Calcium supplementation and risk of dementia in women with cerebrovascular disease

ABSTRACT

Objective: To determine whether calcium supplementation is associated with the development of dementia in women after a 5-year follow-up.

Methods: This was a longitudinal population-based study. The sample was derived from the Prospective Population Study of Women and H70 Birth Cohort Study in Gothenburg, Sweden, and included 700 dementia-free women aged 70–92 years. At baseline in 2000–2001, and at follow-up in 2005–2006, the women underwent comprehensive neuropsychiatric and somatic examinations. A CT scan was performed in 447 participants at baseline. Information on the use and dosage of calcium supplements was collected. Dementia was diagnosed according to DSM-III-R criteria.

Results: Women treated with calcium supplements (n = 98) were at a higher risk of developing dementia (odds ratio [OR] 2.10, 95% confidence interval [CI] 1.01–4.37, p = 0.046) and the subtype stroke-related dementia (vascular dementia and mixed dementia) (OR 4.40, 95% CI 1.54–12.61, p = 0.006) than women not given supplementation (n = 602). In stratified analyses, calcium supplementation was associated with the development of dementia in groups with a history of stroke (OR 6.77, 95% CI 1.36–33.75, p = 0.020) or presence of white matter lesions (OR 2.99, 95% CI 1.28–6.96, p = 0.011), but not in groups without these conditions.

Conclusions: Calcium supplementation may increase the risk of developing dementia in elderly women with cerebrovascular disease. Because our sample was relatively small and the study was observational, these findings need to be confirmed.

Neurology® 2016;87:1674–1680

GLOSSARY

AD = Alzheimer disease; CI = confidence interval; DSM-III-R = Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised; ICD = International Classification of Diseases; MMSE = Mini-Mental State Examination; OR = odds ratio; VaD = vascular dementia; WHI CaD = Women’s Health Initiative Calcium/Vitamin D supplementation study; WML = white matter lesion.

Dementia and osteoporosis are leading causes of disability in the elderly. Because calcium deficiency contributes to osteoporosis, daily dietary calcium intake of 1,000–1,200 mg is recommended. Such a large calcium intake through diet alone can be difficult; therefore, calcium supplements are widely used. However, recently, the safety of calcium supplements has been questioned. Dietary calcium in the recommended range seems to be safe or might even be protective against vascular events, while the literature on calcium supplementation is inconclusive. Some trials have reported an association between calcium supplementation and increased risk for vascular events, while others have reported no association. A permanent increase in calcium levels increases vascular risk. Vascular risk factors are related to vascular dementia (VaD) and Alzheimer disease (AD). Thus, if calcium supplement intake increases the risk for vascular events, it might increase the risk for dementia. Calcium supplementation might have direct toxic effects on vulnerable neurons, because the increased calcium levels may amplify ischemic cell death and worsen the outcome after cerebrovascular events. The relation...
between calcium supplement and dementia may be especially strong in persons with vascularopathies such as stroke or ischemic white matter lesions (WMLs). Therefore, we hypothesized that calcium supplementation is associated with an increased risk of dementia and this association is accentuated in individuals already compromised by ischemic cerebrovascular disease, such as those with a history of stroke or ischemic WMLs. This hypothesis was tested using a population sample of elderly women initially free from dementia with a 5-year follow-up.

METHODS

Sample. The baseline sample was derived from the 2000–2003 examinations of the Prospective Population Study of Women and the H70 Study in Gothenburg, Sweden.13,14

Samples were obtained from the Swedish Population Registry, based on birth date, and included persons living in private households and residential care.13,14

The baseline sample has been described previously.13,14 The study included women born on certain dates in 1908, 1914, 1918, 1922, and 1930 and living in Sweden on September 1, 2000.13 Among the 1,200 women selected, 49 died before examination, 12 could not speak Swedish, and 21 had emigrated from Sweden, leaving an effective sample of 1,018 women.13,14 Among these, 789 participants were asked to show multidose drug-dispensing lists.13 Participants were asked to show the interviewer the drugs they used.13 A participant was classified as a user if drug use was documented by either source.13 Information on duration of drug use or dosage regimen was unavailable, but the average recommended daily dose of calcium supplements in Sweden is 1,000 mg.

Participants also underwent somatic examinations, including medical history, blood pressure, and serum total and high-density lipoprotein cholesterol level measurements.13 Presence of diabetes mellitus and cigarette smoking status were ascertained.13 In addition, APOE genotyping was performed.13

Drug utilization was recorded according to the Anatomical Therapeutic Chemical classification system.13 Information on regular drug use, including calcium supplements, was collected from multidose drug-dispensing lists.13 Participants were asked to show the interviewer the drugs they used.13 A participant was classified as a user if drug use was documented by either source.13 Information on duration of drug use or dosage regimen was unavailable, but the average recommended daily dose of calcium supplements in Sweden is 1,000 mg.

Neuropsychiatric baseline and follow-up assessments. These assessments were conducted by experienced neuropsychiatric nurses.13 We used the same methodology as the one employed in a previous study.13 The semi-structured examinations included ratings of psychiatric symptoms and signs and mental functioning tests, including assessments of memory, aphasia, apraxia, executive functioning, personality changes, and the Mini-Mental State Examination (MMSE), as described previously.1,11

Participants also underwent somatic examinations, including medical history, blood pressure, and serum total and high-density lipoprotein cholesterol level measurements.13 Presence of diabetes mellitus and cigarette smoking status were ascertained.13 In addition, APOE genotyping was performed.13

Drug utilization was recorded according to the Anatomical Therapeutic Chemical classification system.13 Information on regular drug use, including calcium supplements, was collected from multidose drug-dispensing lists.13 Participants were asked to show the interviewer the drugs they used.13 A participant was classified as a user if drug use was documented by either source.13 Information on duration of drug use or dosage regimen was unavailable, but the average recommended daily dose of calcium supplements in Sweden is 1,000 mg.
use at baseline and development of dementia during the 5-year follow-up. The overall effect of calcium supplements on dementia, in general, was examined first. Thereafter, we divided dementia into the following subtypes: AD, mixed dementia, and VaD.

In addition, we examined the relationship between calcium supplementation and development of dementia, and stratified the sample by history of stroke and presence of WMLs at baseline. In the regression models, we controlled for baseline age, education, total vascular risk, and presence of APOE e4. Using separate regression models, we controlled for possible confounders, such as estrogens, cortisone, and vitamin D. SPSS for Windows (v. 17, SPSS Inc., Chicago, IL) was implemented in all statistical tests.

Standard protocol approvals, registrations, and patient consents. The study was approved by the Ethics Committee for Medical Research at the University of Gothenburg. All participants provided informed consent before participating in the study.13

RESULTS Table 1 shows the baseline characteristics in 2000 for participants treated (n = 98) and those not treated (n = 602) with calcium supplementation. There were no differences between the groups in the baseline characteristics of age, MMSE scores, and education. History of stroke at baseline (n = 54) or follow-up (n = 54) was noted in 108 individuals. Five participants had a stroke after dementia was diagnosed. There was no association between calcium supplementation and stroke at baseline (p = 0.68) or new stroke during follow-up (p = 0.54). Of those who received calcium supplements at baseline (n = 98), 77 (77.6%) received follow-up in 2005. At follow-up, 50 women (64.9%) were still using calcium supplementation. Among the 447 participants for whom CT scan was performed, 316 (70.7%) had WMLs. There was no association between calcium supplementation and WMLs at baseline (p = 0.779).

Relationship between calcium supplementation and type of dementia. Fifty-nine women developed dementia between 2000 and 2005. Table 2 shows the different types of dementia among women who took calcium supplements at baseline and those who did not.

Table 3 shows the association between calcium supplementation and dementia at follow-up. Women treated with calcium supplements had a higher risk of developing dementia (odds ratio [OR] 2.10, 95% confidence interval [CI] 1.01–4.37, p = 0.046) and the subtype dementia with stroke (VaD or mixed AD/VaD) (OR 4.4, 95% CI 1.54–12.61, p = 0.006) than the women who did not take calcium supplementation.

Development of dementia in women with and without a history of stroke. We stratified the sample into women with (n = 108) and without (n = 592) a history of stroke (table 4). In the group with history of stroke, calcium supplementation was associated with development of dementia (OR 6.77, 95% CI 1.36–33.75, p = 0.020), but there was no relationship between calcium supplementation and development of dementia in the group without a history of stroke (OR 1.49, 95% CI 0.61–3.63, p = 0.381; table 4).

Development of dementia in those with and those without WMLs. We stratified the CT sample into women with (n = 316) and without (n = 131) WMLs (table 5). In the group with WMLs, calcium supplementation was associated with development of dementia (OR 2.99, 95% CI 1.28–6.96, p = 0.011), whereas in the group without WMLs, none of the women who used calcium supplements developed dementia (p = 0.351).

Table 1 Baseline characteristics of the study population* by daily calcium supplement use

<table>
<thead>
<tr>
<th>Calcium use</th>
<th>No</th>
<th>Yes</th>
<th>p Valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (% of sample)</td>
<td>602 (86)</td>
<td>98 (14)</td>
<td></td>
</tr>
<tr>
<td>Age, y, mean (SD)</td>
<td>75.2 (5.5)</td>
<td>75.9 (5.6)</td>
<td>U = 27,493, p = 0.243</td>
</tr>
<tr>
<td>MMSE score, mean (SD)</td>
<td>27.7 (1.8)</td>
<td>27.9 (1.8)</td>
<td>U = 27,802, p = 0.389</td>
</tr>
<tr>
<td>Education beyond mandatory, n (%)</td>
<td>195 (32.4)</td>
<td>41 (61.8)</td>
<td>p = 0.136</td>
</tr>
<tr>
<td>Stroke up to 2000, n (%)</td>
<td>48 (8.0)</td>
<td>6 (6.1)</td>
<td>p = 0.683</td>
</tr>
<tr>
<td>Stroke after baseline, n (%)</td>
<td>45 (7.5)</td>
<td>9 (9.2)</td>
<td>p = 0.541</td>
</tr>
<tr>
<td>Mean (SD) stroke age, y</td>
<td>75.6 (12.5)</td>
<td>80.6 (7.1)</td>
<td>U = 542, p = 0.165</td>
</tr>
<tr>
<td>CT scan 2000, n (%)</td>
<td>375 (82)</td>
<td>72 (73)</td>
<td>p = 0.041</td>
</tr>
<tr>
<td>WML, n (%)</td>
<td>266 (70.9)</td>
<td>50 (89.4)</td>
<td>p = 0.779</td>
</tr>
<tr>
<td>Mean age of those with WML (SD), y</td>
<td>75.3 (5.5)</td>
<td>76.8 (5.5)</td>
<td>U = 5,664, p = 0.074</td>
</tr>
<tr>
<td>APOE e4, n (%)c</td>
<td>152 (27.7)</td>
<td>19 (21.1)</td>
<td>p = 0.202</td>
</tr>
</tbody>
</table>

Abbreviations: MMSE = Mini-Mental State Examination; WML = white matter lesions.
bMann-Whitney U tests where stated; otherwise, Fisher exacts tests.
cSixty-one cases had no information on the presence of the APOE e4 allele.
Osteoporosis-associated fractures and treatment with cortisone, estrogen, and calcium supplementation with or without vitamin D. The frequency of fractures was 40.8% (n = 40) in the group that received calcium supplements and 20.8% (n = 125) in the group that did not (p < 0.001). The main results remained unchanged in women with history of stroke and presence of WMLs when osteoporotic fractures and treatment with cortisone, estrogens, and vitamin D (only 14 of 98 individuals took calcium supplements without vitamin D) were included in the regression models (data not shown).

**DISCUSSION** We found a relationship between calcium supplementation and increased risk for dementia in elderly women in this 5-year follow-up study. This association was mainly confined to individuals with cerebrovascular disease (history of stroke or presence of WMLs) at baseline.

Stroke and WMLs increase the risk for dementia. Herein, we add to this finding by showing that calcium supplementation further increases this risk. There may be several explanations for our results. Both WMLs and stroke are markers of generalized cerebrovascular disease (history of stroke or presence of WMLs) at baseline.

Stroke and WMLs increase the risk for dementia. Herein, we add to this finding by showing that calcium supplementation further increases this risk. There may be several explanations for our results. Both WMLs and stroke are markers of generalized cerebrovascular disease (history of stroke or presence of WMLs) at baseline.

Dietary calcium might be protective against vascular disease. The difference between dietary calcium and calcium intake by supplements could be explained by variations in corresponding changes in serum calcium concentration. Dietary intake does not increase the serum calcium levels to the same extent as supplements.

### Table 2: Dementia development at follow-up by calcium supplement use excluding participants with dementia at baseline

<table>
<thead>
<tr>
<th>Dementia type</th>
<th>Calcium use, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No, 602 (86)</td>
</tr>
<tr>
<td>AD</td>
<td>29 (4.8)</td>
</tr>
<tr>
<td>VaD/AD</td>
<td>14 (2.4)</td>
</tr>
<tr>
<td>VaD</td>
<td>10 (1.7)</td>
</tr>
<tr>
<td>Mixed (AD/vascular)</td>
<td>4 (0.7)</td>
</tr>
<tr>
<td>Other causes</td>
<td>2 (0.3)</td>
</tr>
<tr>
<td>All dementia cases</td>
<td>45 (7.5)</td>
</tr>
</tbody>
</table>

**Abbreviations:** AD = Alzheimer disease; VaD = vascular dementia.

### Table 3: Use of calcium supplements and risk for different types of dementia in women followed up for 5 years

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>p Value</th>
<th>OR (95% CI)</th>
<th>p Value</th>
<th>OR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium use at baseline</td>
<td>2.1 (1.01-4.37)</td>
<td>0.046</td>
<td>4.4 (1.54-12.61)</td>
<td>0.006</td>
<td>0.66 (0.19-2.25)</td>
<td>0.503</td>
</tr>
</tbody>
</table>

**Abbreviations:** CI = confidence interval; OR = odds ratio.

Logistic regression models included age at baseline, education beyond mandatory, total vascular risk, and presence of the APOE ε4 allele.
In addition, dietary calcium intake involves simultaneous intake of all other components of calcium-containing foods and much lower dosages of calcium than calcium supplements.

The relationship between calcium supplements and risk of dementia and cardiovascular events was examined in the Women’s Health Initiative Calcium/Vitamin D supplementation study (WHI CaD). In this large 7-year randomized controlled trial, the assignment of participants to calcium and vitamin D supplement groups was not related to the development of incident cognitive impairment or dementia, myocardial infarction, or stroke. However, in WHI CaD, about half of the women were taking personal (non-study-protocol) calcium, vitamin D, or both. A comprehensive reanalysis, only including women who did not take personal calcium and vitamin D supplements, showed that calcium supplementation increased the risk of myocardial infarction or stroke. There was no such reanalysis for dementia or cognitive decline. In our study, calcium supplementation was not related to stroke during the follow-up or to WMLs at baseline, although cerebrovascular disease and dementia are closely related. As discussed previously, calcium supplements may only be hazardous to already compromised neurons. A previous study demonstrated that use of calcium-containing dietary supplements was associated with greater brain lesion volume on MRI.

In WHI CaD, the authors stated that the effect of vitamin D alone on cognition is difficult to determine. In this study, we did not detect a modifying effect of vitamin D. Even if cross-sectional and prospective studies linked vitamin D deficiency to AD, VaD, and cognitive decline, existing data are insufficient to conclude that vitamin D supplementation reduces the risk for any chronic diseases than osteoporosis.

The strengths of this study include the population-based sample, the detailed examinations, the prospective design, and the large response rate at follow-up. However, the study has a few limitations. First, we had no information on dietary calcium, serum calcium, or calcium use (causal or persistent). However, about two-thirds of those followed up after 5 years were still on the supplements. An even higher proportion probably comprises persistent users. Inclusion of causal users may underestimate the effect of calcium supplements on the risk of dementia.

Second, it must be emphasized that this is an observational study. Therefore, we cannot infer causality from our analyses or exclude the possibility of confounding by indication, because persons using calcium supplements may be less healthy than other individuals. However, about two-thirds of those followed up after 5 years were still on the supplements. An even higher proportion probably comprises persistent users. Inclusion of causal users may underestimate the effect of calcium supplements on the risk of dementia.

In addition, dietary calcium intake involves simultaneous intake of all other components of calcium-containing foods and much lower dosages of calcium than calcium supplements.

The relationship between calcium supplements and risk of dementia and cardiovascular events was examined in the Women’s Health Initiative Calcium/Vitamin D supplementation study (WHI CaD). In this large 7-year randomized controlled trial, the assignment of participants to calcium and vitamin D supplement groups was not related to the development of incident cognitive impairment or dementia, myocardial infarction, or stroke. However, in WHI CaD, about half of the women were taking personal (non-study-protocol) calcium, vitamin D, or both. A comprehensive reanalysis, only including women who did not take personal calcium and vitamin D supplements, showed that calcium supplementation increased the risk of myocardial infarction or stroke. There was no such reanalysis for dementia or cognitive decline. In our study, calcium supplementation was not related to stroke during the follow-up or to WMLs at baseline, although cerebrovascular disease and dementia are closely related. As discussed previously, calcium supplements may only be hazardous to already compromised neurons. A previous study demonstrated that use of calcium-containing dietary supplements was associated with greater brain lesion volume on MRI.

In WHI CaD, the authors stated that the effect of vitamin D alone on cognition is difficult to determine. In this study, we did not detect a modifying effect of vitamin D. Even if cross-sectional and prospective studies linked vitamin D deficiency to AD, VaD, and cognitive decline, existing data are insufficient to conclude that vitamin D supplementation reduces the risk for any chronic diseases than osteoporosis.

The strengths of this study include the population-based sample, the detailed examinations, the prospective design, and the large response rate at follow-up. However, the study has a few limitations. First, we had no information on dietary calcium, serum calcium, or calcium use (causal or persistent). However, about two-thirds of those followed up after 5 years were still on the supplements. An even higher proportion probably comprises persistent users. Inclusion of causal users may underestimate the effect of calcium supplements on the risk of dementia.

Second, it must be emphasized that this is an observational study. Therefore, we cannot infer causality from our analyses or exclude the possibility of confounding by indication, because persons using calcium supplements may be less healthy than other individuals. However, about two-thirds of those followed up after 5 years were still on the supplements. An even higher proportion probably comprises persistent users. Inclusion of causal users may underestimate the effect of calcium supplements on the risk of dementia.
problematic if these women did not take calcium supplementation.

Third, information from participants who have a fracture and can self-report information may differ from those whose information is only obtained from the registry.57

Fourth, the overall sample size, particularly of dementia cases, was small (only 14 of 98 who used calcium supplementation had dementia) and might have led to a low statistical power in some of the subgroups; for example, the number of individuals with pure VaD was too small for separate analyses, which required us to merge this group with that of mixed dementia. However, both these entities had a history of stroke and are expected to share the same vulnerability to calcium supplements.

Fifth, CT scans were not performed at follow-up. Thus, we were unable to assess the effect of calcium supplements on changes in WMLs or silent strokes.

Sixth, CT is less sensitive than MRI for detecting WMLs and is more influenced by bone-hardening artefacts.38 However, CT is better for delineating clinically relevant WMLs and is the most widely used imaging technique worldwide. In addition, there is scarce evidence to propose that MRI is better than CT in identifying cerebrovascular changes related to dementia.40 Moreover, as CT is less sensitive to motion artefacts and requires a shorter examination time, it may be more appropriate for older adults. Although the visual rating of WMLs on CT is a rather coarse method, we have previously identified associations between WMLs and both dementia and depression.39 In fact, the absence of perfect agreement probably attenuates the observed relationships.

Seventh, the same individual rated all scans, which may enhance the possibility for systematic error.

Finally, our study was conducted in women; therefore, we cannot generalize these results to men.

AUTHOR CONTRIBUTIONS
Jürgen Kern and Silke Kern analyzed and interpreted the data, conducted the literature search, and wrote the paper. Kai Blennow, Henrik Zetterberg, Margda Waern, Xinxin Guo, and Anne Börjesson-Hanson contributed with the analysis and interpretation of the data and reviewed the article critically for important intellectual content. The corresponding author attests that the authors had access to all the study data, take responsibility for the accuracy of the analysis, and had authority over manuscript preparation and the decision to submit the manuscript for publication. All authors gave final approval of the version to be published. The corresponding author affirms that he has listed everyone who contributed significantly to the work.

STUDY FUNDING
This study was supported by grants from The Swedish Research Council (11:267, 2005-8460, 825-2007-7462, 825-2012-5041, 2013-8717, 2013-61X-14002, 2015-02830); the ToTTen Södbergs Stiftelse at the Royal Swedish Academy of Sciences; Swedish Brain Power; The Alzheimer’s Association Zenith Award (ZEN-01-3151); The Alzheimer’s Association Stephanie B. Overstreet Scholars (IRBG-00-2159); The Knut and Alice Wallenberg Foundation; Sahlgrenska University Hospital (ALF); The Emil and Maria Palm Foundation; The Bank of Sweden Tercentenary Foundation; EU FP7 project LipiDiDet; Grant Agreement 211096; Konsung Guntal V:s och Drottning Victoria Frimurarestiftelse; Erivind och Elsa K:son Sylvans Stiftelse; Stiftelsen Söderström-Königs Sjukhemmet; Stiftelsen för Ganda Tjänstarinor; Handländen Hjälmar Svenssons Forskningsfond; Stiftelsen Längmanska Kulturfonden; Epilef Small Grant; and Stiftelsen Demensfonden. None of the funders was involved in the design or interpretation of the study. The funding sources had no involvement in study design; the collection, analysis, or interpretation of data; the writing of the paper; or the decision to submit the paper for publication.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Received January 16, 2016. Accepted in final form July 5, 2016.

REFERENCES


Calcium supplementation and risk of dementia in women with cerebrovascular disease
Jürgen Kern, Silke Kern, Kaj Blennow, et al.
Neurology 2016;87;1674-1680 Published Online before print August 17, 2016
DOI 10.1212/WNL.0000000000003111

This information is current as of August 17, 2016
**Updated Information & Services**  
including high resolution figures, can be found at:  
[http://www.neurology.org/content/87/16/1674.full.html](http://www.neurology.org/content/87/16/1674.full.html)

**Supplementary Material**  
Supplementary material can be found at:  
[http://www.neurology.org/content/suppl/2016/10/17/WNL.0000000000031111.DC1](http://www.neurology.org/content/suppl/2016/10/17/WNL.0000000000031111.DC1)

**References**  
This article cites 39 articles, 8 of which you can access for free at:  
[http://www.neurology.org/content/87/16/1674.full.html##ref-list-1](http://www.neurology.org/content/87/16/1674.full.html##ref-list-1)

**Citations**  
This article has been cited by 3 HighWire-hosted articles:  
[http://www.neurology.org/content/87/16/1674.full.html##otherarticles](http://www.neurology.org/content/87/16/1674.full.html##otherarticles)

**Subspecialty Collections**  
This article, along with others on similar topics, appears in the following collection(s):  
- [All Cerebrovascular disease/Stroke](http://www.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke)  
- [All Cognitive Disorders/Dementia](http://www.neurology.org/cgi/collection/all_cognitive_disorders_dementia)  
- [Cognitive aging](http://www.neurology.org/cgi/collection/cognitive_aging)  
- [Risk factors in epidemiology](http://www.neurology.org/cgi/collection/risk_factors_in_epidemiology)  
- [Vascular dementia](http://www.neurology.org/cgi/collection/vascular_dementia)

**Permissions & Licensing**  
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:  
[http://www.neurology.org/misc/about.xhtml#permissions](http://www.neurology.org/misc/about.xhtml#permissions)

**Reprints**  
Information about ordering reprints can be found online:  
[http://www.neurology.org/misc/addir.xhtml#reprintsus](http://www.neurology.org/misc/addir.xhtml#reprintsus)