39A14 

deficiency may be attributed to the different role and tissue expression of the two Mn 

transporters. SLC30A10 functions as Mn exporter at the cell membrane with 

subsequent Mn accumulation in all parts of the cell47. The Mn importer SLC39A14 on 

the other hand may be required for Mn uptake into specific organelles and tissues 

leading to deficiency of Mn in parts of the cell or certain tissues. In SLC30A10 

deficiency polycythaemia is thought to occur due to Mn associated induction of EPO 

gene expression60. Divalent metals other than Fe2+ lead to stabilisation of the 

heterodimeric transcription factor, hypoxia-inducible factor (HIF), with subsequent 

induction of EPO transcription (Figure 1.1). This is thought to occur due to a decrease 

in Fe2+ availability or increased oxidation of Fe2+ 61,206. In SLC30A10 deficiency both the 

Mn overload directly or the secondary depletion of Fe stores can affect EPO gene 

expression. EPO gene expression occurs in the liver and kidney62. Patients with 

SLC39A14 deficiency lack the hepatic Mn accumulation that is likely to lead to 

increased EPO transcription in SLC30A10 deficiency.   
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In SLC30A10 deficiency hepatotoxicity is caused by impaired hepatic Mn efflux with 

subsequent Mn accumulation that causes prominent T1 hyperintensity on liver MR 

imaging. Although liver tissue for determination of hepatic Mn concentration was not 

available, liver MRI of one patient clearly demonstrated that hepatic Mn accumulation 

is absent in SLC39A14 deficiency. Given that SLC39A14 is highly expressed in the 

liver70,230, the organ responsible for the maintenance of Mn homeostasis, it seems 

plausible that SLC39A14 is required for hepatic Mn uptake for subsequent biliary 

excretion through SLC30A10 (Figure 4.19). Malfunctioning of this transporter may 

therefore lead to dysregulation of Mn homeostasis with a secondary build-up of Mn in 

the blood and brain (Figure 4.20). In SLC30A10 deficiency on the other hand hepatic 

Mn excretion is impaired leading to subsequent liver and brain accumulation of Mn 

(Figure 4.21).   

 

    

Figure 4.13 SLC30A10 and SLC39A14 are crucial regulators of Mn homeostasis. 

Schematic demonstrating our current understanding of how Mn metabolism is 

regulated in humans. Mn is absorbed in the intestine and enters the portal circulation. 

SLC39A14 faciliates uptake of Mn from the portal and systemic circulation while 

SLC30A10 allows hepatic excretion of Mn into the bile. IVC, inferior vena cava.  
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Figure 4.14 SLC39A14 deficiency leads to impaired hepatic Mn uptake with 

subsequent brain Mn deposition. 

Schematic demonstrating the consequences of impaired SLC39A14 function. Failure to 

transport Mn into the liver for biliary excretion through SLC30A10 results in a build-up 

of Mn in the blood with secondary accumulation of Mn in the brain. IVC, inferior vena 

cava. 
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Figure 4.15 SLC30A10 deficiency leads to impaired biliary Mn excretion with Mn 

deposition in the liver and brain. 

Schematic demonstrating the consequences of impaired SLC30A10 function. Failure to 

export Mn into the bile results in a build-up of Mn in the liver, blood and brain. IVC, 

inferior vena cava. 

 

 

Although Mn associated neuronal damage is extensive in this disorder, early treatment 

with Na2CaEDTA appears to halt disease progression. Monthly courses of intravenous 

Na2CaEDTA significantly increased urinary Mn excretion and lowered blood Mn levels 

in two individuals. For subject C-II-2 chelation therapy was accompanied by marked 

improvement of extrapyramidal symptoms while treatment response was poor in the 

older subject B-II-2 who is affected by late stage disease. We know from SLC30A10 

deficiency that Mn toxicity is, to a great extent, reversible46,48,50. However, it is expected 

that treatment must be initiated before neuronal degeneration occurs in order to take 

effect. This might explain the difference in treatment response between the two 

patients. Chelation therapy may also lead to a worsening of neurological symptoms 

due to mobilisation of Mn with a shift into the brain similar to observations in Wilson’s 
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disease. Indeed, 10 to 50% of patients with neurologic Wilson’s disease deteriorate 

during the initial phase of treatment with D-Penicillamine216. The type of mutation might 

also affect treatment outcome. In subject C-II-2 function of isoform 1 and 3 is 

maintained and might partly compensate for loss of function of isoform 2, whilst the 

mutation identified in patient B-II-2, the older subject who had a less favourable 

response to chelation treatment, affects all three isoforms.   

 

4.8.2 SLC39A14 functions as a Mn uptake transporter and its isoforms play 

diverse roles in the regulation of Mn homeostasis 

Overexpression studies in HEK293 cells confirmed that SLC39A14 facilitates Mn 

uptake (Section 4.6). This is corroborated by previous observations in human SH-

SY5Y neuroblastoma cells where siRNA treatment of SLC39A14 leads to a decrease 

in Mn uptake244. Consistent with its role of Mn uptake SLC39A14 was shown to localise 

to the cell membrane in zebrafish embryos and HEK293 cells65. These results 

confirmed the findings in brain where SLC39A14 localises to the cell membrane of 

neurons in the globus pallidus (Section 4.6). This is consistent with previous studies in 

HepG2 cells where SLC39A14 was detected at the plasma membrane and in 

endosomes241. Several studies have shown that Mn is a substrate for SLC39A1469,70, 

however, there was substantial uncertainty to the in vivo specificity of this transporter 

as in vitro SLC39A14 can transport Zn, Fe and Cd71. Individuals with SLC39A14 

mutations show an isolated abnormality of Mn levels (Section 4.4) which indicates that 

in vivo, the major role for SLC39A14 is that of Mn transport.  

 

The identified missense mutations in SLC39A14 were demonstrated to impair Mn 

uptake in HEK293 cells65. Additional studies with regard to these mutations has shown 

that mutant protein, however, did not mislocalise suggesting that the observed loss of 

Mn transport is due to malfunction of the transporter itself rather than due to impaired 

traficking to the cell membrane. The G383R mutation in particular almost completely 

abolished Mn uptake65. The glycine residue is part of the highly conserved 

EEXPHEXGD motif required for metal binding228. A mutation within this motif is likely to 

impair binding of Mn responsible for the observed complete loss of Mn transport ability.  

 

It was surprising that individual C-II-2 who carries a mutation affecting only SLC39A14 

isoform 2 shows a similarly severe neurological phenotype as the rest of the patient 
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cohort. Analysis of the functional, spatial and regulative differences of isoform 1 and 2 

(Section 4.6) has corroborated the hypothesis that the disease mechanism is that of 

impaired hepatic Mn uptake (Figure 4.20). Whilst isoform 1 is ubiquitously expressed 

with high levels of expression evident in the brain, isoform 2 shows a restricted 

expression pattern including liver, kidney and intestine – organs involved in the 

regulation of metal ion homeostasis. The absence of brain expression of isoform 2 

suggests that the primary defect of Mn clearance does not occur in the brain and that 

cerebral Mn deposition arises secondarily due to the increased systemic Mn load.  

 

The observed differences in the expression pattern of isoform 1 and 2 are in contrast to 

the findings of the UK Human Brain Expression Consortium (http://www.braineac.org) 

that have analysed the mRNA expression levels of 26 thousand genes in ten different 

brain regions from post-mortem studies of 134 control individuals. Their results suggest 

that both transcripts are expressed throughout all studied brain regions, however, with 

somewhat lower expression levels observed for isoform 2 compared to isoform 1. For 

either isoform, highest expression was observed in cortical regions with less 

expression in the white matter. Unfortunately, mRNA expression in the globus pallidus, 

the main region of manganese deposition, was not assessed. The discrepancy 

between this study and the results of this thesis may be due to an increased sensitivity 

of the array compared to traditional RT-PCR. Expression levels assessed in total RNA 

extracted from whole brain may also be different to that of individual brain regions. 

However, the probe sequences for exon 4A and 4B used in this array are to regions 

that are highly homologous – 75% homology between exon 4A and 4B captured by the 

probe to exon 4A (Affymetrix ID 3089375), and 70 % homology between exon 4A and 

4B captured by the probe to exon 4B (Affymetrix ID 3089382). This may result in false 

positive detection of isoform 2 in the brain. While the primers used for RT-PCR in this 

thesis were tested for their specificity using plasmids encoding each isoform, there is 

no data regarding the specificity of the array probes.       

 

As the main regulatory organ involved in Mn homeostasis in humans, the liver seems 

most likely to play the crucial role in the disease mechanism. Mn exposure in mice 

causes a marked increase in hepatic SLC39A14 mRNA expression245 which further 

highlights its role in hepatic Mn uptake under high Mn load. As reported previously for 

murine Slc39a1470, the Mn uptake studies in HEK293 cells confirmed that human 

isoform 2 has a greater ability to transport Mn than isoform 1. Furthermore, Mn 
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dependent transcriptional regulation of SLC39A14 expression appears to only affect 

isoform 2. In zebrafish mRNA expression of transcript 2 is upregulated upon Mn 

exposure while that of transcript 1 remains unchanged (Section 4.6). Similarly, 

transcription of SLC30A10 is regulated by Mn in order to reduce the body Mn load 

through promotion of hepatic excretion48. These findings suggest that there may be 

specific roles for the individual SLC39A14 isoforms and that isoform 2 may be the 

crucial one for the regulation of Mn homeostasis.   

 

Whether SLC39A14 is essential for Mn uptake in other tissues than the liver remains to 

be clarified. The ubiquitous expression pattern of isoform 1 suggests a role for 

SLC39A14 in a wide range of tissues. Although SLC39A14 is expressed in the 

intestine, the major site of Mn uptake, intestinal Mn uptake appears to be preserved in 

this disease as clinically we do not see deficiency of Mn. Similarly, Mn is deposited in 

the brain suggesting that transporters other than SLC39A14 facilitate cerebral Mn 

uptake. Several alternative Mn uptake transporters may compensate for loss of 

SLC39A14 function. These include DMT1, TfR1, SLC39A8, Mn citrate shuttle, 

glutamate receptors and various calcium channels/ATPases that have been implicated 

in Mn transport at the cell membrane either in the brain or the intestine (Section 

1.3)82,86,88,91,192,246,247.  

 

Analyses of the subcellular localisation of human SLC39A14 in zebrafish embryos and 

HEK293 cells demonstrate that SLC39A14 is not only present on the cell membrane 

but also intracellularly. Hence, SLC39A14 might be required for intracellular trafficking 

of Mn and its transport into specific organelles. This concurs with a recent study 

showing that SLC39A14 facilitates endosomal trafficking of Zn in enterocytes234. 

Subcellular deficiency of Mn may therefore also contribute to the neuropathology in 

SLC39A14 deficiency. 

 

While mutations in SLC39A14 in humans primarily lead to Mn dyshomeostasis it is 

possible that loss of transporter function may also affect the homeostasis of other 

metals thereby contributing to the disease pathogenesis. Numerous studies have 

suggested a role for SLC39A14 in Zn handling in bone, adipose tissue and 

inflammation234,248-251. SLC39A14 knock-out mice were shown to have abnormalities in 

both Zn and Fe homeostasis. Gastrointestinal absorption of Zn is decreased while that 

of Fe is increased. Furthermore, SLC39A14 knock-out mice have greater hepatic Fe 
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accumulation252. The changes in metal homeostasis are accompanied by greater body 

fat, higher insulin levels and impaired gluconeogenesis leading to hypoglycaemia, and 

dwarfism with shortened long bones252,253. However, in humans hypoglycaemia or 

skeletal abnormalities have not been observed. Studies of SLC39A14 knock-out mice 

have also demonstrated that SLC39A14 is involved in the regulation of intracellular 

signalling pathways such as G-protein coupled receptor mediated cAMP-CREB 

signalling required for systemic growth, and JAK2/STAT3 and NF-κB inflammatory 

pathways250,253. Unfortunately, effects of SLC39A14 loss-of-function on Mn 

homeostasis in mice have not been studied to date.     

 

There are some limitations to the interpretation of the HEK293 studies performed in 

this work. Mn transport activity of each isoform was assessed using overexpression of 

either protein by transient transfection. Protein expression levels may vary due to 

differences in transfection efficiency254 and may not allow accurate assessment of the 

physiological protein activity. However, the consistent results with cells from different 

passage numbers for both isoforms and the similar results previously described in the 

literature70 make the results more powerful. On the other hand, when assessing the 

manganese transport activity of the various mutant proteins a significant discrepancy 

between each experiment was observed. Therefore, a stable mutant cell line for each 

mutant protein was generated by our collaborators in order to more accurately assess 

the protein function rather than measure differences in transfection efficiency.        
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Chapter 5. slc30a10 zebrafish do not recapitulate all 

phenotypes of human SLC30A10 deficiency  

5.1 Introduction 

Although the role of SLC30A10 has been thoroughly characterised in vitro little is 

known about the mechanisms of Mn toxicity due to loss of SLC30A10 function in vivo. 

To date, a vertebrate slc30a10 gene knock-out model has not been studied. The aim of 

this work was to develop a slc30a10 loss-of-function mutant in zebrafish with the view 

to provide a disease model to study disease mechanisms and identify novel drug 

treatment targets. The small size of zebrafish and large numbers of embryos available 

make them an ideal model organism for high-throughput drug screening173. The current 

treatment strategy for SLC30A10 deficiency in humans involves monthly intravenous 

chelation therapy with Na2CaEDTA which is both burdensome and costly57. Hence, 

identification of an oral chelating agent would immensely benefit patients with 

SLC30A10 deficiency. A zebrafish mutant with a simple read-out for drug screening 

would allow the screening of a chelator library in order to identify an oral drug with 

effective Mn binding capacity. 

 

The following chapter describes the characteristics of the slc30a10 gene in zebrafish, 

the generation of slc30a10 mutants using TALEN and CRISPR/Cas9 genome editing 

and the effects of loss of gene function. Both TALEN and CRISPR/Cas9 genome 

editing methods were developed during this project. At the start of this work, only the 

TALEN method had been published at the time. Given the considerably simpler and 

less time consuming CRISPR/Cas9 protocol, this method was established 

subsequently.    

 

5.2 Characterisation of the slc30a10 orthologue in zebrafish 

5.2.1 Temporal expression and sequence verification of zebrafish slc30a10 

In order to identify the orthologues of human SLC30A10, the Basic Local Alignment 

Search Tool (Section 2.3.2) was used to align the human SLC30A10 nucleotide 

sequence with the zebrafish genome. In zebrafish, many genes have a paralogue due 

to the evolutionary whole genome duplication that occurred in the common ancestor of 
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teleost fish255,256. The existence of only one slc30a10 gene in zebrafish could be 

established. Alignment of the human (NP_061183.2) and zebrafish (NP_001121706) 

protein showed that they share 51% sequence homology. A higher degree of 

conservation is seen around the six TMDs that are required for metal transport (Figure 

5.1, Section 1.3.2). Zebrafish slc30a10 encodes a protein of 385 amino acids while 

human SLC30A10 encodes a larger 485 amino acid protein. Given the considerable 

degree of sequence homology between human and zebrafish it seemed reasonable to 

assume that the function of the transporters are comparable between species.  

 

 

 

Figure 5.1 Protein sequence alignment of human and zebrafish Slc30a10. 

Alignment of human (top) and zebrafish Slc30a10 (bottom) using ClustalW2 software. 

Conserved amino acids highlighted in yellow, * indicates identical sequence, TMDs are 

underlined, TALEN target region is highlighted in green, CRISPR target region in 

turquoise, Start-methionine of isoform 1 and 2 in purple. TMDs were predicted using 

the MEMSAT3 & MEMSAT-SVM membrane helix prediction tool 

(http://bioinf.cs.ucl.ac.uk/psipred/). 

 

In order to characterise zebrafish slc30a10, expression of the gene during embryonic 

and larval development was examined by RT-PCR (Section 2.3.6). slc30a10 

expression was clearly demonstrated between 3 and 120 hpf (Figure 5.2) suggesting 

that this gene’s protein product is utilised during early zebrafish development. 

Expression at 3 hpf suggests maternal genome contribution as zygotic gene 

expression is initiated at the midblastula transition (512 cell stage) at approximately 

2.75 hpf after which maternal transcripts are gradually eliminated257. 
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Figure 5.2 slc30a10 is expressed during embryonic and early larval development 

of zebrafish between 3 and 120 hpf. 

Gel electrophoresis image of slc30a10 amplicons from larval cDNA using primers 

spanning from the 5’UTR to the 3’UTR (amplicon size 1361 bp). L, 1 kb ladder 

(Promega). RNA was extracted from pools of 50 embryos/larvae at the given time 

points. 

 

 

For sequence verification, the coding sequence of slc30a10 spanning from the 5’ UTR 

to 3’ UTR was PCR amplified from zebrafish cDNA and cloned into the pBSK- vector 

(Section 2.3.8). Two differing transcripts were identified, transcript 1 and 2, 

respectively. Most clones contained the sequence of transcript 1 that is almost identical 

with the published reference sequence (NM_001128234.1), (Figure 5.3) and encodes 

a protein of 385 amino acids.  
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Figure 5.3 The cloned slc30a10 transcript 1 aligns with the annotated transcript 

NM_001128234.1. 

cDNA alignment of slc30a10. The annotated sequence NM_001128234.1 (top line) is 

aligned with the cloned sequence (bottom line) obtained from embryos at 72 hpf. Start 

and stop codons are marked in yellow. Identified variants are indicated in turquoise. 
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The second transcript identified by cloning contains an alternative first (1B) and larger 

second exon (2B), (Figure 5.4). The nucleotide sequences of both isoforms were 

aligned using ClustalW2 software (Figure 5.5, Section 2.3.2) and differ in a region 

spanning from part of the 5’UTR to part of the second exon while the third and fourth 

exons are identical. The start codon of this transcript, provided protein translation takes 

place, lies within exon 3. The ExPASy translation tool software predicts that this 

sequence may encode a significantly shortened protein of 134 amino acids (Figure 

5.4, Section 2.3.2).  

 

 

 

Figure 5.4 slc30a10 transcripts identified by cloning. 

Schematic overview of the potential isoforms encoded by slc30a10. Transcript 1 is 

identical with the published reference NM_001128234.1. Transcript 2 (green) has an 

alternative first (1B) and second exon (2B). Forward (Fwd) and reverse (Rev) primers 

used for PCR amplification of transcript 1 and 2 are indicated in blue. Exons in grey, 

introns indicated by black line (not drawn to scale).  
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Figure 5.5 Nucleotide alignment of slc30a10 transcript 1 and 2. 

Transcript 1 (bottom) and transcript 2 (top). * indicates identical sequence. ATG start 

codons marked by red box. Primer sequences used for PCR amplification of both 

transcripts underlined.  
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In order to confirm the existence of a second transcript, cDNA was amplified using a 

forward primer to the first intron (alternative exon 2) and a reverse primer to exon 3 

(Section 2.3.6). Genomic DNA was amplified alongside to confirm that no 

contamination of mRNA with genomic DNA had occurred. Consistent with the cloning 

result, PCR amplification of cDNA showed a single band of the expected size of 209 bp 

while the genomic amplicon was that of 396 bp (Figure 5.6). 

 

 

 

Figure 5.6 Zebrafish slc30a10 encodes a second transcript. 

Gel electrophoresis image of PCR amplicons from cDNA derived from zebrafish 

embryos at 72 hpf and zebrafish genomic DNA. Expected amplicon size of cDNA 209 

bp, of genomic DNA 369 bp. L., 100 bp ladder (Promega). 

 

 

5.2.2 Spatial expression of zebrafish slc30a10 

Whole mount in situ hybridisation was used to determine the spatial domains in which 

slc30a10 is expressed in the developing zebrafish. A digoxigenin labelled anti-sense 

RNA probe (Probe 1) was generated spanning 950 bp from the first exon to the 3’UTR 

(Section 2.4.5). Although this antisense probe is not complementary to isoform 2 in its 

entirety, it is expected that the 767 bases that are complementary will allow sufficient 

hybridisation of the probe with the transcript of isoform 2. Probe 1 is therefore likely to 

detect both slc30a10 transcripts. Given that the sequence of transcript 1 overlaps with 

that of transcript 2 almost completely it was not attempted to generate a probe specific 

to transcript 1 only.  
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No specific spatial expression pattern was identified at early developmental stages 

between 3 and 48 hpf (Figure 5.7a). From 72 hpf strong expression of slc30a10 was 

observed in liver, intestine and pharynx (Figure 5.7a) which was confirmed on sections 

following in situ hybridisation (Figure 5.7b). This was particularly evident at 96 hpf.  

 

 

Figure 5.7 Expression pattern of slc30a10 during early zebrafish development. 

(a) Whole mount in situ hybridisation was performed on embryos fixed at (i) 3 (ii) 9 (iii) 

24 (iv) 48 (v) 72 and (vi) 96 hpf. (i-vi) Lateral views, (vii) dorsal view. slc30a10 is 

expressed in the intestine (dashed arrow) and pharynx (full arrow) from 72 hpf. Scale 

bar for (i) and (ii) 200 µm, for (iii)-(vii) 500 µm (b) Sections of 96 hpf embryos following 

in situ hybridisation confirmed a strong expression of slc30a10 in the intestine (dashed 

arrow) and the pharynx (full arrow). Staining is also evident in the liver (L) and in the 

brain (B), however, this expression is not confined to specific brain regions. Sections 

through 1 (brain and pharynx), 2 (liver), 3 (intestine). Scale bar 500 µm.  
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In order to examine whether slc30a10 transcript 2 has a distinct expression pattern, an 

antisense RNA probe specific to isoform 2 was generated (Section 2.4.5.). At 96 hpf 

the expression pattern was similar to that of probe 1, however, the liver staining was 

more evident (Figure 4.7). 

 

 

Figure 5.8 Differences in expression patterns of slc30a10 detected by probe 1 

and 2. 

(i) Probe 1 (specific to transcript 1 and likely transcript 2) and (ii) probe 2 (specific to 

transcript 2) show a similar expression pattern in the pharynx (P) and intestine (I) at 96 

hpf. For transcript 2 the liver staining is more evident (arrow). Scale bar 500 µm. 

 

 

5.2.3 Yeast complementation studies to assess the function of zebrafish 

Slc30a10 

Using a yeast complementation assay we have previously shown that human 

SLC30A10 functions as a Mn transporter1. In order to examine whether the zebrafish 

protein shares similar properties zebrafish slc30a10 was overexpressed in the Mn 

sensitive yeast strain ∆pmr1 as described previously (Section 2.3.21)46,94. Pmr1 

encodes a Golgi membrane P-type ATPase involved in Ca and Mn transport into the 

Golgi. Deletion of pmr1 in yeast causes accumulation of Mn in the cytosol and 

increases the sensitivity of cells to high concentrations of Mn13. Transformation of 

∆pmr1 with zebrafish slc30a10 rescued growth of the ∆pmr1 strain. Whilst the cells did 

not grow as profusely as the wild-type BY4743 background strain, they were more 

confluent than evident for ∆pmr1 alone (Figure 5.9). A similar result was obtained for 

human SLC30A10. Transformation with ZRC1, the yeast homologue of SLC30A10, 

known to transport Zn only (Section 1.3.2.1), showed a similar growth pattern as 

∆pmr1 alone. However, ZRC1 carrying the N44I mutation that was described 

previously to confer Mn resistance94 protected cells from Mn toxicity (Section 1.3.2.1). 
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The ZRC1 transformations were run in parallel as positive and negative controls. This 

data shows that zebrafish Slc30a10, similarly to human SLC30A10 and ZRC1(N44I), 

rescues growth of ∆pmr1 at high Mn concentrations confirming its ability to transport 

Mn.  

 

 

Figure 5.9 Zebrafish Slc30a10 protects ∆pmr1 yeast from Mn toxicity. 

Culture plate image of serial dilutions of yeast colonies: 105, 5x104, 2.5x104, 104 and 

7.5x103 cells of each strain were spotted onto SC-Ura plates supplemented with 2 mM 

MnCl2 and incubated at 30°C for six days. Both (i) BY4743, wild-type and (ii) ∆pmr1, 

Mn sensitive yeast strains were transformed with empty vector pYES-Dest52. 

Overexpression of human (iii) and zebrafish (iv) slc30a10 rescue growth of ∆pmr1. (v) 

Transformation with ZRC1 does not confer Mn resistance (negative control). (vi) ZRC1 

carrying the N44I mutation alters the transporter’s metal specificity and restores Mn 

resistance (positive control).  Zf, zebrafish.  
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5.3 TALEN and CRISPR genome editing to generate a 

zebrafish slc30a10 null mutant 

5.3.1 Generation of a slc30a10 loss-of-function mutant using TALENs targeting 

exon 1 

As slc30a10 is expressed during early zebrafish development and the transporter has 

a similar function to the human one, it was reasonable to assume that loss of gene 

function in zebrafish would provide a disease model for the human disorder. Therefore, 

a pair of TALENs was designed to target a conserved region within the first exon of 

slc30a10 encoding the third TMD of the protein, a region that is also affected in some 

patients with childhood-onset dystonia (p.Ala105_Pro107del46), (Figure 5.1, Section 

2.3.17). The TALEN spacer region contained a restriction site for EarI (Figure 5.10) 

that allowed screening for somatic mutations and carriers by PCR and restriction 

enzyme digestion (Section 2.3.5). TALEN induced mutations are expected to alter the 

sequence within the spacer region preventing EarI digestion. 

 

 

 

Figure 5.10 Target region of a TALEN pair to exon 1 of SLC30A10. 

 

 

The rate of somatic mutagenesis was determined in healthy looking, TALEN injected 

embryos at 24 hpf. Complete EarI digestion of a wild-type sequence results in a single 

visible band of 359 bp and suggests no somatic mutagenesis; partial EarI digestion 

generates two visible bands of 459 and 359 bp indicating that somatic cells carry 

mutations in the EarI recognition site. Partial EarI digestion was observed in 19 out of 

21 embryos confirming high mutagenic efficiency of the generated TALEN pair (Figure 

5.11a). Undigested bands visualised on an agarose gel were gel purified and cloned 

into pCRII TOPO vector for sequencing (Section 2.3.9). The sequences of the 

identified Indel mutations in the F0 generation are given in Figure 5.11b. 
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Figure 5.11 TALEN induced mutagenesis in exon 1 of slc30a10 in the F0 

generation. 

(a) Gel electrophoresis image of slc30a10 amplicons containing the TALEN target 

sequence and digested with EarI from un-injected and TALEN injected zebrafish F0 

embryos. Partial digestion (*) was observed in 19/21 embryos. L, 100 bp DNA ladder. 

−, undigested control. +, digested wild-type control. (b) Schematic showing examples 

of Indel mutations identified in the F0 generation. Wild-type (WT) sequence in the top 

row. TALEN binding sites marked in yellow. (−) deleted nucleotide, insertions in grey, 

(∆) number of deleted nucleotides. 

 

 

 

The remaining healthy looking, TALEN injected F0 embryos were raised to adulthood 

and seven F0 fish outcrossed to a wild-type AB strain. F1 embryos were screened by 

PCR and EarI digestion to assess whether mutations were passed on to the germ line. 

Out of the seven adult F0 fish, three were found to carry heritable mutations that were 

transmitted to the progeny in approximately 50% of analysed embryos (Figure 5.12a).  

 

The remaining F1 embryos obtained from the three adult F0 fish that carried heritable 

mutations were raised to adulthood. Adult F1 fish were finclipped for DNA extraction 

(2.3.1) and again screened by PCR and EarI digestion. The digestion products were 

visualised on an agarose gel and the undigested bands cloned into the pCRII-TOPO 

vector for sequencing (Section 2.3.9). Sequencing identified a range of indel mutations 

causing frameshifts in the nucleotide sequence (Figure 5.12b). These are expected to 

be deleterious for protein function. An adult F1 carrier with a heterozygous frameshift 

mutation caused by a 10 bp deletion within exon 1 (c.298_307del, p.L100Sfs*7), 
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predicted to cause a significant truncation of the protein, was out-crossed to wild-type 

fish to generate a stable mutant line slc30a10U800 and was used for further studies.  

 

 

Figure 5.12 TALEN induced mutagenesis in exon 1 of slc30a10 in the F1 

generation. 

(a) Gel electrophoresis image of slc30a10 amplicons from F1 embryos containing the 

TALEN target sequence subsequent to digestion with EarI. EarI screening of F1 

embryos from an outcross of a single F0 founder fish with an AB wild-type strain is 

shown. The undigested (U) PCR product was loaded on the left of each digest (D) 

reaction. Partial digestion (*) was observed in 13/24 embryos confirming carrier status 

for a TALEN induced mutation in approximately 50% of the progeny. (b) Schematic 

showing examples of Indel mutations identified in the F1 generation. Wild-type (WT) 

sequence in the top row. TALEN binding sites marked in yellow. (−) deleted nucleotide, 

insertions in grey, (∆) number of deleted nucleotides. slc30a10U800 mutant highlighted 

in red. 
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5.3.2 Generation of a slc30a10 loss-of-function mutant using CRISPRs targeting 

exon 3 

An additional mutant with a frameshift mutation in exon 3 was generated that affects 

both transcripts because there was a small chance that gene function in the TALEN 

mutant slc30a10U800 harbouring a 10 bp deletion within exon 1 of slc30a10 would be 

rescued by the identified alternative transcript 2 (Section 5.2.1).  

 

A CRISPR target region was chosen within exon 3 encoding TMD VI (Figures 5.1 and 

5.13a, Section 2.3.18). The Cas9 construct used encodes a zebrafish codon-optimized 

version of S. pyogenes Cas9 with SV40 large T-antigen nuclear localisation signals 

(nls) at both its amino and carboxyl termini (nls-zCas9-nls)191. Co-injection of Cas9 

mRNA and the gRNA to exon 3 induced efficient mutagenesis in the F0 generation. 

HRMA demonstrated a difference in the melt curve shape in 10 out of 11 injected 

embryos compared to un-injected wild-type embryos (Figure 5.13b, Section 2.3.19). 

Progeny from a F0 founder fish with a high rate of germ line transmission (80%) 

(Figure 5.13c) was raised to adulthood. Adult F1 fish were fin-clipped for DNA 

extraction (Section 2.3.1) and screened using HRMA. Sequence analysis was 

performed for five fish that showed an altered melt curve (Figure 5.13c). The only 

carrier fish with a frameshift mutation (5 bp deletion within exon 3) was chosen to 

generate a stable mutant line slc30a10U600 (c.717_721del, p.P240Afs*92), (Figure 

5.13d).  
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Figure 5.13 CRISPR induced mutagenesis in zebrafish slc30a10 exon 3. 

(a) Schematic overview of the zebrafish slc30a10 gene and the region within exon 3 

targeted by the gRNA/Cas9 complex. (b) HRMA shows that co-injection of the gRNA to 

exon 3 and Cas9 mRNA results somatic mutagenesis in 10 out of 11 injected embryos 

(F0 generation). Normalised melt curve (left) and difference curve (right) show changes 

in the melt curve shape between un-injected wild-type (green) and injected embryos 

(red). (c) A representative HRMA result of the progeny of a F0 founder fish is shown. 

Un-injected wild-type control in blue, F1 embryos in pink. 9/10 embryos show a change 

in the melt curve shape. (d) CRISPR induced indel mutations identified in five adult F1 

fish. Wild-type (WT) sequence given in the top row. CRISPR target region marked in 

yellow, (−) deleted nucleotide, insertions in grey, (∆) number of deleted nucleotides, 

(x2), these mutations were identified twice in different fish. The slc30a10U600 mutant is 

highlighted in red. 
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5.4 Acute Mn toxicity in wild-type zebrafish 

It was important to determine the concentrations of MnCl2 that are toxic to wild-type 

larvae to estimate what concentrations of MnCl2 to use to challenge Mn transporter 

mutants. In order to assess the effect of Mn on the development and survival of early 

larval stages of wild-type zebrafish, 72 hpf embryos were exposed to a range of MnCl2 

concentrations (50 μM to 100 mM), (Section 2.4.4). 72 hpf (protruding mouth stage) 

was chosen as a starting point because zebrafish begin to swallow water at this stage, 

supposedly aiding uptake of Mn258. Concentrations above 50 μM MnCl2 were toxic and 

from 1.5 mM associated with high lethality for exposed larvae within two days of 

treatment (Figure 5.14). MnCl2 at a concentration of 50 µM did not affect survival 

during the period of exposure and wild-type embryos appeared healthy.  

 

 

 

Figure 5.14 MnCl2 exposure dose-dependently reduces larval survival. 

Survival plot of wild-type zebrafish larvae exposed to MnCl2. Exposure of wild-type 

larvae was commenced at 72 hpf and continued for four days. Treatments with MnCl2 

were performed in 6-well culture plates with 20 embryos per well. n=1 for 

concentrations ≥1.5 mM, n=2 for concentrations ≤500 µM.  
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At concentrations of MnCl2 above 50 µM, toxicity effects were observed including 

superficial ulcerations, pericardial haemorrhage, curvature of the body axis and loss of 

balance (Figure 5.15). This is consistent with previous observations of environmental 

Mn toxicity in zebrafish259.  

 

 

 

 

Figure 5.15 Toxic effects of MnCl2 exposure in wild-type zebrafish larvae. 

Images of zebrafish larvae exposed to 250 µM MnCl2 from 72 hpf showing (i) 

pericardial haemorrhage, (ii) superficial ulceration and (iii) body curvature, loss of 

balance and delayed swim bladder inflation. 
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5.5 Phenotypic characterisation of slc30a10U800 mutants 

slc30a10U800 mutants generated by TALEN genome editing carry a 10 bp deletion 

within exon 1 (c.298_307del) causing a frameshift predicted to significantly truncate the 

protein  (p.L100Sfs*7) and likely to cause nonsense medicated decay. Raised under 

standard conditions they did not show an apparent phenotype. Homozygous 

slc30a10U800 mutants did not display morphological abnormalities or developmental 

defects, and had normal survival during embryonic and early larval development. They 

survived to adulthood and had normal fertility. 

 

5.5.1 slc30a10U800 mutants show differences in Mn levels compared to wild-type 

larvae depending on their stage of development 

To assess whether slc30a10U800 mutants accumulate Mn similar to humans Mn levels 

were determined by ICP-MS in pools of ten zebrafish larvae raised under standard 

conditions (Section 2.5.2). While there was no significant difference in Mn levels at 5 

dpf, slc30a10U800 larvae accumulated three magnitudes higher levels of Mn compared 

to wild-type larvae at 14 dpf (Figure 5.16i). Other metal levels including Zn, Fe and Cu, 

potential substrates of the Slc30a10 transporter92,93,260, were unchanged at 5 and 14 

dpf (Figure 5.17). Surprisingly, MnCl2 exposure to a range of concentrations between 

10 and 50 μM that have been shown to be non-toxic to wild-type larvae (Section 5.4) 

led to a lesser degree of Mn accumulation in mutant than wild-type larvae at 5 dpf 

(Figure 5.16ii).  
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Figure 5.16 Mn levels of slc30a10U800 mutants are different from wild-type larvae. 

Graph showing Mn levels measured by ICP-MS from a pool of 10 larvae (i) without 

addition of MnCl2 at 5 dpf (n≥12) and 14 dpf (n=5), (ii) at 5 dpf with the addition of 0 to 

50 μM MnCl2 to standard fishwater between 2 and 5 dpf (n≥3). Data are presented as 

means ± s.d. from a minimum of three independent experiments. Statistical analysis 

was performed using (i) Student’s two tailed t test (ns, not significant, p>0.05. 

***p<0.001), (p=0.5 [5 dpf], p=0.0005 [14 dpf]) (ii) 2 way ANOVA and Bonferroni 

posttests comparing wild-type versus slc30a10U800 larvae (***p<0.001). 
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Figure 5.17 Zn, Fe and Cu levels are not altered in slc30a10U800 mutants at 14 dpf. 

Graph displaying Zn, Fe and Cu levels analysed by ICP-MS in pools of 10 larvae at 14 

dpf. Data are presented as means ± s.d. from a minimum of four independent 

experiments. Statistical analysis was performed using Student’s two tailed t test (ns, 

not significant, p=0.49 [Zn], 0.1 [Fe], 0.96 [Cu]). 

 

 

In order to verify that the observed changes in Mn levels were not due to differences in 

size, larval length from the most anterior part of the head to the tip of the tail was 

determined at 14 dpf under a light microscope. Although there appeared to be a small 

difference in length between mutant (mean of 6.566 mm) and wild-type (mean of 6.153 

mm) larvae, Mn levels corrected for length did not change the result of raised Mn levels 

in slc30a10U800 mutants at 14 dpf (Figure 5.18). 

 

 

Figure 5.18 Homozygous slc30a10U800 mutants show a minimal increase in larval 

length that does not contribute in the observed differences in Mn levels. 

Graph showing (i) larval length measured at 14 dpf. The box and whisker plots indicate 

the 25th and 75th percentile, and the minimum and maximum length, respectively. 

Statistical analysis was performed using Student’s t test (p=0.016). n≥46. (ii) Mn levels 

corrected for larval length at 14 dpf. Data are presented as means ± s.d. from a 

minimum of four independent experiments. Statistical analysis was performed using 

Student’s two tailed t test (p=0.0001). 
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5.5.2 slc30a10U800 mutants are more resistant to Mn toxicity during early larval 

development  

The locomotor activity of wild-type and mutant larvae was tracked during 4 and 7 dpf 

using a behavioural profiling method described previously202. This setup allows 

automated detection of zebrafish locomotion by direct analysis of movements captured 

by video. 96 larvae in a 96 well plate are simultaneously observed in an analysis suite 

from Viewpoint LifeSciences using a frame-by-frame background subtraction method 

and automated analysis software (Section 2.4.9). The parameters analysed were 

“average total activity”, “average waking activity” and “average sleep”. Average total 

activity is measured as movement in seconds per minute. Average waking activity is 

the average activity during bouts of waking activity: total activity divided by the total 

active minutes (total time minus sleep time). Sleep is defined as inactivity for more than 

1 minute. Average total sleep is measured as sleep bouts per 10 minutes. Larvae were 

raised on a 14:10 hour light:dark cycle. For wild-type larvae day and night can be 

clearly distinguished by the reduced activity and increased sleep duration under dark 

conditions (Figure 5.19). 

 

The movement of larvae from a heterozygous incross of slc30a10U800 zebrafish in 

standard fishwater and compared to that of wild-type larvae of the same age was 

continuously tracked during 4 and 7 dpf (Figure 5.19). Analysis of the average total 

activity during day and night showed that there was no significant difference between 

wild-type and mutant larvae (Figure 5.20). 
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Figure 5.19 slc30a10U800 mutant and wild-type zebrafish larvae raised in standard 

fishwater show a similar locomotion pattern. 

Plots of average (i) waking activity, (ii) total activity and (iii) total sleep comparing wild-

type (yellow), heterozygous (red) and homozygous (blue) mutant zebrafish larvae. The 

14:10 hour light:dark cycle is indicated on the bottom. n≥27 larvae. 
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Figure 5.20 There is no difference in average total activity during the day and 

night between wild-type (+/+), heterozygous (+/-) and homozygous (-/-) 

slc30a10U800 larvae raised in standard fishwater without additional MnCl2 

exposure. 

Graphs showing average (i) day (p=0.84) and (ii) night activity (p=0.45) analysed 

between 4 and 7dpf. Data are presented as mean ± standard error of the mean (s.e.m). 

Statistical analysis was performed using 2 way ANOVA (ns, not significant, p>0.05). 

n≥27 larvae. 

 

 

The effect of MnCl2 exposure on locomotor activity was analysed in slc30a10U800 

mutant larvae and compared to wild-types. Homozygous slc30a10U800 mutants and 

wild-type cousins were exposed to increasing concentrations of MnCl2 from 2 dpf 

onwards and their locomotor activity tracked between 4 and 8 dpf (Figure 5.21). 

Homozygous slc30a10U800 larvae had a significantly higher average day activity with a 

less pronounced dose dependent drop in average activity compared to wild-types at 8 

dpf (Figure 5.22). Differences in average night activity were also observed at 6 and 7 

dpf. Wild-type larvae demonstrated increased locomotor activity at night upon MnCl2 

exposure compared to mutant larvae (Figure 5.23). Hence, behavioural analysis 

suggested that slc30a10U800 larvae were more resistant to Mn toxicity than wild-types. 

This is consistent with the observation that slc30a10U800 larvae accumulate lower levels 

of Mn upon MnCl2 exposure at 5 dpf.  
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Figure 5.21 slc30a10U800 larvae are more resistant to MnCl2 expsoure. 

Plots of (i) average waking activity, (ii) total activity and (iii) total sleep of wild-type and 

homozygous slc30a10U800 larvae between 4 and 8 dpf in response to MnCl2. Larvae 

were exposed to increasing doses of MnCl2 (0 to 50 μM) from 2 dpf. The 14:10 hour 

light:dark cycle is indicated on the bottom. n=12 larvae per condition. 
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Figure 5.22 Exposure of slc30a10U800 mutants to MnCl2 leads to a less 

pronounced decrease in average day activity compared to wild-type fish. 

Graphs showing average day activity of larvae exposed to 0 to 50 μM MnCl2 from 2 dpf. 

Homozygous slc30a10U800 larvae in red and wild-type (WT) larvae in blue. Data are 

presented as mean ± s.e.m. Statistical analysis was performed using 2 way ANOVA 

and Bonferroni posttests comparing WT and slc30a10U800 larvae (*p<0.05; **p<0.001. 

n=12 larvae per condition. 
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Figure 5.23 Exposure of slc30a10U800 mutants to MnCl2 leads to a less 

pronounced increase in average night activity compared to wild-types. 

Graphs showing average night activity of larvae exposed to 0 to 50 μM MnCl2 from 2 

dpf. Homozygous slc30a10U800 larvae in red and wild-type (WT) larvae in blue. Data 

are presented as mean ± s.e.m. Statistical analysis was performed using 2 way 

ANOVA and Bonferroni posttests comparing WT and slc30a10U800 larvae. (*p<0.05; 

**p<0.01, ***p<0.001). n=12 larvae per condition. 
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5.5.3 slc30a10U600 mutants harbouring the p.P240Afs*92 mutation do not show 

phenotypic differences to slc30a10U800 mutants 

slc30a10U600 mutants generated by CRISPR/Cas9 genome editing carry a 5 bp deletion 

within exon 3 (c.717_721del) causing a frameshift predicted to significantly truncate the 

protein  (p.P240Afs*92) and likely to cause nonsense medicated decay. Observations 

of an in-cross of heterozygous slc30a10U600 mutants suggested no phenotypic 

abnormalities during embryonic and early larval development until 5 dpf when raised 

under standard conditions.  Also, exposure of slc30a10U600 larvae to 50 μM MnCl2 did 

not show any gross alterations in their swimming behaviour when observed under a 

light microscope between 2 and 5 dpf. Given that no obvious phenotypic differences 

exist between the slc30a10U600 and slc30a10U800 mutant no further analysis of the 

slc30a10U600 mutant was pursued. 
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5.6 Discussion 

5.6.1 Zebrafish slc30a10 facilitates Mn export and encodes two transcripts 

Overexpression of zebrafish slc30a10 in pmr1 deficient S. cerevisiae clearly 

demonstrated its ability to protect yeast from Mn toxicity similar to the results seen with 

human SLC30A1046. Human SLC30A10 localises to the cell membrane while certain 

mutant proteins (L89P, 98-134del, 105-107del, T196P, and Q308X) are not trafficked 

correctly within the cell and become trapped in the ER47. SLC30A10 is therefore 

thought to facilitate the excretion of Mn from the cell. Expressed in liver, intestine and 

the nervous system it is a crucial regulator of Mn homeostasis facilitating hepatic 

excretion of Mn into the bile46,50,92. In zebrafish slc30a10 is expressed during embryonic 

and early larval stages suggesting a crucial role of this transporter during zebrafish 

development. In situ hybridisation showed that slc30a10 is expressed in the liver, gut 

and brain of zebrafish larvae. The zebrafish and human protein share 51% sequence 

homology which is particularly conserved around the six TMDs. It therefore seemed 

reasonable to conclude that the function of zebrafish slc30a10 is similar to that in 

humans and that loss of slc30a10 function in zebrafish may be a suitable model of Mn 

toxicity.    

 

Zebrafish slc30a10 was found to encode two transcripts; one spanning four exons 

similar to the human gene and at the time the only known transcript, the second one 

possibly encoding a considerably shortened protein lacking the conserved TMDs. The 

spatial expression pattern of both transcripts was similar with expression in liver, gut 

and brain. Given the predicted protein structure it seems unlikely that a protein lacking 

the conserved TMDs has a similar function to the original transporter protein. It is also 

possible that this transcript is not translated but has other regulative functions. The 

TALEN pair used to generate the slc30a10U800 mutant solely affects transcript 1. In 

order to leave no doubt a second mutant, slc30a10U800, was generated targeting exon 3 

of slc30a10 that is shared by both transcripts. However, as this mutant did not show a 

different phenotype to the slc30a10U800 mutant it was not further analysed.       
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5.6.2 Slc30a10 loss-of-function in zebrafish causes an unexpected phenotype  

Given that zebrafish Slc30a10 facilitates Mn detoxification in yeast similar to the human 

protein, the slc30a10U800 zebrafish mutant was expected to display Mn accumulation. 

Indeed, at 14 dpf mutant larvae had significantly higher Mn levels compared to wild-

types while at 5 dpf no significant difference was observed. This would suggest that 

chronic Mn exposure throughout early larval development is required in order to cause 

any Mn toxicity phenotype in mutant larvae. Under normal husbandry conditions 

zebrafish larvae are exposed to a small but essential concentration of Mn. Mn is 

present in the salt mix added to standard fishwater and in the food chain. However, 

under normal culture conditions slc30a10U800 mutant zebrafish did not develop any 

apparent phenotype. They remained healthy and fertile throughout adulthood and 

showed no locomotor behaviour abnormality.  

 

Surprisingly, additional exposure to MnCl2 (50 µM) between 2 and 5 dpf led to 

attenuated accumulation of Mn in mutant larvae compared to wild-type fish. Hence, 

slc30a10U800 mutants appeared to be more resistant to Mn deposition upon MnCl2 

exposure than wild-type larvae. This finding was consistent with the changes in the 

locomotor behaviour observed upon MnCl2 expsoure. While there was no difference in 

swimming activity between unexposed mutant and wild-type larvae, MnCl2 exposed 

slc30a10U800 mutants were less affected by Mn toxicity; wild-type larvae showed a 

greater reduction of their locomotor activity than mutants. This finding is indeed 

puzzling and further work is required to study the function of the zebrafish transporter 

in more detail. It may be that during early larval development compensatory 

mechanisms in the mutant larvae allow for the observed unexpected attenuation of Mn 

toxicity. It will be important to analyse the locomotor behaviour at 14 dpf when Mn 

accumulation occurs in mutant larvae. It is also plausible that although the human and 

zebrafish protein appear to have a similar Mn detoxification function in vitro additional 

functions and interactions lead to the observed phenomenon in vivo. Although land 

mammals and fish are both osmoregulatory vertebrates, fish are exposed to much 

more dramatic osmotic and ionic environmental fluctuations261. While many of the 

transepithelial transport mechanisms are conserved from fish to human it is likely that 

differences exist in order to maintain the osmotic and ionic balance of aquatic 

organisms. In fish, the majority of iono- and osmoregulation is carried out by ionocytes 

in the gills and, during early embryonic development, in the skin, while in mammals the 
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kidney performs the task of osmoregulation. Although in situ hybridisation did not 

detect signficant mRNA expression of slc30a10 in skin or gill ionocytes, it is possible 

that a different subcellular localisation of slc30a10 or orientation of the transporter in 

such cells facilitate Mn uptake from the aqueous medium rather than excretion.     

 

Observations of slc30a10U600 mutants that supposedly lead to loss-of-function of both 

Slc30a10 isoforms suggest that similar to slc30a10U800 mutants this mutant line does 

not develop a Mn toxicity phenotype excluding the possibility that loss of gene function 

in slc30a10U800 mutant is rescued by an alternative transcript. 

 

In conclusion, loss of slc30a10 function in zebrafish does not recapitulate all aspects of 

the mature human phenotype and further work is required to unravel the mechanisms 

of early Mn resistance observed in the slc30a10U800 mutant. Unfortunately, five day 

slc30a10U800 mutants do not provide a disease model of SLC30A10 deficiency that 

would allow drug screening. 
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Chapter 6. CRISPR genome editing to generate a 

slc39a14 loss-of-function mutant 

6.1 Introduction 

In Chapter 4 it is described how SLC39A14 was identified as a crucial Mn transporter 

required for the maintenance of Mn homeostasis in humans. Homozygous mutations in 

this gene in a cohort of nine patients led to extensive Mn neurotoxicity associated with 

parkinsonism-dystonia. Until this study, there had been considerable uncertainty to the 

metal specificity of this transporter; SLC39A14 was shown to transport a range of 

metals in vitro including Zn, Fe, Mn and Cd72,233,241. In order to confirm that loss of 

slc39a14 function causes Mn dyshomeostasis, a zebrafish loss-of-function mutant was 

generated using CRISPR/Cas9 genome editing with the view to study disease 

mechanisms, identify novel therapeutic targets and provide a vertebrate model for drug 

screening.     

 

6.2 Characterisation of the slc39a14 orthologue in zebrafish 

6.2.1 Temporal expression and sequence verification of zebrafish slc39a14 

Prior to generating a loss-of-function mutant it was essential to characterise the 

slc39a14 gene in zebrafish to confirm correct gene annotation and ensure that gene 

expression occurs during the first five days of development when analysis of the 

mutant would take place. Similar to studies characterising slc30a10 (Section 5.2) 

slc39a14 expression was analysed between 3 and 120 hpf by RT-PCR. The primers 

used amplified a 240 bp region spanning exon 3 to 5 and detecting all slc39a14 

transcripts (Section 2.3.6). slc39a14 expression was evident at all stages of embryonic 

and early larval development suggesting that this transporter is utilised during early 

zebrafish development (Figure 6.1). 
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Figure 6.1 slc39a14 is expressed during embryonic and early larval development 

of zebrafish between 3 and 120 hpf. 

Gel electrophoresis image of RT-PCR amplicons of the expected size of 240 bp. L, 100 

bp ladder (Promega). 

 

 

Because the zebrafish slc39a14 gene was poorly annotated in the literature, five and 

three prime rapid amplification of cDNA ends (5’ and 3’ RACE) was performed to 

identify all slc39a14 transcripts expressed in zebrafish (Section 2.3.16). Similar to 

human SLC39A14 an alternative fourth and ninth exon and, additionally, an alternative 

eighth exon encode four splice isoforms in zebrafish (Figure 6.2). 

 

 

Figure 6.2 Zebrafish slc39a14 encodes four isoforms. 

Schematic showing the transcripts identified by 5’ and 3’ RACE using RNA extracted 

from zebrafish larvae at 3 dpf. Isoform 1 (red) and 2 (blue) are encoded by an 

alternatively spliced exon four. Isoform 3 (dotted red) is encoded by an alternative ninth 

exon and 3’ UTR. Isoform 4 (dashed red) is encoded by a shorter transcript with only 

eight exons (not drawn to scale). Positions of primers used for 5’ and 3’ RACE are 

indicated in purple. Not drawn to scale. 
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The sequence homology between the human and zebrafish Slc39a14 protein was 

analysed using UniProt software (Section 2.3.2) and both proteins were shown to 

share high sequence homology; 62 percent of amino acid residues are identical. The 

eight transmembrane domains, the histidine-rich region and the metal binding motif 

(Section 4.3.1) are almost completely identical between human and zebrafish 

suggesting shared function (Figure 6.3). 

 

 

H  MKLLLLHPAFQSCLLLTLLGLWRTTPEAHASSLGAPAISAASFLQDLIHRYGEGDSLTLQ 60 
Zf MTLRRASGCRQLTLTIGLALTLGLLQWPIGDVRGQDGASPAQVLQELLTRYGDNASISVP 60 

   *.*     . *  * : *         . ..  *  . *.*..**:*: ***:. *:::  

 

H  QLKALLNHLDVGVGRGNVTQHVQGHRNLSTCFSSGDLFTAHNFSEQSRIGSSELQEFCPT 120 

Zf QLRSLLVRLNGGQSEDHDSKTQPTRTNASKCLAA-DTLAVYGMSEQSRIDERGLQQICPT 119 

   **::** :*: * ...: ::    : * *.*::: * ::.:.:******..  **::*** 

 

H  ILQQLDSRACTSENQENEENEQTEEGRPSAVEVWGYGLLCVTVISLCSLLGASVVPFMKK 180 

Zf MIQQLDSQACKT--QPNQESESSP--RPTEAEVWGYGLLCVTVISLCSLVGASVVPFMRK 175 

   ::*****:**.:  * *:*.*.:   **: .******************:********:* 

 

H  TFYKRLLLYFIALAIGTLYSNALFQLIPEAFGFNPLEDYYVSKSAVVFGGFYLFFFTEKI 240 

Zf TFYKRLLLYFIALAIGTLYSNALFQLIPEAFGFDPMEDYYVPKSAVVFGGFYLFFFTEKI 235 

   *********************************:*:*****.****************** 

 

H  LKILLKQKNE--HHHGHSHYASESLP-SKKDQEEGVMEKLQNGDLDHMIPQHCSSELDGK 297 

Zf LKMILKPKDTGGHGHGHSHFPAERYANSNGDLEDGVMEKLQNGEAGGAALP--RAEADGR 293 

   **::** *:   * *****:.:*  . *: * *:*********: .        :* **: 

 

H  APMVDEKVIVGSLSVQDLQAS----QSACYWLKGVRYSDIGTLAWMITLSDGLHNFIDGL 353 

Zf GVGEDDKMLSTGQTVQDTQSSGGGGTGGCYWLKGRAYSDIGTLAWMITLSDGLHNFIDGL 353 

   .   *:*::  . :*** *:*     ..******  ************************ 

 

H  AIGASFTVSVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLGL 413 

Zf AIGASFTASVFQGISTSVAILCEEFPHELGDFVILLNAGMSIQQALFFNFLSACCCYLGM 413 

   *******.***************************************************: 

 

H  AFGILAGSHFSANWIFALAGGMFLYISLADMFPEMNEVCQEDERKGS--ILIPFIIQNLG 471 

Zf GFGILAGNNFSPNWIFALAGGMFLYIALADMFPEMNEVSREEEEAGGSGFLLTFALQNAG 473 

   .******.:**.**************:***********.:*:*. *.  :*:.* :** * 

 

H  LLTGFTIMVVLTMYSGQIQIG 492 

Zf LLTGFAIMLVLTIYSGQIQLG 494 

   *****:**:***:******:* 

 

Figure 6.3 Zebrafish Slc39a14 shares 62 percent sequence identity with human 

SLC39A14. 

Sequence alignment of the human (XP_001340102.4) and zebrafish 

(NP_001121903.1) SLC39A14 protein sequence (isoform 1). Residues identical to the 

human SLC39A14 sequence are marked in yellow with an asterisk (*). Conservation 

between amino acids of strongly and weakly similar properties is indicated by a colon (: 

dark grey) and a period (. light grey), respectively. The putative TMDs are underlined. 

The histidine-rich region and the LZT consensus motif are highlighted in red. The 

position of the CRISPR induced deletion is indicated in turquoise (Section 6.3.1). H, 

human. Zf, zebrafish. 
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6.2.2 Spatial expression of zebrafish slc39a14 

To analyse whether slc39a14 expression is similar to that of the human orthologue, 

whole mount in situ hybridisation was performed using a DIG labelled antisense RNA 

probe of 979 bp to slc39a14 spanning a region from the fourth to ninth exon in order to 

assess the spatial expression pattern (Section 2.4.5). slc39a14 expression was 

observed in the convoluted and straight part of the proximal pronephric ducts from as 

early as 2 dpf (Figure 6.4). In contrast to mature human tissues, no significant 

expression was detected in the brain, liver or intestine.  

 

Figure 6.4 Spatial 

expression of slc39a14 in 

zebrafish during 3 hpf and 

5 dpf. 

Light microscope images of 

whole mount in situ 

hybridisation of slc39a14. 

Convoluted and straight 

proximal pronephric ducts are 

indicated by black and red 

arrows, respectively. Scale 

bar 200 µm.   
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The spatial distribution of slc39a14 was further confirmed in sections of larvae at 5 dpf 

following in situ hybridisation (Figure 6.5, Section 2.4.6). 

 

 

Figure 6.5 slc39a14 is prominently expressed in the pronephric ducts of 

zebrafish larvae at 5 dpf. 

Light microscope images of whole mount in situ hybridisation sections of 10 μm 

thickness using a (i) antisense and (ii) sense probe (negative control) to slc39a14. 

Positive staining indicated by red arrows. 

 

 

6.3 CRISPR genome editing to generate a zebrafish slc39a14 

null mutant 

6.3.1 Generation of a slc39a14 loss-of-function mutant using CRISPR/Cas9 

targeting exon 5 

To assess if loss of slc39a14 gene function leads to Mn dyshomeostasis in vivo, a 

zebrafish mutant carrying slc39a14 null mutations was generated using CRISPR/Cas9 

genome editing (Section 2.3.18). Given that slc39a14 is expressed in zebrafish 

throughout embryonic and early larval development and that the protein is highly 

conserved with the human sequence (Section 6.2), it was reasonable to assume that 

loss of gene function may lead to a similar phenotype in zebrafish mutants as observed 

in humans with SLC39A14 mutations.  A gRNA was designed to target a conserved 
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region within exon 5 that is shared by all four transcripts identified using 5’ and 3’ 

RACE (Section 6.2.1 and Figure 6.2). Following co-injection of the gRNA and Cas9 

mRNA into one cell stage embryos the rate of somatic mutagenesis was determined in 

healthy looking, injected embryos at 24 hpf using HRMA (Section 2.3.19). All injected 

embryos showed a change in the melt curve shape confirming a high mutagenic 

efficiency of the generated gRNA/Cas9 complex. Eight amplicons with shifted melt 

peaks were cloned into the pCRII-TOPO vector for sequencing (Section 2.3.9). 

Sequencing identified a range of frameshifts causing indel mutations that were 

predicted to be deleterious for protein function (Figure 6.6). 

 

 

Figure 6.6 Mutagenesis induced by a gRNA/Cas9 to exon 5 of slc39a14. 

(i) HRMA result of injected (blue), and un-injected wild-type F0 embryos (green). Each 

melt curve represents a single embryo. Normalised melt curve (left) and difference plot 

(right) were generated using Biorad Precision Melt Analysis Software. (ii) Schematic of 

the CRISPR target region (yellow) and Indel mutations identified in injected F0 

embryos. Wild-type (WT) sequence in the top row, mutations below. (−) deleted 

nucleotide, insertions in grey, (∆) number of deleted nucleotides. 

 

 

The remaining healthy looking injected F0 embryos were raised to adulthood and 

outcrossed to a wild-type AB strain. The resulting F1 progeny of eight F0 fish were 

screened by HRMA at 1 dpf to identify founder fish with heritable mutations. All eight 
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F0 fish transmitted mutations to the progeny in a high fraction of embryos. In total, 110 

out of 151 (73%) analysed embryos screened postive for a mutation (Figure 6.7). 

 

 

Figure 6.7 Difference curves from HRMA showing that F0 fish have a high 

germline transmission rate of CRISPR/Cas9 induced mutations. 

HRMA results of the progeny (F1) of an outcross of eight injected F0 fish. Each 

difference curve represents the progeny from one founder fish. Un-injected wild-type 

control embryos in light green. The number of positive embryos (shifted melt curve) is 

given next to each difference plot.  

 

 

F1 embryos from the identified founder fish were raised to adulthood and adult F1 fish 

again screened by HRMA. Six amplicons with shifted melt peaks were cloned into the 

pCRII-TOPO vector and sequenced (Section 2.3.9.). Several indel mutations were 
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identified (Figure 6.8). An adult F1 carrier fish with a frameshift mutation predicted to 

cause significant truncation of the protein caused by a 2 bp deletion within exon 5 

(c.629_630del, p.P210Hfs*48) was out-crossed to wild-type fish to generate a stable 

mutant line (slc39a14U801). 

 

 

Figure 6.8 Frameshift Indel mutations identified in the F1 generation. 

Schematic showing the wild-type (WT) sequence in the top row and the introduced 

mutations below. CRISPR target region in yellow, (−) deleted nucleotide, insertions in 

grey, (∆) number of deleted nucleotides. slc39a14U801 mutant highlighted in red. 

 

 

Because an antibody to zebrafish Slc39a14 is not available to assess protein 

expression in the generated mutant, qRT-PCR was used to confirm that the introduced 

mutation had an effect on transcript processing (Section 2.3.7). slc39a14 mRNA 

expression in homozygous slc39a14U801 mutants was reduced 2.2 fold suggesting 

nonsense mediated decay of the mutant transcripts and likely loss of protein function 

(Figure 6.9). 

 

Figure 6.9 slc39a14 transcript levels 

are reduced in homozygous 

slc39a14U801 mutants. 

Graph showing slc39a14 transcript 

levels of wild-type (WT) and mutant 

larvae. Data are presented as means ± 

s.d. from three independent 

experiments. Statistical analysis was 

performed using Student’s two tailed t 

test on individual ∆Ct values (p=0.012). 
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6.4 Phenotypic characterisation of slc39a14U801 mutants 

Homozygous slc39a14U801 mutants harbouring the c.629_630del (p.P210Hfs*48) 

mutation (Section 6.3.1) did not display an apparent phenotype when raised under 

standard conditions. They did not show obvious morphological abnormalities or 

developmental defects and had normal survival during embryonic and early larval 

development. They survived into adulthood with normal fertility. However, exposure to 

raised environmental Mn levels above the physiological amounts present in the food 

chain and fishwater triggered a distinct phenotype of motor and vision impairment. 

6.4.1 slc39a14U801 mutants accumulate high levels of Mn and are sensitive to 

Mn toxicity 

ICP-MS analysis was used to determine metal levels in homozygous slc39a14U801 and 

wild-type larvae (Materials and Methods 2.5.2). Homozygous slc39a14U801 mutants 

raised in fish water without additional Mn exposure showed a 35% increase in Mn 

levels at 5 dpf and a 72% increase at 14 dpf confirming a crucial role for Slc39a14 in 

Mn clearance (Figure 6.10).  

 

 

Figure 6.10 Homozygous slc39a14U801 larvae show increased Mn levels at 5 and 

14 dpf. 

Graph showing Mn levels measured by ICP-MS from pools of 10 larvae at 5 dpf 

(p=0.001) and 14 dpf (p=0.0002). Data are presented as means ± s.d. from a minimum 

of five independent experiments. Statistical analysis was performed using Student’s 

two tailed t test (***p<0.001).  
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On the other hand, other previously reported substrates of the transporter69,70,72,230-

237,241 including Fe, Zn and Cd, remained unchanged at 5 and 14 dpf (Figure 6.11). 

 

 

Figure 6.11 Fe, Zn and Cd levels in 14 dpf mutant larvae are similar to those of 

wild-types. 

Graph showing Fe, Zn and Cd levels measured by ICP-MS from pools of 10 larvae of 

10 homozygous slc39a14U801 or wild-type (WT) larvae at 14 dpf. Data are presented as 

means ± s.d. from five independent experiments. Statistical analysis was performed 

using Student’s two tailed t test (ns, not significant. p=0.9 [Fe], 0.26 [Zn], 0.83 [Cd]). 

 

 

To exclude that differences in size accounted for the observed difference in Mn levels, 

larval length was determined at 14 dpf in mutant and wild-type larvae. No difference in 

size was detected between mutant and wild-type larvae (Figure 6.12). 

 

Figure 6.12 Homozygous slc39a14U801 mutants 

do not show differences in size compared to 

wild-type siblings. 

Graph showing the average length of wild-type 

(WT) and slc39a14U801 larvae at 14 dpf. The box 

and whisker plots indicate the 25th and 75th 

percentile, and the minimum and maximum length, 

respectively. Statistical analysis was performed 

using Student’s t test (p=0.061). n=56. 
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Despite the observed abnormality of Mn levels under standard husbandry conditions, 

slc39a14U801 mutants survived into adulthood without any obvious morphological or 

developmental defects. However, exposure to sublethal MnCl2 concentration (20 to 50 

µM) from 2 to 5 dpf led to a much greater accumulation of Mn in homozygous 

slc39a14U801 mutants compared to wild-types at 5 dpf (Figure 6.13). Observations 

under a light microscope showed that this was accompanied by reduced spontaneous 

swimming with some larvae floating on their side and delayed swim bladder 

development. Wild-type larvae on the other hand appeared unaffected. 

 

 

Figure 6.13 Mn exposure leads to greater Mn accumulation in slc39a14U801 

mutants compared to wild-type larvae. 

Graph showing Mn levels in homozygous slc39a14U801 and wild-type (WT) larvae 

exposed to increasing concentrations of MnCl2 (0 – 50 μM) from 2 dpf. Mn levels were 

determined in pools of 10 larvae at 5 dpf. Data are presented as means ± s.d. from 

three independent experiments. Statistical analysis was performed using 2 way 

ANOVA (p<0.0001) and Bonferroni posttests comparing slc39a14U801 versus wild-type 

larvae (**p<0.01, ***p<0.001). 
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To assess whether the observed increased accumulation of Mn upon MnCl2 exposure 

in mutants was accompanied by increased sensitivity to Mn-induced toxicity, 

homozygous slc39a14U801 mutants and wild-type larvae were exposed to a range of 

MnCl2 concentrations (0-1.5 mM) during 2 and 5 dpf. The number of dead larvae was 

counted at 5 dpf (Section 2.4.4). Indeed, the median lethal concentration (LC50) of 

MnCl2 determined by Probit analysis (Section 2.7) was significantly lower for mutant 

(376.3 µM) compared to wild-type larvae (680.5 µM) (Figure 6.14). Analysis of the 

relative median potency of MnCl2 (1.75, 95% confidence interval 1.2 to 2.9) suggested 

MnCl2 to be 1.75 times more lethal for mutant than for wild-type larvae (Figure 6.15). 

 

 

Figure 6.14 MnCl2 associated lethality is higher in slc39a14U801 mutants 

compared to wild-type larvae. 

Graph showing the lethality (%) upon MnCl2 exposure and the LC50 of MnCl2 of wild-

type (WT) and mutant larvae. CI, confidence interval. Data are presented as means ± 

s.e.m. from nine independent experiments. 
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Figure 6.15 Homozygous slc39a14U801 mutants are more sensitive to MnCl2 

toxicity compared to wild-type larvae.  

Graph showing the dose-response curves for wild-type (red) and mutant (blue) larvae 

determined by Probit analysis using IBM SPSS Statistics package version 21. The 

logarithmic concentration of MnCl2 (x-axis) is plotted against the determined Probit 

(probability unit, y-axis). The Probit of 0 is used to determine the LC50 concentration. 

 

 

6.4.2 Mn accumulates in the brain of slc39a14U801 mutants and causes 

transcriptional changes.  

Several methods were used to try and determine the distribution of Mn deposition but 

failed to reliably visualise Mn in slc39a14U801 mutants (data not shown). Rhodanine, a 

Cu stain, has previously been suggested to stain Mn in liver sections from patients with 

SLC30A10 deficiency50. However, brain sections from slc39a14U801 mutants at 14 dpf 

exposed to high doses of MnCl2 (250 µM for 24 hours) did not show positive 

Rhodanine staining while a liver control sample from a patient with Wilson’s disease 

demonstrated the typical pattern of Rhodanine positive Cu deposition. There may be 

various explanations for this observation. It is possible that the fixation process leads to 

leakage of Mn from larval zebrafish sections. Alternatively, the positive staining in 

patients with SLC30A10 deficiency may not be due to Mn accumulation but that of Cu 

instead. Several patients with SLC30A10 deficiency have been reported to have raised 

hepatic Cu levels50,210.   
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While laser absorption ICP-MS has been successfully used to study the uptake of Mn 

in C. elegans262, this technique did not detect Mn in larval cryosections of slc39a14U801 

zebrafish mutants at 14 dpf. This work was performed by Dr Alaa Abdul-Sada at 

Sussex University.  

MR microhistology reliably visualises brain tissue substructures of mouse embryos 

using a Mn contrast agent263. Therefore, it was plausible that this technique may also 

visualise Mn accumulation in adult slc39a14U801 zebrafish mutants. Prof Mark Lythgoe 

at the UCL Centre for Advanced Biomedical Imaging kindly analysed slc39a14U801 

zebrafish mutants, however, no differences between wild-type and mutant zebrafish 

could be detected.  

Fura-2 has been used to indirectly measure total cellular Mn content via its quenching 

of fura-2 fluorescence by Mn264. However, live imaging of brain ventricle injected larvae 

at 5 dpf again did not show differences in fluorescence between wild-type and mutant 

zebrafish.  

 

To determine whether the brain was the primary site of Mn deposition similar to that in 

humans Mn levels were measured by ICP-MS in tissues dissected from adult 

slc39a14U801 mutants (Section 2.5.3). Initial attempts on single organs dissected from 

adult zebrafish at 4 months of age that were freeze-dried proved unreliable with results 

at the lower threshold of detection for Mn. Next, fresh tissues (brains or abdominal 

organs) from four adult wild-type or mutant zebrafish at one year of age were pooled as 

one sample and analysed by ICP-MS. Because of the small size of the abdominal 

organs, intestine, liver, pancreas and spleen were pooled and analysed together. This 

allowed reliable measurement of Mn concentrations. Mn levels were 8 times higher in 

brains from homozygous slc39a14U801 mutants compared to wild-types whilst no 

difference in the Mn content of abdominal viscera was detected (Figure 6.16). While 

Mn estimation in brain tissues proved reproducible with high statistical significance, the 

Mn assay of pooled abdominal tissues has its limitations. Due to the high standard 

deviation and nature of the assay analysing pooled tissues, differences in metal 

concentrations of individual organs may be missed. In order to make an accurate 

conclusion, single organs will need to be analysed and Mn levels corrected for weight 

and size of the tissues.      
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Figure 6.16 Mn deposition occurs in the brain of slc39a14U801 mutants. 

Graph showing Mn levels in brain and abdominal viscera of wild-type (WT) and 

homozygous slc39a14U801 zebrafish at one year of age. Data are presented as means 

± s.d. from two independent experiments in which four brains/abdominal viscera were 

pooled as one sample. Statistical analysis was performed using Student’s two tailed t 

test (**p<0.01; ns, not significant; p=0.001 [brain]; p=0.116 [abdominal viscera]). 

 

 

Other metal levels including Fe, Zn and Cd were unchanged in mutant brain tissue. 

However, there was a small increase in Fe levels in abdominal viscera of slc39a14U801 

mutants (Figure 6.17). Thus, the brain represents the main organ of Mn deposition in 

mutant zebrafish similar to observations in humans. 
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Figure 6.17 Analysis of Fe, Zn and Cd levels in brain tissues and abdominal 

viscera of wild-type and slc39a14U801 mutant zebrafish. 

Graphs showing Fe, Zn and Cd levels of wild-type (WT) and slc39a14U801 mutant 

zebrafish at 1 year of age in the brain (p=0.88 [Fe], p=0.74 [Zn], p=0.4 [Cd]) and 

abdominal viscera (p=0.0037 [Fe], p=0.66 [Zn], p=0.96 [Cd]). Data are presented as 

means ± s.d. from two independent experiments in which four brains/abdominal viscera 

were pooled as one sample. Statistical analysis was performed using Student’s two 

tailed t test (**p<0.01; ns, not significant). 
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To assess whether loss of Slc39a14 function and cerebral Mn deposition leads to 

differential expression of other Mn uptake transporter genes, transcript levels of 

transferrin receptor 1 (tfr1a, tfr1b), DMT1 and slc39a8 were compared between one 

year old mutant and wild-type adult brains and whole larvae at 5 dpf using qPCR 

(Figure 6.18, Section 2.3.7). Experiments were performed together with Dr Leonardo 

Valdivia who completed the qPCR analysis. tfr1b expression under physiological 

husbandry conditions was reduced in slc39a14U801 mutant adult brain (p=0.005) while 

there was no change for tfr1a, DMT1 and slc39a8 expression (Figure 6.18a). No 

changes were seen in MnCl2 unexposed mutant larvae at 5 dpf (Figure 6.18b). Mn 

exposure (50µM MnCl2 from 2 to 5 dpf) of zebrafish larvae lead to upregulation of tfr1b 

expression in both wild-type (p=0.042) (Figure 6.18c) and mutant zebrafish (p=0.038) 

at 5 dpf while slc39a8 transcript levels were reduced in mutant larvae only (p=0.049) 

(Figure 6.18d). These results suggest that tfr1b and slc39a8 are indeed involved in the 

regulation of Mn homeostasis, probably with different roles within different tissues. 
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Figure 6.18 Mn uptake transporter gene expression (tfr1a, tfr1b, DMT1, slc39a8) 

in homozygous slc39a14U801 mutants and wild-type zebrafish. 

Graph showing the changes in tfr1a, tfr1b, DMT1 and slc39a8 gene expression in (a) 

slc39a14U801 mutant relative to wild-type brains dissected from zebrafish at one year of 

age, (b) mutant relative to wild-type larvae at 5 dpf (c) Mn exposed (50µM MnCl2 from 

2 to 5 dpf) relative to unexposed wild-type larvae at 5 dpf and (d) Mn exposed (50µM 

MnCl2 from 2 to 5 dpf) relative to unexposed slc39a14U801 larvae at 5 dpf. Data are 

presented as means ± s.d. from three independent experiments. Statistical analysis 

was performed using Student’s two tailed t test on individual ∆Ct values (*p<0.05, 

**p<0.01). 
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6.4.3 slc39a14U801 mutants show altered locomotor activity 

The locomotor activity of wild-type and mutant slc39a14U801 larvae was analysed as 

described for slc30a10U800 mutants in Section 5.5.2. Analysis of larvae from a 

heterozygous in-cross of slc39a14U801 zebrafish raised in standard fishwater confirmed 

that there are no differences in locomotor activity between mutant and wild-type larvae 

under normal husbandry conditions (Figure 6.19).  

Figure 6.19 slc39a14U801 

and wild-type zebrafish 

larvae share similar 

locomotor activity patterns.  

Plots of (i) average waking 

activity, (ii) total activity and 

(iii) total sleep comparing 

wild-type (yellow), 

heterozygous (red) and 

homozygous (blue) mutant 

larvae. The 14:10 hour 

light:dark cycle is indicated 

on the bottom. n≥14 larvae. 
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Average total activity during day and night was not significantly different between wild-

type and mutant larvae (Figure 6.20). 

 

 

Figure 6.20 There is no difference in average total activity during day and night 

between wild-type and mutant slc39a14U801 larvae. 

Graphs showing the average (i) day and (ii) night activity of wild-type (+/+), 

heterozygous (+/-) and homozygous (-/-) slc39a14U801 mutants between 4 and 7 dpf. 

Data are presented as mean ± s.e.m. Statistical analysis was performed using two way 

ANOVA (ns, not significant; p=0.29 [i], p=0.18 [ii]), n≥14 larvae. 

 

 

While locomotor behaviour of slc39a14U801 mutants was not altered under physiological 

Mn concentrations, MnCl2 exposure led to impaired locomotor activity. Homozygous 

slc39a14U801 mutant and wild-type larvae were exposed to increasing concentrations of 

MnCl2 from 2 dpf onwards and their locomotor activity tracked between 4 and 7 dpf 

(Figure 6.21).  

 



Chapter 6. Results 

 

 209 

Figure 6.21 Mn 

exposure impairs the 

locomotor behaviour 

of slc39a14U801 larvae. 

Plots of average waking 

activity, total activity 

and total sleep of wild-

type and homozygous 

slc39a14U801 larvae 

between 4 and 7 dpf. 

Larvae were exposed to 

increasing doses of 

MnCl2 (0-50 μM) from 2 

dpf. The 14:10 hour 

light:dark cycle is 

indicated on the bottom. 

n=12 larvae per 

condition. 
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Exposure of homozygous slc39a14U801 larvae to MnCl2 led to a dose dependent 

reduction in average day activity between 5 and 7 dpf (Figure 6.22) whilst average 

night activity increased at 5 and 6 dpf (Figure 6.23). These results are consistent with 

the observation that homozygous slc39a14U801 larvae are more sensitive to Mn toxicity 

and accumulate higher Mn levels upon MnCl2 exposure than wild-types at 5 dpf 

(Section 6.4.2). 

 

 

Figure 6.22 Mn exposure leads to a dose dependent reduction of average day 

activity in slc39a14U801 larvae. 

Graphs showing the locomotor behaviour of wild-type (WT) and homozygous 

slc39a14U801 larvae during 4 and 7 dpf (i-iv). Data are presented as mean ± s.e.m. 12 

larvae were analysed per condition. Statistical analysis was performed using two way 

ANOVA (p=0.27 [4 dpf], p=0.009 [5 dpf], p=0.004 [6 dpf], p=0.001 [7 dpf]), (***p<0.001; 

**p<0.01; ns, not significant). 
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Figure 6.23 Mn exposure leads to a dose dependent increase in average night 

activity in slc39a14U801 larvae. 

Graphs showing the locomotor behaviour at night of wild-type (WT) and homozygous 

slc39a14U801 larvae during 4 and 6 dpf (i-iii). Data are presented as mean ± s.e.m. 12 

larvae were analysed per condition. Statistical analysis was performed using two way 

ANOVA (p=0.1 [4 dpf], p=0.001 [5 dpf], p=0.0013 [6 dpf]) (***p<0.001; **p<0.01; ns, not 

significant). 

 

 

The observed changes in the locomotor activity pattern of slc39a14U801 mutants are a 

reliable phenotypic read-out for Mn toxicity which may be utilised as a read-out for drug 

screening. In order to test the effect of a chelating agent by adding it to the fishwater 

during behavioural analysis the phenotypic read-out would need to be present prior to 

the addition of the drug and throughout the period of drug testing. The administration of 

MnCl2 would need to occur separately to the addition of the chelating agent. Otherwise, 

there is the possibility that the effect of chelation of Mn within the fishwater rather than 

the in vivo chelation efficiency is assessed. In order to determine the exposure time 

required to induce a phenotype slc39a14U801 mutants were exposed to MnCl2 for 

variable durations (Figure 6.24). A minimum of 72 hours of exposure to MnCl2 from 2 

to 5 dpf was required to induce a locomotor phenotype. Larvae exposed for 72 hours 



Chapter 6. Results 

 

 212 

appeared to recover with no significant difference to unexposed larvae in average day 

activity at 8 dpf. However, there was a significant drop in activity in unexposed larvae 

at 8 dpf likely due to the lack of supplied nutrients during the experiment. Therefore, no 

conclusion can be drawn regarding the recovery of mutant larvae.   

 

 

Figure 6.24 Influence of the duration of MnCl2 exposure on the locomotor 

phenotype of slc39a14U801 mutants. 

Graph showing (i) the average day activity of homozygous slc39a14U801 mutant larvae 

between 5 and 8 dpf exposed to 50 µM MnCl2. MnCl2 exposure was commenced at 2 

dpf for the duration stated. Data are presented as mean ± s.e.m. 8 larvae were 

analysed per condition (ii) Bonferroni post-tests comparing the effect of the duration of 

MnCl2 exposure at each day of the experiment. Results of 72 h MnCl2 in red. Statistical 

analysis was performed using two way ANOVA and Bonferroni post-tests (***p<0.001; 

ns, not significant). 
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6.4.4 MnCl2 exposure may lead to reduction of dopaminergic neurons in the 

ventral diencephalon in slc39a14U801 mutants. 

Previous studies have suggested that Mn toxicity leads to impaired dopaminergic 

signalling in zebrafish larvae exposed to MnCl2 concentrations as high as 1 mM259. To 

visualise dopaminergic cells in brains from wild-type and mutant larvae at 5 dpf 

immunostaining for tyrosine hydroxylase (TH) was performed (Section 2.4.7). TH is a 

marker for catecholaminergic neurons and therefore expected to label dopaminergic 

neurons in the fore- and midbrain and noradrenergic neurons in the hindbrain, 

respectively265,266. In zebrafish, two tyrosine hydroxylase genes, th1 and th2, exist267. 

The antibody used (Millipore, MAB318) is specific for TH1 that is expressed in 

dopaminergic neurons of the ventral diencephalon, pretectum and olfactory bulb, and 

in noradrenergic neurons of the locus coeruleus, and the medulla oblongata. TH2 on 

the other hand is confined to the hypothalamus268. The antibody was used according to 

a published protocol (Section 2.4.7)259. Unfortunately, only cells in the ventral 

diencephalon could be reliably visualised for cell counting leaving some doubt as to the 

reliability of the antibody staining (Figure 6.25). The antibody failed to clearly visualise 

dopaminergic neurons in the olfactory bulb and pretectum. However, preliminary 

analysis showed a six percent reduction in the number of TH positive cells in the 

ventral diencephalon in unexposed homozygous slc39a14U801 mutants compared to 

wild-type larvae which was exacerbated by exposure to 50 µM MnCl2 between 2 and 5 

dpf leading to a 19 percent reduction (Figure 6.26). A small decrease in TH cell count 

was also observed in wild-type larvae exposed to MnCl2. These results suggest that 

Mn toxicity may indeed affect the integrity of dopaminergic neurons within the ventral 

diencephalon.  

 

With the aim of validating this result, immunostaining for TH and EGFP was performed 

in mutant and wild-type larvae in the tg(slc6a3:EGFP) background (Figure 6.25, 

Section 2.4.7). slc6a3 encodes the dopamine transporter (DAT); its expression is 

specific to dopaminergic but not noradrenergic neurons. The transgenic line expresses 

EGFP under the control of cis-regulatory elements of the DAT gene269. The 

tg(SLC6A3:EGFP) line shows GFP labelled neurons in the olfactory bulb, the 

pretectum and ventral diencephalon. Additionally, cells in the caudal hypothalamus are 

labelled that are thought to correspond to TH2 positive neurons that are not stained 

with the TH antibody. The number of EGFP positive cells in the ventral diencephalon 
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significantly exceeded that of TH positive cells. The cell count of EGFP positive 

neurons within the ventral diencephalon did not show differences between wild-type 

and homozygous slc39a14U801 mutants (Figure 6.26). However, any small difference in 

the number of dopaminergic cells might have been masked by the high number of 

EGFP positive neurons in the caudal hypothalamus. 
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Figure 6.25 Representative images of TH and EGFP immunostaining of brains 

from wild-type and slc39a14U801 mutant larvae in the tg(slc6a3:EGFP) background. 

The zebrafish schematic indicates the imaged brain region viewed from ventral. Brains 

were dissected from wild-type and homozygous mutant larvae at 5 dpf with and without 

MnCl2 exposure. Nuclei were stained with TOTO-3 Iodide.TH staining in magenta is 

shown in the middle column, EGFP staining in green on the right and merged images 

on the left. Size bar 50 μm. vDc, ventral diencephalon. cH, caudal hypothalamus. 
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Figure 6.26 TH positive cells in the ventral diencephalon appear reduced in 

slc39a14U801 mutants and upon MnCl2 exposure. 

Graphs show the number of neurons positively stained for (i) TH and (ii) DAT in the 

ventral diencephalon of wild-type (WT) and homozygous slc39a14U801mutant larvae in 

the tg(slc6a3:EGFP) background at 5 dpf unexposed and exposed to 50 µM MnCl2. 

Data are presented as means ± s.d. from two independent experiments (≥18 brains per 

condition). Statistical analysis was performed using one way ANOVA (p=0.001 [TH], 

p=0.78 [DAT]) and Tukey’s multiple comparison tests (**p<0.01; ***p<0.001; ns, not 

significant).  

 

The dorsal groups of dopaminergic neurons in the olfactory bulb and pretectum 

showed very poor staining with the TH antibody and thus did not allow quantification of 

cell numbers (data not shown). However, the tg(slc6a3:EGFP) line demonstrated a 

strong expression pattern in the olfactory bulb and pretectum (Figure 6.27). DAT 

positive cells were counted in the pretectum but no difference in cell count between 

wild-type and mutant larvae was encountered (Figure 6.28). 
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Figure 6.27 Representative images of EGFP immunostaining of brains from wild-

type and slc39a14U801 mutant larvae in the tg(slc6a3:EGFP) background. 

The zebrafish cartoon on the top indicates the position within the brain viewed from 

dorsal. Brains from (i, iii) unexposed and (ii, iv) MnCl2 exposed wild-type and 

homozygous mutant larvae immunostained for EGFP at 5 dpf. Nuclei were stained with 

TOTO-3 Iodide. Size bar 50 μm. Ob, olfactory bulb. Pt, pretectum. 
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Figure 6.28 There is no difference in DAT positive neurons in the pretectum 

between slc39a14U801 mutant and wild-type larvae. 

Graph showing the number of neurons positively stained for EGFP in the pretectum of 

wild-type (WT) and homozygous slc39a14U801 mutant larvae in the tg(slc6a3:EGFP) 

background at 5 dpf. Data are presented as means ± s.d. from two independent 

experiments (≥18 brains per condition). Statistical analysis was performed using one 

way ANOVA (p=0.91; ns, not significant). 

 

 

In order to assess whether the reduced number of TH positive cells in the ventral 

diencephalon was caused by increased apoptosis of neurons in response to Mn toxicity 

TUNEL staining was performed on brains from 5 dpf larvae (Section 2.4.8). Previous 

studies in rats and mice have suggested that Mn overexposure leads to increased 

neuronal apoptosis270,271. However, there was no evidence of increased apoptotic cell 

death in unexposed and MnCl2 exposed slc39a14U801 mutants at this stage (Figure 

6.29).  
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Figure 6.29 Mn toxicity does not induce apoptosis in wild-type or slc39a14U801 

mutant larvae. 

(i) Graph showing apoptotic (TUNEL positive) cells in the ventral diencephalon of wild-

type (WT) and homozygous slc39a14U801 larvae at 5 dpf. Data are presented as means 

± s.d. Statistical analysis was performed using one way ANOVA (ns, not significant). 

n≥7 (ii) Representative images of wild-type and mutant larvae stained for apoptotic 

cells (dark purple). 
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6.4.5 Mn toxicity leads to impaired visual background adaptation and 

optokinetic response 

When slc39a14U801 larvae were raised under a 14:10 hour light:dark cycle for locomotor 

behaviour studies it became apparent that homozygous larvae did not change their 

pigmentation pattern in response to light when exposed to 50 µM MnCl2. Wild-type 

larvae on the other hand did not show this abnormality. However, at higher 

concentrations of MnCl2 (100 µM) both mutant and wild-type larvae exhibited an 

abnormal pigmentation pattern (Figure 6.30). The physiological phenomenon of 

pigmentation change upon light exposure is known as visual background adaptation 

(VBA)272,273. It occurs through subcellular redistribution of melanophores in zebrafish 

larvae in order to adapt the body colour to the background. Visual background 

adaptation requires normal vision and is therefore impaired in blind larvae273. In order 

to determine whether slc39a14U801 larvae develop visual impairment upon Mn exposure, 

the optokinetic response (OKR) was analysed in homozygous slc39a14U801 larvae at 5 

dpf after exposure to 50 µM MnCl2 from 2 to 5 dpf whilst the controls were not exposed 

(Section 2.4.10). The OKR is elicited by moving objects through the visual field which 

triggers a two component eye movement: a smooth pursuit movement to follow the 

object and a fast saccadic movement once the stimulus leaves the field of vision273. In 

our setup, black and white stripes with variable spatial frequency were presented as 

visual stimuli as previously described274. While unexposed slc39a14U801 larvae showed 

an appropriate OKR to the spatial frequencies examined compared to previously 

published wild-type data, MnCl2 exposed larvae demonstrated a significant reduction in 

eye velocity at high spatial frequencies (Figure 6.31). These results suggest that Mn 

exposure does indeed lead to visual impairment and subsequent diminished visual 

background adaptation. 

 

Figure 6.30 MnCl2 

exposure impairs visual 

background adaptation. 

Images showing wild-type 

(WT) and slc39a14U801 

larvae at 5 dpf exposed to 

MnCl2 (0-100 µM). Scale 

bar 500 µm. 
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Figure 6.31 The optokinetic response is impaired upon MnCl2 exposure in 

slc39a14U801 larvae. 

(a) Graph showing the OKR of the right (red) and left (blue) eye of homozygous 

slc39a14U801 larvae unexposed and exposed to 50 µM MnCl2.  (b) (i) Graph showing 

the OKR of both eyes combined unexposed and exposed to 50 µM MnCl2. (ii) Eye 

velocity of unexposed and exposed larvae are compared for each spatial frequency. 

Data are presented as mean ± s.e.m. from five independent experiments. Statistical 

analysis was performed using Student’s two tailed t test (**p<0.01; *** p<0.001; ns, not 

significant). 
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6.4.6 Na2CaEDTA effectively lowers Mn levels in slc39a14U801 larvae 

The chelator Na2CaEDTA has been successfully used in patients with SLC30A10 and 

SLC39A14 deficiency to lower Mn blood levels with subsequent improvement of 

neurological symptoms46,48,50. In order to assess whether Na2CaEDTA can effectively 

chelate Mn in slc39a14U801 mutants, MnCl2 exposed larvae were treated with 

Na2CaEDTA. We know from drug treatment in humans that Na2CaEDTA requires 

intravenous application because it is not absorbed from the gastrointestinal tract, and 

remains in the extracellular fluid57. Therefore, it was unlikely that immersion of larvae in 

Na2CaEDTA supplemented fishwater would have any effect. To circumvent the 

absorption issue Na2CaEDTA was directly injected into the heart of mutant larvae.  

MnCl2 exposure of wild-type and mutant larvae was performed between 2 and 5 dpf. 

Mutant larvae were additionally injected into the heart with 5 or 50 ng Na2CaEDTA 

daily between 2 and 5 dpf (Section 2.4.2). Subsequently, Mn levels were determined 

by ICP-MS in pooled samples of 10 larvae at 5 dpf. Cardiac injections of Na2CaEDTA 

prevented excessive accumulation of Mn in mutant larvae and lowered Mn levels to 

that of exposed wild-types (Figure 6.32i). This proof of principle experiment 

demonstrates the suitability of the slc39a14U801 mutant as a disease model for drug 

screening. Furthermore, it confirms that Na2CaEDTA is a potent Mn chelator in 

slc39a14U801 mutants similar to observations in treated patients.  

 

As expected, immersion of slc39a14U801 larvae in Na2CaEDTA supplemented fishwater 

did not affect the Mn load (Figure 6.32ii). Following MnCl2 exposure (50μM) between 2 

and 5 dpf the larvae were transferred to fishwater without MnCl2 supplementation but 

addition of 1mM Na2CaEDTA at 5 dpf. The Na2CaEDTA supplemented fishwater was 

renewed daily. Mn levels were determined by ICP-MS at 7 dpf in samples of 10 pooled 

larvae. No difference in Mn levels was observed between Na2CaEDTA treated and 

untreated mutant larvae. 
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Figure 6.32 Systemic administration of Na2CaEDTA effectively chelates Mn in 

slc39a14U801 mutant larvae. 

Graphs showing Mn levels of (i) MnCl2 (50 μM) exposed un-injected wild-type and 

homozygous slc39a14U801 larvae un-injected and injected into the heart with 5 or 50 ng 

Na2CaEDTA.  Data are presented as mean ± s.d. from a minimum of three 

independent experiments. Statistical analysis was performed using one way ANOVA 

(p=0.001) and Tukey's Multiple Comparison Test. (ii) untreated wild-type and 

homozygous slc39a14U801 larvae untreated and immersed in Na2CaEDTA (1mM). Data 

are presented as mean ± s.d. from a minimum of three independent experiments. 

Statistical analysis was performed using one way ANOVA and Tukey's Multiple 

Comparison Test (ns; not significant). 
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6.4.7 Loss-of-function of both slc30a10 and slc39a14 in zebrafish does not 

aggravate the Mn accumulation phenotype. 

Analysis of Mn levels in single slc30a10U800 and slc39a14U801 mutants suggested that 

both accumulate Mn at 14 dpf. In humans, SLC39A14 appears to be ultimately 

required for Mn uptake into the liver for subsequent biliary excretion via SLC30A10 

(Figure 4.18). Hence, it seems that both Mn transporters are required for effective Mn 

clearance. To test whether both transporters contribute concordantly to Mn clearance 

in zebrafish, a double mutant line slc30a10U800, slc39a14U801 was generated by out-

crossing. Homozygous double mutants appeared healthy without any apparent 

developmental or morphological abnormalities and survived into adulthood. 

 

Mn levels at 14 dpf determined under standard husbandry conditions without the 

addition of MnCl2 to the fishwater were significantly higher in double mutants compared 

to wild-type and slc30a10U800 larvae (Figure 6.33i). Mn levels appeared to be minimally 

higher in the double mutant compared to slc39a14U801 larvae, however, without 

reaching statistical significance. In order to enhance any occurring differences between 

the slc39a14U801 single and the slc30a10U800, slc39a14U801 double mutant, Mn levels 

were assessed 24 hours after exposure to 50 μM MnCl2 at 14 dpf. Surprisingly, Mn 

exposure led to a much lesser degree of Mn accumulation in double compared to 

slc39a14U801 single mutants suggesting that slc30a10 and slc39a14 do not share a 

concordant function in zebrafish and that the role of zebrafish slc30a10 may be 

different to that in humans (Figure 6.33ii). 
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Figure 6.33 Double slc30a10U800, slc39a14U801 mutants accumulate less Mn upon 

MnCl2 exposure than slc39a14U801 larvae. 

Graphs showing Mn levels of Mn transporter mutants at 14 dpf (i) without MnCl2 

exposure. slc30a10U800 (p=0.001), slc39a14U801 (p=0.001), and double mutants 

(p=0.001) display higher Mn levels compared to wild-types. However, no differences in 

Mn levels are seen between slc39a14U801 larvae and double mutants (p=0.128). Data 

are presented as means ± s.d., n≥5. Statistical analysis was performed using two tailed 

Student’s t-test (***p<0.001; ns, not significant) (ii) following exposure to 50 μM MnCl2 

for 24 hours. Data are presented as means ± s.d., n≥5. Statistical analysis was 

performed using two way ANOVA (p=0.001) and Bonferroni posttests (***p<0.001). 
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6.4.8 Transcriptome analysis of slc39a14U801 mutants 

Despite its recognised role in neurodegenerative disease processes, we lack a deeper 

understanding of the mechanisms of Mn related neurotoxicity275 (Section 1.4). In order 

to identify novel potential targets of Mn toxicity RNA sequencing was performed on an 

in-cross of heterozygous slc39a14U801 zebrafish, unexposed and exposed to MnCl2. It 

was likely that Mn induced changes in gene expression unravel new pathways and 

regulatory networks affected by Mn toxicity.  

 

This work was done in collaboration with Dr Elisabeth Busch, Wellcome Trust Sanger 

Institute, who has developed a high-throughput mRNA 3' end sequencing method 

(DeTCT) that allows quantification of expression levels of large numbers of individually 

genotyped zebrafish embryos. This polyA enriched RNA sequencing method maps 

each identified transcript to the closest annotated gene. Data analysis was performed 

to compare mutant (data obtained from 12 x slc39a14U801 -/- larvae at 5dpf) and control 

(6 x slc39a14U801 +/- and 6 x slc39a14U801 +/+ siblings at 5dpf) larvae as well as Mn 

exposed and unexposed groups of either genotype. This approach allowed the 

analysis of the following differentially expressed (DE) gene groups (Figure 6.34): 

1. MnCl2 untreated mutants versus untreated siblings to demonstrate the effect of 

the mutation – 375 differentially expressed genes were identified. 

2. Untreated siblings versus MnCl2 treated siblings to analyse the effect of Mn 

toxicity in wild-type larvae – 197 differentially expressed genes were identified. 

3. Untreated mutants versus MnCl2 treated mutants to identify DE genes that 

normalised upon MnCl2 treatment – 314 differentially expressed genes were 

identified.  

4. Untreated mutants versus treated mutants to demonstrate the effect of Mn 

toxicity in mutant larvae – 408 differentially expressed genes were identified. 

Preliminary analysis of the resulting gene lists was performed using ZFIN, OMIM and 

PubMed databases (Table 6.1, 6.3 and 6.5, Section 2.6). Particular attention was paid 

to transcripts with a low p-value and a short distance to the closest annotated 3’ end to 

avoid false positive reads. Initial conclusions can be drawn from analysing groups of 

genes with similar function and expression pattern and are discussed below. Results 

will require validation by qRT-PCR and in situ hybridisation in the future.  
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Figure 6.34 Differentially expressed gene groups analysed by RNA sequencing. 

A representative plot of the transcript count is given for each condition. Each point 

represents the transcript count of a single larva. The genotype is colour coded: (red) 

homozygous, (blue) heterozygous, (green) wild-type slc39a14U801 larvae. MnCl2 

treatment (20 μM) is indicated by a parenthesis. (1.) Differentially expressed (DE) 

genes between unexposed mutants and siblings. The plot shows the typical result of a 

downregulated gene in mutant larvae (marked with a red circle). (2.) DE genes 

between unexposed and MnCl2 exposed wild-type and heterozygous siblings. The plot 

shows the typical result of a gene up-regulated upon MnCl2 treatment (marked with a 

red circle). (3.) DE genes (marked with a red circle) that normalised upon MnCl2 

(marked with a black circle) in homozygous slc39a14U801 mutants. (4.) DE genes upon 

MnCl2 treatment (marked with a red circle) that only changed in homozygous mutants 

compared to siblings. The black circle indicates these genes are not differentially 

expressed in untreated conditions. 
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6.4.8.1 Differentially expressed genes in mutants versus siblings – effect of 

the mutation alone 

Untreated homozygous slc39a14U801 mutants demonstrated a downregulation of 

specific groups of brain expressed genes relative to control zebrafish that are involved 

in neurotransmitter release, glutamatergic and GABAergic signalling (Table 6.1). 

Particularly striking was the differential expression of several synapototagmin genes 

that facilitate synaptic vesicle exocytosis276. The function and possible link to Mn 

associated pathophysiology is discussed in Section 6.5.2. Anatomical gene 

enrichment analysis found that the differentially expressed genes map exclusively to 

the central nervous system and eye (Table 6.2).   

 

Table 6.1 Differentially expressed genes in unexposed homozygous slc39a14U801 

mutants that can be linked to Mn homeostasis. 

Gene 

name 

Fold 

change 

Function e76 Ensembl 

gene ID 

(ENSDARG) 

Distance 

to 3’ end 

(bp) 

p-value 

Neurotransmitter release 

syt6a -2.5 Synaptotagmin VIa (SNARE complex) 00000076730 1860 0.0444 

syt2a -1.8 Synaptotagmin IIa (SNARE complex) 00000025206 -3 0.0203 

syt9a -1.6 Synaptotagmin IXa (SNARE complex) 00000003994 268 0.0165 

syt1a -1.4 Synaptotagmin Ia (SNARE complex) 00000030614 5 1.51E-05 

sv2a -2.5 Synaptic vesicle glycoprotein 2A, 

interaction with synaptotagmin I 

00000059945 2352 0.0000 

rab3ab -1.4 Interaction with synaptotagmin I 00000043835 3817 0.0148 

snap25a -1.1 Synaptosome-associated protein 25a 

(SNARE complex) 

00000020609 -2 0.0177 

Glutamatergic signalling 

slc17a6a -4.9 Vesicular glutamate transporter 2 

(vglut2) 

00000001127 2444 0.0016 

grin2db -3.5 Ionotropic NMDA glutamate receptor 00000070620 4953 0.0001 

camk2b1 -3.3 Calcium/calmodulin-dependent 

protein kinase, glutamate release 

00000011065 1694 0.0442 

grip1 -2.2 Glutamate receptor interacting  

protein 

00000015053 1495 6.52E-10 

GABAergic signalling 

gabrb2 -2.1 GABA A receptor, beta 2 00000079586 25 4.09E-05 

gabrg2 -1.5 GABA A receptor, gamma 2 00000053665 25 0.0011 

abat -1.3 4-aminobutyrate aminotransferase - 00000006031 2115 0.0123 
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GABA synthesis 

Calcium binding / transport 

camk2b1 -3.3 Calcium/calmodulin-dependent 

protein kinase, glutamate release 

00000011065 1694 0.0442 

atp2b3a -1.8 Plasma membrane Calcium ATPase 

(PMCA3) – brain  

00000043474 -72 0.0087 

calm2a -1.4 Calmodulin 2a – myocardium 00000034187 0 0.0112 

calm1a 1.3 Calmodulin 1a – brain 00000074057 0 0.0430 

Established link with Mn 

ntrk3b -2.3 Neurotrophic tyrosine kinase, receptor 

– ligands include neurotrophins 

00000063035 -1 0.0017 

bdnf -1.4 Brain-derived neurotrophic factor 00000018817 259 0.0104 

 

 

Table 6.2 Anatomical gene enrichment of differentially expressed genes in 

unexposed homozygous slc39a14U801 mutants.  

Anatomical region 

retinal ganglion cell layer neuron midbrain 

forebrain presumptive diencephalon brain 

retinal neural layer posterior neural tube neuroblast  

telencephalon electrically responsive cell sensory system 

forebrain neural rod electrically active cell presumptive telencephalon 

forebrain neural tube posterior neural rod eye 

presumptive forebrain posterior presumptive neural plate hindbrain 

forebrain neural keel midbrain neural tube CNS neuron  

forebrain neural plate posterior neural plate retina 

nervous system lateral line ganglion posterior segment eye 

spinal cord midbrain neural rod ganglion 

central nervous system head cranial ganglion 

presumptive neural retina presumptive brain spinal cord neural tube 

visual system presumptive midbrain cavitated compound organ 

diencephalon retinal ganglion cell neurectodermal cell 

anterior neural tube posterior neural keel neuroblast 

anterior neural rod retinal inner nuclear layer anterior presumptive neural 
plate 

ectodermal cell multi-tissue structure immature eye 

neuronal stem cell hindbrain neural tube anatomical group 

peripheral nervous system granular layer corpus cerebelli presumptive hindbrain 

anterior neural keel lateral line system neurogenic placode 

anterior neural plate tegmentum hindbrain neural plate 

electrically signaling cell brainstem ventro-rostral cluster 

midbrain neural keel hindbrain neural rod organism subdivision 

midbrain neural plate embryonic structure blastodisc 
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6.4.8.2 Differentially expressed genes in treated siblings - effect of Mn 

treatment alone 

The effect of MnCl2 exposure on the transcriptome of wild-type zebrafish was analysed 

in heterozygous and wild-type slc39a14U801 larvae at 5 dpf (Table 6.3). A large group of 

differentially expressed transcripts included genes involved in the regulation of the 

circadian clock277. This finding links the observed diurnal alteration of the locomotor 

behaviour upon Mn exposure in slc39a14U801 mutants with transcriptional changes of 

circadian clock genes. Re-analysis of the transcriptome data to examine the effect of 

Mn exposure independent of the genotype provided the same result suggesting that 

these circadian clock genes are differentially expressed in both wild-type and mutant 

larvae.  

Other differentially expressed genes included hamp2, egln3 and three genes encoding 

isoenzymes of the glutathione S transferase family – genes previously known to be 

affected by Mn11,278,279. The function of these genes is discussed in Section 6.5.2. 

Anatomical gene enrichment analysis showed that differentially expressed genes map 

to fore- and midbrain, optic tectum and retina (Table 6.4).  

 

Table 6.3 Differentially expressed genes in MnCl2 exposed heterozygous and 

wild-type slc39a14U801 larvae that can be linked to Mn homeostasis. 

Gene 

name 

Fold 

change 

Function e76 Ensembl 

Gene ID 

(ENSDARG) 

Distance 

to 3’ end 

(bp) 

p-value 

Circadian clock 

cry5 -9.6 Cryptochrome 5 00000019498 -73 1.53E-07 

cry2b -2.8 Cryptochrome 2b  00000091131 -2 1.26E-08 

cry-dash -2.3 Cryptochrome DASH 00000002396 0 0.0006 

cry1a -2.0 Cryptochrome 1a 00000045768 0 0.0001 

per2 -4.7 Period homolog 2 00000034503 0 4.78E-08 

nr1d4b 2.1 Nuclear receptor subfamily 1, group 

D, member 4b 

00000059370 0 6.07E-10 

nr1d4a 1.8 Nuclear receptor subfamily 1, group 

D, member 4a 

00000031161 326 0.0111 

nr1d2a 1.6 Nuclear receptor subfamily 1, group 

D, member 2a 

00000003820 662 0.0012 

Fe metabolism 

hamp2 -2.1 Hepcidin antimicrobial peptide 2 00000053227 0 0.0014 

Hif pathway 
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egln3 -3.4 Hif prolyl 4-hydroxylase 3 (Phd3) 00000032553 54 0.0199 

Glutathione S transferases 

gstm3 -1.9 Glutathione S-transferase M3  00000088116 -1 0.0118 

gsto2 -1.8 Glutathione S-transferase omega 2 00000033285 -5 0.0016 

gstal -1.5 Glutathione S-transferase, alpha-

like 

00000090228 -1 0.0066 

 

 

Table 6.4 Anatomical gene enrichment of differentially expressed genes in MnCl2 

exposed wild-type slc39a14U801 larvae. 

Anatomical region 

optic tectum 

midbrain 

forebrain 

retinal ganglion cell layer 

alar plate midbrain region 

 

 

6.4.8.3 Differentially expressed genes only evident in untreated mutants that 

are rescued by Mn treatment 

The differentially expressed genes overlapped largely with those of homozygous 

slc39a14U801 mutants under physiological conditions without exposure to MnCl2 (Table 

6.1) with the exception of syt6a, slc17a6a, abat that were absent in this group. The 

result for the anatomical gene enrichment analysis was also similar to the findings of 

unexposed slc39a14U801 mutants (Table 6.2). This suggests that under physiological 

conditions without additional MnCl2 exposure, homozygous slc39a14U801 mutants may 

display features of Mn deficiency possibly due to a tissue specific subcellular role of 

slc39a14. 

 

 

6.4.8.4 Genes that are differentially expressed upon Mn treatment in treated 

mutants only  

MnCl2 exposure of homozygous slc39a14U801 mutants led to transcriptomic changes 

consistent with their impaired vision phenotype (Table 6.5). The biggest group of 

differentially expressed transcripts included retinal genes involved in photoreceptor 
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signalling and agrees with the observed impaired optokinetic response and abnormal 

visual background adaptation described in Section 6.4.5. Other gene groups included 

those involved in endoplasmic reticulum (ER) stress and apoptosis, GABA and 

glutamatergic signalling, circadian rhythm and a range of other brain expressed genes. 

The function of these genes is discussed in Section 6.5.2. Anatomical gene 

enrichment analysis again mapped the differentially expressed genes to the central 

nervous system including the retina (Table 6.6). 

 

Table 6.5 Differentially expressed genes in MnCl2 exposed homozygous 

slc39a14U801 larvae that can be linked to Mn homeostasis. 

Gene 

name 

Fold 

change 

Function e76 Ensembl 

Gene ID 

(ENSDARG) 

Distance 

to 3’ end 

(bp) 

p-value 

Retinal genes 

opn1mw2 5.2 Opsin 1, medium-wave-sensitive, 2 00000044280 0 2.45E-23 

opn1mw1 -2.1 Opsin 1, medium-wave-sensitive, 1 00000097008 -1 7.25E-19 

opn1lw2 -1.6 Opsin 1, long-wave-sensitive, 2 00000044861 -16 2.71E-06 

gnat2 -2.2 G-protein, alpha transducing activity 

polypeptide 2 

00000042529 -1 1.85E-18 

gnat1 -1.5 G-protein, alpha transducing activity 

polypeptide 1 

00000044199 1 0.0475 

gnb3b -2.1 G-protein beta polypeptide 3b 00000002696 -1 8.02E-15 

gnb3a -1.5 G-protein beta polypeptide 3a 00000004358 -6 0.0377 

gngt2b -1.7 G-protein, gamma transducing 

activity polypeptide 2b 

00000089997 0 1.46E-09 

gngt1 -1.6 G-protein, gamma transducing 

activity polypeptide 1 

00000035798 -7 0.0080 

grk7a -2.8 G-protein-coupled receptor kinase 

7a 

00000020602 1640 0.0001 

grk1b -2.4 G protein-coupled receptor kinase 

1b  

00000011184 -7 1.25E-06 

guca1d -3.7 Guanylate cyclase activator 1d 00000044629 3140 1.90E-05 

guca1c -3.5 Guanylate cyclase activator 1c 00000030758 0 0.0004 

guca1g -3.3 Guanylate cyclase activator 1g 00000045737 657 1.50E-05 

rgs9a -2.9 Regulator of G-protein signaling 9a  00000037925 -4 2.95E-16 

rgs9bp -2.8 Regulator of G protein signaling 9 

binding protein 

00000009466 0 0.0138 

pde6h -6.2 Phosphodiesterase 6h  00000070439 -2 6.06E-49 

rcv1 -1.6 Recoverin 1 00000019902 -5 1.26E-07 

rcvrna -2.3 Recoverin a  00000052223 1068 5.56E-09 
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arr3a -1.9 Arrestin 3a 00000056511 -1 2.04E-09 

cngb3 -2.6 Cyclic nucleotide gated channel 

beta 3 

00000087082 225 2.52E-06 

cnga3a -2.4 Cyclic nucleotide gated channel 

alpha 3a 

00000070726 2402 2.57E-05 

cnga1 -1.9 Cyclic nucleotide gated channel 

alpha 1 

00000029898 -75 0.0031 

prph2b -1.8 Peripherin 2b  00000014840 0 2.82E-08 

prph2a -1.5 Peripherin 2a 00000038018 2 0.0004 

clul1 -3.2 Clusterin-like 1 00000055595 -10 8.60E-08 

crb2b -1.4 Crumbs homolog 2b 00000060081 523 0.0007 

nxnl1  -3.1 Nucleoredoxin-like 1 00000052035 -73 0.0007 

Circadian clock 

nr1d4a -4.0 Nuclear receptor subfamily 1, group 

D, 4a 

00000031161 1153 9.52E-13 

nr1d4b -1.6 Nuclear receptor subfamily 1, group 

D, 4b 

00000059370 0 0.0008 

nr1d1 -1.5 Nuclear receptor subfamily 1, group 

d, member 1 

00000033160 3 0.0007 

nr2f6b -1.5 Nuclear receptor subfamily 2, group 

F, 6b 

00000003165 82 0.0024 

Unfolded protein response / apoptosis 

hspa5 2.9 Heat shock protein 5, GRP78  00000004665 0 3.94E-22 

hsp90b1 1.7 Heat shock protein 90, beta 

member 1 

00000003570 -1 0.0005 

eif2ak3 1.9 Eukaryotic translation initiation 

factor 2-alpha kinase 3 (PERK) 

00000062139 -1 0.0002 

ddit4 -1.6 DNA-damage-inducible transcript 4, 

hif1-responsive protein  

00000037618 -3 0.0117 

sesn2 2.4 Sestrin 2, hypoxia or oxidative 

stress induced gene 

00000070012 -1 0.0280 

bri3bp -5.6 Bri3 binding protein, apoptosis 

mediated by TNF  

00000010108 1814 9.49E-12 

nrm -2.2 Nuclear envelope membrane 

protein, apoptosis 

00000063690 4818 8.84E-10 

faim2 2.8 Fas apoptotic inhibitory molecule 2 00000039444 0 3.57E-09 

clu 1.6 Clusterin, brain, cell death 00000010434 0 3.75E-07 

atf3 2.6 Activating transcription factor 3, 

apoptosis 

00000007823 -1 0.0017 

atf6 1.4 Activating transcription factor 6, 

apoptosis 

00000012656 0 0.0363 

atf5b 1.8 Activating transcription factor 5b, 00000077785 1143 0.0410 
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apoptosis 

atf4b2 1.3 Activating transcription factor 4b2, 

apoptosis 

00000038141 -2 0.0459 

Mn transport 

tfr1a 2.3 Transferrin receptor 1a 00000058784 1869 0.0091 

atp2b1b -1.5 PMCA1  00000007788 6 0.0483 

Other brain expressed genes 

slc1a2a -4.4 Glial high affinity glutamate 

transporter member 2a 

00000052138 1767 2.81E-18 

slc1a2b 1.4 Glial high affinity glutamate 

transporter member 2b 

00000009563 -2 5.92E-06 

slc32a1 -1.4 GABA vesicular transporter, 

member 1 (VGAT1)  

00000059775 5 0.0048 

gabarap -1.3 GABA(A) receptor-associated 

protein 

00000052082 662 0.0363 

syt5a -1.8 Synaptotagmin Va 00000037941 5 0.0117 

cplx4a -1.8 Complexin 4a (SNARE complex)  00000059978 1040 2.70E-06 

ntrk2b 3.1 Neurotrophic tyrosine kinase, type 

2b 

00000059645 2141 1.20E-08 

inaa -2.5 Internexin neuronal intermediate 

filament protein, alpha a 

00000011862 0 1.99E-06 

 

 

Table 6.6 Anatomical gene enrichment of DE genes in MnCl2 exposed 

homozygous slc39a14U801 larvae. 

Anatomical region   

epiphysis diencephalon forebrain neural rod 

pineal complex sensory system presumptive forebrain 

epithalamus presumptive neural retina eye photoreceptor cell 

retina optic vesicle neuroblast 

posterior segment eye optic primordium neuronal stem cell 

visual system portion of tissue photoreceptor cell 

retinal neural layer anatomical cluster organism subdivision 

retinal photoreceptor layer head electrically signaling cell 

forebrain anterior neural plate neuron 

eye anterior neural keel electrically responsive cell 

multi-tissue structure anterior presumptive neural plate electrically active cell 

anatomical group central nervous system presumptive diencephalon 

anatomical system retinal outer nuclear layer anatomical structure 

endocrine system brain whole organism 

cavitated compound 
organ 

forebrain neural tube neurectodermal cell 
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optic cup retinal cone cell ectodermal cell 

nervous system forebrain neural plate multi fate stem cell 

embryonic structure forebrain neural keel receptor cell 

 

 

6.5 Discussion 

6.5.1 Loss of slc39a14 function in zebrafish mirrors the human phenotype 

The slc39a14U801 zebrafish mutant demonstrates prominent Mn accumulation with Mn 

deposition in the brain similar to the human phenotype (Section 6.4.2). Homeostatic 

dysregulation is only observed for Mn while other divalent metal levels including Zn, Fe 

and Cd remain unchanged during larval development (Section 6.4.1). In slc39a14U801 

mutants, Mn dyshomeostasis results in increased sensitivity to MnCl2 toxicity and 

impaired locomotor behaviour upon MnCl2 exposure (Section 6.4.3). This indicates a 

conserved function of SLC39A14 across vertebrates and confirms that SLC39A14 is a 

pivotal Mn transporter. It further corroborates the findings in humans that mutations in 

SLC39A14 cause Mn neurotoxicity leading to parkinsonism-dystonia.   

 

Increased sensitivity to Mn toxicity was indicated by a lower LC50 of MnCl2 for 

slc39a14U801 mutants compared to wild-type larvae (Section 6.4.1). The observed LC50 

for wild-types is significantly lower than reported in a similar study of environmental Mn 

exposure where it was more than ten times higher for wild-type larvae280. This variation 

may be caused by differences in zebrafish strains and culture media used. The number 

of embryos per well exposed to MnCl2 may also influence the LC50. In this work 20 

larvae were placed in a well of a 6 well plate containing 10 mL of fishwater, however, 

only one larva per well of a 24 well plate in 2 mL of medium was analysed in the other 

study. Where several larvae are cultured together the dying larvae will adversely affect 

the water quality. Analysis of a single larva per well is therefore more likely to 

accurately assess a LC50. However, as this work assessed differences between two 

genotypes rather than an absolute LC50, the current approach should still be reliable.  

 

Locomotor behaviour analysis showed a decrease in swimming activity in slc39a14U801 

zebrafish mutants upon MnCl2 exposure compared to wild-type larvae during the day 

while night activity appeared to be increased (Section 6.4.3). This was accompanied 
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by a subtle reduction of tyrosine hydroxylase positive cells in the ventral diencephalon 

(Section 6.4.4) suggesting an involvement of dopaminergic circuits. Environmental 

MnCl2 exposure has been linked to locomotor deficits in wild-type zebrafish 

previously259. In that study, Mn exposure led to fewer startle movements and circling 

locomotion. The locomotor phenotype was attributed to a reversible impairment of 

dopamine neuromodulation. Similarly, MnCl2 exposure in rats led to reduced locomotor 

activity and motor coordination which was associated with a decrease in the firing rate 

of neurons in the globus pallidus and substantia nigra. This was accompanied by 

decreased tissue levels of norepinephrine and serotonin while dopamine levels were 

increased281. Impairment of locomotor behaviour upon Mn exposure has also been 

shown for mice, however, this was accompanied by dopamine depletion and 

downregulation of DA transporter and receptors118. In flies the locomotor deficits upon 

Mn exposure were associated with increased acetylcholinesterase activity282. While Mn 

toxicity clearly affects locomotor behaviour characterised by hypokinesia the exact 

mechanisms of neurotransmitter impairment remain uncertain22. 

In rats, the locomotor behaviour impairment upon Mn exposure undergoes diurnal 

changes suggesting that Mn toxicity may disrupt the circadian clock283. Changes in 

levels of glutamine, GABA and dopamine have been linked to alterations in the 

circadian rhythm and may explain how Mn exposure affects the circadian clock284. 

Therefore, the observed diurnal alteration of locomotion in MnCl2 exposed slc39a14U801 

zebrafish mutants may be a consequence of disrupted circadian regulation which is 

further corroborated by the observation that the expression of circadian clock genes is 

altered upon MnCl2 exposure (Section 6.4.8.2).  

 

While slc39a14U801 zebrafish larvae show increased sensitivity to Mn toxicity when 

exposed to additional MnCl2, under normal husbandry conditions they do not develop 

an apparent locomotor phenotype and have normal survival into adulthood. It is 

possible that zebrafish are better equipped with homeostatic mechanisms than humans 

given their harsh exposure to aquatic environmental toxins285. The gills are the major 

organ in teleost fish to conduct (metal) ion regulation and are specially adapted to 

respond to environmental challenges286. This might explain the more severe phenotype 

observed in humans than zebrafish. 

 

In addition to the altered locomotor behaviour upon Mn exposure, slc39a14U801 mutants 

present with impaired visual background adaptation and optokinetic response (Section 
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6.4.5). Zebrafish larvae adjust the distribution of melanosomes within melanophores in 

their skin in order to adapt their body colour to the background. Light exposure leads to 

aggregation of melanophores while darkness causes dispersion allowing the body 

colour to turn paler or darker, respectively. Many zebrafish mutants with impaired 

visual behaviour and blindness lack this visual background adaptation272,273. Indeed, 

slc39a14U801 mutants develop impaired vision upon Mn exposure as shown by the 

diminished optokinetic response. Similar observations have been made in slc30a8 

loss-of-function zebrafish mutants that develop Zn overload and blindness (data from 

personal communication with Dr Eirinn Mackay, Department of Cell and Developmental 

Biology, University College London).  Furthermore, Cd treatment in zebrafish causes 

microphthalmia, blindness and absent visual background adaptation. Cd affects 

neuronal differentiation of the retina with impaired retinal ganglion cell axon formation 

and absence of cone photoreceptors287. However, in patients with SLC39A14 and 

SLC30A10 deficiency, and environmental manganism vision is unaffected. Therefore, it 

seems that metal toxicity to the visual system is specific to zebrafish. Whether this is 

caused by neuronal death or functional defects in retinal circuitry needs to be 

determined. 

 

Loss of Slc39a14 function in mice causes growth retardation associated with reduced 

length of the long bones and fasting hypoglycemia with elevated insulin levels233,253. 

Neither of these features have been observed in human and there is no evidence of 

skeletal abnormalities in the zebrafish mutant. Whilst Mn levels have not been 

assessed in Slc39a14-/- mice, alterations in Zn and Fe absorption and trafficking have 

been reported233,234. Slc39A14-/- mice demonstrate enhanced hepatic Fe uptake via 

transcriptional upregulation of DMT1 and TfR-1233. This is consistent with probable 

increased Fe content in abdominal viscera of adult slc39a14U801 zebrafish. It is possible 

that increased DMT1 and TfR-1 expression occurs in response to the high Mn load and 

indeed tfr1b expression increases upon Mn exposure in both wild-type and mutant 

zebrafish larvae65. Both of these transporters transport Mn and Fe 

interdependently11,86. A recent study of Slc39a14-/- mice suggests that Slc39a14 is also 

instrumental in the uptake of Cd into the liver with hepatic Cd levels being diminished 

while other organs including kidney, gut and lung showing Cd accumulation288. The 

slc39a14U801 mutants on the other hand do not demonstrate abnormalities in Cd levels.  
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The slc39a14U801 zebrafish mutant presents a model of Mn toxicity reflecting the human 

phenotype. It therefore has the potential to illuminate the mechanisms of Mn toxicity 

and provide new avenues for drug discovery for both rare and common 

neurodegenerative disorders associated with Mn toxicity. The mutant demonstrates 

several read outs for drug screening including the locomotor behaviour, the visual 

background adaptation and Mn levels. Indeed, Na2CaEDTA when injected into the 

heart effectively lowers Mn levels in slc39a14U801 mutants. A drug screen to identify 

chelators that lower Mn levels effectively by immersion of zebrafish larvae may 

discover novel Mn chelators capable of gastrointestinal absorption.  

 

Given that both SLC39A14 and SLC30A10 deficiency lead to Mn overload in humans, 

Slc39a14 and Slc30a10 were also assumed to function in the same pathway to 

facilitate Mn clearance in zebrafish. However, Mn accumulation in slc30a10;slc39a14 

double mutants was attenuated compared to slc39a14U801 mutants. This corroborates 

the findings in single slc30a10U800 mutants that suggest that slc30a10 may play a 

different role in zebrafish (discussed in Section 5.6.2).  

 

6.5.2 Mechanisms of Mn toxicity and consequences of SLC39A14 deficiency 

Recently, environmental Mn exposure has been linked to impaired dopamine 

neuromodulation in zebrafish259. Indeed, TH immunohistochemistry indicated that 

slc39a14U801 mutants have reduced TH positive neurons in the ventral diencephalon 

that is augmented by Mn exposure (Section 6.4.4). Normal TUNEL staining further 

suggests that the reduction of TH positive cells is specific to dopaminergic cells rather 

than a generalised increase of apoptosis in the brain. While Mn neurotoxicity has been 

linked to dopaminergic dysfunction there is significant uncertainty to the exact 

mechanisms of altered dopaminergic signalling. Overall, the majority of published 

evidence suggests that Mn functionally affects dopaminergic neurotransmission with 

preserved dopaminergic cell morphology22,114. This is in contrast to the observation 

described in Section 6.4.4 that TH positive cells are diminished in slc39a14U801 

mutants. Whether this finding is real will need further confirmation and indeed there is 

some concern regarding the efficiency of the antibody used. Penetration of areas other 

than the ventral diencephalon and the signal return in general was poor indicating that 

the experimental protocol requires adaptation. The alternative approach using the 

tg(SLC6A3:EGFP) line was unsuccessful because the vast number of EGFP positive 
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neurons in the ventral diencephalon made an accurate assessment of the cell count 

using this methodology unachievable. Immunohistochemistry using an alternative anti-

TH antibody and TH in situ hybridisation are likely to be more informative and answer 

this crucial question.  

 

In order to globally assess the mechanisms of Mn neurotoxicity, RNA sequencing of 

slc39a14U801 mutants and wild-type larvae with and without Mn exposure was 

performed. Differing from expectation, RNA sequencing did not identify differentially 

expressed genes involved in dopaminergic signalling. However, it is possible that 

changes occur at a protein level and may therefore be missed by transcriptomic 

analysis.     

 

RNA sequencing on the other hand did provide substantial evidence that 

neurotransmitter signalling is affected in SLC39A14 deficiency with differentially 

expressed genes mapping to the brain and eye which is consistent with the locomotor 

and optokinetic phenotype observed in slc39a14U801 mutants. Given that gaps remain in 

the annotation of the zebrafish genome, any results obtained by this method require 

confirmation by qPCR and/or in situ hybridisation. However, preliminary conclusions 

can be drawn from analysing groups of genes with similar gene ontology. 

 

One intriguing observation was the finding that differentially expressed genes in 

unexposed slc39a14U801 mutants overlapped with those that normalised upon Mn 

treatment (Section 6.4.8.1 and 6.4.8.3). This suggests that Mn treatment in 

slc39a14U801 mutants rescues some of the transcriptomic changes observed in 

unexposed mutants. This is only possible if SLC39A14 deficiency leads to Mn 

deficiency in parallel to the observed Mn accumulation. Hence, it is likely that while 

SLC39A14 deficiency leads to systemic Mn accumulation it also causes deficiency of 

Mn in some parts of the cell or certain tissues due to its role as a Mn uptake 

transporter. This would suggest the following two disease mechanisms: firstly, impaired 

hepatic Mn uptake with subsequent Mn accumulation and toxicity in blood and brain as 

observed in SLC30A10 deficiency and environmental Mn overload, and secondly, 

subcellular and perhaps tissue specific Mn deficiency affecting Mn dependent 

signalling pathways, enzymatic reactions or transcription factors.  
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The latter would suggest that some features of SLC39A14 deficiency may overlap with 

the recently described disorder caused by deficiency of SLC39A8 (Section 1.1). 

Individuals with mutations in SLC39A8 present with intellectual disability, 

developmental delay, hypotonia, epilepsy, strabismus, cerebellar atrophy and short 

stature15,16. However, patients with SLC39A14 deficiency did not develop short stature, 

epilepsy or strabismus, and intellectual ability appeared normal. Nevertheless, some 

patients did have signs of cerebellar atrophy. SLC39A8 deficiency is also associated 

with dysglycosylation corresponding to a type II CDG with impaired galactosylation16. 

Mn is an important cofactor for enzymes required for glycosylation in the Golgi289-291, 

hence, Mn deficiency leads to an impairment of protein glycosylation. Patients with 

SLC39A8 deficiency show increased levels of trisialo, disialo, monosialo and asialo 

transferrin16. Transferrin glycosylation assessed in a patient with SLC39A14 deficiency 

(E-II-2) on the other hand was normal indicating that glycosylation is not affected in this 

disorder65. Hence, it seems that SLC39A14 deficiency does not share the characteristic 

features of SLC39A8 deficiency.     

 

Should Mn deficiency play a role in the pathogenesis of SLC39A14 deficiency, this may 

have implications for Mn chelation treatment. Reducing Mn availability in parts of the 

cell or certain tissues may aggravate the neurological disease and lead to further 

decline. This may explain why the response of the two patients with SLC39A14 

deficiency treated with Na2CaEDTA chelation was remarkably different. Patient C-II-2 

who experienced a striking clinical recovery carries mutations solely affecting isoform 2 

that is thought to facilitate Mn detoxification. Patient E-II-2 on the other hand continued 

to deteriorate despite treatment. It is possible that loss-of-function of all isoforms in this 

individual causes neurodegeneration through two mechanisms, Mn deficiency and Mn 

toxicity. However, the less favourable treatment response in this patient may as well be 

attributed to the advanced stage of neurological disease.   

     

Differentially expressed genes identified in unexposed slc39a14U801 mutants compared 

to wild-types encode pre- and post-synaptic proteins involved in neurotransmitter 

signalling (Section 6.4.8.1). Some of them are part of the SNARE-synaptotagmin 

complex required for neurotransmitter release (Figure 6.35)276. Synaptic vesicle 

exocytosis occurs following the binding of Ca2+. Interestingly, synaptotagmin I can bind 

Ca2+ and Mn2+ in the same manner292.  Mn dyshomeostasis may therefore directly 

affect neurotransmitter release by replacing Ca2+ at its binding site. Other differentialy 
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expressed genes include some that encode glutamatergic and GABAergic receptor 

subunits (Table 6.1). Mn toxicity is known to disrupt glutamate and GABA 

signalling128,137,293-296. For instance, Mn neurotoxicity is associated with alterations in 

extracellular GABA levels which may be explained by altered receptor expression297. 

Mn also functions as a potent inhibitor of the NMDA receptor thereby affecting 

glutamate signalling298. These results strengthen the hypothesis that Mn 

dyshomeostasis affects neurotransmitter signalling. Further study of these candidate 

genes may shed new light on the specific neurotransmitter systems involved. Whether 

the changes in gene expression observed in slc39a14U801 mutants are due to Mn 

toxicity or partial deficiency has yet to be determined.  
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Figure 6.35 Differentially expressed genes in slc39a14U801 mutants are involved in 

the formation of the SNARE-synaptotagmin complex. 

A schematic showing the components of the SNARE-synaptotagmin complex affected 

by loss of slc39a14 function at transcriptional level. DE genes in red. Binding of Ca2+ 

(yellow) to synaptotagmin facilitates fusion of the plasma membrane and the synaptic 

vesicle through conformational changes of proteins of the SNARE-synaptotagmin 

complex leading to pore formation and neurotransmitter release. Syt, synaptotagmin. 

SNAP, Synaptosomal-Associated Protein. SV, synaptic vesicle. Adapted from Rizo et 

al.276   
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Gene expression of bdnf, encoding the brain derived neurotrophic factor (BDNF), was 

also found to be downregulated in slc39a14U801 mutants. BDNF is an extracellular 

signalling molecule that inhibits the retrieval of synaptic vesicles from the plasma 

membrane with subsequent enhancement of neurotransmission299. Furthermore, BDNF 

has several trophic roles promoting neuronal cell survival, neurite growth and cell 

migration, particularly during glutamatergic synaptic development. BDNF signals 

through its receptor tyrosine kinase B (TrkB) activating MAPK, phosphoinositide 3-

kinase (PI3K) or phospholipase C gamma (PLCγ) pathways regulating synaptic activity 

and plasticity, gene transcription, and protein translation and transport300.  Interestingly, 

it has been shown previously that Mn exposure is associated with lower plasma BDNF 

levels in occupational manganism301. Also, Mn treated rats develop lower BDNF levels 

which is suggested to affect cAMP signalling in the hippocampus302. BDNF is therefore 

likely to play a crucial role in the disease mechanisms of SLC39A14 deficiency. 

Transcriptome analysis of both Mn exposed wild-type and mutant larvae identified 

several differentially expressed genes involved in the regulation of the circadian clock 

(Section 6.4.8.2). These include cryptochrome genes, a period gene and genes of the 

nuclear receptor 1d family (Table 6.3) that are known to regulate the circadian clock 

feedback loops303,304.  Mn has previously been shown to abolish circadian variation of 

beta-adrenceptor expression305. Furthermore, the observed diurnal locomotor 

behaviour changes upon Mn exposure in slc39a14U801 mutants (Section 6.4.3) would 

be consistent with Mn associated disruption of the circadian clock. Similar locomotor 

behaviour alterations have been reported in rats exposed to excess Mn previously283. 

These may occur secondary to changes in striatal dopamine, GABA and glutamate 

levels upon Mn exposure284. Indeed, Mn treatment of slc39a14U801 mutants lead to 

expression changes of genes involved in GABA and glutamatergic neurotransmitter 

signalling (Table 6.5).  

Other noteworthy differentially expressed genes in Mn treated wild-type larvae include 

hamp2 and egln3, genes previously linked with Mn metabolism. Hamp2 encodes 

hepcidin, the main regulatory hormone of Fe homeostasis101.  As Mn and Fe transport 

are closely interlinked6,10,11,79,97,98 it is expected that Mn overload has consequences for 

mechanisms regulating Fe uptake. Egln3 encodes one of three prolyl hydroxylases 

(phd3) involved in the regulation of the hif-pathway279,306 (Figure 1.1). Mn exposed 

wild-type zebrafish show downregulation of egln3 which may result in stabilisation of 

Hifα. This may help explain the mechanism leading to polycythaemia in patients with 
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SLC30A10 deficiency due to the high Mn load. Cell culture studies have previously 

shown that 24 hour exposure to Mn concentrations as low as 50 µM induce 

erythropoietin protein expression307. In slc39a14U801 mutants, Mn levels were raised at 

an average of 70 pg at 5 dpf. Assuming that the volume of a 5 dpf larva is similar to 

that of a freshly laid egg with a diameter of 0.7 mm and a volume of around 0.18 µL, 

the actual Mn concentration in mutant larvae equates to 7 µM. Although this Mn 

concentration has not been tested in cell culture it seems reasonable to assume that 

over a time period longer than 24 hours this concentration may well activate the hif 

pathway. From human patients we know that hepatic manganese concentrations are 

raised 2- to 9-fold which lead to increased erythropoietin blood levels50, 210. Similar to 

that, mutant fish manganese levels are raised 1.5-fold at 5 dpf and 4-fold at 14 dpf. 

This suggests that the observed Mn concentration is indeed in the range of that 

required for the activation of the hif pathway.    

While it seems plausible that the hif pathway is affected by Mn toxicity which is 

corroborated by the finding of polycythaemia and increased erythropoietin expression 

in human patients, it is important to remember that the main hydroxylase responsible 

for hif inhibition is egln1 and not egln3.  Egln3 is highly upregulated in Vhl zebrafish 

loss-of-function mutants and acts as a reporter of hif function306. Gene downregulation 

of egln3 may therefore paradoxically suggest a drop in hif signalling in mutant zebrafish. 

Further work is required to delineate the effect of Mn on the hif pathway.         

Mn exposure of slc39a14U801 mutants revealed expression changes of numerous 

retinal genes that are involved in phototransduction (Figure 6.36, Section 6.4.8.4)308-

312. These included genes required for the activation of phototransduction such as 

those encoding cone opsins, G-proteins, phosphodiesterase (PDE), guanylcyclase 

activating proteins (GCAPs), and cyclic nucleotide gated cation channels (CNGs). Also, 

genes involved in the deactivation of phototransduction including G-protein coupled 

receptor kinases, arrestin, recoverin and regulators of G-protein signalling were 

identified (Table 6.5). Mutations in the majority of these genes are known to cause 

retinal dystrophies in humans313. Further work is required to pinpoint the basis of the 

observed visual defect. The function of the outer retina can be assessed using 

electroretinography. The measured sum field potentials of the retina give a ready read-

out of light perception of photoreceptor and subsequent synaptic transmission to 

bipolar cells314. Since light perception is not completely abolished as indicated by the 

optokinetic response result (Section 6.4.5), at least some photoreceptors are expected 
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to be functional. Ideally, future studies should involve the study of synaptic 

transmission using antibodies against proteins of the photoreceptor synapse such as 

the glutamate transporters, and transgenic constructs to establish which connections 

are abnormal.    

 

 

Figure 6.36 Mechanisms of visual phototransduction. 

Schematic displaying the ciliary outer segment of a photoreceptor that contains the 

photopigments. In darkness cyclic guanosine monophosphate (cGMP) maintains the 

cyclic nucleotide gated non-selective cation channels (CNG) at the plasma membrane 

in an open state allowing a steady inward current and depolarisation (dark current). 

cGMP is steadily produced by a guanylyl cyclase (GC) that is activated by guanylate 

cyclase activating protein (GCAP). A light photon leads to photoactivation of the opsin 

through conformational change that activates a G-protein which subsequently 

stimulates a phosphodiesterase (PDE) resulting in hydrolysis of cGMP. The reduction 

of cGMP facilitates the closure of the CNGs and subsequent hyperpolarisation of the 

cell. Deactivation of phototransduction is facilitated by opsin phosphorylation through 

G-protein coupled receptor kinase (GRK) and binding of arrestin. GTPase activating 

protein (GAP) promotes deactivation of the G-protein through conversion of GTP to 

GDP. Red arrows indicate the pathway of activation of phototransduction, green errors 

the deactivation. DE genes of Mn exposed slc39a14U801 mutants in italics. Adapted 

from Kaup et al.308 
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Other differentially expressed genes indicated a stress response upon Mn exposure in 

slc39a14U801 mutants and included genes involved in the unfolded protein response 

(UPR) in the ER and apoptotic pathways (Table 6.5). ER stress occurs when misfolded 

proteins overload the protein folding capacity of the ER. This leads to activation of the 

UPR with subsequent increase of the ER folding capacity and reduction of misfolded 

protein through transcriptional and translational changes facilitating proteasomal 

degradation (Figure 6.37). Continuous ER stress activates the apoptotic cascade 

resulting in cell death315.  Mn toxicity has been previously shown to activate UPR 

pathways similar to observations with other heavy metals316-321. Indeed, Mn exposure 

of slc39a14U801 mutants led to upregulation of genes encoding heat shock proteins 

(HSP) hsp5 and hsp90320,322.  Heat shock proteins are molecular chaperones required 

for protein folding323. Hsp5 encoding glucose regulated protein 78 (GRP78) associates 

with the transmembrane ER stress sensors inositol-requiring kinase 1 (IRE1), 

activating transcription factor 6 (ATF6) and PKR-like eukaryotic initiation factor 2a 

kinase (PERK) (Figure 6.36). It suppresses the activity of the UPR and is required for 

the maintenance of ER integrity324. HSP90 stabilises key components of the UPR 

pathway such as IRE1325,326. Therefore, the identified transcriptomic changes suggest 

that Mn toxicity leads to ER stress and activation of the UPR. 
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Figure 6.37 Unfolded protein response pathways. 

Schematic illustrating the function of the three ER stress sensors IRE1, PERK and 

ATF6. Under physiological conditions IRE1, ATF6, and PERK are bound by GRP78 

rendering them inactive. Upon accumulation of misfolded proteins in the ER lumen, 

GRP78 binds misfolded proteins and releases the ER stress sensors. IRE1 and PERK 

autophosphorylate and activate downstream signaling cascades. IRE1 splices XBP1 

mRNA with subsequent translation of the transcription factor that upregulates UPR 

target genes. PERK phosphorylates eukaryotic initiation factor 2 alpha (eIF2α) leading 

to inhibition of translation and increased expression of ATF4, which then upregulates 

transcription of ER chaperones and activation of pro-apoptotic pathways that depend 

on the production of the CHOP transcription factor. Site-1 protease (S1P) and Site-2 

protease (S2P) release the N-terminal domain of ATF6 that translocates to the nucleus 

to upregulate genes encoding ER chaperones such as HSP70 and HSP90. IRE1, 

inositol-requiring kinase 1; ATF6, activating transcription factor 6; PERK, PKR-like 

eukaryotic initiation factor 2a kinase; XBP1, X-box binding protein 1;  ATF4, activating 

transcription factor 4. Adapted from Kaufman et al., Lajoie et al. and Marre et al.327-329 
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Some effects of Mn exposure on the expression levels of divalent cation transporters in 

slc39a14U801 mutants were identified by transcriptome analysis. RNA sequencing 

suggested that both atp2b1b and tfr1a were altered upon Mn exposure. atp2b1b 

encodes a plasma membrane calcium ATPase 1 (PMCA1) involved in Ca uptake that 

may well be capable of transporting Mn and hence undergoes downregulation upon Mn 

overload330. In zebrafish two tfr1 paralogues are involved in Fe acquisition with different 

spatial tissue expression. tfr1a is mainly found in erythroid precursor cells where it is 

required for Hb production while tfr1b is primarily expressed in the brain331. Given that 

Fe and Mn homeostasis are closely interlinked, it is not surprising that transcript levels 

of this receptor are altered in slc39a14U801 mutants and upon Mn exposure. Perhaps 

surprisingly, RNA sequencing found gene expression of slc30a10 not to be altered in 

slc39a14U801 mutants. However, it is possible that in slc39a14U801 mutants, Mn 

dyshomeostasis leads to altered protein expression or redistribution of the transporter 

rather than inducing transcriptional changes. 

qPCR analysis showed a trend towards increased tfr1a expression in slc39a14U801 

mutant larvae but the finding was not statistically significant (Section 6.4.2). On the 

other hand, qPCR analysis found downregulation of slc39a8 and upregulation of tfr1b 

expression upon Mn overexposure in both wild-type and mutant larvae that was not 

identified by transcript counting. The observation that slc39a8 expression is 

downregulated upon Mn overexposure is consistent with its recently identified function 

of the acquisition of Mn15,16.   
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Chapter 7. Summary and Future Work 

Until recently, very little was known about the regulation of Mn homeostasis in vivo. 

The identification of the inherited Mn transportopathies caused by mutations in 

SLC30A1046,48, SLC39A815,16 and SLC39A1465 has dramatically advanced our 

understanding how Mn is trafficked across the cell and throughout the organism. It has 

highlighted a novel group of transporters that has previously been thought to be 

important for Zn and Fe transfer but is crucial for Mn homeostasis. As with many other 

monogenic disorders, we have gained new insights into vertebrate gene function by 

studying human patients.  

 

As discussed in Chapter 1 and 3, SLC30A10 is a pivotal Mn transporter expressed in 

liver and brain that is required for the detoxification of Mn from the cell and final 

hepatobiliary excretion. This work has shown that SLC39A14 is essential for Mn uptake 

into the liver for subsequent biliary excretion through SLC30A10 (Chapter 4). 

SLC39A14 may have further crucial roles in the uptake of Mn in certain tissues and cell 

organelles. SLC39A8 on the other hand facilitates Mn uptake into the organism and 

cell15,16. The established roles of these transporters explain the clinical features 

observed in individuals affected by the three inherited Mn transportopathies. 

SLC30A10 deficiency causes accumulation of Mn in the blood, brain and liver leading 

to hypermanganesaemia, dystonia-parkinsonism, polycythaemia and cirrhosis 

(Chapter 3). In SLC39A14 deficiency Mn accumulates in the blood and brain causing 

hypermanganesaemia and dystonia-parkinsonism but no cirrhosis or polycythaemia 

(Chapter 4). SLC39A8 deficiency causes a Mn depletion syndrome with resulting 

cerebellar atrophy, epilepsy, developmental delay, hypotonia, short-stature and severe 

dysglycosylation – the biochemical hallmark of this disorder15,16. Study of further 

patients with similar clinical features will allow an estimation of the population 

incidence, and a better delineation of the phenotypical spectrum and genotype-

phenotype correlation. For SLC30A10 deficiency we know that a late-onset form exists 

that mimics Parkinson’s disease48. Residual transporter protein function is likely to 

account for the delayed onset. It is also possible that individuals with mutations in 

SLC39A14 that do not lead to complete loss of protein function present with late-onset 

parkinsonism. As clinicians’ awareness of the characteristic MRI brain features of Mn 

deposition increase, it is expected that more patients with SLC30A10 and SLC39A14 

deficiency will be diagnosed. Na2CaEDTA is extremely effective in mobilising Mn in 
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both SLC30A10 and SLC39A14 deficiency. Patients with SLC30A10 deficiency 

respond well to Mn chelation with improvement of neurological symptoms and 

stabilisation of liver disease. While one patient with SLC39A14 deficiency has shown 

dramatic improvement upon chelation treatment, a second patient had a less 

favourable response. The consequences of Mn chelation in SLC39A14 deficiency will 

need to be assessed further. As discussed in Chapter 4 and 6, while impaired 

SLC39A14 transporter function causes marked Mn neurotoxicity it may also lead to 

subcellular Mn deficiency that may be worsened by Mn chelation.  

 

Ultimately, identification of effective oral Mn chelators is crucial to relieve the treatment 

burden of intravenous Na2CaEDTA application. As shown in Chapter 6, the generated 

zebrafish slc3914U801 loss-of-function mutant presents a promising animal model to 

assess the effect of Mn chelators on Mn levels and locomotor behaviour as well as 

other small molecules with potentially disease modifying effect. Several antioxidants 

have been shown to protect against Mn associated cytotoxicity and may therefore 

alleviate Mn neurotoxicity143,282,332,333. Recovery of neurological symptoms in SLC30A10 

and SLC39A14 deficiency implies that in addition to neuronal death, circuit dysfunction 

must in part be caused by interference of Mn with some unknown aspects of neuronal 

function. The slc3914U801 zebrafish mutant mirrors the human phenotype of Mn 

accumulation in the brain and locomotor impairment. Additionally, visual 

phototransduction is affected by Mn toxicity in zebrafish. Study of the functional defects 

in retinal circuitry offers an excellent opportunity to discover the mechanisms 

underlying Mn dependent disruptions to circuit function in vertebrates.  

 

As described in Chapter 6, RNA sequencing of slc3914U801 loss-of-function mutants 

has highlighted numerous brain expressed genes involved in neurotransmitter 

signalling and release, ER stress, HIF signalling and circadian rhythm to be affected by 

Mn dyshomeostasis. Confirmation of these findings and study of the involved pathways 

may shed new light on our understanding of how Mn is both essential and disruptive to 

neurological function. Identification of the mechanisms involved in Mn toxicity may 

ultimately ascertain novel treatment targets in other neurodegenerative disorders 

associated with Mn dyshomeostasis such as inherited forms of Parkinson’s disease334.    

 

As discussed in Chapter 5, the slc30a10U800 zebrafish mutant unexpectedly did not 

recapitulate the human phenotype. While Mn accumulation appears to occur under 
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physiological husbandry conditions, slc30a10U800 mutants show an attenuated 

response to Mn toxicity. Further analysis is required to determine whether this result is 

a consequence of the analysed time point during zebrafish development or whether the 

function of Slc30a10 or response to loss of Slc30a10 function in zebrafish may be 

different to that in human.   

 

While the functions of SLC30A10 and SLC39A14 have been substantively delineated, 

functional analysis of SLC39A8 with regard to its involvement in the regulation of Mn 

homeostasis has been minimal. Preliminary results show that a slc39a8 loss-of-

function zebrafish mutant presents a promising tool for the study of this transporter in 

vivo (see Appendix 1).   

 

The applied TALEN and CRISPR/Cas9 genome editing methods present a powerful 

tool to generate loss-of-function mutants of single genes but also analyse the function 

of non-coding genes, gene clusters or regulatory sequences by deletion of large 

regions through simultaneous disruption at two different sites on a chromosome. 

TALENs were generated using the FLASH assembly method188 (Chapter 2). The 

protocol to generate the TALEN mRNAs for injection into zebrafish embryos is time 

consuming and involves approximately one month of intensive lab work. Ligation of the 

DNA fragments encoding the TAL effector repeats was often incomplete. Therefore, a 

high number of clones required screening in order to identify those encoding the full 

length of the TALEN arrays. The costs for consumables is substantial.  On the other 

hand, the cutting efficiency of the generated TALENs is high, in most cases affecting 

more than 90% of injected embryos, with efficient germline mutagenesis. Survival of 

injected embryos was high with a low number of deformed embryos at the 

concentration of TALEN mRNAs used. Generation of stable lines was unproblematic 

and the progeny of F0 injected fish looked healthy with good survival. In-cross of 

mutant fish had a low rate of deformed embryos suggesting a low genotoxicity through 

off-target effects. 

 

The protocol to generate the CRISPR gRNAs and Cas9 nuclease on the other hand is 

extremely simple and quick with an average time from CRISPR design to mRNA 

injection of one week (Chapter 2). The modfication published by Gagnon et al.335 

which involves annealing a gene-specific and a constant oligonucleotide further 

simplifies the protocol. Cutting efficiency and germline mutagenesis was similarly high 
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as observed with TALENs. However, when propagating the F0 generation a high 

number of deformed embryos was obtained with poor survival. Furthermore, in-cross of 

mutant fish over several generations produced malformed embryos suggesting that off-

target effects may indeed be present. gRNAs can tolerate mismatches leading to the 

high frequency of off-target effects336,337. The TALEN pair on the other hand requires 

binding to two opposite DNA sites separated by a spacer region. It appears that 

TALENs are therefore more specific by default338. However, for generation of loss-of-

function zebrafish mutants the CRISPR/Cas9 system used here presents an extremely 

efficient and simple method to analyse gene function in vivo in a vertebrate organism.  

 

As demonstrated in Chapter 5 and 6, zebrafish has proven a powerful animal model to 

study metal transporter function and model human disorders in a vertebrate organism. 

The generated slc30a10U800 and slc39a14U801 lines have the potential to illuminate the 

mechanisms of Mn toxicity and provide new avenues for drug discovery for both rare 

and common neurodegenerative disorders associated with Mn toxicity.  

 

TALEN and CRISPR approaches to disrupt gene function can be applied to any other 

inherited metabolic disorder in order to study disease processes and gene function. 

This is of particular importance as with the emergence of next generation sequencing 

techniques a large number of novel candidate genes are being identified that require 

functional analysis. Genome engineering in zebrafish provides an excellent model to 

functionally assess those sequence variants in vivo.  
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Appendix 

1. Combined TALEN/CRISPR injections generate large genomic 

deletions 

1.1 Introduction 

The TALEN and CRISPR methodology was also investigated to generate much larger 

genomic deletions. This could be useful for several reasons: (i) several exons can be 

deleted at once reducing the likelihood that an alternative transcript or start codon 

could compensate for loss of gene function, (ii) to study the function of regulatory 

sequences such as promoter regions.  To achieve this a double injection approach of 

TALEN mRNAs and CRISPR gRNA/Cas9 mRNA was attempted. 

 

1.2 Combined TALEN / CRISPR injections to generate large 

deletions in slc30a10 

The TALEN mRNA pair targeting exon 1 of slc30a10 (Section 5.3.1) was co-injected 

with the gRNA/Cas9 mRNA targeting exon 3 of slc30a10 (Section 5.3.2) in one cell 

stage embryos (Figure A1a). DNA was extracted at 1 dpf and PCR amplified using a 

forward primer upstream of the TALEN binding site and a reverse primer downstream 

of the CRISPR target site. If deletion of the targeted region had occurred an amplicon 

of approximately 230 bp would be expected. Indeed, 13 out of 16 injected embryos had 

a visible band of 230 bp suggesting that a deletion had been introduced (Figure A1b). 

Positive gel bands were purified, cloned into the pCRII-TOPO vector and sequenced. 

Sequencing results confirmed the presence of genomic deletions spanning >2.1 kb 

(Figure A1c).  
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Figure A1 Targeting two loci within slc30a10 by TALEN/CRISPR nucleases 

generates large genomic deletions. 

 HRMA result confirming the mutagenic efficiency of the (a) TALEN pair, un-injected 

embryos in pink, injected embryos in green, and (b) CRISPR gRNA, un-injected 

embryos in green, injected embryos in red. (c) PCR result of co-injected embryos. * 13 

out of 16 injected embryos show a 230 bp band indicating that deletion of the region 

spanning the two target sites had occurred. (d) Wild-type (WT) slc30a10 genomic 

sequence given on the top, introduced deletions displayed below. TALEN binding arms 

are marked in yellow, CRISPR target region in turquoise. The targeted loci are 

approximately 2.1 kb apart. 

 

 

1.3 Double CRISPR injections to generate large deletions in 

slc39a14 

gRNAs with target sites in exon 5 and 8 (9 kb apart) or exon 5 and 9 (11.5 kb apart) 

were co-injected together with Cas9 mRNA into on cell stage embryos (Figures A2a 

and A3a). DNA was extracted from co-injected embryos at 1 dpf and PCR amplified 

using a forward primer upstream of the target site in exon 5 and a reverse primer 

downstream of the target site in exon 8 or 9. If deletion of the region spanning the two 

target sites had occurred an amplicon of approximately 290 bp and 280 bp would be 

expected. Indeed, 15 out 17 and 13 out of 17 embryos screened positive for large 
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deletions across exon 5 to 8 and exon 5 to 9, respectively (Figures A2b and A3b). 

Agarose gel bands of the correct size were purified, cloned into pCRII-TOPO vector 

and sequenced. The sequencing results confirmed that genomic deletions spanning >9 

kb and >11.5 kb had been generated (Figures A2c and A3c).  

 

 

Figure A2 A “double CRISPR approach” targeting two loci within exon 5 and 8 of 

slc39a14 introduces large genomic deletions spanning over 9 kb. 

HRMA result confirming the mutagenic efficiency of each individual gRNA/Cas9 to (a) 

exon 5 (un-injected embryos in red, injected embryos in pink) and (b) exon 8 (un-

injected embryos in dark green, injected embryos in light green). (c) Gel 

electrophoresis image of PCR products amplified from DNA extracted from co-injected 

embryos using primers to exon 5 and 8. * 15 out of 17 injected embryos show the 

expected 290 bp band compared to un-injected embryos (WT) indicating that a deletion 

had occurred. (d) Wild-type (WT) sequence is given on the top, introduced deletions 

displayed below. The CRISPR target regions are highlighted in turquoise. The targeted 

loci are approximately 9 kb apart. 
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Figure A3 A “double CRISPR approach” targeting two loci within exon 5 and 9 of 

slc39a14 can effectively introduce large genomic deletions spanning 11.5 kb. 

HRMA result confirming mutagenic efficiency of each individual gRNA/Cas9 to (a) exon 

5 (un-injected embryos in blue, injected embryos in purple) and (b) exon 9 (un-injected 

embryos in orange, injected embryos in red). (c) Gel electrophoresis image of PCR 

products amplified from DNA extracted from co-injected embryos using primers to exon 

5 and 9. * 13 out of 17 injected embryos show the expected band of 280 bp compared 

to un-injected (WT) embryos indicating that a deletion had occurred. (d) Wild-type (WT) 

sequence is given on the top, introduced deletions displayed below. CRISPR target 

regions are highlighted in turquoise. 

 

1.4 Discussion  

The attempted double injection approach using the TALEN/CRISPR methodology to 

target two loci was shown to effectively generate genomic deletions of up to 11.5 kb. 

Screening for effective mutagenesis and to identify founders in the F1 generation can 

simply be performed by PCR using a forward primer upstream of the first and a reverse 

primer downstream of the second target site. This approach facilitates deletion of 

several exons ensuring that multiple transcripts are targeted at the same time and 

prevent compensation for loss of gene function through an alternative transcript or start 

codon. Additionally, large intronic regions as well as regulatory sequences can be 

deleted allowing for instance the study of promoter functions. 
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2. Preliminary results 

2.1 Delineating the function of slc39a8 in zebrafish 

With the identification of SLC30A10 and SLC39A14 as pivotal Mn transporters involved 

in Mn clearance in vertebrates we have reached a better understanding of the 

mechanisms underlying Mn homeostasis. However, it remains unclear which is the 

primary Mn transporter facilitating Mn uptake in the gut, the main site of Mn uptake in 

humans. Recently, mutations in SLC39A8 have been suggested to cause a novel 

autosomal recessive syndrome characterised by Mn deficiency, cerebellar atrophy, 

skeletal dysplasia, cognitive impairment and a defect of glycosylation15,16. SLC39A8 

shares close sequence homology with SLC39A14, is known to be expressed in the gut 

in humans and has been shown to transport Mn in vitro69,72,73. Therefore, SLC39A8 is 

likely to play an essential role in Mn homeostasis. In order to assess its function in vivo 

a similar CRISPR approach as described earlier was used to generate a slc39a8 loss-

of-function zebrafish mutant. The results presented here were obtained by Alaa Doubi, 

an MSc student under my supervision during 01/2015 to 08/2015. 

 

2.2 Characterisation of slc39a8 in zebrafish 

Slc39a8 expression is present in zebrafish larvae as early as 12 hpf and remains 

expressed throughout embryonic and early larval development between 1 dpf and 5 

dpf (Figure A4). The eight exons of zebrafish slc39a8 encode a protein of 448 amino 

acids that shares 51 percent sequence homology with the human protein (Figure A5). 

Particularly high conservation is found around the TMDs and the metal binding motif 

EEFPHE73. A second transcript has recently been published as part of the latest 

Ensembl genome assembly for zebrafish (GRCz10). This second transcript consists 

only of three exons (exon 6-8) encoding a significantly shorter protein of 183 amino 

acids that lacks the first four TMDs. 
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Figure A4 Zebrafish slc39a8 is expressed throughout embryonic and early larval 

development and has two alternative transcripts. 

(i) Gel electrophoresis image showing slc39a8 expression analysed by RT-PCR 

between 3 and 120 hpf using primers spanning 205 bp from the 2nd to 3rd exon. (*) 

indicates visible amplicon. (ii) Schematic overview of the slc39a8 gene. Exons are 

shaded in grey, encoded isoforms are marked in red/orange. Start codon is highlighted 

in blue, CRISPR target sites in green (not drawn to scale). 
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Figure A5 Protein sequence alignment of human and zebrafish Slc39a8. 

Sequence alignment of human (top) and zebrafish (bottom) SLC39A8. Protein 

sequences of human isoform 1 (NP_001128618) and zebrafish isoform 1 

(ENSDARP00000037866.6) were aligned using ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Residues identical to the human SLC39A8 

sequence are marked in yellow with an asterisk (*). Conservation between amino acids 

of strongly and weakly similar properties is indicated by a colon (:, dark grey) and a 

period (. light grey), respectively. The putative TMDs are underlined. The LZT 

consensus motif required for metal binding is highlighted in red. The position of the 

CRISPR target sequences are indicated in green. 
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2.3 Generation of a slc39a8 loss-of-function mutant using 

CRISPR/Cas9 targeting exon 2 or 3 

Two gRNAs were designed to target a region within exon 2 and 3, respectively 

(Figures A4 and A5, Section 2.3.18). The rate of somatic mutagenesis was 

determined in healthy looking, gRNA/Cas9 mRNA injected embryos at 24 hpf using 

HRMA (Figure A6). All injected embryos showed a change in the melt curve shape 

confirming a high mutagenic efficiency of the generated gRNA/Cas9 complex. 

Amplicons with shifted melt peaks from injected embryos of the F0 generation were 

cloned into the pCRII-TOPO vector for sequencing. Amplicons with shifted melt peaks 

from embryos of the F1 generation were sequenced and analysed using 

PolyPeakParser software. Sequencing identified a range of frameshift causing indel 

mutations in the F0 and F1 generation that are expected to be deleterious for protein 

function (Figure A7). 



Appendix 

 

 261 

 

Figure A6 Mutagenesis induced by a gRNA/Cas9 to exon 2 and 3 of slc39a8. 

(i) HRMA result of injected (red) and un-injected (green) embryos showing a clear shift 

of the melt curve from injected embryos. Each melt curve represents a single embryo. 

Normalised melt curve (left) and difference plot (right) were generated using Biorad 

Precision Melt Analysis Software. (ii) HRMA result of injected (blue) and un-injected 

(orange) embryos showing a clear shift of the melt curve from injected embryos. Each 

melt curve represents a single embryo. Normalised melt curve (left) and difference plot 

(right) were generated using Biorad Precision Melt Analysis Software. 
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Figure A7 CRISPR induced indel mutations in exon 2 and 3 of slc39a8 in F0 and 

F1 embryos. 

Wild-type (WT) sequence is given in the top row. The CRISPR target region is marked 

in yellow, (−) depicts a deleted nucleotide, insertions are marked in grey, (∆) / (Ins) 

indicates the number of deleted / inserted nucleotides. 

 

 

 

 

A stable mutant line harbouring a frameshift mutation will be generated that will allow 

the study of the function of slc39a8 in zebrafish. 
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3. Protocols for the preparation of general laboratory reagents 

1 x PBS 

10 tablets (Thermo Scientific)  MQ H2O to 1L 

0.5 M EDTA pH 8.0 

Disodium EDTA 186.1 g 

MQ H2O 800 mL 

 stir on hotplate and adjust pH to 8 

with NaOH 

MQ H2O to 1L 

1M Tris-HCl pH 7.0 – 9.0 

Tris base 121.1 g 

MQ H2O 800 mL 

 Adjust pH with conc. HCl  

MQ H2O to 1L 

50 x TAE 

Tris Base 242 g 

Glacial acetic acid  57.1 mL 

0.5M EDTA pH 8.0 100 mL 

 MQ H2O to 1L 

4% PFA  

Paraformaldehyde 40 g 

 1 x PBS to 1L (stir on hotplate in 

fumehood) 

20 x SSC 

Sodium chloride 175.3 g 

Tri-sodium citrate dihydrate 88.2 g 

 MQ H2O to 1L, pH to 7.0  

Hyb+ 

Formamide 250 mL 

20 x SSC 125 mL 

RNA from torula yeast 50 mg/mL (Sigma R6875) 5 mL 

Heparin 100 mg/mL in MQ H2O (Sigma H3393) 250 μL 

20% Tween 20  2.5 mL 
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Citric acid 1M 4.6 mL 

MQ H2O 115.15 mL 

Hyb- 

20 x SSC 12.5 mL 

Formamide  25 mL 

20% Tween 20  250 μL 

MQ H2O 12.25 mL 

Maleic acid buffer 

Maleic acid 11.61 g 

NaCl 8.77 g 

 MQ H2O to 1L, pH to 7.5 with 

NaOH 

MABlock 

Blocking reagent (Roche 11096176001) 2 g 

Maleic acid buffer 100 mL 

 Autoclave to dissolve 

1000 x Proteinase K 

Proteinase K (Sigma P6556) 25 mg 

 MQ H2O to 2.5 mL 

Stop solution 

PBS, pH 5.5 10 mL 

1 mM EDTA  10 mL 

20% Tween 20 1 mL 

25 x Phenylthiourea (PTU) 

N-Phenylthiourea (Sigma P7629) 300 mg 

 MQ H2O to 400 mL, stir fast to 

dissolve 

25 x Tricaine (MS-222) 

MS-222 (Sigma A5040) 0.8 g 

1M Tris-HCl pH 9.0 4.2 mL 

MQ H2O 195.8 mL, pH to 7.0 

20 x Pronase 

Pronase (Sigma P5147, Protease from 

Streptomyces griseus) 

100 mg 
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Fishwater 5 mL 

1 x TE buffer 

1M Tris-HCl pH 8.0 10 mL 

0.5M EDTA pH 8.0 2 mL 

MQ H2O 988 mL 

X-gal 2% (use 40 μL per plate) 

X-gal (Roche 745-740) 1 g 

Dimethylformamide 50 mL 

 filter-sterilise (200 nm), store 

protected from light 

IPTG 20 % (use 4 μL per plate) 

IPTG (VWR 437142L) 2 g 

MQ H2O 10 mL 

 filter-sterilise (200 nm) 

LB agar plates 

LB Broth with agar (Miller) 40 g 

MQ H2O 1 L 

 autoclave at 121°C for 15 min 

LB broth 

LB broth (Miller) 25 g 

MQ H2O 1 L 

 autoclave at 121°C for 15 min 

Ampicillin 

Ampicillin 50 mg 

MQ H2O 1 mL 

 filter sterilise (200 nm), use at final 

concentration of 50 μg/mL 

Kanamycin 

Kanamycin 50 mg 

MQ H2O 1 mL 

 filter sterilise (200 nm), use at final 

concentration of 50 μg/mL 
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4. FLASH assembly protocol 

Adapted from Reyon et al.188 

 

Reagents: 

1. Forward and reverse primer for amplifying initial α one-mer unit:  

5’ Biotin–TCTAGAGAAGACAAGAACCTGACC 3' 

5’ GGATCCGGTCTCTTAAGGCCGTGG 3' 

3. Digested βγδε four-mer units (for extension) 

4. Digested βγδ three-mer units (for termination) 

5. 2X B&W buffer (see below) 

6. 1X B&W buffer with 0.005% Tween 20 (see below) 

7. 100X Bovine Serum Albumin (BSA) (10 mg/mL) (NEB) 

8. Dynabeads MyOne Streptavidin C1 magnetic beads (Life Technologies) 

9. BsaI-HF (20 U/μL)  

10. SalI-HF (20 U/μL) 

11. XbaI (20 U/μL)  

12. BamHI-HF (20 U/μL) 

13. BbsI (5 U/μL)  

14. BsmBI (10 U/μL) 

15. NEBuffer 2 

16. NEBuffer 4 

17. T4 DNA Ligase (400 U/μL)  

18. 2X Quick Ligase Buffer (QLB)(NEB) 

19. QIAquick PCR Purification Kit (QIAGEN) 

20. MinElute PCR Purification Kit (QIAGEN) 

22. Herculase II Fusion DNA Polymerase (Agilent)  

23. SOC medium (Invitrogen) 

24. Chemically competent XL-10 Gold bacterial cells 

25. SPRIplate 96-Ring magnet (Beckman Coulter Genomics) 

26. DynaMagTM-96 Side magnet (Invitrogen) 
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Buffers: 

1. 2X B&W Buffer: 

10.0 mM Tris-HCl (pH 7.5) 

1.0 mM EDTA 

2.0 M NaCl 

2. 1X B&W Buffer with 0.005% Tween20: 

5.0 mM Tris-HCl (pH 7.5) 

0.5 mM EDTA 

1.0 M NaCl 

0.005% Tween 20 

3. 1X BSA (diluted in H2O) 

 

Master Mixes: 

1. α unit master mix (total volume of 31.5 μL): 

2 μL Purified and digested α one-mer fragment (prepared as described above) 

27 μL 2X QLB buffer 

2.5 μL T4 DNA Ligase (400 U/μL) 

2. BsaI-HF master mix (50 μL): 

5 μL NEBuffer 4 

2 μL BsaI-HF (20 U/μL) 

43 μL H2O 

3. BbsI master mix (50 μL): 

40 μL water 

5 μL NEBuffer 2 

5 μL BbsI (5 U/μL) 

4. Ligase master mix (27.5 μL): 

25 μL 2X QLB buffer 

2.5 μL T4 DNA ligase (400 U/μL) 
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Digestion of TALEN expression vector backbone: 

1. Digest 5 μg of TALEN expression vector plasmid with BsmBI for 8 hours at 55°C 

using the following conditions: 

5 μL BsmBI (10 U/μL) 

5 μL NEBuffer 3 

20 μL DNA (5 μg) 

20 μL H2O 

2. Purify using the QIAquick PCR purification kit 

3. Dilute purified digested plasmid from step 2 to a final concentration of 5 ng/μL in H2O. 

 

Preparation of DNA fragments encoding initial α one-mers: 

1. Amplify biotinylated PCR product by setting up the following PCR reaction: 

10 µL 5X Herculase II reaction buffer   

0.5 µL dNTP mixture (25mM each) 

1.25 µL Fwd primer (10 μM) 

1.25 µL Rev primer (10 μM) 

0.5 µL DMSO (final concentration 1%) 

2 μL Initial α one-mer unit plasmid (1 ng/μL) 

34 µL Nuclease-Free Water 

0.5 µL Herculase II Fusion DNA Polymerase 

  

Thermocycling conditions:  

Initial denaturation  95°C  2 min 

Denaturation  95°C  20 sec 

35 cycles  Annealing   53°C  20 sec 

Extension  72°C  30 sec 

Final extension  72°C  5 min 

2. Purify PCR reaction from step 1 using the QIAquick PCR Purification Kit and elute in 

40 μL 0.1 X EB buffer. 
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3. Digest the purified PCR product from step 2 with BsaI-HF enzymes by adding the 

following and incubating for 15 minutes at 50°C: 

5 μL NEBuffer 4 

5 μL BsaI-HF (20 U/μL) 

4. Purify digested DNA from step 1 using the QIAquick PCR Purification Kit and elute in 

50 μL 0.1X EB (final DNA concentration of ~15ng/μL). 

 

Preparation of DNA fragments encoding one-, two-, three-, and four-mers (for 

extension or termination): 

Extension fragment: βγδε four-mer units 

Termination fragment: βγδ three-mer units 

1. Perform initial digestion of plasmids encoding the one-, two-, three-, or four-mer for 

extension or termination using the following conditions for two hours at 37°C: 

50 μL plasmid (~200 ng/μL) 

10 μL NEBuffer 2 

10 μL BbsI (5 U/μL) 

30 μL H2O 

2. Add the following components to the digestion of step 1 and incubate for an 

additional 5 minutes at 37°C: 

25 μL NEBuffer 4 

2.5 μL 100X BSA 

107.5 μL H2O 

5 μL XbaI (20 U/μL) 

3. Add 5 μL of BamHI-HF enzyme (20 U/μL) to the digestion of step 2 and incubate for 

an additional 5 minutes at 37°C. 

4. Add 5 μL SalI-HF enzyme (20 U/μL) to the digestion of step 3 and incubate for an 

additional 5 minutes at 37°C. 

5. Purify the digestion of step 4 using a QIAquick PCR Purification Kit according to the 

manufacturer’s instructions and elute in 50 μL of 0.1X EB buffer. 

6. Quantify the purified DNA of step 5 using a Nanodrop spectrophotometer (typical 

concentration of 40 ng/μL).  
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FLASH assembly of DNA fragments encoding TALE repeat arrays: perform in 96 

well plate 

1. Set up initial ligations by mixing the following components and incubating for 15 

minutes at room temperature: 

31.5 μL α unit master mix 

22.5 μL first extension fragment 

2. Prepare magnetic beads by performing the following steps in a 96 well plate: 

a. Wash 5 μL beads in 50 μL of 1X B&W by pipetting up and down five times  

b. Place plate on the SPRIplate 96-Ring magnet for 3 minutes 

c. Aspirate supernatant 

d. Repeat steps a to c for a total of 3 washes 

e. Resuspend beads in 54 μL 2X B&W buffer 

3. Bind initial ligation products of step 1 to magnetic beads prepared in step 2 by 

performing the following steps: 

a. Add 54 μL of initial ligation reaction from step 1 to 54 μL of washed beads 

from step 2 

b. Mix by pipetting up/down five times 

c. Incubate for 15 min at room temperature re-mixing every 5 minutes 

d. Place on magnet for 3 minutes 

e. Aspirate supernatant 

4. Wash beads from step 3 by performing the following steps: 

a. Add 100 μL 1X B&W buffer 

b. Mix by placing into adjacent slots of the DynaMagTM-96 Side magnet for 31 

times  

c. Place plate on the SPRIplate 96-Ring magnet for 1 minute 

d. Aspirate supernatant 

e. Add 100 μL 1X BSA  

f. Place into adjacent slots of the DynaMagTM-96 Side magnet for 31 times  

g. Place plate on the magnet for 3 minutes 

h. Aspirate supernatant 

5. Perform BsaI-HF digestion to prepare 3’ end of bead-bound DNA fragment for next 

ligation: 

a. Re-suspend washed beads from step 4 in 50 μL of BsaI-HF Mix by mixing up 

and down 20 times 

b. Incubate at 50°C for 10 minutes 



Appendix 

 

 271 

c. Add 50 μL 1X B&W buffer 

d. Place plate on the SPRIplate 96-Ring magnet for 3 minutes 

e. Aspirate supernatant 

6. Wash beads from step 5 by performing the following steps: 

a. Add 100 μL 1X B&W buffer 

b. Mix by placing into adjacent slots of the DynaMagTM-96 Side magnet for 31 

times  

c. Place plate on the SPRIplate 96-Ring magnet for 1 minute 

d. Aspirate supernatant 

e. Add 100 μL 1X BSA  

f. Place into adjacent slots of the DynaMagTM-96 Side magnet for 31 times  

g. Place plate on the magnet for 3 minutes 

h. Aspirate supernatant 

7. Ligate next “extension fragment” or “termination fragment” by performing the 

following steps: 

a. Add 22.5 μL of extension fragment or termination fragment to washed beads 

of step 6. 

b. Add 27.5 μL of ligase master mix 

c. Mix well by pipetting up and down 10 times 

d. Incubate at room temperature for 15 minutes (mixing every 5 minutes) 

e. Add 50 μL of 1X B&W buffer 

f. Place on SPRIplate 96-Ring magnet for 3 minutes 

g. Aspirate supernatant 

8. Wash the beads from step 7 by performing the following steps: 

a. Add 100 μL 1X B&W buffer 

b. Mix by placing into adjacent slots of the DynaMagTM-96 Side magnet for 31 

times  

c. Place plate on the SPRIplate 96-Ring magnet for 1 minute 

d. Aspirate supernatant 

e. Add 100 μL 1X BSA  

f. Place into adjacent slots of the DynaMagTM-96 Side magnet for 31 times  

g. Place plate on the magnet for 3 minutes 

h. Aspirate supernatant 

9. Perform BsaI-HF digestion to prepare 3’ end of bead-bound DNA fragment 
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a. Re-suspend washed beads from step 4 in 50 μL of BsaI-HF Mix by mixing up 

and down 20 times 

b. Incubate at 50°C for 10 minutes 

c. Add 50 μL 1X B&W buffer 

d. Place plate on the SPRIplate 96-Ring magnet for 3 minutes 

e. Aspirate supernatant 

10. Repeat steps 6 to 9 as needed to complete extension of the fragment 

11. Wash the beads from step 10 by performing the following steps: 

a. Add 100 μL 1X B&W buffer 

b. Mix by placing into adjacent slots of the DynaMagTM-96 Side magnet for 31 

times  

c. Place plate on the SPRIplate 96-Ring magnet for 1 minute 

d. Aspirate supernatant 

e. Add 100 μL 1X BSA  

f. Place into adjacent slots of the DynaMagTM-96 Side magnet for 31 times  

g. Place plate on the magnet for 3 minutes 

h. Aspirate supernatant 

12. Release DNA fragments from magnetic beads by performing the following steps: 

a. Resuspend beads in 50 μL BbsI mix 

b. Incubate at 37°C for 2 hours with shaking at 1500 rpm 

c. Place on SPRIplate 96-Ring magnet for 3 minutes 

d. Aspirate and save supernatant with released DNA fragments 

13. Purify DNA fragments from step 12 using a MinElute PCR Purification Kit with two 

additional buffer PE washes and elute in 15 μL 0.1 X EB buffer. 
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Ligation of DNA fragments encoding TALE repeat arrays into the TALEN 

expression vector: 

Mix together the following components and incubate at 37°C for 15 minutes: 

3 μL Purified DNA fragments from step 13 

1 μL BsmBI-digested TALEN expression plasmid vector 

1 μL T4 DNA Ligase (400 U/μL) 

5 μL 2X QLB buffer 

 

Transformation of chemically competent XL-10 Gold cells: 

a. Mix 4 μL of ligation with 50 μL ice-cold chemically competent XL1 Blue cells 

b. Incubate on ice for 10 minutes 

c. Heat shock cells at 42°C for 30 seconds 

d. Immediately return transformation to ice and incubate for 2 minutes 

e. Add 446 μL of SOC medium 

f. Recover for 1 hour at 37°C 

g. Spin cells down at 300 x g for 3 minutes 

h. Aspirate 470 μL of supernatant from each transformation 

i. Re-suspend cell pellets in remaining medium 

j. Plate entire resuspension onto LB agar plates containing 50 μg/mL of 

Ampicillin  

k. Incubate plates overnight at 37°C 
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5. RNA sequencing raw data 

i. Differentially expressed genes in homozygous slc39a14U801 mutants versus 

siblings 

(genes are listed in order of their fold-change) 

Chr p-value Distance 

to 3' end 

e76 Ensembl Gene ID Gene name Fold change 

(mut/sib) 

Upregulated 

16 0.02 -9 ENSDARG00000028367 sult2st3 2.96 

23 0.04 0 ENSDARG00000058873 PTPDC1 (1 of 2) 2.94 

5 0.04 2788 ENSDARG00000089770 5S_rRNA 2.90 

5 0.00 -2 ENSDARG00000011168 anxa1c 2.89 

6 0.05 1 ENSDARG00000078814 si:dkey-34m19.3 2.71 

19 0.00 2615 ENSDARG00000089168 EXT1 (2 of 2) 2.70 

5 0.04 2990 ENSDARG00000086530 SMAD4 (2 of 2) 2.70 

5 0.01 375 ENSDARG00000086835 ostf1 2.49 

5 0.04 3 ENSDARG00000003144 pxmp2 2.33 

4 0.00 4008 ENSDARG00000002174 itfg2 2.20 

20 0.02 0 ENSDARG00000032117 ddx1 2.03 

5 0.01 1582 ENSDARG00000059817 mtmr12 1.97 

25 0.02 4111 ENSDARG00000062375 lcat 1.93 

20 0.04 -6 ENSDARG00000010276 ptgs2b 1.91 

8 0.05 -3 ENSDARG00000089156 egr3 1.85 

16 0.03 -2 ENSDARG00000021033 herpud2 1.82 

6 0.03 0 ENSDARG00000044280 opn1mw2 1.82 

2 0.04 -5 ENSDARG00000031426 csrnp1a 1.82 

18 0.02 1567 ENSDARG00000073824 RASGRF1 1.77 

21 0.02 1811 ENSDARG00000069501 abhd11 1.77 

1 0.00 0 ENSDARG00000091609 SPINK4 1.76 

14 0.01 -1 ENSDARG00000075014 sqstm1 1.73 

11 0.00 -4 ENSDARG00000021059 alas1 1.70 

20 0.00 -1 ENSDARG00000095767 dio3b 1.65 

5 0.04 0 ENSDARG00000075326 mrps30 1.64 

1 0.00 -2 ENSDARG00000006588 zgc:111983 1.64 

5 0.00 0 ENSDARG00000060249 WDR44 1.63 

10 0.05 3976 ENSDARG00000075747 zfyve16 1.62 

20 0.04 1 ENSDARG00000034076 lrp11 1.62 

16 0.03 1 ENSDARG00000009018 rhbg 1.62 

18 0.01 6 ENSDARG00000041595 ces3 1.60 

13 0.02 0 ENSDARG00000014031 abcc2 1.59 
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1 0.04 3318 ENSDARG00000029751 wbp1lb 1.59 

5 0.05 1 ENSDARG00000003091 oclnb 1.57 

5 0.03 -1 ENSDARG00000052851 golph3 1.56 

5 0.04 0 ENSDARG00000016319 c9 1.56 

3 0.03 0 ENSDARG00000004034 arhgdig 1.56 

1 0.02 -6 ENSDARG00000017985 C1H4orf33 1.55 

8 0.04 0 ENSDARG00000028071 bmp1a 1.55 

5 0.05 0 ENSDARG00000045979 PTGDS (2 of 3) 1.53 

20 0.03 1735 ENSDARG00000070584 clic5b 1.53 

15 0.01 0 ENSDARG00000045408 tagln 1.53 

14 0.03 1707 ENSDARG00000053668 stag2b 1.52 

11 0.03 -2 ENSDARG00000020761 arrdc2 1.52 

15 0.01 2138 ENSDARG00000062319 si:dkey-103g5.3 1.51 

22 0.05 -1 ENSDARG00000094496 cfhl4 1.51 

18 0.02 7 ENSDARG00000088030 rpl35a 1.50 

13 0.01 0 ENSDARG00000079840 kcnma1a 1.49 

3 0.01 1331 ENSDARG00000079544 si:ch1073-464p5.5 1.48 

1 0.03 0 ENSDARG00000093494 si:ch211-217k17.9 1.47 

6 0.04 160 ENSDARG00000036433 ERP27 1.47 

19 0.02 -5 ENSDARG00000035909 mfsd2ab 1.46 

25 0.02 -2 ENSDARG00000042874 phlda2 1.45 

15 0.03 -1 ENSDARG00000097205 ulk2 1.45 

16 0.04 -1 ENSDARG00000092158 cbx3b 1.45 

15 0.04 0 ENSDARG00000043102 lxn 1.44 

16 0.01 0 ENSDARG00000008363 mcl1b 1.44 

7 0.03 1 ENSDARG00000016260 fxr2 1.43 

Zv9_ 

NA991 

0.01 0 ENSDARG00000077566 CZv9_NA991H1orf52 1.43 

23 0.01 4 ENSDARG00000007216 abce1 1.42 

11 0.04 0 ENSDARG00000070171 errfi1 1.42 

5 0.05 2852 ENSDARG00000079624 amer1 1.41 

21 0.04 190 ENSDARG00000068589 CABZ01079764.1 1.41 

17 0.01 -9 ENSDARG00000016651 znf106a 1.41 

23 0.04 0 ENSDARG00000089429 si:dkey-205h13.2 1.39 

9 0.04 -1 ENSDARG00000006220 ugt1a7 1.39 

9 0.04 3246 ENSDARG00000055009 col4a1 1.39 

6 0.03 1003 ENSDARG00000044528 slc15a1b 1.37 

19 0.01 -95 ENSDARG00000094041 krt17 1.37 

5 0.01 2188 ENSDARG00000035188 rab14l 1.37 

5 0.04 0 ENSDARG00000039929 ckmt2b 1.37 

23 0.05 -6 ENSDARG00000074201 flna 1.37 
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11 0.03 -3 ENSDARG00000018146 gpx1a 1.36 

10 0.02 0 ENSDARG00000087243 zgc:100918 1.36 

16 0.02 -1 ENSDARG00000037998 flot1b 1.36 

6 0.01 -2 ENSDARG00000013561 pgm1 1.36 

24 0.02 -1 ENSDARG00000038559 h1f0 1.36 

8 0.03 -4 ENSDARG00000059646 nt5dc2 1.36 

23 0.02 -6 ENSDARG00000037539 tnnc1b 1.34 

12 0.01 -3 ENSDARG00000071445 myoz1b 1.32 

23 0.00 -1 ENSDARG00000036754 hmgn3 1.32 

8 0.00 -3 ENSDARG00000094310 si:ch211-255g12.6 1.32 

15 0.01 0 ENSDARG00000041169 hif1al 1.32 

3 0.04 0 ENSDARG00000054849 bcat2 1.32 

24 0.02 0 ENSDARG00000000069 dap 1.32 

16 0.03 -4 ENSDARG00000056856 tax1bp1b 1.32 

11 0.03 7 ENSDARG00000042777 ndufa11 1.32 

21 0.03 3490 ENSDARG00000022682 add1 1.31 

7 0.05 -1 ENSDARG00000015392 dhx15 1.31 

2 0.01 -6 ENSDARG00000003016 eef2b 1.30 

10 0.05 0 ENSDARG00000033088 ubl3a 1.30 

23 0.00 -4 ENSDARG00000018404 krt18 1.30 

1 0.05 -8 ENSDARG00000094133 si:dkey-9i23.11 1.30 

8 0.01 -1 ENSDARG00000079745 - 1.30 

19 0.04 -2 ENSDARG00000005162 tpm3 1.29 

1 0.01 -6 ENSDARG00000015490 rpl24 1.29 

24 0.03 -3 ENSDARG00000018285 pdpk1b 1.29 

3 0.05 0 ENSDARG00000038068 ddx5 1.28 

18 0.02 -2 ENSDARG00000054272 caprin1b 1.28 

19 0.01 0 ENSDARG00000076892 nme2b.2 1.28 

9 0.01 8 ENSDARG00000086917 crygm2d2 1.28 

8 0.02 0 ENSDARG00000089418 wu:fk66f10 1.27 

21 0.04 0 ENSDARG00000074057 calm1a 1.27 

13 0.05 -1 ENSDARG00000090228 gstal 1.27 

5 0.04 0 ENSDARG00000067995 myhz1.2 1.27 

11 0.01 0 ENSDARG00000033609 map1lc3a 1.27 

9 0.05 -3 ENSDARG00000069792 crygm2d5 1.27 

14 0.01 0 ENSDARG00000061764 ahnak 1.26 

16 0.02 -5 ENSDARG00000019902 rcv1 1.26 

21 0.04 0 ENSDARG00000013430 bhmt 1.26 

18 0.01 3705 ENSDARG00000061338 ddx6 1.26 

15 0.04 -2 ENSDARG00000040565 ckmb 1.25 

9 0.05 -3 ENSDARG00000086912 crygm2d18 1.25 
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9 0.00 -5 ENSDARG00000028213 ttna 1.25 

2 0.01 0 ENSDARG00000035860 rps28 1.25 

16 0.01 -3 ENSDARG00000039914 gapdhs 1.25 

10 0.04 14 ENSDARG00000043493 cltca 1.24 

5 0.02 2 ENSDARG00000035400 btf3 1.23 

5 0.03 -1 ENSDARG00000003032 eif4a1b 1.23 

18 0.02 0 ENSDARG00000042931 mibp2 1.22 

5 0.04 0 ENSDARG00000035136 sepw1 1.22 

10 0.02 0 ENSDARG00000062592 myl10 1.21 

14 0.01 1 ENSDARG00000039641 rpl26 1.21 

11 0.03 2 ENSDARG00000021838 rps23 1.20 

12 0.02 -2 ENSDARG00000002768 pvalb2 1.20 

3 0.04 20 ENSDARG00000014420 elavl3 1.20 

25 0.05 0 ENSDARG00000046157 RPS17L 1.19 

13 0.01 -22 ENSDARG00000012972 cfl1l 1.19 

13 0.03 0 ENSDARG00000013968 psap 1.18 

16 0.05 0 ENSDARG00000011405 rps9 1.18 

19 0.04 -35 ENSDARG00000023290 fabp3 1.16 

3 0.05 244 ENSDARG00000088371 junbb 1.15 

Downregulated 

5 0.00 1814 ENSDARG00000010108 bri3bp -8.59 

25 0.00 2444 ENSDARG00000001127 slc17a6a -4.88 

5 0.00 3978 ENSDARG00000079757 SCARF2 -4.67 

11 0.02 1436 ENSDARG00000055620 acad9 -4.04 

19 0.00 2754 ENSDARG00000093300 si:dkey-18f7.2 -3.93 

18 0.00 2735 ENSDARG00000068421 ttc9b -3.89 

5 0.00 1429 ENSDARG00000076611 fbxo21 -3.73 

5 0.00 1866 ENSDARG00000068820 h2afva -3.68 

15 0.00 3512 ENSDARG00000006585 CABZ01113899.1 -3.59 

16 0.00 4953 ENSDARG00000070620 grin2db -3.48 

11 0.00 2568 ENSDARG00000075456 PIK3CA (1 of 2) -3.47 

5 0.04 1694 ENSDARG00000011065 camk2b1 -3.31 

7 0.00 4392 ENSDARG00000025797 abhd2a -3.22 

11 0.00 1770 ENSDARG00000025699 mbd1 -3.12 

1 0.03 -30 ENSDARG00000023678 ercc5 -2.94 

5 0.00 1968 ENSDARG00000062646 tet3 -2.91 

1 0.00 1026 ENSDARG00000024785 ctnna2 -2.91 

13 0.03 3899 ENSDARG00000092473 apopt1 -2.85 

5 0.00 338 ENSDARG00000059789 parp8 -2.83 

24 0.01 1187 ENSDARG00000008275 klhl24b -2.81 

7 0.05 4108 ENSDARG00000034434 igf1rb -2.78 
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23 0.02 24 ENSDARG00000028894 mrgbp -2.78 

5 0.00 2920 ENSDARG00000033498 rorb -2.72 

7 0.04 4748 ENSDARG00000085920 5S_rRNA -2.71 

5 0.00 1289 ENSDARG00000081232 dre-mir-454b -2.70 

5 0.00 0 ENSDARG00000012468 aacs -2.66 

7 0.04 3 ENSDARG00000036036 mdka -2.65 

23 0.02 3342 ENSDARG00000007751 lmnl3 -2.64 

5 0.00 4689 ENSDARG00000075347 chfr -2.62 

5 0.00 2790 ENSDARG00000059719 fam169aa -2.61 

21 0.01 7 ENSDARG00000058630 BDP1 (2 of 2) -2.59 

6 0.01 1013 ENSDARG00000079491 KCNA3 -2.58 

18 0.02 1204 ENSDARG00000054864 aplp2 -2.57 

16 0.00 2352 ENSDARG00000059945 SV2A -2.51 

23 0.04 1860 ENSDARG00000076730 syt6a -2.49 

1 0.02 2050 ENSDARG00000088676 CT573191.1 -2.47 

10 0.03 4018 ENSDARG00000020913 ddx56 -2.35 

16 0.03 1794 ENSDARG00000062244 setd2 -2.33 

3 0.00 3582 ENSDARG00000004597 lrrc4ba -2.33 

3 0.00 1777 ENSDARG00000075461 suv420h2 -2.32 

14 0.03 882 ENSDARG00000028740 msnb -2.29 

7 0.00 259 ENSDARG00000063035 ntrk3b -2.28 

4 0.01 2220 ENSDARG00000006747 tmem178b -2.28 

4 0.00 14 ENSDARG00000061089 KIF21A (1 of 3) -2.25 

11 0.00 1 ENSDARG00000070545 top1l -2.25 

13 0.01 1958 ENSDARG00000069044 agpat4 -2.23 

25 0.04 3094 ENSDARG00000020718 SLC25A22 (1 of 2) -2.23 

1 0.00 6 ENSDARG00000061661 igf2bp2b -2.21 

5 0.02 758 ENSDARG00000019549 cds1 -2.21 

8 0.00 1329 ENSDARG00000017365 slc23a2 -2.20 

4 0.00 1495 ENSDARG00000015053 grip1 -2.19 

14 0.03 1073 ENSDARG00000037423 SMIM19 -2.17 

7 0.00 4219 ENSDARG00000077782 ACER2 -2.15 

14 0.00 25 ENSDARG00000079586 gabrb2 -2.13 

16 0.01 1284 ENSDARG00000080201 5S_rRNA -2.12 

14 0.01 1205 ENSDARG00000026651 APBB2 (1 of 2) -2.11 

18 0.01 1685 ENSDARG00000026664 uri1 -2.11 

10 0.00 2366 ENSDARG00000032083 dpysl2b -2.09 

14 0.00 1887 ENSDARG00000056563 ppargc1b -2.09 

10 0.00 1235 ENSDARG00000090124 alcama -2.08 

6 0.00 -5 ENSDARG00000020301 os9 -2.07 

23 0.00 3461 ENSDARG00000086856 stk35 -2.04 
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12 0.00 -49 ENSDARG00000012094 prkar1ab -2.03 

25 0.03 2927 ENSDARG00000015502 adam10b -2.02 

21 0.02 360 ENSDARG00000001857 aff4 -1.99 

19 0.04 1985 ENSDARG00000079899 FAM135B -1.96 

17 0.00 1512 ENSDARG00000044462 qkia -1.96 

11 0.02 1109 ENSDARG00000042458 rfc4 -1.95 

1 0.00 643 ENSDARG00000060148 sh3pxd2aa -1.94 

24 0.00 561 ENSDARG00000079312 kmt2ca -1.93 

3 0.00 135 ENSDARG00000027357 cd2bp2 -1.92 

7 0.05 3168 ENSDARG00000069430 tp53i11a -1.92 

22 0.03 2628 ENSDARG00000033589 EPHB3 (2 of 2) -1.92 

5 0.00 99 ENSDARG00000041926 DLG4 (2 of 2) -1.91 

5 0.00 6 ENSDARG00000007034 hnrpkl -1.91 

9 0.00 573 ENSDARG00000055543 appb -1.91 

20 0.02 -5 ENSDARG00000008209 myt1la -1.90 

8 0.00 4406 ENSDARG00000037904 cacna1db -1.89 

3 0.01 -98 ENSDARG00000060348 map3k3 -1.86 

10 0.00 2163 ENSDARG00000093503 RSF1 (3 of 3) -1.86 

5 0.01 -48 ENSDARG00000002771 SLC4A5 (1 of 2) -1.85 

9 0.00 2019 ENSDARG00000001676 gpm6bb -1.85 

5 0.00 2735 ENSDARG00000035256 eef2l2 -1.84 

23 0.02 -5 ENSDARG00000053857 - -1.84 

8 0.01 -72 ENSDARG00000043474 atp2b3a -1.84 

6 0.00 3815 ENSDARG00000052142 ACVR1B (2 of 2) -1.81 

25 0.00 1599 ENSDARG00000051748 ccnd2a -1.81 

2 0.00 -67 ENSDARG00000068745 MAP4 (1 of 3) -1.80 

1 0.00 0 ENSDARG00000043226 nfixa -1.80 

14 0.00 2898 ENSDARG00000055792 FOXO4 -1.80 

13 0.00 2898 ENSDARG00000070242 ENDOD1 (5 of 13) -1.80 

15 0.00 531 ENSDARG00000033845 igsf9ba -1.80 

7 0.00 639 ENSDARG00000021442 cdh11 -1.80 

12 0.01 -5 ENSDARG00000054154 bms1l -1.79 

9 0.00 1404 ENSDARG00000000563 ttnb -1.79 

11 0.04 -31 ENSDARG00000030791 mafgb -1.78 

10 0.00 2417 ENSDARG00000018856 dclk1a -1.78 

23 0.02 -3 ENSDARG00000025206 syt2a -1.78 

17 0.00 1515 ENSDARG00000097478 qkia -1.78 

9 0.01 2563 ENSDARG00000037203 insig2 -1.75 

5 0.00 3 ENSDARG00000046090 dhrs11a -1.75 

20 0.00 861 ENSDARG00000090703 pdgfra -1.75 

16 0.03 0 ENSDARG00000073784 FEZ2 (2 of 2) -1.73 
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14 0.00 3331 ENSDARG00000033556 PCDH11Y -1.73 

21 0.01 40 ENSDARG00000078317 si:dkey-175m17.7 -1.73 

7 0.04 4005 ENSDARG00000087397 TEAD1 (2 of 2) -1.73 

21 0.00 2485 ENSDARG00000056181 ncam1a -1.71 

9 0.00 4246 ENSDARG00000029497 tfcp2l1 -1.70 

11 0.05 2067 ENSDARG00000085035 5S_rRNA -1.69 

7 0.01 661 ENSDARG00000024877 ptgr1 -1.69 

11 0.00 2087 ENSDARG00000016918 ace2 -1.68 

13 0.00 4151 ENSDARG00000074759 ccar1 -1.68 

8 0.00 4565 ENSDARG00000038300 rnf34a -1.68 

8 0.04 2139 ENSDARG00000074126 ttc39a -1.67 

2 0.00 861 ENSDARG00000054290 acin1a -1.67 

2 0.01 2033 ENSDARG00000032317 tox -1.67 

6 0.03 2507 ENSDARG00000018032 scn8ab -1.66 

25 0.00 3033 ENSDARG00000022045 map1ab -1.65 

12 0.04 -1 ENSDARG00000012094 prkar1ab -1.65 

23 0.02 1809 ENSDARG00000056554 rap1gap -1.65 

18 0.02 268 ENSDARG00000003994 syt9a -1.64 

16 0.01 2765 ENSDARG00000056642 hdac9b -1.63 

1 0.03 140 ENSDARG00000054274 pcdh10a -1.63 

3 0.03 4130 ENSDARG00000085512 5S_rRNA -1.62 

5 0.01 3913 ENSDARG00000089770 5S_rRNA -1.61 

5 0.00 2819 ENSDARG00000032039 mxd1 -1.61 

2 0.00 -1 ENSDARG00000052419 ankrd12 -1.61 

19 0.00 2848 ENSDARG00000033804 snx27a -1.60 

7 0.05 1782 ENSDARG00000051852 kcnc1a -1.59 

21 0.04 4682 ENSDARG00000002600 pcsk1 -1.59 

23 0.01 281 ENSDARG00000024895 fam50a -1.58 

16 0.00 -79 ENSDARG00000017220 otud7b -1.58 

23 0.03 4425 ENSDARG00000078011 NAV1 (2 of 3) -1.57 

21 0.01 15 ENSDARG00000078581 crebrf -1.57 

5 0.00 0 ENSDARG00000009336 aif1l -1.56 

13 0.00 1895 ENSDARG00000056322 ldb3a -1.56 

21 0.05 1243 ENSDARG00000019693 CLCN5 (1 of 2) -1.56 

19 0.00 4818 ENSDARG00000063690 nrm -1.56 

2 0.02 70 ENSDARG00000038855 chmp5a -1.55 

1 0.05 -88 ENSDARG00000069438 neurl1aa -1.55 

6 0.01 -88 ENSDARG00000094792 twf2a -1.55 

7 0.00 0 ENSDARG00000006487 anp32a -1.53 

21 0.04 1189 ENSDARG00000026035 ube2b -1.53 

3 0.00 -79 ENSDARG00000029394 ilf3b -1.53 
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23 0.00 1040 ENSDARG00000052604 CPEB2 -1.53 

11 0.02 911 ENSDARG00000085592 5S_rRNA -1.53 

3 0.03 435 ENSDARG00000055855 kcnc3a -1.52 

20 0.04 47 ENSDARG00000046106 rab10 -1.52 

12 0.00 74 ENSDARG00000005567 map2k6 -1.52 

7 0.00 185 ENSDARG00000056722 cd99l2 -1.51 

10 0.04 3203 ENSDARG00000079251 nlgn2b -1.51 

21 0.02 2932 ENSDARG00000010524 si:ch211-282j22.3 -1.51 

13 0.02 424 ENSDARG00000028148 pax2a -1.50 

4 0.00 -1 ENSDARG00000017841 cand1 -1.49 

6 0.01 96 ENSDARG00000071113 xirp2a -1.49 

23 0.00 84 ENSDARG00000012777 nucks1b -1.49 

11 0.00 -19 ENSDARG00000009754 zc3h11a -1.49 

21 0.00 25 ENSDARG00000053665 gabrg2 -1.49 

7 0.04 305 ENSDARG00000078078 lrfn4b -1.48 

2 0.00 866 ENSDARG00000052419 ankrd12 -1.47 

5 0.00 1039 ENSDARG00000089271 si:dkey-114c15.7 -1.47 

12 0.00 -51 ENSDARG00000061647 nrxn1a -1.47 

7 0.03 792 ENSDARG00000022251 znf536 -1.46 

8 0.00 76 ENSDARG00000068123 gkap1 -1.46 

7 0.03 -78 ENSDARG00000068457 tnnt3b -1.46 

5 0.01 3454 ENSDARG00000078302 BRINP1 -1.46 

7 0.04 409 ENSDARG00000035750 ccnd1 -1.46 

5 0.04 4136 ENSDARG00000035158 MCAM (2 of 3) -1.46 

10 0.02 0 ENSDARG00000097170 pcdh1a3 -1.45 

12 0.01 5 ENSDARG00000020521 exoc6 -1.45 

3 0.03 3615 ENSDARG00000035952 cdr2a -1.45 

16 0.02 302 ENSDARG00000043304 nop2 -1.45 

8 0.02 281 ENSDARG00000043474 atp2b3a -1.44 

10 0.04 14 ENSDARG00000013005 opcml -1.44 

14 0.00 -2 ENSDARG00000068582 rnf44 -1.44 

18 0.01 66 ENSDARG00000061635 myo5aa -1.43 

21 0.00 2854 ENSDARG00000075546 CABZ01109624.1 -1.43 

21 0.00 3537 ENSDARG00000032188 lrrc8a -1.42 

21 0.04 4556 ENSDARG00000056244 - -1.42 

19 0.05 463 ENSDARG00000070981 ash1l -1.42 

25 0.01 0 ENSDARG00000021378 phf21ab -1.42 

18 0.00 140 ENSDARG00000062020 gse1 -1.42 

16 0.05 39 ENSDARG00000094933 si:dkey-165g20.5 -1.41 

11 0.01 3817 ENSDARG00000043835 rab3ab -1.41 

20 0.01 0 ENSDARG00000034187 calm2a -1.41 
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6 0.05 699 ENSDARG00000079540 CACNA2D2 (3 of 3) -1.41 

18 0.00 2002 ENSDARG00000062138 ranbp10 -1.41 

1 0.01 -3 ENSDARG00000010791 dla -1.41 

21 0.00 0 ENSDARG00000068214 ccni -1.40 

21 0.05 -3 ENSDARG00000015221 nsrp1 -1.40 

7 0.01 -1 ENSDARG00000018817 bdnf -1.39 

20 0.01 -1 ENSDARG00000014013 lbr -1.39 

11 0.04 0 ENSDARG00000007824 CR847998.1 -1.39 

9 0.01 1610 ENSDARG00000020164 efnb2a -1.38 

19 0.02 173 ENSDARG00000059674 lrp12 -1.38 

16 0.03 543 ENSDARG00000005867 gon4l -1.37 

2 0.00 584 ENSDARG00000056490 SSBP4 (2 of 2) -1.37 

25 0.00 58 ENSDARG00000051748 ccnd2a -1.37 

20 0.02 -27 ENSDARG00000021753 ccdc25 -1.37 

24 0.00 865 ENSDARG00000076559 RB1CC1 -1.37 

14 0.00 638 ENSDARG00000019213 CTBP1 -1.36 

3 0.01 2642 ENSDARG00000028521 c1ql3b -1.36 

18 0.01 2830 ENSDARG00000038121 ELL3 -1.36 

9 0.05 433 ENSDARG00000020834 CEP250 -1.36 

4 0.00 5 ENSDARG00000030614 syt1a -1.36 

5 0.00 194 ENSDARG00000035126 brd3b -1.35 

1 0.01 217 ENSDARG00000069619 atf7ip -1.35 

25 0.00 876 ENSDARG00000022045 map1ab -1.35 

1 0.00 -1 ENSDARG00000024702 parn -1.34 

11 0.01 -2 ENSDARG00000057940 dido1 -1.34 

17 0.02 23 ENSDARG00000001129 dicer1 -1.34 

11 0.02 734 ENSDARG00000008034 skib -1.33 

8 0.03 523 ENSDARG00000060081 crb2b -1.33 

16 0.02 0 ENSDARG00000093482 dedd1 -1.32 

24 0.02 -51 ENSDARG00000038814 myrip -1.32 

25 0.01 1741 ENSDARG00000010844 kras -1.32 

9 0.00 0 ENSDARG00000001220 mycbp2 -1.32 

17 0.00 0 ENSDARG00000071018 ptena -1.32 

8 0.00 3794 ENSDARG00000090454 gnb1a -1.31 

20 0.00 83 ENSDARG00000029150 hsp90ab1 -1.31 

2 0.00 -5 ENSDARG00000057013 cadm3 -1.31 

7 0.04 551 ENSDARG00000052091 rbpjb -1.31 

3 0.01 -1 ENSDARG00000040657 wipi1 -1.31 

9 0.03 0 ENSDARG00000010437 fam46c -1.30 

19 0.03 2526 ENSDARG00000033367 rrm2b -1.30 

12 0.04 0 ENSDARG00000055930 zc3h7b -1.30 
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15 0.00 -3 ENSDARG00000042837 atp1b3b -1.30 

19 0.00 -1 ENSDARG00000021140 pabpc1b -1.29 

6 0.01 -1 ENSDARG00000063538 kalrnb -1.29 

3 0.01 2115 ENSDARG00000006031 abat -1.29 

7 0.00 3043 ENSDARG00000044635 ptprda -1.27 

5 0.05 488 ENSDARG00000013730 slc4a4a -1.27 

6 0.02 -77 ENSDARG00000057782 baz2ba -1.27 

20 0.01 -1 ENSDARG00000042539 ywhaqa -1.27 

11 0.05 0 ENSDARG00000057940 dido1 -1.26 

7 0.01 1787 ENSDARG00000091371 vgf -1.25 

24 0.01 1663 ENSDARG00000062154 dip2c -1.24 

5 0.03 -1 ENSDARG00000020008 vcp -1.24 

8 0.04 0 ENSDARG00000000966 ncor2 -1.23 

19 0.00 1215 ENSDARG00000035994 rims2b -1.20 

8 0.00 2984 ENSDARG00000045639 elavl4 -1.19 

20 0.02 -2 ENSDARG00000020609 snap25a -1.13 

 

 

ii. Differentially expressed genes in MnCl2 treated wild-type and heterozygous 

slc39a14U801 siblings  

(genes are listed in order of their fold-change) 

Chr p-value Distance 

to 3' end 

e76 Ensembl Gene ID Gene name Fold change 

(wt/wt_MnCl2) 

Upregulated 

3 0.04 3547 ENSDARG00000094901 ABCC6 (3 of 3) 3.38 

8 0.01 2019 ENSDARG00000095866 fabp1b.2 2.62 

1 0.04 2515 ENSDARG00000088020 cdkn1d 2.42 

13 0.02 2491 ENSDARG00000079230 sorbs1 2.28 

16 0.01 3764 ENSDARG00000054814 PTP4A3 (2 of 2) 2.27 

11 0.00 0 ENSDARG00000059370 nr1d4b 2.10 

3 0.01 3582 ENSDARG00000004597 lrrc4ba 2.08 

10 0.01 2417 ENSDARG00000018856 dclk1a 1.93 

16 0.01 2765 ENSDARG00000056642 hdac9b 1.89 

23 0.02 -13 ENSDARG00000037607 NOL4L (1 of 2) 1.84 

23 0.01 326 ENSDARG00000031161 nr1d4a 1.81 

1 0.00 98 ENSDARG00000019945 ptprdb 1.80 

18 0.01 4510 ENSDARG00000038121 ELL3 1.80 

1 0.04 2089 ENSDARG00000052012 rtn4rl2a 1.78 

22 0.03 2628 ENSDARG00000033589 EPHB3 (2 of 2) 1.73 

18 0.04 169 ENSDARG00000086034 pvrl1b 1.72 
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16 0.03 2352 ENSDARG00000059945 SV2A 1.69 

3 0.01 2011 ENSDARG00000043237 nfil3-2 1.67 

18 0.03 4899 ENSDARG00000069122 si:ch211-216l23.2 1.66 

1 0.00 3420 ENSDARG00000088020 cdkn1d 1.66 

16 0.03 1572 ENSDARG00000056719 slc6a19b 1.64 

17 0.01 1829 ENSDARG00000075397 si:dkey-204k5.2 1.63 

12 0.02 1326 ENSDARG00000084694 SNORD27 1.60 

20 0.03 861 ENSDARG00000090703 pdgfra 1.60 

19 0.01 2 ENSDARG00000030215 matn1 1.58 

7 0.00 -1 ENSDARG00000018817 bdnf 1.57 

16 0.00 662 ENSDARG00000003820 nr1d2a 1.56 

15 0.01 531 ENSDARG00000033845 igsf9ba 1.55 

18 0.00 38 ENSDARG00000061328 cdon 1.48 

17 0.02 3952 ENSDARG00000040135 - 1.47 

2 0.05 0 ENSDARG00000071219 pik3r3a 1.47 

9 0.04 140 ENSDARG00000077192 slc15a1a 1.44 

9 0.01 5 ENSDARG00000030012 lrrfip1a 1.44 

17 0.04 258 ENSDARG00000043932 stmn4l 1.36 

Downregulated 

10 0.00 -73 ENSDARG00000019498 cry5 -9.56 

24 0.00 -7 ENSDARG00000093044 si:ch211-161h7.5 -5.11 

2 0.00 0 ENSDARG00000034503 per2 -4.69 

8 0.02 -2 ENSDARG00000090130 LRIF1 (2 of 2) -4.43 

24 0.00 0 ENSDARG00000012388 CU855779.1 -4.16 

25 0.00 234 ENSDARG00000019532 fads2 -3.82 

8 0.03 744 ENSDARG00000041848 rh50 -3.73 

16 0.00 259 ENSDARG00000091334 BX511252.1 -3.72 

17 0.02 54 ENSDARG00000032553 egln3 -3.41 

15 0.01 433 ENSDARG00000040628 CLDN17 -3.39 

24 0.02 298 ENSDARG00000089881 BX547934.1 -3.10 

8 0.00 874 ENSDARG00000078567 lonrf1l -2.96 

22 0.00 -2 ENSDARG00000091131 cry2b -2.84 

23 0.00 0 ENSDARG00000036864 slc34a2b -2.80 

6 0.00 1 ENSDARG00000087873 si:ch211-170n20.3 -2.73 

11 0.00 2295 ENSDARG00000097499 si:ch211-268b10.2 -2.66 

13 0.04 4767 ENSDARG00000046133 b3galnt2 -2.62 

14 0.00 2710 ENSDARG00000075048 lonrf1 -2.59 

16 0.00 -6 ENSDARG00000014496 trpv6 -2.58 

20 0.00 0 ENSDARG00000042630 hebp2 -2.56 

24 0.00 246 ENSDARG00000088190 si:dkeyp-88h4.2 -2.48 

24 0.00 -11 ENSDARG00000027088 ptgdsb -2.44 
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8 0.01 0 ENSDARG00000039754 xpc -2.43 

3 0.01 2530 ENSDARG00000038009 si:ch73-233k15.1 -2.39 

15 0.03 -3 ENSDARG00000074526 zbtb16b -2.37 

2 0.00 286 ENSDARG00000015564 dhcr7 -2.33 

18 0.00 -1 ENSDARG00000041140 ddb2 -2.31 

24 0.00 0 ENSDARG00000002396 cry-dash -2.29 

24 0.03 2916 ENSDARG00000085208 5S_rRNA -2.27 

7 0.00 0 ENSDARG00000029446 bcmo1l -2.26 

19 0.00 4919 ENSDARG00000061752 fam65b -2.25 

12 0.04 3511 ENSDARG00000096505 si:ch73-103l1.2 -2.22 

16 0.01 93 ENSDARG00000094929 APOA4 (4 of 4) -2.22 

9 0.02 1172 ENSDARG00000089651 CR936465.1 -2.20 

4 0.01 1787 ENSDARG00000021647 gnai1 -2.19 

1 0.00 -2 ENSDARG00000055876 msmo1 -2.17 

9 0.00 2308 ENSDARG00000011770 dhrs12 -2.16 

25 0.01 1093 ENSDARG00000011636 si:ch211-93f2.1 -2.12 

19 0.01 0 ENSDARG00000086281 APOA4 (3 of 4) -2.10 

23 0.03 3865 ENSDARG00000076292 tenc1a -2.09 

19 0.00 2 ENSDARG00000070972 si:ch211-81a5.8 -2.08 

16 0.00 0 ENSDARG00000053227 hamp2 -2.08 

16 0.04 1308 ENSDARG00000040277 fbxo32 -2.07 

3 0.00 9 ENSDARG00000075015 soul5 -2.06 

5 0.05 2066 ENSDARG00000074581 add2 -2.01 

12 0.00 2659 ENSDARG00000079166 ace -2.00 

4 0.00 0 ENSDARG00000045768 cry1a -1.98 

25 0.00 0 ENSDARG00000011636 si:ch211-93f2.1 -1.96 

19 0.00 2 ENSDARG00000086370 apoea -1.95 

1 0.02 0 ENSDARG00000091609 SPINK4 -1.91 

16 0.00 -3 ENSDARG00000020866 APOA4 (1 of 4) -1.91 

5 0.03 20 ENSDARG00000026964 hk2 -1.90 

12 0.00 -1 ENSDARG00000039117 tefa -1.89 

11 0.02 516 ENSDARG00000010978 trmt1 -1.88 

20 0.00 -1 ENSDARG00000095767 dio3b -1.88 

11 0.04 2 ENSDARG00000071211 C11H1orf50 -1.87 

8 0.01 -1 ENSDARG00000088116 gstm3 -1.87 

15 0.01 1 ENSDARG00000077236 hspb6 -1.86 

6 0.00 0 ENSDARG00000031647 stat2 -1.86 

18 0.01 -1 ENSDARG00000017675 cirh1a -1.83 

6 0.00 138 ENSDARG00000044356 tp63 -1.83 

13 0.00 -5 ENSDARG00000033285 gsto2 -1.82 

3 0.04 732 ENSDARG00000044852 wbp2nl -1.79 
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5 0.00 0 ENSDARG00000007276 ela3l -1.77 

10 0.05 3819 ENSDARG00000068714 KSR1 (2 of 2) -1.77 

2 0.00 -2 ENSDARG00000095362 si:ch211-77g15.32 -1.76 

1 0.03 1678 ENSDARG00000089138 LONRF2 -1.76 

19 0.02 4603 ENSDARG00000055206 dtnbp1b -1.74 

16 0.04 -69 ENSDARG00000030602 rps19 -1.71 

12 0.00 -3 ENSDARG00000089885 slc16a12b -1.71 

7 0.01 2111 ENSDARG00000025797 abhd2a -1.70 

2 0.02 -2 ENSDARG00000030896 foxq1a -1.70 

16 0.05 2732 ENSDARG00000021787 abcb5 -1.66 

3 0.04 -2 ENSDARG00000038196 zgc:112146 -1.66 

20 0.03 -2 ENSDARG00000042980 cyp2p7 -1.66 

3 0.01 -1 ENSDARG00000022232 ppan -1.66 

5 0.01 348 ENSDARG00000061017 spns2 -1.65 

6 0.01 1 ENSDARG00000052638 fam210b -1.63 

15 0.01 0 ENSDARG00000043102 lxn -1.63 

15 0.04 2225 ENSDARG00000077396 tlcd2 -1.62 

4 0.00 12 ENSDARG00000006029 lta4h -1.62 

9 0.05 0 ENSDARG00000060504 PFKL (2 of 2) -1.60 

18 0.00 260 ENSDARG00000016080 nob1 -1.60 

21 0.02 -8 ENSDARG00000017490 cel.1 -1.59 

25 0.00 -73 ENSDARG00000016598 ckmt1 -1.59 

12 0.01 -2 ENSDARG00000006413 rpl38 -1.59 

18 0.02 0 ENSDARG00000069630 tat -1.59 

13 0.03 4 ENSDARG00000090337 pprc1 -1.59 

16 0.02 -5 ENSDARG00000089399 tmem176l.2 -1.59 

5 0.00 2015 ENSDARG00000060319 scn4bb -1.58 

13 0.00 0 ENSDARG00000039347 rps24 -1.58 

23 0.00 4 ENSDARG00000007216 abce1 -1.57 

14 0.01 2961 ENSDARG00000056563 ppargc1b -1.57 

16 0.00 2396 ENSDARG00000063540 foxo1a -1.57 

2 0.00 -1 ENSDARG00000007320 rpl7 -1.56 

14 0.00 -1 ENSDARG00000037421 egr1 -1.56 

20 0.03 -5 ENSDARG00000003751 lats1 -1.55 

25 0.03 -3 ENSDARG00000021339 cpa5 -1.55 

14 0.00 0 ENSDARG00000036121 pcdh10b -1.54 

6 0.01 0 ENSDARG00000058337 nop58 -1.54 

16 0.02 -1 ENSDARG00000095863 zgc:161979 -1.54 

23 0.00 1 ENSDARG00000025850 rps21 -1.54 

23 0.03 0 ENSDARG00000060288 prosc -1.52 

10 0.01 -1 ENSDARG00000013871 slc5a1 -1.52 



Appendix 

 

 287 

13 0.01 -1 ENSDARG00000090228 gstal -1.52 

15 0.01 3524 ENSDARG00000089170 CABZ01087568.1 -1.51 

18 0.00 0 ENSDARG00000046119 rps3 -1.50 

11 0.03 -4 ENSDARG00000021059 alas1 -1.50 

9 0.03 4246 ENSDARG00000029497 tfcp2l1 -1.50 

1 0.02 -6 ENSDARG00000077533 eif3f -1.50 

1 0.04 1 ENSDARG00000014313 atp5j -1.50 

13 0.05 0 ENSDARG00000090656 tomm20a -1.49 

22 0.02 1396 ENSDARG00000058440 slc6a6b -1.49 

15 0.00 34 ENSDARG00000090386 cd3eap -1.47 

20 0.05 3 ENSDARG00000041787 cx32.3 -1.47 

22 0.03 1543 ENSDARG00000070907 lcor -1.47 

12 0.03 -40 ENSDARG00000071426 lrrc59 -1.47 

15 0.01 2918 ENSDARG00000016465 slc1a5 -1.47 

19 0.00 0 ENSDARG00000043509 rpl11 -1.46 

17 0.03 3 ENSDARG00000086789 bahd1 -1.46 

22 0.01 -3 ENSDARG00000074332 SPEN (2 of 2) -1.46 

6 0.05 -3 ENSDARG00000061923 amotl2a -1.45 

16 0.00 1 ENSDARG00000017219 pabpc1a -1.45 

18 0.03 797 ENSDARG00000075118 CABZ01079192.1 -1.43 

16 0.01 -5 ENSDARG00000010411 epn1 -1.43 

15 0.03 0 ENSDARG00000026821 tmem106ba -1.43 

25 0.03 2 ENSDARG00000090186 rps27.2 -1.43 

20 0.05 0 ENSDARG00000053097 hsf2 -1.42 

23 0.04 -1 ENSDARG00000036875 rps12 -1.41 

2 0.00 0 ENSDARG00000035860 rps28 -1.41 

14 0.02 -7 ENSDARG00000053262 atp1b4 -1.41 

3 0.02 -2 ENSDARG00000053058 rps11 -1.40 

9 0.01 0 ENSDARG00000055389 si:dkey-67c22.2 -1.40 

6 0.01 0 ENSDARG00000030408 rps26l -1.40 

17 0.05 0 ENSDARG00000044395 ZFP36 -1.39 

6 0.01 -4 ENSDARG00000015862 rpl5b -1.39 

7 0.03 -1 ENSDARG00000036298 rps13 -1.39 

1 0.02 -59 ENSDARG00000006427 fabp2 -1.38 

18 0.02 0 ENSDARG00000068374 si:ch211-132b12.7 -1.38 

9 0.05 -11 ENSDARG00000040466 vil1 -1.38 

7 0.00 6 ENSDARG00000011201 rplp2l -1.38 

15 0.05 -1 ENSDARG00000059035 POR (2 of 2) -1.37 

22 0.00 2 ENSDARG00000013012 rpl36 -1.37 

6 0.03 -2 ENSDARG00000013561 pgm1 -1.37 

13 0.00 19 ENSDARG00000057890 TTC31 -1.37 



Appendix 

 

 288 

19 0.04 -3 ENSDARG00000016623 si:ch211-195b13.1 -1.36 

3 0.00 1 ENSDARG00000020574 atp2a1 -1.36 

1 0.02 0 ENSDARG00000045627 cyp3a65 -1.35 

9 0.01 3246 ENSDARG00000060521 rbm27 -1.35 

10 0.00 3951 ENSDARG00000056877 vamp2 -1.35 

21 0.03 0 ENSDARG00000054191 pgk1 -1.35 

10 0.03 -13 ENSDARG00000043154 ucp2 -1.33 

1 0.03 2294 ENSDARG00000075141 gprc5bb -1.32 

3 0.03 0 ENSDARG00000053457 rpl23 -1.32 

14 0.01 0 ENSDARG00000041619 gnb2l1 -1.31 

12 0.04 41 ENSDARG00000077505 rbp4 -1.31 

1 0.03 0 ENSDARG00000076833 atp1b1b -1.30 

24 0.05 -3 ENSDARG00000010516 rpl21 -1.29 

2 0.04 3 ENSDARG00000008109 eef1da -1.29 

2 0.04 3176 ENSDARG00000018534 slc6a9 -1.26 

3 0.03 146 ENSDARG00000037919 rbbp6 -1.23 

6 0.01 4290 ENSDARG00000018032 scn8ab -1.22 

2 0.01 1047 ENSDARG00000061048 ranbp9 -1.21 

 

 

iii. Differentially expressed genes only in untreated homozygous slc39a14U801 

mutants which normalised upon MnCl2 treatment  

(genes are listed in order of their fold-change) 

Chr p-value Distance 

to 3' end 

e76 Ensembl Gene ID Gene name Fold change 

(mut/sib) 

Upregulated 

13 0.00 2385 ENSDARG00000078272 CABP7 (2 of 2) 4.51 

2 0.01 -9 ENSDARG00000028367 sult2st3 2.95 

1 0.00 0 ENSDARG00000058873 PTPDC1 (1 of 2) 2.93 

3 0.02 2990 ENSDARG00000086530 SMAD4 (2 of 2) 2.69 

21 0.02 375 ENSDARG00000086835 ostf1 2.48 

3 0.02 668 ENSDARG00000063126 GUSB (1 of 2) 2.35 

25 0.00 3 ENSDARG00000003144 pxmp2 2.32 

16 0.01 1553 ENSDARG00000076789 cx32.2 2.25 

23 0.01 4008 ENSDARG00000002174 itfg2 2.19 

8 0.01 0 ENSDARG00000070399 alg2 2.03 

20 0.03 0 ENSDARG00000032117 ddx1 2.02 

11 0.05 -3 ENSDARG00000035579 - 2.00 

18 0.01 1582 ENSDARG00000059817 mtmr12 1.97 

24 0.01 385 ENSDARG00000083837 CU467832.1 1.96 
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19 0.04 605 ENSDARG00000020994 wu:fb63a08 1.95 

3 0.04 239 ENSDARG00000086947 - 1.94 

25 0.05 3907 ENSDARG00000062134 KCNAB2 (1 of 2) 1.93 

14 0.04 4111 ENSDARG00000062375 lcat 1.92 

19 0.05 -6 ENSDARG00000070542 mafbb 1.92 

7 0.01 -6 ENSDARG00000010276 ptgs2b 1.91 

17 0.05 4690 ENSDARG00000078227 cspg4 1.83 

13 0.04 -2 ENSDARG00000021033 herpud2 1.82 

17 0.03 0 ENSDARG00000038894 tmx3 1.80 

8 0.04 -1 ENSDARG00000054610 coro1a 1.77 

23 0.03 1567 ENSDARG00000073824 RASGRF1 1.77 

3 0.04 1811 ENSDARG00000069501 abhd11 1.76 

7 0.04 4165 ENSDARG00000035595 ficd 1.74 

2 0.00 -1 ENSDARG00000075014 sqstm1 1.72 

7 0.00 -4 ENSDARG00000021059 alas1 1.69 

9 0.00 -1 ENSDARG00000095767 dio3b 1.65 

23 0.03 0 ENSDARG00000075326 mrps30 1.63 

8 0.00 -2 ENSDARG00000006588 zgc:111983 1.63 

6 0.01 6 ENSDARG00000041595 ces3 1.59 

8 0.03 0 ENSDARG00000014031 abcc2 1.58 

22 0.05 3318 ENSDARG00000029751 wbp1lb 1.58 

10 0.02 -1 ENSDARG00000052851 golph3 1.56 

15 0.03 0 ENSDARG00000004034 arhgdig 1.55 

25 0.04 0 ENSDARG00000028071 bmp1a 1.54 

8 0.00 -2 ENSDARG00000011168 anxa1c 1.53 

19 0.04 0 ENSDARG00000045979 PTGDS (2 of 3) 1.53 

11 0.03 1735 ENSDARG00000070584 clic5b 1.53 

6 0.01 0 ENSDARG00000045408 tagln 1.52 

23 0.01 1707 ENSDARG00000053668 stag2b 1.52 

23 0.05 -2 ENSDARG00000020761 arrdc2 1.51 

3 0.04 -3 ENSDARG00000079497 C5H8orf4 (2 of 2) 1.51 

16 0.02 2138 ENSDARG00000062319 si:dkey-103g5.3 1.50 

12 0.05 -1 ENSDARG00000094496 cfhl4 1.50 

14 0.01 0 ENSDARG00000079840 kcnma1a 1.48 

20 0.02 1331 ENSDARG00000079544 si:ch1073-464p5.5 1.48 

21 0.05 -1 ENSDARG00000009544 cldnb 1.48 

11 0.05 0 ENSDARG00000093494 si:ch211-217k17.9 1.46 

23 0.05 0 ENSDARG00000042444 ankrd13c 1.46 

11 0.05 -2 ENSDARG00000042874 phlda2 1.45 

20 0.03 -1 ENSDARG00000097205 ulk2 1.44 

12 0.02 -1 ENSDARG00000092158 cbx3b 1.44 
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7 0.04 0 ENSDARG00000008363 mcl1b 1.44 

24 0.03 0 ENSDARG00000077566 CZv9_NA991H1orf52 1.42 

4 0.01 4 ENSDARG00000007216 abce1 1.41 

16 0.04 -9 ENSDARG00000016651 znf106a 1.40 

6 0.03 1838 ENSDARG00000000861 scrib 1.39 

7 0.05 1386 ENSDARG00000001710 flot1a 1.39 

22 0.03 0 ENSDARG00000089429 si:dkey-205h13.2 1.39 

7 0.04 3246 ENSDARG00000055009 col4a1 1.38 

19 0.04 -95 ENSDARG00000094041 krt17 1.37 

23 0.01 0 ENSDARG00000087243 zgc:100918 1.36 

16 0.02 -1 ENSDARG00000038559 h1f0 1.35 

8 0.05 -4 ENSDARG00000059646 nt5dc2 1.35 

21 0.03 -6 ENSDARG00000037539 tnnc1b 1.34 

9 0.04 -1 ENSDARG00000036073 cebpg 1.33 

23 0.04 -3 ENSDARG00000071445 myoz1b 1.32 

3 0.01 -1 ENSDARG00000036754 hmgn3 1.32 

10 0.01 -3 ENSDARG00000094310 si:ch211-255g12.6 1.32 

14 0.01 0 ENSDARG00000041169 hif1al 1.32 

21 0.04 0 ENSDARG00000054849 bcat2 1.32 

23 0.03 -4 ENSDARG00000056856 tax1bp1b 1.31 

18 0.03 3490 ENSDARG00000022682 add1 1.31 

6 0.04 -3 ENSDARG00000018285 pdpk1b 1.29 

15 0.04 0 ENSDARG00000038068 ddx5 1.28 

9 0.04 0 ENSDARG00000076892 nme2b.2 1.27 

15 0.04 8 ENSDARG00000086917 crygm2d2 1.27 

8 0.05 0 ENSDARG00000074057 calm1a 1.27 

25 0.02 3705 ENSDARG00000061338 ddx6 1.25 

11 0.00 -5 ENSDARG00000028213 ttna 1.25 

10 0.02 -3 ENSDARG00000039914 gapdhs 1.24 

3 0.05 2 ENSDARG00000035400 btf3 1.23 

17 0.04 0 ENSDARG00000035136 sepw1 1.21 

21 0.04 1 ENSDARG00000039641 rpl26 1.20 

Downregulated 

1 0.00 1814 ENSDARG00000010108 bri3bp -8.62 

15 0.01 1514 ENSDARG00000088962 sdc3 -7.47 

1 0.00 4998 ENSDARG00000012196 fer -6.31 

20 0.01 1436 ENSDARG00000055620 acad9 -4.06 

3 0.01 2754 ENSDARG00000093300 si:dkey-18f7.2 -3.95 

12 0.00 1429 ENSDARG00000076611 fbxo21 -3.75 

18 0.00 4953 ENSDARG00000070620 grin2db -3.49 

4 0.00 2568 ENSDARG00000075456 PIK3CA (1 of 2) -3.48 
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13 0.00 1694 ENSDARG00000011065 camk2b1 -3.32 

20 0.00 4392 ENSDARG00000025797 abhd2a -3.24 

2 0.02 -30 ENSDARG00000023678 ercc5 -2.95 

7 0.00 1968 ENSDARG00000062646 tet3 -2.92 

11 0.00 1026 ENSDARG00000024785 ctnna2 -2.92 

21 0.03 3899 ENSDARG00000092473 apopt1 -2.86 

2 0.00 338 ENSDARG00000059789 parp8 -2.84 

9 0.00 2920 ENSDARG00000033498 rorb -2.73 

11 0.04 4748 ENSDARG00000085920 5S_rRNA -2.72 

1 0.00 1289 ENSDARG00000081232 dre-mir-454b -2.71 

4 0.00 0 ENSDARG00000012468 aacs -2.67 

20 0.03 3342 ENSDARG00000007751 lmnl3 -2.65 

2 0.00 4689 ENSDARG00000075347 chfr -2.64 

10 0.00 2790 ENSDARG00000059719 fam169aa -2.62 

25 0.01 7 ENSDARG00000058630 BDP1 (2 of 2) -2.60 

25 0.04 1204 ENSDARG00000054864 aplp2 -2.58 

15 0.00 2352 ENSDARG00000059945 SV2A -2.52 

17 0.04 3076 ENSDARG00000076030 cacnb3b -2.37 

21 0.01 3582 ENSDARG00000004597 lrrc4ba -2.34 

6 0.02 1777 ENSDARG00000075461 suv420h2 -2.32 

14 0.00 2220 ENSDARG00000006747 tmem178b -2.29 

19 0.00 259 ENSDARG00000063035 ntrk3b -2.29 

11 0.00 14 ENSDARG00000061089 KIF21A (1 of 3) -2.26 

16 0.01 1958 ENSDARG00000069044 agpat4 -2.24 

24 0.01 758 ENSDARG00000019549 cds1 -2.22 

10 0.00 1329 ENSDARG00000017365 slc23a2 -2.21 

1 0.00 1495 ENSDARG00000015053 grip1 -2.20 

9 0.00 1073 ENSDARG00000037423 SMIM19 -2.19 

20 0.01 1284 ENSDARG00000080201 5S_rRNA -2.13 

17 0.04 1205 ENSDARG00000026651 APBB2 (1 of 2) -2.12 

8 0.01 1685 ENSDARG00000026664 uri1 -2.12 

25 0.00 2366 ENSDARG00000032083 dpysl2b -2.10 

19 0.01 1887 ENSDARG00000056563 ppargc1b -2.10 

13 0.00 1235 ENSDARG00000090124 alcama -2.08 

13 0.01 -5 ENSDARG00000020301 os9 -2.07 

13 0.03 20 ENSDARG00000026964 hk2 -2.06 

23 0.00 3461 ENSDARG00000086856 stk35 -2.04 

7 0.00 -49 ENSDARG00000012094 prkar1ab -2.04 

9 0.04 2927 ENSDARG00000015502 adam10b -2.03 

8 0.04 606 ENSDARG00000053724 ADCYAP1R1 (2 of 2) -1.99 

23 0.01 561 ENSDARG00000079312 kmt2ca -1.94 
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8 0.01 135 ENSDARG00000027357 cd2bp2 -1.93 

18 0.04 3168 ENSDARG00000069430 tp53i11a -1.93 

3 0.02 2628 ENSDARG00000033589 EPHB3 (2 of 2) -1.92 

11 0.00 99 ENSDARG00000041926 DLG4 (2 of 2) -1.92 

20 0.02 573 ENSDARG00000055543 appb -1.91 

15 0.02 -5 ENSDARG00000008209 myt1la -1.91 

23 0.00 4406 ENSDARG00000037904 cacna1db -1.90 

3 0.01 -98 ENSDARG00000060348 map3k3 -1.87 

11 0.00 2163 ENSDARG00000093503 RSF1 (3 of 3) -1.86 

14 0.00 -48 ENSDARG00000002771 SLC4A5 (1 of 2) -1.86 

3 0.03 2019 ENSDARG00000001676 gpm6bb -1.85 

17 0.00 2735 ENSDARG00000035256 eef2l2 -1.85 

15 0.01 -5 ENSDARG00000053857 - -1.85 

3 0.01 -72 ENSDARG00000043474 atp2b3a -1.84 

7 0.03 13 ENSDARG00000012274 eif4e1c -1.82 

2 0.00 3815 ENSDARG00000052142 ACVR1B (2 of 2) -1.82 

7 0.00 1599 ENSDARG00000051748 ccnd2a -1.81 

11 0.00 -67 ENSDARG00000068745 MAP4 (1 of 3) -1.81 

16 0.00 0 ENSDARG00000043226 nfixa -1.81 

7 0.00 2898 ENSDARG00000070242 ENDOD1 (5 of 13) -1.80 

2 0.00 531 ENSDARG00000033845 igsf9ba -1.80 

20 0.00 639 ENSDARG00000021442 cdh11 -1.80 

14 0.00 1404 ENSDARG00000000563 ttnb -1.79 

18 0.02 2417 ENSDARG00000018856 dclk1a -1.79 

16 0.02 -3 ENSDARG00000025206 syt2a -1.78 

1 0.00 1515 ENSDARG00000097478 qkia -1.78 

17 0.01 2563 ENSDARG00000037203 insig2 -1.76 

4 0.00 3 ENSDARG00000046090 dhrs11a -1.76 

14 0.00 861 ENSDARG00000090703 pdgfra -1.75 

1 0.02 40 ENSDARG00000078317 si:dkey-175m17.7 -1.73 

8 0.01 661 ENSDARG00000024877 ptgr1 -1.70 

21 0.00 2087 ENSDARG00000016918 ace2 -1.69 

4 0.00 4151 ENSDARG00000074759 ccar1 -1.69 

19 0.01 4565 ENSDARG00000038300 rnf34a -1.69 

14 0.01 2139 ENSDARG00000074126 ttc39a -1.68 

2 0.04 -13 ENSDARG00000037607 NOL4L (1 of 2) -1.68 

23 0.01 861 ENSDARG00000054290 acin1a -1.67 

20 0.01 2033 ENSDARG00000032317 tox -1.67 

12 0.04 2507 ENSDARG00000018032 scn8ab -1.67 

6 0.00 3033 ENSDARG00000022045 map1ab -1.66 

10 0.01 1809 ENSDARG00000056554 rap1gap -1.66 



Appendix 

 

 293 

21 0.00 3913 ENSDARG00000089770 5S_rRNA -1.62 

25 0.02 2819 ENSDARG00000032039 mxd1 -1.62 

7 0.00 2848 ENSDARG00000033804 snx27a -1.61 

18 0.01 -79 ENSDARG00000017220 otud7b -1.58 

24 0.01 281 ENSDARG00000024895 fam50a -1.58 

1 0.05 4425 ENSDARG00000078011 NAV1 (2 of 3) -1.58 

21 0.04 15 ENSDARG00000078581 crebrf -1.58 

13 0.03 70 ENSDARG00000038855 chmp5a -1.56 

3 0.04 9 ENSDARG00000017673 nova2 -1.55 

2 0.01 1189 ENSDARG00000026035 ube2b -1.54 

16 0.01 -79 ENSDARG00000029394 ilf3b -1.54 

9 0.01 1040 ENSDARG00000052604 CPEB2 -1.54 

19 0.04 911 ENSDARG00000085592 5S_rRNA -1.53 

12 0.00 74 ENSDARG00000005567 map2k6 -1.52 

15 0.00 185 ENSDARG00000056722 cd99l2 -1.52 

19 0.01 3203 ENSDARG00000079251 nlgn2b -1.52 

10 0.04 2932 ENSDARG00000010524 si:ch211-282j22.3 -1.51 

10 0.00 -1 ENSDARG00000017841 cand1 -1.50 

14 0.01 84 ENSDARG00000012777 nucks1b -1.49 

23 0.03 96 ENSDARG00000071113 xirp2a -1.49 

16 0.01 25 ENSDARG00000053665 gabrg2 -1.49 

9 0.03 68 ENSDARG00000019258 elmo1 -1.49 

6 0.00 866 ENSDARG00000052419 ankrd12 -1.48 

1 0.00 1039 ENSDARG00000089271 si:dkey-114c15.7 -1.48 

24 0.02 -51 ENSDARG00000061647 nrxn1a -1.47 

16 0.01 76 ENSDARG00000068123 gkap1 -1.47 

23 0.04 3454 ENSDARG00000078302 BRINP1 -1.46 

19 0.02 4136 ENSDARG00000035158 MCAM (2 of 3) -1.46 

12 0.04 0 ENSDARG00000097170 pcdh1a3 -1.46 

22 0.02 5 ENSDARG00000020521 exoc6 -1.46 

16 0.04 3615 ENSDARG00000035952 cdr2a -1.46 

24 0.04 302 ENSDARG00000043304 nop2 -1.45 

21 0.01 -2 ENSDARG00000068582 rnf44 -1.45 

4 0.05 470 ENSDARG00000052150 pbx4 -1.44 

6 0.04 66 ENSDARG00000061635 myo5aa -1.44 

16 0.03 4556 ENSDARG00000056244 - -1.42 

9 0.02 463 ENSDARG00000070981 ash1l -1.42 

18 0.01 0 ENSDARG00000021378 phf21ab -1.42 

25 0.05 140 ENSDARG00000062020 gse1 -1.42 

2 0.03 699 ENSDARG00000079540 CACNA2D2 (3 of 3) -1.42 

8 0.00 2002 ENSDARG00000062138 ranbp10 -1.42 
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19 0.00 -3 ENSDARG00000010791 dla -1.41 

23 0.00 0 ENSDARG00000068214 ccni -1.41 

17 0.00 -1 ENSDARG00000018817 bdnf -1.40 

13 0.01 -1 ENSDARG00000014013 lbr -1.40 

20 0.05 -62 ENSDARG00000097699 si:ch211-9f20.5 -1.40 

11 0.04 1610 ENSDARG00000020164 efnb2a -1.38 

8 0.01 173 ENSDARG00000059674 lrp12 -1.38 

19 0.02 58 ENSDARG00000051748 ccnd2a -1.37 

20 0.01 865 ENSDARG00000076559 RB1CC1 -1.37 

6 0.04 -9 ENSDARG00000059973 fbxo11a -1.37 

8 0.00 638 ENSDARG00000019213 CTBP1 -1.37 

19 0.03 2830 ENSDARG00000038121 ELL3 -1.37 

25 0.00 5 ENSDARG00000030614 syt1a -1.37 

16 0.00 194 ENSDARG00000035126 brd3b -1.36 

21 0.00 876 ENSDARG00000022045 map1ab -1.36 

3 0.05 1732 ENSDARG00000077582 ank3b -1.35 

3 0.00 -1 ENSDARG00000024702 parn -1.34 

11 0.01 23 ENSDARG00000001129 dicer1 -1.34 

18 0.04 -1 ENSDARG00000074581 add2 -1.34 

18 0.03 734 ENSDARG00000008034 skib -1.33 

8 0.01 523 ENSDARG00000060081 crb2b -1.33 

23 0.01 0 ENSDARG00000093482 dedd1 -1.33 

6 0.03 -51 ENSDARG00000038814 myrip -1.32 

23 0.02 1741 ENSDARG00000010844 kras -1.32 

2 0.03 0 ENSDARG00000071018 ptena -1.32 

14 0.00 3794 ENSDARG00000090454 gnb1a -1.32 

4 0.00 -5 ENSDARG00000057013 cadm3 -1.32 

14 0.04 1985 ENSDARG00000062510 bcl11ba -1.31 

10 0.04 0 ENSDARG00000055930 zc3h7b -1.31 

21 0.00 -3 ENSDARG00000042837 atp1b3b -1.30 

25 0.04 2716 ENSDARG00000078416 zeb2b -1.30 

12 0.02 -1 ENSDARG00000021140 pabpc1b -1.30 

6 0.03 -1 ENSDARG00000063538 kalrnb -1.29 

14 0.00 3043 ENSDARG00000044635 ptprda -1.28 

18 0.05 488 ENSDARG00000013730 slc4a4a -1.28 

21 0.01 -1 ENSDARG00000042539 ywhaqa -1.27 

23 0.01 1663 ENSDARG00000062154 dip2c -1.25 

7 0.03 -1 ENSDARG00000020008 vcp -1.24 

1 0.05 -2 ENSDARG00000023323 ywhaqb -1.24 

13 0.03 0 ENSDARG00000000966 ncor2 -1.23 

16 0.04 1215 ENSDARG00000035994 rims2b -1.20 
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9 0.00 2984 ENSDARG00000045639 elavl4 -1.20 

21 0.05 -2 ENSDARG00000020609 snap25a -1.14 

8 0.02 -3 ENSDARG00000011701 ctsll -1.13 

 

 

iv. Genes differentially expressed in MnCl2 treated homozygous slc39a14U801 

mutants  

(genes are listed in order of their fold-change) 

Chr p-value Distance 

to 3' end 

e76 Ensembl Gene ID Gene name Fold change 

(mut/sib) 

Upregulated 

13 0.00 0 ENSDARG00000011862 inaa 6.49 

22 0.01 686 ENSDARG00000044526 camk1ga 5.44 

6 0.00 3109 ENSDARG00000070726 cnga3a 5.24 

19 0.00 4818 ENSDARG00000063690 nrm 3.80 

16 0.00 -1 ENSDARG00000038439 fabp10a 3.19 

6 0.00 -1 ENSDARG00000097008 opn1mw1 3.09 

2 0.00 1640 ENSDARG00000020602 grk7a 2.83 

19 0.00 2197 ENSDARG00000063014 dbpa 2.72 

8 0.00 -8 ENSDARG00000078917 zgc:195245 2.59 

1 0.00 0 ENSDARG00000042988 SLC24A2 (1 of 2) 2.57 

17 0.02 1985 ENSDARG00000062510 bcl11ba 2.44 

16 0.05 -2 ENSDARG00000037860 cox6b2 2.39 

3 0.00 -4 ENSDARG00000037925 rgs9a 2.39 

22 0.04 -6 ENSDARG00000070918 FETUB (2 of 2) 2.37 

21 0.00 2 ENSDARG00000094217 si:dkey-17e16.15 2.34 

1 0.02 -8 ENSDARG00000094133 si:dkey-9i23.11 2.31 

13 0.00 0 ENSDARG00000014840 prph2b 2.29 

14 0.00 125 ENSDARG00000039963 fgfbp1 2.28 

8 0.00 -3 ENSDARG00000012848 arih2 2.26 

19 0.00 -5 ENSDARG00000035909 mfsd2ab 2.21 

25 0.00 -3 ENSDARG00000018566 flnca 2.03 

18 0.01 -16 ENSDARG00000018119 cox5ab 2.03 

4 0.01 -31 ENSDARG00000045490 NDUFB2 2.01 

16 0.04 0 ENSDARG00000070399 alg2 1.99 

3 0.04 1882 ENSDARG00000061836 nfixb 1.95 

3 0.04 -2 ENSDARG00000059610 gpr146 1.94 

1 0.02 -1 ENSDARG00000031164 tuba8l2 1.91 

3 0.01 5 ENSDARG00000037941 syt5a 1.90 

21 0.02 8 ENSDARG00000057571 pgam2 1.88 

18 0.02 0 ENSDARG00000068374 si:ch211-132b12.7 1.88 

22 0.01 2852 ENSDARG00000071375 celf5a 1.87 
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2 0.00 -10 ENSDARG00000055595 clul1 1.87 

8 0.00 4257 ENSDARG00000077112 sc:d0413 1.84 

16 0.02 4249 ENSDARG00000062374 leng9 1.84 

6 0.05 1 ENSDARG00000044199 gnat1 1.83 

19 0.01 0 ENSDARG00000011146 uqcrb 1.82 

22 0.00 11 ENSDARG00000022968 fxr1 1.81 

14 0.04 2 ENSDARG00000056874 lygl1 1.81 

12 0.02 -6 ENSDARG00000096721 si:rp71-1c10.11 1.76 

1 0.00 -75 ENSDARG00000029898 CNGA1 (2 of 2) 1.71 

18 0.00 3062 ENSDARG00000086756 RGS9BP 1.65 

4 0.03 12 ENSDARG00000006029 lta4h 1.64 

16 0.01 -1 ENSDARG00000040251 ctsk 1.64 

15 0.00 223 ENSDARG00000063475 abcg1 1.63 

15 0.04 1143 ENSDARG00000077785 atf5b 1.60 

19 0.00 12 ENSDARG00000011334 ncaldb 1.60 

6 0.02 0 ENSDARG00000038153 lgals2b 1.55 

12 0.00 -7 ENSDARG00000056605 wbp2 1.55 

4 0.01 1637 ENSDARG00000045798 ptn 1.53 

12 0.02 -1 ENSDARG00000078461 pde6c 1.52 

3 0.00 -2 ENSDARG00000038196 zgc:112146 1.51 

11 0.05 235 ENSDARG00000028066 diras1a 1.51 

14 0.04 1 ENSDARG00000032929 cryba1l1 1.50 

6 0.01 -23 ENSDARG00000015531 SLC4A8 1.49 

15 0.04 0 ENSDARG00000079414 sez6b 1.49 

17 0.04 1053 ENSDARG00000057790 ankrd6a 1.46 

19 0.03 -1 ENSDARG00000070012 sesn2 1.46 

3 0.00 -2 ENSDARG00000053058 rps11 1.45 

10 0.04 -13 ENSDARG00000030498 il6st 1.45 

19 0.00 1215 ENSDARG00000035994 rims2b 1.44 

4 0.04 -58 ENSDARG00000001953 pfkfb3 1.43 

13 0.03 1151 ENSDARG00000004702 irf2bp2a 1.43 

20 0.00 47 ENSDARG00000046106 rab10 1.43 

9 0.01 1435 ENSDARG00000057768 RBMS1 (1 of 2) 1.40 

6 0.01 0 ENSDARG00000009505 slmo2 1.37 

8 0.00 -1 ENSDARG00000042529 gnat2 1.37 

21 0.00 1040 ENSDARG00000059978 cplx4a 1.37 

3 0.01 0 ENSDARG00000053457 rpl23 1.35 

25 0.03 -6 ENSDARG00000062477 kiaa1549la 1.34 

8 0.01 -12 ENSDARG00000056090 capza1b 1.34 

15 0.02 -1 ENSDARG00000069361 spa17 1.34 

15 0.01 0 ENSDARG00000010764 flj13639 1.33 

4 0.03 3 ENSDARG00000092677 COA6 1.30 

16 0.00 -5 ENSDARG00000019902 rcv1 1.29 

9 0.04 -2 ENSDARG00000040674 ctdsp1 1.23 
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Downregulated 

6 0.00 -2 ENSDARG00000070439 pde6h -6.19 

25 0.00 0 ENSDARG00000011636 si:ch211-93f2.1 -5.27 

1 0.01 27 ENSDARG00000094910 si:dkey-22i16.7 -4.61 

23 0.00 1153 ENSDARG00000031161 nr1d4a -4.36 

25 0.00 657 ENSDARG00000045737 guca1g -3.96 

15 0.02 -10 ENSDARG00000088885 si:ch1073-340i21.3 -3.66 

6 0.02 0 ENSDARG00000052099 agxta -3.66 

19 0.00 0 ENSDARG00000011334 ncaldb -3.45 

19 0.00 -1 ENSDARG00000002696 gnb3b -3.31 

3 0.05 -2 ENSDARG00000038141 atf4b2 -3.24 

8 0.04 -3 ENSDARG00000056765 ela2l -3.24 

9 0.00 0 ENSDARG00000013708 usp9 -3.23 

6 0.00 -2 ENSDARG00000097445 si:dkey-195m11.8 -3.18 

6 0.03 -3 ENSDARG00000096398 si:ch211-276a17.5 -3.12 

9 0.04 444 ENSDARG00000069440 dachd -3.07 

16 0.00 -6 ENSDARG00000043457 gapdh -3.04 

17 0.01 111 ENSDARG00000082907 dre-mir-124-4 -2.85 

8 0.02 0 ENSDARG00000076873 C8H9orf172 (2 of 2) -2.84 

23 0.00 33 ENSDARG00000055638 ankrd33aa -2.81 

11 0.02 3817 ENSDARG00000043835 rab3ab -2.79 

24 0.03 -2 ENSDARG00000015567 zic1 -2.75 

11 0.01 815 ENSDARG00000082495 dre-mir-726 -2.61 

21 0.00 3140 ENSDARG00000044629 guca1d -2.60 

22 0.01 -1 ENSDARG00000057598 s100b -2.59 

8 0.02 -23 ENSDARG00000010933 CACNA1F (1 of 2) -2.57 

21 0.01 -3 ENSDARG00000089716 FP085391.3 -2.56 

2 0.03 2 ENSDARG00000053358 basp1 -2.54 

24 0.03 2 ENSDARG00000004274 zgc:112496 -2.54 

23 0.00 326 ENSDARG00000031161 nr1d4a -2.49 

15 0.02 2109 ENSDARG00000088513 si:dkey-95o3.4 -2.49 

6 0.00 2402 ENSDARG00000070726 cnga3a -2.45 

1 0.02 1831 ENSDARG00000089742 FAM161A -2.43 

6 0.04 0 ENSDARG00000005526 igfn1.1 -2.41 

25 0.01 3984 ENSDARG00000090595 5S_rRNA -2.39 

3 0.00 1 ENSDARG00000096849 si:dkey-16p21.8 -2.38 

12 0.00 2 ENSDARG00000038018 prph2a -2.38 

7 0.01 0 ENSDARG00000009466 rgs9bp -2.34 

16 0.05 662 ENSDARG00000003820 nr1d2a -2.32 

18 0.01 4899 ENSDARG00000069122 si:ch211-216l23.2 -2.29 

1 0.00 -73 ENSDARG00000052035 NXNL1 (1 of 2) -2.20 

7 0.00 1767 ENSDARG00000052138 slc1a2a -2.19 

20 0.00 0 ENSDARG00000010434 clu -2.17 

21 0.00 3 ENSDARG00000053875 cryba1b -2.13 
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10 0.00 0 ENSDARG00000011422 ryr1a -2.11 

20 0.00 0 ENSDARG00000069305 si:ch211-203k16.3 -2.10 

15 0.00 0 ENSDARG00000030758 guca1c -2.09 

7 0.01 647 ENSDARG00000035732 arntl1b -2.09 

8 0.01 0 ENSDARG00000019417 gadd45g -2.03 

6 0.04 -4 ENSDARG00000015862 rpl5b -2.02 

20 0.00 -3 ENSDARG00000070781 cx35b -2.00 

7 0.00 4746 ENSDARG00000079738 ZNF219 -1.98 

10 0.01 108 ENSDARG00000063614 SKOR2 -1.97 

3 0.05 639 ENSDARG00000054320 ap2a1 -1.97 

16 0.04 0 ENSDARG00000019622 rims2a -1.96 

17 0.00 0 ENSDARG00000060494 eprs -1.95 

8 0.04 -1 ENSDARG00000055294 atoh1a -1.91 

8 0.03 2337 ENSDARG00000069484 dab2ipa -1.91 

16 0.00 0 ENSDARG00000057652 dbpb -1.90 

2 0.02 0 ENSDARG00000007663 amph -1.89 

23 0.04 561 ENSDARG00000094280 USP21 -1.89 

21 0.00 1748 ENSDARG00000079286 bcr -1.87 

15 0.05 3746 ENSDARG00000043483 otx5 -1.87 

19 0.01 -3 ENSDARG00000078529 bai1b -1.86 

8 0.02 2507 ENSDARG00000036820 mgll -1.83 

13 0.02 4770 ENSDARG00000004695 six4a -1.83 

12 0.00 -2 ENSDARG00000096616 si:ch211-255p10.3 -1.83 

24 0.00 225 ENSDARG00000087082 CNGB3 (2 of 2) -1.82 

12 0.03 2 ENSDARG00000061844 ARHGEF15 (2 of 2) -1.82 

13 0.00 -1 ENSDARG00000090228 gstal -1.81 

13 0.00 97 ENSDARG00000007382 ubtd1a -1.80 

10 0.01 -9 ENSDARG00000070080 nbeaa -1.80 

11 0.00 10 ENSDARG00000074221 ABCA7 -1.78 

3 0.05 -3 ENSDARG00000037790 pvalb8 -1.78 

23 0.00 -3 ENSDARG00000013963 mipb -1.78 

22 0.01 -3 ENSDARG00000000212 zgc:92061 -1.77 

21 0.00 -8 ENSDARG00000017490 cel.1 -1.76 

3 0.01 0 ENSDARG00000056791 zgc:112320 -1.76 

9 0.02 65 ENSDARG00000034677 scel -1.74 

2 0.01 -5 ENSDARG00000063218 ppm1la -1.74 

21 0.03 2072 ENSDARG00000077650 tnks -1.73 

22 0.00 1396 ENSDARG00000058440 slc6a6b -1.73 

4 0.00 185 ENSDARG00000045574 lrmp -1.72 

1 0.01 0 ENSDARG00000045627 cyp3a65 -1.72 

16 0.02 0 ENSDARG00000044719 nrsn1 -1.72 

11 0.00 0 ENSDARG00000087981 CABZ01088330.1 -1.71 

3 0.04 0 ENSDARG00000074752 hlfa -1.71 

19 0.02 219 ENSDARG00000071015 pbxip1a -1.69 
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18 0.00 -5 ENSDARG00000041691 bhlhe41 -1.68 

19 0.00 2 ENSDARG00000070972 si:ch211-81a5.8 -1.67 

23 0.00 1 ENSDARG00000025850 rps21 -1.67 

15 0.00 2019 ENSDARG00000063475 abcg1 -1.67 

25 0.00 -2 ENSDARG00000009563 slc1a2b -1.67 

17 0.00 258 ENSDARG00000043932 stmn4l -1.66 

15 0.01 -1 ENSDARG00000096909 GUCA1C (3 of 3) -1.65 

8 0.05 -60 ENSDARG00000011521 upb1 -1.65 

6 0.00 -6 ENSDARG00000077004 aldh1l1 -1.65 

11 0.01 3457 ENSDARG00000005966 slc4a5 -1.64 

13 0.00 -2 ENSDARG00000033364 zgc:158387 -1.64 

16 0.00 -5 ENSDARG00000089399 tmem176l.2 -1.64 

6 0.00 -3 ENSDARG00000096324 si:ch211-155d24.7 -1.64 

24 0.01 -2 ENSDARG00000071626 PTGDS (3 of 3) -1.63 

14 0.02 1260 ENSDARG00000040198 fstl5 -1.63 

18 0.01 1459 ENSDARG00000062821 slc6a15 -1.63 

20 0.03 0 ENSDARG00000011602 si:dkeyp-117h8.2 -1.63 

3 0.00 1068 ENSDARG00000052223 rcvrna -1.62 

1 0.03 184 ENSDARG00000070452 tmem66 -1.60 

15 0.05 4270 ENSDARG00000028793 nlk2 -1.60 

10 0.01 3562 ENSDARG00000018065 ntm -1.60 

16 0.00 -2 ENSDARG00000033655 stmn1b -1.60 

25 0.04 -1 ENSDARG00000045904 nr2e3 -1.59 

12 0.01 -3 ENSDARG00000037618 ddit4 -1.58 

17 0.00 -2 ENSDARG00000053485 aldh6a1 -1.58 

14 0.02 -1 ENSDARG00000080010 adh5 -1.57 

19 0.00 0,0 ENSDARG00000036830,
ENSDARG00000092947 

zgc:92533,yt1 -1.57 

7 0.01 6 ENSDARG00000011201 rplp2l -1.57 

10 0.05 2 ENSDARG00000015978 COX5B (2 of 3) -1.56 

16 0.00 -8 ENSDARG00000055514 icn2 -1.56 

2 0.01 0 ENSDARG00000038894 tmx3 -1.55 

20 0.00 -1 ENSDARG00000007823 atf3 -1.55 

20 0.02 0 ENSDARG00000090722 C20H6orf58 (1 of 2) -1.54 

8 0.00 523 ENSDARG00000060081 crb2b -1.54 

21 0.00 -1 ENSDARG00000009553 gng3 -1.53 

16 0.04 -5 ENSDARG00000010420 ndrg1b -1.53 

8 0.02 0 ENSDARG00000093606 RPS11 (2 of 2) -1.53 

2 0.04 1 ENSDARG00000076223 SERP1 (2 of 2) -1.53 

20 0.00 59 ENSDARG00000007823 atf3 -1.52 

12 0.00 0 ENSDARG00000052896 lrit1b -1.52 

7 0.03 3203 ENSDARG00000067829 ppargc1a -1.52 

19 0.04 0 ENSDARG00000042620 zgc:162356 -1.52 

8 0.00 -6 ENSDARG00000005776 guk1b -1.52 

16 0.00 -2 ENSDARG00000009978 icn -1.51 
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12 0.00 0 ENSDARG00000089997 gngt2b -1.50 

10 0.00 -1 ENSDARG00000056511 arr3a -1.50 

2 0.00 3207 ENSDARG00000077722 ppp2r3a -1.50 

13 0.00 0 ENSDARG00000039347 rps24 -1.49 

23 0.03 -1 ENSDARG00000004836 dnajc5ab -1.49 

20 0.02 -8 ENSDARG00000095743 sox11b -1.49 

16 0.04 0 ENSDARG00000040159 wnt4b -1.49 

25 0.05 6 ENSDARG00000007788 atp2b1b -1.48 

19 0.00 0 ENSDARG00000036832 cyt1l -1.48 

19 0.02 0 ENSDARG00000076892 nme2b.2 -1.48 

25 0.00 0 ENSDARG00000043722 cpa4 -1.47 

12 0.03 0 ENSDARG00000045051 slc16a3 -1.47 

3 0.01 470 ENSDARG00000052150 pbx4 -1.47 

6 0.01 -2 ENSDARG00000013561 pgm1 -1.47 

9 0.00 -3 ENSDARG00000005470 kif5aa -1.47 

16 0.04 -6 ENSDARG00000004358 gnb3a -1.47 

22 0.00 -1 ENSDARG00000007421 ftcd -1.47 

17 0.00 3 ENSDARG00000086789 bahd1 -1.46 

20 0.04 0 ENSDARG00000012656 atf6 -1.46 

12 0.00 0 ENSDARG00000074001 crygmxl2 -1.46 

24 0.01 509 ENSDARG00000042751 riok3 -1.45 

17 0.03 -3 ENSDARG00000097369 si:ch1073-358o18.3 -1.45 

21 0.03 -6 ENSDARG00000055523 slc22a6l -1.45 

16 0.00 -7 ENSDARG00000002311 fabp11b -1.45 

12 0.04 0 ENSDARG00000022820 pde6g -1.44 

13 0.01 2990 ENSDARG00000028228 zbtb18 -1.44 

4 0.02 4 ENSDARG00000019396 rergla -1.44 

18 0.00 0 ENSDARG00000088839 BX248120.1 -1.44 

9 0.00 -6 ENSDARG00000019856 atp1a1b -1.44 

22 0.05 2 ENSDARG00000013012 rpl36 -1.44 

17 0.00 0 ENSDARG00000007697 fabp7a -1.43 

12 0.02 -1 ENSDARG00000021806 zfp36l2 -1.43 

17 0.05 -2 ENSDARG00000021811 calm1a -1.43 

13 0.00 -5 ENSDARG00000033285 gsto2 -1.43 

9 0.03 -4 ENSDARG00000055052 map2 -1.42 

7 0.04 662 ENSDARG00000052082 GABARAP (2 of 2) -1.42 

21 0.04 -1 ENSDARG00000010385 sept4a -1.41 

12 0.04 3822 ENSDARG00000076434 ARHGAP22 (2 of 2) -1.41 

23 0.01 -86 ENSDARG00000037559 uba1 -1.41 

14 0.00 -1 ENSDARG00000037488 canx -1.40 

13 0.02 0 ENSDARG00000074919 CU929052.1 -1.40 

22 0.03 0 ENSDARG00000043180 gpd1b -1.40 

19 0.00 2 ENSDARG00000035694 stm -1.39 

7 0.00 -1 ENSDARG00000015536 sox6 -1.39 
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17 0.00 3302 ENSDARG00000055158 prox1a -1.39 

25 0.00 -73 ENSDARG00000016598 ckmt1 -1.39 

8 0.03 -1 ENSDARG00000079745 - -1.38 

23 0.00 -8 ENSDARG00000039007 eno3 -1.38 

7 0.03 -4 ENSDARG00000039730 zgc:112160 -1.38 

6 0.00 5 ENSDARG00000059775 slc32a1 -1.38 

23 0.00 1 ENSDARG00000088091 pfn1 -1.38 

11 0.00 -16 ENSDARG00000044861 opn1lw2 -1.38 

16 0.03 -1 ENSDARG00000042993 try -1.37 

17 0.01 -1 ENSDARG00000014106 cfl2 -1.37 

21 0.00 9 ENSDARG00000024831 crhbp -1.37 

1 0.01 0 ENSDARG00000093494 si:ch211-217k17.9 -1.37 

3 0.00 0 ENSDARG00000038401 tefb -1.37 

1 0.04 0 ENSDARG00000076833 atp1b1b -1.37 

2 0.05 0 ENSDARG00000020103 calrl -1.37 

4 0.01 -51 ENSDARG00000085168 AL935186.3 -1.36 

11 0.05 0 ENSDARG00000004060 bhlhe40 -1.36 

6 0.00 0 ENSDARG00000017624 krt4 -1.36 

6 0.01 0 ENSDARG00000031647 stat2 -1.36 

20 0.05 -3 ENSDARG00000016528 C20H2orf44 -1.36 

22 0.00 0 ENSDARG00000059738 ptprsa -1.36 

10 0.02 -1 ENSDARG00000029764 mef2ca -1.36 

3 0.00 -1 ENSDARG00000053467 gtpbp1 -1.35 

20 0.05 1553 ENSDARG00000076789 cx32.2 -1.35 

7 0.01 2 ENSDARG00000044125 txn -1.35 

3 0.05 0 ENSDARG00000052642 shisa9b -1.35 

1 0.00 157 ENSDARG00000052713 lrrtm1 -1.35 

24 0.00 659 ENSDARG00000005332 lipi -1.35 

18 0.03 0 ENSDARG00000034753 tspan3a -1.35 

3 0.00 3 ENSDARG00000033160 nr1d1 -1.35 

24 0.01 0 ENSDARG00000012388 CU855779.1 -1.34 

25 0.04 1975 ENSDARG00000070734 dyrk4 -1.34 

20 0.02 0 ENSDARG00000054723 PDE4DIP -1.34 

14 0.02 -5 ENSDARG00000004261 tmed9 -1.34 

16 0.03 0 ENSDARG00000021808 nmt2 -1.34 

2 0.04 0 ENSDARG00000089534 CU693369.1 -1.34 

19 0.04 -2 ENSDARG00000071026 mllt11 -1.34 

18 0.00 1 ENSDARG00000056745 necab2 -1.33 

2 0.01 6 ENSDARG00000087277 selj -1.33 

9 0.02 -11 ENSDARG00000040466 vil1 -1.33 

6 0.02 4830 ENSDARG00000096252 artna -1.33 

7 0.00 0 ENSDARG00000059571 dennd4c -1.33 

11 0.00 0 ENSDARG00000039444 FAIM2 -1.33 

15 0.01 4553 ENSDARG00000088898 CALN1 -1.32 
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24 0.04 -2 ENSDARG00000014556 serpinb1l3 -1.32 

6 0.02 -2 ENSDARG00000030349 cryba2a -1.32 

19 0.01 -7 ENSDARG00000035798 gngt1 -1.32 

1 0.05 -3 ENSDARG00000027355 slc25a4 -1.31 

13 0.02 0 ENSDARG00000078102 PSD (2 of 3) -1.31 

6 0.05 0 ENSDARG00000070951 hmga1b -1.31 

19 0.01 0 ENSDARG00000020850 eef1a1l1 -1.31 

15 0.00 1072 ENSDARG00000026784 robo1 -1.31 

15 0.03 -6 ENSDARG00000070019 taf15 -1.31 

11 0.00 82 ENSDARG00000003165 nr2f6b -1.30 

19 0.00 0 ENSDARG00000036830 zgc:92533 -1.30 

20 0.05 0 ENSDARG00000077187 impg1a -1.30 

14 0.00 385 ENSDARG00000083837 CU467832.1 -1.30 

21 0.05 76 ENSDARG00000002587 dpysl3 -1.30 

18 0.02 797 ENSDARG00000075118 CABZ01079192.1 -1.30 

13 0.00 -1 ENSDARG00000062139 eif2ak3 -1.29 

24 0.00 1 ENSDARG00000045442 cpb1 -1.29 

11 0.00 675 ENSDARG00000016551 IQSEC1 -1.28 

14 0.00 -7 ENSDARG00000053262 atp1b4 -1.28 

18 0.00 2244 ENSDARG00000039232 DUSP8 (2 of 2) -1.28 

21 0.05 4721 ENSDARG00000090617 CTIF -1.28 

14 0.03 20 ENSDARG00000037393 slc43a1a -1.28 

23 0.02 0 ENSDARG00000074790 C23H20orf24 -1.28 

21 0.01 1374 ENSDARG00000041562 CABZ01079427.1 -1.27 

22 0.00 -1 ENSDARG00000044526 camk1ga -1.27 

4 0.00 -1 ENSDARG00000003570 hsp90b1 -1.27 

17 0.05 3 ENSDARG00000037840 actc1b -1.27 

25 0.04 3603 ENSDARG00000061368 klf13 -1.27 

24 0.02 3 ENSDARG00000058005 hgd -1.27 

3 0.01 3861 ENSDARG00000014134 prkacaa -1.27 

1 0.03 1013 ENSDARG00000023600 sh3gl2 -1.26 

2 0.01 1869 ENSDARG00000058784 tfr1a -1.26 

6 0.00 -2 ENSDARG00000078842 TNS1 (2 of 2) -1.26 

10 0.01 -13 ENSDARG00000023174 fez1 -1.26 

23 0.00 0 ENSDARG00000088040 MDP1 -1.26 

6 0.05 -2 ENSDARG00000038076 ROMO1 -1.25 

10 0.02 9 ENSDARG00000029764 mef2ca -1.25 

19 0.00 -2 ENSDARG00000036834 zgc:109868 -1.24 

22 0.03 -1 ENSDARG00000019307 dusp5 -1.24 

10 0.00 3951 ENSDARG00000056877 vamp2 -1.24 

6 0.00 4290 ENSDARG00000018032 scn8ab -1.23 

4 0.05 19 ENSDARG00000073963 C4H12orf56 -1.23 

3 0.00 2760 ENSDARG00000014420 elavl3 -1.23 

7 0.01 -1 ENSDARG00000008100 slc7a10a -1.22 
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22 0.04 0 ENSDARG00000053973 fetub -1.22 

17 0.01 3459 ENSDARG00000079068 adam12 -1.22 

22 0.00 -5 ENSDARG00000022372 kng1 -1.21 

1 0.05 3574 ENSDARG00000059036 appa -1.21 

6 0.00 0 ENSDARG00000044280 opn1mw2 -1.21 

23 0.00 0 ENSDARG00000058873 PTPDC1 (1 of 2) -1.21 

11 0.00 0 ENSDARG00000059370 nr1d4b -1.20 

7 0.00 623 ENSDARG00000091111 TIFA -1.19 
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