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Abstract

Background: Epigenetic heterogeneity within a tumour can play an important role in tumour evolution and the
emergence of resistance to treatment. It is increasingly recognised that the study of DNA methylation (DNAm)
patterns along the genome – so-called ‘epialleles’ – offers greater insight into epigenetic dynamics than conventional
analyses which examine DNAmmarks individually.

Results: We have developed a Bayesian model to infer which epialleles are present in multiple regions of the same
tumour. We apply our method to reduced representation bisulfite sequencing (RRBS) data from multiple regions of
one lung cancer tumour and a matched normal sample. The model borrows information from all tumour regions to
leverage greater statistical power. The total number of epialleles, the epiallele DNAm patterns, and a noise
hyperparameter are all automatically inferred from the data. Uncertainty as to which epiallele an observed sequencing
read originated from is explicitly incorporated by marginalising over the appropriate posterior densities. The degree to
which tumour samples are contaminated with normal tissue can be estimated and corrected for. By tracing the
distribution of epialleles throughout the tumour we can infer the phylogenetic history of the tumour, identify
epialleles that differ between normal and cancer tissue, and define a measure of global epigenetic disorder.

Conclusions: Detection and comparison of epialleles within multiple tumour regions enables phylogenetic analyses,
identification of differentially expressed epialleles, and provides a measure of epigenetic heterogeneity. R code is
available at github.com/james-e-barrett.
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Background
Epigenetic variability allows greater phenotypic diversity
and plasticity within a population of genetically simi-
lar cells. Epigenetic diversity within a tumour provides
a mechanism for clonal evolution and the emergence
of resistance to therapy [1]. Persistence of treatment-
resistant subclonal populations may explain the failure
of some therapies, and higher levels of heterogeneity
have been associated with poorer clinical outcomes [2].
Analysing multiple tissue samples from different tumour
regions facilitates quantification of tumour heterogeneity
and phylogenetic analyses. It has been shown that
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intra-tumour DNAm heterogeneity is predictive of time-
to-relapse in diffuse B-cell lymphomas [3], and that both
epigenetic and genetic alterations reflect the evolution-
ary history of prostate cancers [3]. A recent study of
Ewing sarcoma also found substantial levels of epigenetic
heterogeneity within tumours [4].
Epigenetic modifications play an important role in the

regulation of gene expression. One of the most common
types is DNA methylation (DNAm) — where a methyl
group is added to the fifth carbon of cytosine. We will
focus onDNAm in the canonical CpG context where cyto-
sine (C) is followed by guanine (G). High levels of DNAm
in promoter regions are associated with suppressed gene
expression whereas increased methylation in gene body
regions tends to have the opposite effect [5].
Reduced representation bisulfite sequencing (RRBS)

is a sequencing technique that measures DNAm [6].
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The experimental protocol consists of treating DNA
with bisulfite which converts unmethylated cytosines into
uracils. During the amplification process uracils are con-
verted into thymines. After sequencing and comparison
to a reference genome, unconverted CpGs are identified
as unmethylated and vice versa. The RRBS technique
does not sequence the entire genome, but rather regions
of the genome that are enriched for CpGs. This natu-
rally splits the genome into distinct loci which can be
analysed separately.
Conventional analyses of DNAm have focused on the

average DNAm level per CpG site. This is obtained by
examining all of the sequencing reads which contain a
given CpG and simply counting how many times it is
methylated. This type of analysis, however, fails to take
into account the full methylation pattern at a given locus
which can be observed by looking at all contiguous CpGs
along a sequencing read. If there are d CpG sites on
one read then there are 2d possible methylation patterns,
which are called epialleles [7]. Sequencing reads that cover
the same d CpG sites can be compared, and the frequency
of distinct epialleles that are present can be calculated.
Since each DNA fragment comes from a different cell
(more precisely a different allele) this provides a snap-
shot of how many distinct cellular subpopulations are
present within the sample. The additional information
acquired from contiguous CpG sites on sequencing reads
is not present using array-based platforms. It is becom-
ing clear that leveraging this extra information offers
potential insights into the epigenetic landscape that would
otherwise be missed [8–10].
If multiple samples are taken from the same tumour

then each sample can be analysed to see which epialle-
les are present, and in what proportion, at a given locus.
By tracing the presence and absence of different epialleles
across different regions of the tumour and matched nor-
mal tissue it is possible to reconstruct the evolutionary
history of the tumour regions, and to probe for significant
differences between normal and tumour tissue. Moreover,
the diversity of epialleles within the tumour provides a
measure of overall epigenetic heterogeneity.
The acquisition of tumour samples may result in a mix-

ture of both tumour and normal tissue. By comparing the
expression of epialleles within the tumour samples and
matched normal tissue it is possible to estimate the sam-
ple purity— the proportion of the sample which is tumour
tissue. Furthermore, it is possible to decontaminate the
tumour samples by effectively ‘subtracting’ that compo-
nent of the epiallele profile which can be attributed to the
contaminating normal tissue. An analysis of differential
epiallele expression and phylogenetics can be conducted
after decontamination.
We present a Bayesian statistical model to infer which

epialleles are present at a given locus. The model infers

the epialleles that are present and which epiallele each
observed sequencing read corresponds to. One hyperpa-
rameter controls the level of noise in the model (which
represents errors due to bisulfite conversion, PCR ampli-
fication, and sequencing) and this is also inferred from
the data. Finally, the total number of distinct epialleles is
inferred. This final step is a model selection problem and
we use the Akaike Information Criterion to avoid overfit-
ting the model. The Bayesian approach allows the quan-
tification of uncertainty regarding the model parameters.
In particular, there may be some ambiguity as to which
epiallele a certain observed read corresponds to (if some
epialleles are very similar to each other for instance). This
uncertainty is incorporated into the epiallele distribution
by averaging over the appropriate model parameters with
respect to the corresponding posterior density.

Related work
The additional information garnered from adjacent CpGs
can be used to define a measure of variability or het-
erogeneity within a biological sample. The concept of
‘epipolymorphism’, for instance, has been proposed by
[11]. The authors in [12] define a measure of ‘methy-
lation entropy’ based on the Shannon entropy and the
authors in [2] developed the concept of ‘proportion of
discordant reads’.
The term allele-specific methylation has also been used

to refer to epialleles. Statistical models have been devel-
oped by [13–15] to identify epialleles at a given locus and
which epiallele each observed read originated from. These
models can infer multiple epialleles but in applications
only two epialleles have been assumed. An algorithm to
estimate tumour purity and deconvolve the epigenomes
of tumour and normal tissue uses a very similar statistical
model [16].
The authors of [8] compare the epiallele distribution

at two disease stages using a ‘composition entropy dif-
ference calculation’. They identify loci with substantial
shifts in epiallele composition. They confine their analy-
sis to epialleles defined by four CpG sites. Lee et al. [17]
used multinomial logistic regression to test for differences
in the epiallele distribution between normal and cancer
cells. They report performance that is very similar to the
method of [8], but do not constrain their approach to four
CpGs. In both of these approaches the epialleles are iden-
tified from the raw sequencing data, without any inference
step to account for experimental noise.
The authors of [9] develop a statistical model that

explicitly takes into account measurement noise due to
bisulfite conversion efficiency and sequencing errors. The
model allows identification of ‘spurious’ epialleles that
are due to measurement error (spurious epialleles will
tend to have low counts and be very similar to a domi-
nant epiallele). Noise parameters are manually estimated
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from experimental data, and missing data are not facili-
tated by their model.
In summary, an adequate epiallele analysis of DNAm

sequencing data should have the following features. It
should answer the basic research question of whether
there is a difference in the epiallele composition between
two or more groups of samples — and identify the loci
at which there are significant differences. Ideally, some
measures need to be taken to avoid spurious epiallele
detection due to experimental noise. In addition, an anal-
ysis method will generally need to accommodate variable
sequencing depth per loci, a variable number of con-
tiguous CpGs per sequencing read, and missing data.
Missing data can arise from partially overlapping reads
or gaps in a read due to non-overlapping paired-end
sequencing protocols.
In addition to the above features, our Bayesian approach

automatically infers all model parameters (including the
total number of epialleles) from the observed data. Ambi-
guity in model parameters is explicitly incorporated in our
analysis by averaging over the appropriate Bayesian pos-
terior density (descried in detail below). We have applied
our method to data from multiple tumour regions and
matched normal tissue. We have developed a protocol for
estimating the tumour sample purity and consequently
decontaminating the inferred epiallele profiles. Although
we have focused on multi-region tumour sampling our
method could be applied to a single sample also.

Methods
Sequencing reads are aligned to the reference genome and
organised into different genomic loci. A locus is a region
of the genome containing d CpG sites (d can take dif-
ferent values to each locus). Due to the nature of RRBS
data the sequencing reads naturally tend to form non-
overlapping loci. In our paired-end experimental protocol
up to 125 bp was sequenced at each end of the DNA frag-
ment. It is possible for loci to exceed 250 bp in length
if the DNA fragments were longer than this or if mul-
tiple reads partially overlapped. Some additional steps
were taken to modify loci in order to control the amount
of missing data per locus. See Additional file 1 A for
full details.
Let N denote the number of sequencing reads at a given

locus. To keep our notation compact we will avoid index-
ing each locus and what follows here is applicable to any
locus of the genome. A sequencing read is represented by
a d-dimensional vector yi ∈ {0, 1}d where i = 1, . . . ,N
and 0 and 1 correspond to unmethylated and methylated
CpG sites respectively. An example is plotted in Fig. 1(a).
It is assumed that each observed read can be attributed
to one of Q epialleles xq with q = 1, . . . ,Q and Q ≤ N .
The parameter wi ∈ (1, . . . ,Q) specifies which epiallele
read yi originated from. The observed methylation status

of each CpG may differ from the corresponding epiallele
status with probability ε ∈ [ 0, 1/2]. Supposing wi = q we
can therefore write p(yi|xq, ε,Q) = ∏d

μ=1 p(yiμ|xqμ, ε,Q)

where

p
(
yiμ|xqμ, ε,Q

) =
{

ε if yiμ �= xqμ
1 − ε if yiμ = xqμ.

(1)

The epialleles are analogous to latent variables in a latent
variable model. Our goal is to infer the quantities X =(
x1, . . . , xQ

)
and w = (w1, . . . ,wN ) as well as the hyper-

parameter ε and the number of epialleles Q from the
observed data Y = (y1, . . . , yN ). Using Bayes’ theorem the
posterior over the unknown quantities is

p (X,w, ε|Y,Q) = p (Y|X,w, ε,Q) p(X|Q)p(w|Q)

p(Y|Q)
(2)

where the likelihood is

p (Y|X,w, ε,Q) =
N∏

i=1

Q∑

q=1
δq,wi p

(
yi|xq, ε,Q

)
. (3)

The delta function is defined by δxy = 1 if x =
y and δxy = 0 otherwise. The marginal density
p(Y|Q) = ∑′

X
∑′

w
∫
dε′ p (Y|X,w, ε,Q) p(X|Q)p(w|Q)

serves to normalise the posterior density where the sum-
mation is over all possible values of X and w. We will
use maximum entropy priors which are uniform densities
over the 2Qd possible epiallele configurations X and QN

possible values of w.

Bayesian inference
For fixed X, ε, and Q, the maximum a posteriori (MAP)
estimate for w is given by attributing each read yi to the
epiallele that is most similar to it. That is,

w∗
i = argmaxqp

(
yi|xq, ε,Q

)
. (4)

Next we wish to obtain the MAP estimate for xqμ for
fixedw, ε andQ. LetN1 denote the total number ofmethy-
lated CpGs at site μ in observed reads that have been
attributed to epiallele q. That is, N1 = ∑

i yiμ where the
sum is restricted to indices for which wi = q. Similarly,
N0 is the total number of unmethylated CpGs at site μ in
reads stemming from epiallele q. It is straightforward to
show that the MAP estimate is

x∗
qμ = 1 if N1 > N0

x∗
qμ = 0 otherwise. (5)

An example is given in Fig. 1(b). We now define the total
matches at a given locus as α1 = ∑

i,μ δyiμ,xwiμ and mis-
matches as α0 = ∑

i,μ 1 − δyiμ,xwiμ . It can be shown (see
Additional file 1) that the MAP estimate for ε is

ε∗ = α0
α0 + α1

(6)
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Fig. 1 a An example of a genomic locus (chr1:1,145,478-1,145,614) in which each row corresponds to a sequencing read. Black and white circles
represent methylated and unmethylated CpGs respectively. Note that some CpG measurements are missing. b The four epialleles that are inferred
from the observed sequencing reads. c The Akaike Information Criterion score versus the total number of epialleles. The inferred number of
epialleles corresponds to the minimum AIC score. d The proportion of observed reads attributed to each epiallele after marginalisation over the
parameter w (see main text for details)

which is simply the proportion of observed CpGs at that
locus that differ from the underlying epialleles. Some val-
ues of yiμ may be missing and these are handled by simply
omitting them from sums and products over i and μ.

Algorithm
Note that the MAP estimates w∗ and X∗ are independent
of ε. Given a set of observed dataY the first task is to deter-
mine optimal values for w and X. This is done according
to the following algorithm:

1. Initialise w by using hierarchical clustering to group
the observed reads Y into Q groups. The hamming
distance (the proportion of CpGs that differ between
two sequencing reads) is used as a distance measure.

2. Compute X according to (5) using the current
estimate of w.

3. Compute w according to (4) using the current
estimate of X.

4. Repeat steps 2 and 3 until w and X converge to a
steady solution (typically two or three iterations).

Denote the final parameter values as ŵ and X̂. The value
for ε̂ is then given by (6).

Model selection
In principle, the marginal density p(Y|Q) could be used
to compare models with different values of Q. In practice,
however, p(Y|Q) is analytically intractable. Instead we use
the Akaike information criterion (AIC) [18] in order to
select the optimal number of epialleles

AIC(Q) = −2 log p
(
Y

∣
∣
∣X̂, ŵ, ε̂,Q

)
+ 2Qd (7)

where Q̂ = argminQAIC(Q). For a model withQ epialleles
theQd parameters thatmake up thematrixX are regarded

as free parameters. The term 2Qd penalises more complex
models (i.e. models with largerQ). Amore complex model
will only be selected if the evidence from the data is suffi-
ciently strong to overcome the penalty term. An example
of the AIC score is plotted in Fig. 1(c).

Marginalisation ofw
Finally, it may not be completely clear which epiallele an
observed read should be attributed to (there could be sev-
eral epialleles an equal edit distance away). This ambiguity
manifests itself as the uncertainty surrounding the param-
eter wi. The Bayesian approach allows this uncertainty to
be incorporated into our analysis. The marginal density
over wi is given by fixing all other parameters to their
MAP values

p
(
wi

∣
∣
∣ŵ−i, X̂, ε̂, Q̂

)

=
p

(
Y

∣
∣
∣X̂, ŵ−i,wi, ε̂, Q̂

)
p

(
X̂

∣
∣
∣Q̂

)
p

(
ŵ

∣
∣
∣Q̂

)

p
(
Y

∣
∣
∣Q̂

) (8)

where ŵ−i is a (d − 1)-dimensional vector obtained from
ŵ by removing element i. At the given locus in question
the proportion of observed reads originating from epiallele
q is given by

φq = 1
N

N∑

i=1
p

(
wi = q

∣
∣
∣ŵ−i, X̂, ε̂, Q̂

)
. (9)

The quantity φ = (φ1, . . . ,φQ̂) specifies the distribution
of epialleles within that locus. An example of φ is given
in Fig. 1(d).
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Application to multi-region tumour sampling
We will now describe our analysis protocol. In our appli-
cation we are considering sequencing data from multiple
regions of the same tumour. The number of distinct epial-
leles present at a particular locus is determined by pooling
sequencing reads from all tissue samples (tumour and nor-
mal) in order to boost statistical power. Suppose there are
s = 1, . . . , S tumour samples with Ns reads per sample (at
a given locus). The total number of reads in the pool is
now N = ∑

s Ns. Using the pooled reads a model is fitted
as described above. The vector ŵ defines which epiallele
each sequencing read originated from. The distribution of
epialleles within region s is given by

φs
q = 1

Ns

∑

i∈Is
p

(
wi = q

∣
∣
∣ŵ−i, X̂, ε̂, Q̂

)
(10)

where Is is the set of indices of reads belonging to sample s.
The vectors φs serve to characterise each sample in terms
of their epiallele distributions.

Estimation of sample purity
Suppose Q̂ epialleles are inferred at a particular locus of
a particular tumour sample (for the sake of compactness
we will not index the loci or samples). The locus is charac-
terised by φ, the inferred probability distribution over the
Q̂ epialleles. If the tumour sample is contaminated with
normal tissue then we can write

φ = ρt + (1 − ρ)n (11)

where ρ ∈ [ 0, 1] is the proportion of observed tissue that
comes from the tumour (the sample ‘purity’), and t and n
are the epiallele distributions in the tumour and normal
tissues respectively (at the particular locus in question).
For example, if we infer Q̂ = 3 epialleles at a locus and n =
(0.7, 0.2, 0.1) and t = (0.2, 0.2, 0.6) then for a purity of ρ =
0.8 we would expect to observe φ = (0.3, 0.2, 0.5). We can
estimate φ and n from the observed data at a particular
locus. Estimation of both ρ and t requires solving the Q̂
equations in (11) for Q̂+1 variables which generally is not
possible. However, the quantity

ξ = 1
2

Q̂∑

q=1
abs

(
φq − nq

)
(12)

can be computed at each locus of the observed tissue sam-
ple. The index q sums over all of the epialleles inferred
at this locus and ξ will take different values at different
loci. We can loosely interpret ξ as the proportion of reads
unattributable to normal tissue, and in the example above
ξ = 0.4. If we substitute (11) into (12) we can see that ξ

takes a minimum value of 0 when t = n. At a locus in
which the tumour and normal tissues have a completely
different epiallele composition then we say that if tq > 0
then nq = 0 and if nq > 0 then tq = 0 for q = 1, . . . , Q̂.

It is straightforward to show that if this is the case then
ξ = ρ and that this is the maximum value ξ can take.
We therefore expect that ξ will take values in the range

[ 0, ρ] when computed across all loci of the observed
sample. If we plot the empirical density of ξ values the
parameter ρ can be estimated from the maximum value of
ξ . Since φ and n are estimated from finite data samples we
expect the distribution of ξ to be ‘smoothed’ by sampling
noise. This is precisely what we observe in practice. An
example of the empirical density of ξ is plotted in Fig. 2.

Decontamination of normal tissue
Finally, we note that once estimates of ρ have been
obtained we can calculate the ‘decontaminated’ tumour
epiallele profiles at each locus according to

t̂q = φq − (1 − ρ)nq
ρ

for q = 1, . . . , Q̂. (13)

We have used the notation t̂q to emphasise that this is an
estimate of the tumour epiallele distribution. Due to the
fact that φ, n and ρ are estimated from finite data samples
it is possible that t̂μ can take values outside [ 0, 1]. Any
cases where t̂μ < 0 are set to 0 and any cases where t̂μ > 1
are set to 1.
A conventional analysis of DNAm sequencing data will

typically ‘call’ a methylation level at each CpG site by
computing the proportion of reads on which a CpG
is observed in a methylated state. Using our method a
methylation level for each CpG site can readily be com-
puted after decontamination of normal tissue and used in
existing analysis pipelines.

Construction of a phylogenetic tree
Using the decontaminated representation of a sample t̂s
the euclidean distance between t̂s and t̂s′ can be used as
a distance measure between samples s and s′. Each locus

Fig. 2 Estimation of tumour sample purity for region 2 of the tumour.
The parameter ξ was calculated at all eligible loci across the genome
and the empirical distribution is plotted here. The sample purity is
equal to the maximum value of ξ which is interpreted to occur at the
rightmost maximum at ξ = 0.53. The distribution of ξ is ‘smoothed’
due to the fact that at each locus ξ is estimated from a finite sample
of sequencing reads
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provides a distance matrix that depends on the distribu-
tion of epialleles at that particular locus. To obtain an
overall distance matrix we average over distance matrices
from all loci. Any distance based phylogenetic inference
method can subsequently be used to construct a phyloge-
netic tree. We used the ‘fastme.bal’ function as part of the
‘ape’ R package [19].

Results
Simulations
Simulations of a single locus were performed to study
what effect the number of CpGs, d, the number of
sequencing reads, N, and the noise level, ε, have on our
ability to correctly detect the underlying epialleles. The
simulated reads were noise corrupted versions of three
distinct randomly generated epialleles, and on average
each epiallele corresponded to one third of the observed
reads. To assess model performance we counted the pro-
portion of observed reads that were attributed to their
correct underlying epiallele (which requires both infer-
ence of the correct epialleles and attribution to the correct
epiallele). For every value of the parameters results were
averaged over 100 simulations.
We found that N = 100 and d = 6 gave a success rate of

approximately 95% at a 5% noise level. These values were
used to guide the selection of viable loci in subsequent
analyses of experimental data. Dropping to N = 50 gave a
performance of just over 90% (Additional file 1: Figure S3).
Sequencing depth beyond N = 100 did not yield any
additional performance gain. The performance saturates
at 100% for d > 15 (Additional file 1: Figure S4). Since the
number of possible epialleles is 2d a larger d will typically
make it easier to resolve distinct epialleles. Additionally,
since the underlying epialleles are randomly generated it
is possible that somemay be within one edit distance from
each other, making it difficult for the model to distin-
guish between very similar epialleles and noise when d is
small. Performance was observed to decrease sharply for
increasing noise levels (Additional file 1: Figure S5).

Cell line data: detection of low frequency epialleles
In order to test whether our statistical methods could
detect low frequency epialleles in practice wemixed a fully
unmethylated and fully methylated cell line in a 9:1 ratio
prior to sequencing. Loci with six or more CpGs and 50
or more reads were identified. Within these loci 6.3% of
observed CpGs weremethylated overall. The two cell lines
were sequenced separately and we found that the fully
methylated and unmethylated cells were in fact 97.3% and
3.8% methylated respectively.
The Bayesian model was used to detect the presence of

epialleles at each loci. We found that 5.2% of methylated
CpGs were attributed to methylated epialleles (defined as
epialleles with ≥ 50% methylation). The mean noise level

was inferred as 1.1%. This suggests that the majority of
methylation is correctly identified as corresponding to a
methylated profile and therefore our method is capable of
resolving a distinct low frequency cellular subpopulation.

Multi-region tumour sampling case study
Our case study data consisted of seven tissue samples
from a single lung tumour (CRUK0062) along with one
matched normal tissue sample. These tissue samples were
acquired as part of the larger TRACERx study [20]. The
raw sequencing data were trimmed and aligned to a
reference genome. Sequencing reads were subsequently
organised into distinct genomic loci as described in the
Additional file 1. We demanded that no more than 25% of
data were missing per locus (due to partially overlapping
paired-end reads or reads not covering the whole locus).
Any data from chromosomes X and Y were discarded. At
each locus Q̂ epialleles are inferred and any epialleles that
accounted for less than 5% of observed reads were dis-
carded prior to the computation of φs for s = 1, . . . , S.
This was done in order to focus on the dominant shifts
in epiallele profiles and to minimise the risk of inferring
spurious epialleles.
In order to compare the distribution of epialleles within

different tumour samples it was necessary to identify all
of the loci which occurred in two or more samples. That
is, the loci themselves must ‘match up’ between tumour
samples in order for a comparison to be made (partially
overlapping loci were permitted provided they met the
minimum number of non-missing CpG requirements).
Only loci with a median read depth ≥ 100 across normal
and tumour tissue samples and six or more CpGs were
considered. A total of 39,940 loci were analysed out of
which 73% were found to contain a single epiallele, 13%
contained two, 7% contained three, 4% contained four, and
3% had five our more (up to a maximum of thirteen).

Comparison of epiallele distribution throughout the tumour
At each locus the Bayesian model is used to infer the epi-
alleles present, the total number of epialleles, and which
epialleles each observed sequence came from. An exam-
ple locus with seven CpGs from chromosome one is
presented in Fig. 3. At this locus five distinct epialleles
were detected. Both the observed and decontaminated
profiles are shown. The normal tissue is predominantly
composed of methylated epialleles whereas the tumour
samples have a greater proportion of less methylated epi-
alleles. This suggests that within the tumour there exist
cellular subpopulations that are undergoing a transition
from a methylated state to an unmethylated one.
In order to understand shifts in epiallele frequency

at a global level we plotted a heatmap of the top 200
most variable epialleles in Fig. 4(a) and (c). Both the
observed and decontaminated epiallele profiles were used.
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Fig. 3 A genomic locus (chr1:2,603,277-2,603,489) composed of seven CpGs. The distribution of five epialleles – inferred using the Bayesian model –
are plotted for seven tumour regions (R1 to R7) and one normal sample (N). In a the tumour samples have not been corrected for normal tissue
contamination whereas in b they have been. The tumour samples are shifting towards an unmethylated profile in comparison to the normal tissue.
The locus lies in a large intronic region in the gene TTC34

Tumour samples are characterised by both a loss and
gain of numerous epialleles when compared to the nor-
mal tissue sample. The variability in epiallele expression
throughout different parts of the tumour suggests that a
substantial level of tumour heterogeneity exists at the epi-
genetic level. Note that in the contaminated samples 71
out of the 200 epialleles were located on CpG islands,
and 54 were located on a CpG shore (defined as 2 kilo-
bases either side of an island). In the decontaminated
version 124 epialleles were located on an island and 38
on a shore.

Estimation of sample purity
The sample purities were estimated as described in the
methods section. An example of the empirical density of
ξ within tumour region 2 is plotted in Fig. 2. From the
location of the rightmost maximum we estimate ρ =
0.535. Plots for all tumour regions are given in Additional
file 1: Figure S6. Estimates of purity for the seven tumour
samples are given in Table 1. For tumour region 6 the
rightmost maxima was not visible presumably due to very
low tumour purity. The purity estimates are compared
to estimates obtained from an analysis of exome data
from the same tissue samples performed independently
in [20].

Inference of a phylogenetic tree
Phylogenetic trees were generated as described in the
methods section. The trees for both contaminated and
decontaminated samples are plotted in Fig. 4(b) and (d).
The structure of the contaminated tree is dominated by
the sample purities, with low purity samples clustering
together. The decontaminated tree has a totally different
structure and this is broadly similar to a phylogenetic tree
obtained from from a separate genetic analysis of the same
patient and shown in Additional file 1: Figure S7.

Quantification of epigenetic disorder
The Shannon entropy provides a measure of how dis-
ordered a random variable is. In particular, the entropy
of the epiallele distribution φs quantifies how disordered
or heterogeneous each locus is in sample s. The epiallele
entropy at a given locus is defined as

− 1
d

Q̂∑

q=1
φq log2 φq (14)

where d is the number of CpGs at that locus and φ is
the inferred probability distribution of epialleles (after
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Fig. 4 a Heatmap of the top 200 most variable epialleles across the seven tumour samples (labelled R1 to R7) and matched normal sample (labelled
N). A proportion of 1.0 (dark blue) means that that epiallele accounted for all observed methylation patterns at the corresponding locus. These data
have not been decontaminated of normal tissue. b The phylogenetic tree inferred before correction for contaminating normal tissue. In c and d are
the same figures for the decontaminated epiallele profiles. In the top annotation track green denotes a CpG island, yellow a shore, and blue
otherwise. In the bottom track dark purple denotes a gene promoter, otherwise light pink. A promoter was defined as between 2kb upstream and
50bp downstream from a transcription start site

discarding low frequency epialleles and marginalisation
over the w parameter as described above). In Fig. 5
box plots summarise the distribution of entropies across
tumour and normal tissues (without decontamination).
The tumour tissue samples have a substantially elevated

Table 1 In the middle column are estimates of tumour purity
based on a comparison of epiallele distributions between normal
tissue and tumour tissue. The third column contains estimates
obtained from a separate study of exome data from the same
tumour samples

Tumour sample Epiallele purity estimate Exome purity estimate

R1 35% 32%

R2 54% 51%

R3 75% 73%

R4 53% 67%

R5 25% 28%

R6 < 20% 13%

R7 30% 36%

entropy in comparison to the normal tissue. Box plots of
the entropies after decontamination of normal tissue are
shown in Additional file 1: Figure S8. A comparison to the
measures of epigenetic disorder proposed in [2, 11, 12] is
presented in the Additional file 1.

Discussion
Analysis of epialleles allows for a deeper interrogation
of the underlying biology than a pointwise examination
of CpG methylation states. Tracing the patterns of DNA
methylation along epialleles allows one to tease apart dif-
ferent cellular subpopulations and acquire a richer quan-
tification of heterogeneity and disorder that would not be
possible by looking at individual CpG sites. In particu-
lar, the distribution of epialleles throughout a tumour can
shed light on the evolutionary history of the tumour.
Our analysis protocol specifically pools sequencing

reads from multiple tissue samples in order to lever-
age greater statistical power in epiallele detection. Our
Bayesian approach will automatically detect the number
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Fig. 5 Box plots of the Shannon entropy of the epiallele distribution across normal tissue (N) and the seven tumour regions (R1–R7)

of epialleles present, and infer what the methylation pat-
tern of those epialleles are. One strength of the Bayesian
approach is that it provides a framework for averaging
over uncertainty in model parameters. If there is uncer-
tainty as to which epiallele an observed sequencing read
may have originated from, then a natural solution is
to average over that uncertainty by marginalising over
the appropriate posterior distribution. In addition to the
above features our model can easily accommodate miss-
ing data and can handle an arbitrary sequencing depth
and number of CpG sites per locus. Furthermore, by com-
paring the distribution of epialleles within normal and
tumour tissue samples it is possible to estimate the purity
of each sample and to subsequently decontaminate them.
Methylation levels at each CpG site can be extracted from
the decontaminated samples and subsequently used in
standard analysis pipelines.
In future work it may be interesting to compare the

distribution of loci that are located close to each other.
Although it is not possible to phase reads between dis-
joint loci the number of epialleles and the entropy may be
correlated between close loci.
Tracking the presence or absence of epialleles through-

out the tumour opens up an additional layer of complexity
beyond that of conventional methylation analyses. Point-
wise methylation analysis protocols typically average over
sequencing reads – to ‘call’ the methylation status at single
CpGs – that potentially come from a diverse and het-
erogenous population of cells. Detecting which epialleles
are present allows one to distinguish between these cellu-
lar subpopulations and identify tumour subclones that are
defined by distinct epialleles. One can then probe changes
between normal and cancerous tissue at a finer resolu-
tion. As we have demonstrated here, studying epiallele
frequencies in different parts of the tumour reveals the
evolutionary history of the tumour and allows a phylo-
genetic tree to be constructed. A measure of disorder or
heterogeneity inside the tumour can be obtained through
measures such as Shannon’s entropy.

Conclusion
Understanding tumour heterogeneity is an important step
towards understanding why certain therapies fail and why
resistance to treatment can emerge. Subclonal popula-
tions of treatment-resistant cells can persist after treat-
ment even if they only account for a small fraction of the
original tumour. Epigenetic diversity within the tumour
may play an important role in tumour evolution along-
side genetic variability. It is increasingly recognised that
for DNA methylation sequencing data studying the pat-
terns of methylation along the genome – ‘epialleles’ –
can provide greater insight into the underlying dynam-
ics of epigenetic regulation than a conventional pointwise
analysis.
We have exploited this opportunity to study the dis-

tribution of epialleles throughout a tumour by perform-
ing reduced representation bisulfite sequencing on seven
regions of the same tumour and one matched normal
tissue sample. Our new Bayesian approach infers which
epialleles are present at a given locus. A comparison of
the frequency of different epialleles across the tumour
and normal tissue highlights changes between normal
and cancerous tissue and allows the extraction of a phy-
logenetic history. The concept of entropy can be used
as a measure of global disorder within the tumour. Our
method can be applied more generally to any type of
DNAm sequencing data.
Future work will focus on larger scale studies of multi-

ple patients with multi-region tumour sampling in order
to probe for systematic alterations in epiallele expression
between normal and cancerous tissue. Previously, mea-
sures of epigenetic disorder were found to be associated
with clinical outcome and it will be interesting to see if
quantification of disorder at the level of epialleles will pro-
vide a more refined measure of tumour aggressiveness.
Ultimately, it is hoped that a clearer elucidation of epige-
netic dynamics will complement our genetic knowledge of
cancer and provide a more comprehensive understanding
of the disease.
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