
A Substructural Modal Logic of Utility
GABRIELLE ANDERSON AND DAVID PYM, University College London,
Department of Computer Science, London WC1E 6BT, UK
E-mail: gabrielle.anderson@cantab.net; d.pym@ucl.ac.uk

Abstract
We introduce a substructural modal logic of utility that can be used to reason about optimality with respect to properties
of states. Our notion of state is quite general, and is able to represent resource allocation problems in distributed systems.
The underlying logic is a variant of the modal logic of bunched implications, and based on resource semantics, which is
closely related to concurrent separation logic. We consider a labelled transition semantics and establish conditions under
which Hennessy–Milner soundness and completeness hold. By considering notions of cost, strategy and utility, we are able
to formulate characterizations of Pareto optimality, best responses, and Nash equilibrium within resource semantics. We also
show that our logic is able to serve as a logic for a fully featured process algebra and explain the interaction between utility
and the structure of processes.

Keywords: Substructural logic, bunched logic, modal logic, process algebra, resource semantics, Hennessy–Milner logic
utility, Pareto optimality, Nash equilibrium.

1 Introduction

Mathematical modelling and simulation modelling are fundamental tools of engineering, science
and social sciences such as economics, and provide decision-support tools in management. The
components of distributed systems (as described, for example, in [13]) are typically modelled
using various algebraic structures for the structural components—location, resource, and process—
and probability distributions to represent stochastic interactions with the environment [2, 10–12].
Applications of this approach to systems security modelling have been explored extensively in, for
example, [4–7, 11].Akey aspect of modelling distributed systems is resource allocation. For example,
when many processes execute concurrently, they compete for resources. A common desire of system
designers, managers, and users is to determine, if possible, the optimal allocation of resources required
in order to solve a specific problem or deliver a specific service.

We develop a substructural modal predicate logic, MBIU, that can be used to reason about
optimality with respect to properties of states. Our notion of state is quite general, and is able to
represent resource allocation problems in distributed systems; in particular, it encompasses models
of distributed systems in which there is a notion of agent [11, 13, 29]. The preferences of agents among
the various outcomes of system evolutions are modelled using numerical payoffs, as formulated in
game theory. We use arithmetic predicates to relate states to payoffs, and so are able to give a logical
representation of agents’ degrees of satisfaction. The payoff of a state is defined via the actions that
the state can perform: the logic’s modal formulae can then be used to reason about the payoffs of
states that are related by the transition system. The logic also includes substructural connectives—as
in BI [16, 25, 26], MBI [2, 10, 12], and Separation Logic [18, 28]—which can be used, among
other things, to support reasoning about decision-making by concurrent combinations of agents. The
notion of optimality of resource allocation is a central topic in economics, where game theory plays
a significant role.

Vol. 27 No. 5, © The Author, 2017. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction
in any medium, provided the original work is properly cited.
Published online February 7, 2017 doi:10.1093/logcom/exw030Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796

by University College London user
on 08 February 2018

1422 A Substructural Modal Logic of Utility

In Section 2, we develop MBIU. To do so, we must we introduce actions, and define a notion
of transition systems with concurrent structure on their states. We introduce a slight variant on
the standard notion of bisimulation for such a transition system, and describe various properties
that we require for our results to hold; in particular, that the concurrent composition operator is a
congruence with respect to the bisimulation relation. In Section 2.2, we specify our logic, and define
its semantics in terms of concurrent transition relations. We obtain the technical result that, provided
that bisimulation in the underlying transition system is a congruence with respect to the concurrent
composition and any state can only evolve in finitely many ways, full Hennessy–Milner completeness
holds for MBIU; that is, bisimulation equivalence of states corresponds exactly to logical equivalence
in MBIU.

An agent or process, in a given starting state, makes a choice between possible actions and so
evolves, along with its environment, to achieve a new state. Associated with such an action is its
value, or utility, which is determined by a payoff function. When agents evolve, or multiple agents
co-evolve—such as when competing as players in a game for resources — they make sequences of
moves, called strategies, that determine the outcome of the game and the payoffs for each of the
agents. For all elementary notions from economics required for this article, including ideas from
utility theory and game theory, a suitable source is [29].

In order to define MBIU, we must introduce actions on states, their transition systems and the
associated notion of bisimulation, payoffs, and strategies. We give some basic examples of how the
logic is used to express properties of states, and establish the conditions on the operational semantics of
actions that are required in order to obtain a Hennessy–Milner soundness and completeness theorem.

In Section 3, we illustrate how the the logical set-up that we have introduced can be used to capture
the classical notions of optimality and equilibrium as established in utility theory and game theory.
We begin with a classic example from distributed systems modelling: mutual producer–consumer.
We then explain how our set-up can be used to express Pareto optimality. This example leads naturally
into a discussion of game-theoretic examples and concepts. We consider here the prisoner’s dilemma,
the best-response property, and Nash equilibria.

In Sections 4 and 5, we show that the framework for modelling distributed systems, as introduced
in [11, 12] and improved theoretically in [2], is encompassed by our framework, with the consequence
that the treatment of of utility in MBIU extends to the modelling framework given in [2]. We revisit
the mutual producer–consumer example from Section 3, explaining the interaction between the
process-theoretic structure and utility.

Finally, in Section 6, we discuss a range of challenges for future research, in both logical and
utility-theoretic directions.

A short version of this article is [1].

2 A substructural modal logic of utility

In this section, we define a substructural modal predicate logic, MBIU, that can be used to reason
about optimality with respect to properties of states. Our notion of state is quite general; in particular,
it encompasses models of distributed systems in which there is a notion of agent [11, 13, 29]. The
preferences of agents among the various outcomes of system evolutions are modelled using numerical
payoffs, as formulated in game theory. We use arithmetic predicates to relate states to payoffs, and
so are able to give a logical representation of agents’ degrees of satisfaction. The payoff of a state
is defined via the actions that the state can perform: the logic’s modal formulae can then be used to
reason about the payoffs of states that are related by the transition system. The logic also includes
substructural connectives — as in BI, MBI, and Separation Logic [18, 28]—which can be used,

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1423

among other things, to support reasoning about decision-making by concurrent combinations of
agents.

In Section 2.1, we introduce actions, and define a notion of transition systems with concurrent
structure on their states. We introduce a slight variant of the standard notion of bisimulation for
such a transition system, and describe various properties that we require for our results to hold; in
particular, that the concurrent composition operator is a congruence with respect to the bisimulation
relation. In Section 2.2, we specify our logic, and define its semantics in terms of concurrent transition
relations. We obtain the technical result that, provided that bisimulation in the underlying transition
system is a congruence with respect to the concurrent composition and any state can only evolve
in finitely many ways, full Hennessy–Milner completeness holds for MBIU. That is, bisimulation
equivalence of states corresponds exactly to logical equivalence in MBIU.

2.1 Transition systems

First, we introduce our notion of action. We assume a set, Act, of actions, which correspond to the
events of the system.

Definition 1 (Action structure)
An action structure Act is a structure (Act,·,1) such that (Act,·) is a total magma, and 1∈Act is a
distinguished action.

Note that we do not require that the distinguished action 1 be a unit for ·, nor do we require · to
be commutative, so Act is not necessarily a (commutative) monoid. We use = to denote syntactic
equality of actions. Let ab denote a ·b.

We take an additional equivalence relation on actions, ≡, for a given action structure Act.

Definition 2 (Action-composition equivalence relation)
An action-composition equivalence relation is an equivalence relation ≡⊆ Act×Act such that, for
all a,b,a′,b′ ∈Act, a ·1≡a, a ·b≡b·a, and a≡a′ and b≡b′ implies a ·b≡a′ ·b′.

Note that the syntactic equivalence relation = and the action-composition equivalence relation
≡ are not necessarily the same. Herein, we only consider actions to be interchangeable if they are
syntactically equal.

Then, we can define transition systems.

Definition 3 (Transition system)
Let Act be an action structure. A transition system is a structure

(S,Act,→)

with carrier set S, action structure Act, and transition relation →⊆S×Act×S.

Let r, s, etc., range over elements of the carrier set of a transition system. We refer to these elements
as states.

Where we use partial functions, we employ the standard notations R↓ and R↑ to denote that the
expression R is, respectively, defined or undefined.

Next, we add the concurrent structure of the states of a transition system. Concurrent transition
systems (with some well-formedness conditions, defined below) are the core mathematical structure
representing system dynamics in this article.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1424 A Substructural Modal Logic of Utility

Definition 4 (Concurrent transition system)
A concurrent transition system is a structure (S,Act,→,≡,◦,e) such that (S,Act,→) is a transition
system, ≡ is an action-composition equivalence relation, e∈S is a distinguished element of the state
space, and ◦:S×S⇀S is a partial operation such that

• for all r and s, if r◦s is defined, then s◦r is defined;

• for all r, r′, s, s′, and all a and b, if r◦s is defined, r
a−→r′, and s

b−→s′, then r′ ◦s′ is defined and

r◦s
ab−→r′ ◦s′;

• for all r, r′′, s and c, there exist r′′′, s′′′, and a and b, s.t. if r◦s is defined and r◦s
c−→r′′, then

c=ab, r
a−→r′′′, s

b−→s′′′, and r′′ =r′′′ ◦s′′′;
• the distinguished action 1 is s.t. e

1−→e and, for all s and a, if e
a−→s, then a=1 and s=e;

• for all r, r◦e is defined.

The action 1 is the distinguished action of Act, and can, in general, only be considered a unit with
respect to the action equivalence relation ≡ (and not, in general, with respect to syntactic equality).
The operation ◦ is referred to as the concurrent composition operation. In the sequel, we work with
a fixed concurrent transition system at every point. We sometimes refer to the distinguished state as

the unit state. We write r →s if there exists some a such that r
a−→s, →∗ for the reflexive, transitive

closure of →, and →+ for the transitive closure of →.
We can use the partiality of the concurrent composition, along with a transition system, to model

straightforwardly key examples in systems modelling [11, 12], such as the following.

Example 5 (Semaphores)
Let Act be the action structure freely generated by the atomic actions a and 1, where 1 is the

distinguished action. Suppose a concurrent transition system ({s,e},Act,→,◦,e), where s
a−→s, s◦e=

s, and s◦s is undefined. Note that → is undefined for any values that are neither specified explicitly
nor required by properties of Definitions 3 and 4. We then have that no state can perform the action

aa; that is, e � aa−→ and s � aa−→. The concurrent transition system acts like a semaphore, in that only one
access action a can be performed at any given time.

The standard notion of bisimulation is that two states in a system are bisimilar if they can perform
the same actions, and, after those reductions, remain bisimilar. We weaken that approach slightly, and
consider two states in a system to be bisimilar if they can perform actions that are equivalent under
≡, and, following those reductions, remain bisimilar. We define the notion of a (action-composition-
equivalence-relation) bisimulation relation between states in a concurrent transition system.

Definition 6 (Bisimulation)
A (action-composition-equivalence relation) bisimulation is a relation R such that, for all states rRs,
then, for all actions a∈Act,

• if r
a−→r′, then there exist b∈Act, s′ ∈S such that s

b−→s′, a≡b, and r′Rs′, and

• if s
a−→s′, then there exist b∈Act, r′ ∈S such that r

b−→r′, a≡b, and r′Rs′.

Let ∼⊆ State×State be the union of all bisimulations for a given concurrent transition system. The
union of any two bisimulations is also a bisimulation. Hence ∼ is well defined, and a bisimulation.
Note that the usual definition of bisimulation for process calculi is a special case of the above,
where Act is a monoid of actions with commutative operation · and unit 1, and action-composition
equivalence is just syntactic equality.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1425

There are various technical properties of bisimulation, that we make use in the remainder of this
article. First, the bisimulation relation ∼ is an equivalence relation.

Lemma 7

For all states s,s′,s′′ ∈S, s∼s, s∼s′ implies s′ ∼s, and s∼s′ and s′ ∼s′′ imply s∼s′′.

Proof. The above are straightforward to observe. �
Secondly, in the state space quotiented by the bisimulation relation, the concurrent composition ◦

is commutative.

Lemma 8

For all r1,r2 ∈S, if r1 ◦r2 is defined, then r1 ◦r2 ∼r2 ◦r1.

Proof. The bisimulation ∼ relation is the largest bisimulation relation, and contains all other
bisimulation relations. In order to show that the above properties hold it is sufficient, therefore,
to define a relation R, for which the required properties hold, and show that the relation R is a
bisimulation.

Let
R={(r1 ◦r2,r2 ◦r1) |r1 ◦r2 is defined }.

By Definition 4, as r1 ◦r2 is defined, r2 ◦r1 is defined. Suppose that r1 ◦r2
c−→s. By Definition 4, we

have that there exist a1,a2 ∈Act, r′
1,r

′
2 ∈S such that c=a1a2, r1

a1−→r′
1, r2

a2−→r′
2, and s=r′

1 ◦r′
2. Also

by Definition 4, we have that r′
2 ◦r′

1 is defined and r2 ◦r1
a2a1−−→r′

2 ◦r′
1. By Definition 2, a1a2 ≡a2a1.

As r′
1 ◦r′

2 is defined, we have that (r′
1 ◦r′

2,r
′
2 ◦r′

1)∈R.
The other case is similar. Hence R is closed and a bisimulation. �
Thirdly, the distinguished state of a concurrent transition system, e, is a unit with respect to

bisimulation.

Lemma 9

For all states s∈S, s◦e∼s.

Proof. Let
R={(s◦e,s) |s∈S}.

By Definition 4, s◦e is defined. Suppose that s◦e
c−→r′. By Definition 4, we have that there exist

a1,a2 ∈Act, r′
1,r

′
2 ∈S such that c=a1a2, s

a1−→r′
1, e

a2−→r′
2, and r′ =r′

1 ◦r′
2. Also by Definition 4, we

have that a2 =1 and r′
2 =e. By Definition 2, a11≡a1. We straightforwardly have that (r′

1 ◦e,r′
1)∈R.

The other case is similar. Hence R is closed and a bisimulation.
�

The transition systems can be non-deterministic. Consider the following example, which is
externally non-deterministic in the sense that transitions with different actions are defined on
individual states [30]:

Example 10

Let Act be the action structure freely generated from the atomic actions p, c, and 1, where 1 is the
distinguished action. Suppose a concurrent transition system

((N×N)∪{e},Act,→,=,◦,e),

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1426 A Substructural Modal Logic of Utility

whose transition relation is the least transition relation such that

(m,n)
p−→ (m,n+1)

(m+1,n)
c−→ (m,n)

(m,n)
1−→ (m,n),

and (m1,m2) ◦ (n1,n2)=(m1+n1,m2+n2). Then, for the resource (2,0), actions p and c are both
defined on the resource and so, in the transition system, there is external non-determinism between
the distinct actions, p and c.

When evolving non-deterministic transition systems, it is necessary to have a method to decide
between possible options. A strategy can be used to determine, for a given state, which possible
transition preferred. If there are no possible transitions, then the strategy returns the non-state
symbol •.

Definition 11 (Strategy)
A strategy is a total function σ :S→ ((Act×S)∪{•}) such that, for all states r ∼s∈S,

• if there exist a∈Act, r′ ∈S such that σ (r)= (a,r′), then there exist b∈Act and s′ ∈S such that

a≡b, σ (s)= (b,s′), r
a−→r′, s

b−→s′, and r′ ∼s′, and
• σ (r)=• if and only if r �→.

Example 12

We can define a strategy to resolve the non-determinism we see in Example 10. Let σ be a function
such that

σ ((m,n)) =
{

(c,(m−1,n)) if 1≤m
(1,(m,n)) otherwise.

This strategy chooses the to consume whenever possible, and to do nothing otherwise.

One property that we immediately obtain is that all strategies map the distinguished state to the
pair of the distinguished action and the distinguished state.

Lemma 13

For all strategies σ , σ (e)= (1,e).

Proof. By Definition 4, s
1−→e and, for all states s and actions a, if e

a−→s, then a=1 and s=e. By

Definition 11, there exists some a and s′ such that σ (e)= (a,s′) and e
a−→s′. As the transition e

1−→e is
the only transition defined on the distinguished state e, a=1 and s′ =e. �

The transition system approach to distributed systems modelling abstracts away from the entities
that make decisions, and their mechanisms for doing so. A mechanism for resolving choices can
be reintroduced into the models through strategies: it does not, however, represent the goals and
interests of the entities making the choices. We can model the decision-making entities’ preferences
concerning the events (or outcomes) of the system through the use of a map from actions to the
rationals. These numbers are interpreted as measures of an agent’s level of satisfaction with a given
action. Let Act be an action structure, with distinguished action 1.

Definition 14 (Action payoff function)
An action payoff function is a partial function v :Act→Q such that, for all a,b∈Act:

• If v(a) and v(b) are defined, then v(ab)=v(a)+v(b);

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1427

• If a≡b and v(a) is defined, then v(b) is defined and v(a)=v(b);
• v(1)=0.

Note that it is possible to have that v(ab) is defined, but that v(a) and v(b) are not defined (c.f.,
Example 36).

We use different action payoff functions to represent the preferences of different decision-making
entities (or, agents). In order to extend payoff functions to states, we must consider what value to
give those states that can perform no actions. The structure in which we value states is the tropical
semiring.

Definition 15 (Tropical semiring)
The tropical semiring

(Q∪{−∞},sup,−∞,+,0)

comprises the carrier set of the rationals together with negative infinity, supremum as the additive
function, addition as the multiplicative function, and negative infinity and zero as the additive and
multiplicative units, respectively. Let the elements of the tropical semiring be denoted q, q′, etc.. We
sometimes refer to such elements as utility values or payoffs. Let D= (Q∪−∞).

Fix an action payoff function v, a strategy σ , and let δ be some rational number in the open interval
(0,1). We can then extend the notion of preference over actions to preferences over states. These
numbers are interpreted as measures of an agent’s level of satisfaction with the given states [29].

Definition 16 (State payoff function)
A state payoff function is a partial function uv,σ,δ :S⇀ (Q∪−∞) such that:

uv,σ,δ(s)=
⎧⎨
⎩

v(a)+δ×uv,σ,δ(s′) if σ (s)= (a,s′), and v(a) and uv,σ,δ(s′) are defined
−∞ if σ (s)=•
undefined otherwise.

The value that can be obtained from actions performed at states reachable in the future is less than
value that can be obtained immediately; that is, δ is a discount factor for future values. Since δ∈ (0,1),
the recursive term in Definition 16 is contractive.

Lemma 17

For all states s, action payoff functions v, strategies σ , and discount factors δ, if σ (s)= (a,s) and
v(a)=0, then uv,σ,δ(s)=0.

Proof. By Definition 16, we have that uv,σ,δ(s)=0+δ×uv,σ,δ(s). As (1−δ) �=0, we have that
uv,σ,δ(s)=0. �

We can now determine payoffs for various resources in Example 12 (which relies on Example 10).

Example 18

This is a simplification of a distributed systems example, presented fully in Example 34. Let v be an
action payoff function such that

v(p)=−1 v(c)=3 δ=0.8.

Recall that

σ ((m,n)) =
{

(c,(m−1,n)) if 1≤m
(1,(m,n)) otherwise,

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1428 A Substructural Modal Logic of Utility

and hence that

σ ((0,0))= (1,(0,0)) σ ((1,0))= (c,(0,0)) σ ((2,0))= (c,(1,0)).

We then have that

uv,σ,δ((0,0)) = 0 By Lemma 17.

uv,σ,δ((1,0)) = 3+0.8×uv,σ,δ((0,0))
= 3

uv,σ,δ((2,0)) = 3+0.8×uv,σ,δ((1,0))
= 5.4.

Note that with a different strategy, and the same action payoff function, discount factor, and underlying
systems model, different payoffs can be achieved.

State payoff functions (Definition 16) specify the value of states in terms of a series of simultaneous
equations. In order to solve these straightforwardly, we only consider strategies that generate a finite
set of simultaneous equations. We make some auxiliary definitions that we use to reason about the
actions and states chosen by repeatedly applying a strategy to a state (and its resulting chosen states).
We particularly make use of these definitions in the proof of various equational properties of payoffs
of resource–process pairs (Section 5).

Definition 19

If σ (r)= (a,s), then σ 0
state(r)=s and σ 0

act(r)=a, and, for all n∈N, if σ (r)= (a,s), σ n
state(s)↓, and

σ n
act(s)↓, then σ n+1

state(r)=σ n
state(s) and σ n+1

act (r)=σ n
act(s). Let σlast(s,σ)=n if and only if σ n

state(s)↓
and, for all n′>n, σ n′

state(s)↑.

Definition 20 (Strategy transition closure)
Let Cσ (r) be the set of states that can be reached from state r by following the transitions specified
by a strategy σ , that is,

Cσ (r)={s |n∈N and σ n
state(r)=s}∪{r}.

In the case that Cσ (r) is finite, uv,σ,δ(r) is specified in terms of a finite set of simultaneous linear
equations (by Definition 16), which can be solved using the methods described in [20]. Henceforth,
we consider only strategies σ such that, for all states s∈S, Cσ (s) is finite. The background definitions
required for the proof of Lemma 21 (below) can also be found in [20].

With these assumptions, we can show a key property: bisimilar states are mapped to the same
payoffs. This is used to demonstrate the fulfilment of required properties concerning the interpretation
of logical predicates (Definition 26).

Lemma 21

If r ∼s, then, for all v, σ , δ and uv,σ,δ(r)=uv,σ,δ(s).

Proof. By our assumptions, r and s both have a finite number of successor states. These states,
and their relevant transition systems, can be uniquely mapped into the final coalgebra of finite and
infinite sequences of actions. In particular, since r ∼s we know that both are uniquely mapped to
the same element of the final coalgebra (see Definition 11). The payoff functions of r and s (which
are contractive in their recursive terms) can be computed as the solution of a finite linear system of

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1429

equations determined by their transition structure. As the elements r and s are mapped to the same
element of the final coalgebra, the linear systems that determine the payoff can be shown to have the
exact same solution. �

We conclude this section with an additional property of our framework, namely, that the unit state
always has a payoff of 0.

Lemma 22

For all action payoff functions v, strategies σ , and discount factors δ, uv,σ,δ(e)=0.

Proof. By Definition 14, we have that v(1) is defined, and equal to 0. By Definitions 4 and 11,

we have that σ (e)= (1,e) and e
1−→e. By Definition 16, we have that uv,σ,δ(e)=0+δ×uv,σ,δ(e). As

(1−δ) �=0, we have that uv,σ,δ(e)=0. �

2.2 Logic and transition semantics

We define a modal predicate logic, MBIU, for expressing properties of resources and their utility.
Building directly on [2, 10, 12], we define a semantics for MBIU in terms a concurrent transition
system and its corresponding bisimulation relation.

We assume a two-sorted first-order language �, building standard terms t,u, etc., from standard
variables x,y,z, etc., and action terms, denoted w, w′, etc., built from action variables α,β, etc.. The
predicate symbols of the language, however, may be applied to standard terms only.

Definition 23

The action terms of MBIU, denoted d , d ′, etc., building on actions a, b, c, etc., are formed according
to the following grammar:

d ::= a |α |d �d .

Let q be a term constant denoting the rational number q, and v(d) be a constant denoting the
rational-valued payoff of the denotation of an action term d according to action payoff function v.

Definition 24 (Terms)
Let the numerical terms, denoted t, t′, etc., be formed according to the following grammar:

t ::= q |x |v(d) | t+t | t×t.

We assume a set Pred of predicate symbols, each with a given arity n, with elements denoted p, q,
etc.. Then, formulae can be defined as follows.

Definition 25 (Predicate formulae)
The predicate formulae of MBIU, denoted p, p′, etc., are given by the following grammar:

ϕ ::= p(t) | t = t |d ≡d |⊥|�|¬|ϕ∨ϕ |ϕ∧ϕ |ϕ→ϕ | I |ϕ∗ϕ |ϕ−−∗ϕ |
〈d〉ϕ | [d]ϕ |∃α.ϕ |∀α.ϕ |∃x.ϕ |∀x.ϕ,

where t, s, x, and α range over terms, action terms, term variables, and action variables, respectively.

The (additive) modalities are the standard necessarily and possibly connectives familiar from
modal logics, in particular Hennessy–Milner-style logics for process algebras [17, 24]. As such,
they implicitly use meta-theoretic quantification to make statements about reachable resources.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1430 A Substructural Modal Logic of Utility

Multiplicative modalities can also be defined [11, 12]. The connectives ∗ and −−∗ are the multiplicative
conjunction (with unit I) and implication (right adjoint to ∗), respectively, familiar from bunched
logics [16] and in particular Boolean BI [22].

Now we give a Kripke-style frame semantics for MBIU.Avaluation is a function mapping standard
variables to rational numbers and action variables to actions. Valuations can be extended to arbitrary
terms and action terms in the standard way: action constants are mapped to their obvious action,
� is mapped to action composition ·, term constants are mapped to their obvious denotations, and
arithmetical functions are mapped to their standard definitions. Let ρ(_) denote valuation of terms
and action terms. Valuations extend to tuples of terms in the straightforward way. We relate the value
of states to terms, for each payoff function v∈V, via a distinguished predicateuv(t).An interpretation
then comprises a model and a valuation.

Definition 26 (MBIU-model)
A model, M , of MBIU, together with a valuation ρ of variables, interprets standard terms in the
carrier set of the tropical semiring, D, and action terms in a set Act of actions, denoted a, b, etc., in
the manner familiar from first-order logic. We write tM for the interpretation of term t in model M
(extended pointwise to tuples of terms). Models must also contain the following elements:

• a concurrent transition system (S,Act,→,≡,◦,e);
• a set of payoff functions V, a discount factor δ ∈ (0,1), and a strategy σ ;
• an interpretation pM ⊆S×Dk , for each predicate symbol p of arity k such that the following

properties hold:

– Predicate ∼-closure: if s∼s′ and (s,d)∈pM , then (s′,d)∈pM ;
– Distinguished predicates: (s,ρ(t))∈uM

v if and only if uv,σ,δ(s)=ρ(t).

As bisimilar states have the same payoff, for fixed action payoff function, strategy, and discount
factor (Lemma 21), interpretations of the distinguished predicates are ∼-closed.

We can then define the semantics of formulas φ via the satisfaction relation s�M ,ρ φ, where M is a
model, s is a state in the concurrent transition system of the model, and ρ is a valuation. Satisfaction
in a given model is then denoted s�M ,ρ ϕ, read as ‘for the given model M , with valuation ρ, the state
s has property ϕ’. The definition of the satisfaction relation is given by Figure 1. In the sequel, we
drop the model M or the valuation ρ, writing s�ρ φ or s�φ, when their definitions are obvious. An
alternative formulation of MBIU with intuitionistic additives (cf. [12, 25]) can be taken if desired.
Its use in modelling applications remains to be explored in future work.

We can now formally describe payoff properties of states.

Example 27

Recall Examples 10, 12 and 18. The formula

φ=∃x,y.(〈p〉uv(x))∧(〈c〉uv(y))∧(v(p)+(δ×x)<v(c)+δ×y)

denotes that it is possible to perform actions p and c, and that the payoff obtained by performing p
(and the actions that follow from the resulting state) is less than that obtained by performing c (and
the actions that follow from the resulting state). Note that uv,σ,δ((2,1))=5.4 and uv,σ,δ((1,0))=3,
and hence

−1+0.8×5.4=3.32<5.4=3+0.8×3.

As a result, we have that (2,0)�φ.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1431

Figure 1. Satisfaction relation for MBIU.

To obtain some key theoretical results concerning of our modelling framework, we require some
additional properties.

When we perform a composition of states, it is necessary to take account of the partiality of
the composition operator. As a result, we shall also require the following ◦-∼-closed property of
concurrent transition systems.

Definition 28 (◦-∼-closed)
If r1 ∼s1, r2 ∼s2, and r1 ◦r2 is defined, then s1 ◦s2 is defined.

Henceforth, all concurrent transitions systems are assumed to be ◦-∼-closed. An immediate result
is that concurrent compositions of bisimilar states are bisimilar. This is a key result, which is used
in the proof of the soundness direction of the Hennessy–Milner correspondence (Theorem 32, Case
ϕ=ϕ1 −−∗ϕ2).

Lemma 29 (Composition congruence)
If r1 ∼s1, r2 ∼s2, and r1 ◦r2 and s1 ◦s2 are defined, then r1 ◦r2 ∼s1 ◦s2.

Proof. Let
R={(r1 ◦r2,s1 ◦s2) |r1 ∼s1,r2 ∼s2,r1 ◦r2 ↓, and s1 ◦s2 ↓}.

Suppose that r1 ◦r2
c−→r′. By Definition 4, there exist a1, a2, r′

1, r′
2 such that c=a1a2, r′ =r′

1 ◦r′
2,

r1
a1−→r′

1 and r2
a2−→r′

2. By Definition 6, there exist b1, b2, s′1, s′2 such that a1 ≡b1, a2 ≡b2, s1
b1−→s′1,

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1432 A Substructural Modal Logic of Utility

s2
b2−→s′2, r′

1 ∼s′1 and r′
2 ∼s′2. By Definition 2, a1a2 ≡b1b2. By Definition 4, s1 ◦s2

b1b1−−→s′1 ◦s′2. We
immediately have that (r1 ◦r2)R(s1 ◦s2).

The other case is similar. Hence R is closed and a bisimulation. �
When we describe states logically, it is necessary to take account of the number of successor states

that can be reached. As a result, we shall also require the following image-finiteness property of
concurrent transition systems.

Definition 30 (Image-finite)
A state s is image-finite if it has finitely many derivatives.

From this point onwards, all states are assumed to be image-finite.
With this set-up, we can prove the Hennessy–Milner soundness and completeness theorem. While

this result is standard within the field of process calculi, in the multi-world framework of resource–
process calculi, this result has only recently been obtained in adequate generality (the issue was raised
in [12] and conclusively addressed in [2]). A key contribution in [2] was restrictions on resource–
process calculi sufficient to prove congruence results, which are required to prove the soundness
direction of the Hennessy–Milner result for the standard notion of bisimulation and a logic that
included multiplicative implication and multiplicative modalities. In this article, we modify those
requirements to permit the handling of predicate logics which can be used to represent notions of
optimality (given a suitable notion of payoff over worlds).

We define the notion of logical equivalence as follows:

Definition 31 (Logical equivalence)
Fix some model M . Then, r ≡MBIU s if and only if, for all valuations ρ and formulae φ, r �M ,ρ φ if
and only if s�M ,ρ φ.

With this set-up, we can prove the soundness direction of the Hennessy–Milner completeness
theorem — operational equivalence implies logical equivalence. This proof requires the congruence
property (Lemma 29).

Theorem 32

If r ∼s, then r ≡MBIU s.

Proof. Fix a model M . We show that, for all states r and s, valuations ρ, and formulae φ, if r �M ,ρ φ

and r ∼s, then s�M ,ρ φ. This property is sufficient to prove logical equivalence. We proceed by
induction over the structure of the satisfaction relation, r �M ,ρ ϕ.

Case ϕ=p(t). By Definition 26, as (ρ(t),r)∈pM and r ∼s, we have that (ρ(t),s)∈pM . Hence we
have that s�M ,ρ p(t).

Case ϕ= t1 = t2. By the hypothesis, we have that ρ(t1)=ρ(t2). Hence, we have that s�ρ t1 = t2.
Case ϕ=d1 ≡d2. By the hypothesis, we have that ρ(d1)≡ρ(d2). Hence we have that s�ρ d1 ≡d2.
Case ϕ=⊥. As the premisses assume r �M ,ρ⊥, we have a contradiction and can disregard this

case.
Case ϕ=�. We have that s�M ,ρ�, straightforwardly.
Case ϕ=ϕ1 ∨ϕ2. By the hypotheses, we have that r �M ,ρ ϕ1 or r �M ,ρ ϕ2. By the induction

hypothesis, we have that s�M ,ρ ϕ1 or s�M ,ρ ϕ2. Hence we have that s�M ,ρ ϕ1 ∨ϕ2.
Case ϕ=ϕ1 ∧ϕ2. By the hypotheses, we have that r �M ,ρ ϕ1 and r �M ,ρ ϕ2. By the induction

hypothesis, we have that s�M ,ρ ϕ1 and s�M ,ρ ϕ2. Hence we have that s�M ,ρ ϕ1 ∧ϕ2.
Case ϕ=ϕ1 →ϕ2. By the induction hypothesis, we have that s�M ,ρ ϕ1 whenever r �M ,ρ ϕ1, and

s�M ,ρ ϕ2 whenever r �M ,ρ ϕ2. Hence we have that s�M ,ρ ϕ1 →ϕ2.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1433

Case ϕ= I . By Lemma 7, as r ∼e and r ∼s, we have that s∼e. Hence we have that s�M ,ρ I .
Case ϕ=ϕ1 ∗ϕ2. By the hypotheses, we have that r ∼ (r1 ◦r2), r1 �M ,ρ ϕ1, and r2 �M ,ρ ϕ2. By

Lemma 7, we have that s∼r1 ◦r2. Hence we have that s�M ,ρ ϕ1 ∗ϕ2.
Case ϕ=ϕ1 −−∗ϕ2. Suppose some r′ such that r′ �M ,ρ ϕ1 and s◦r′ is defined. By Definition 28,

we have that r◦r′ is defined. By Lemma 29, we have that r◦r′ ∼s◦r′. By the hypotheses, we have
that r◦r′ �M ,ρ ϕ2. By the induction hypothesis, we have that s◦r′ �M ,ρ ϕ2. Hence we have that
s�M ,ρ ϕ1 −−∗ϕ2.

Case ϕ=〈d〉ψ . By the hypothesis, there exist a, r′ such that r
a−→r′, ρ(d)≡a, and r′ �M ,ρ ψ . By

the definition of bisimulation, we have that there exist b∈Act, s′ ∈S such that s
b−→s′, a≡b, and

r′ ∼s′. By Definition 2, ρ(d)≡b. By the induction hypothesis, we have that s′ �M ,ρ ψ . Hence we
have that s�M ,ρ 〈d〉ψ .

Case ϕ=[d]ψ . Suppose that s
b−→s′ and ρ(d)≡b. By the definition of bisimulation, we have

that there exist a∈Act, r′ ∈S such that r
a−→r′, a≡b, and r′ ∼s′. By Definition 2, a≡ρ(d). By the

hypotheses, we have that r′ �M ,ρ ψ . By the induction hypothesis, we have that s′ �M ,ρ ψ . Hence we
have that s�M ,ρ [d]ψ .

Case ϕ=∃α.ψ . By the hypotheses, there exists a∈Act such that r �M ,ρ[α:=a]ψ . By the induction
hypothesis, we have that s�M ,ρ[α:=a]ψ . Hence we have that s�M ,ρ ∃α.ψ .

Case ϕ=∀α.ψ . We have, for all a∈Act, that r �M ,ρ[α:=a]ψ . By the induction hypothesis, we
have, for all a∈Act, that s�M ,ρ[α:=a]ψ . Hence we have that s�M ,ρ ∀α.ψ .

Case ϕ=∃x.ψ . By the hypotheses, there exists q∈D such that r �M ,ρ[x:=q]ψ . By the induction
hypothesis, we have that s�M ,ρ[x:=q]ψ . Hence we have that s�M ,ρ ∃x.ψ .

Case ϕ=∀x.ψ . We have, for all q∈D, that r �M ,ρ[x:=q]ψ . By the induction hypothesis, we have,
for all q∈D, that s�M ,ρ[x:=q]ψ . Hence we have that s�M ,ρ ∀x.ψ .

�
The reverse direction of the Hennessy–Milner completeness theorem relies on image-finiteness

(Definition 30).

Theorem 33

If r ≡MBIU s, then r ∼s.

Proof. Fix some model M . Supposing that r ≡MBIU s, we require to show that r ∼s. As ∼ is the
largest relation closed under the conditions in Definition 6, it suffices to show that ≡MBIU is a
bisimulation.

Let

R={(r,s) |r ≡MBIU s}.
Suppose some a∈Act and r′ ∈State such that r

a−→r′. Suppose, for a contradiction, that, there exist

no b∈Act and s′ ∈State, such that s
b−→s′, a≡b, and r′ Rs′.

Let F ={s′ |s
b−→s′ and a≡b}. If F is empty, then r � 〈a〉� and s �� 〈a〉�, contradicting r ≡MBIU s.

Hence F is non-empty. By Definition 30, F ={s′i |1≤ i≤n}, for some finite n. By our supposition, for
all 1≤ i≤n, (r′,s′i) �∈R, hence r′ �≡MBIU s′i. Thus there exist formulae φ1,...,φn such that r′ �φi but
s′i ��φi, for all i. Hence r � 〈a〉(φ1 ∧ ...∧φn) and s �� 〈a〉(φ1 ∧ ...∧φn), again contradicting r ≡MBIU s.

Hence our supposition must be false, and there must exist b∈Act and s′i ∈F such that s
b−→s′i, a≡b,

and r′ Rs′i.
The other case is similar. Hence R is closed and a bisimulation. �

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1434 A Substructural Modal Logic of Utility

The notion of attaching payoffs or weights to actions exists in the literature. Markov chains support
reasoning about complex notions such as average utility with a given time discount, but do not provide
compositionality results over model structures [19]. Process calculi for Markov decision processes,
which include both stochastic and cost-based decision-making, provide such compositionality results
for the class of systems that do not permit negative utility, and then only for a notion of simulation
[15]. That calculus has an associated modal logic, where the action modalities are also modalities
on the weights of the actions. The notion of payoff of a process state is not directly represented, and
cannot be reasoned over in the logic.

3 Examples and optimality

To illustrate the logical set-up we have introduced, we begin with a classic example from distributed
systems modelling: mutual producer–consumer. We then explain how our set-up can be used to
express Pareto optimality. This example leads naturally into a discussion of game-theoretic examples
and concepts. We consider here the prisoner’s dilemma, the best-response property, and Nash
equilibrium.

Example 34 (Mutual producer–consumer)
A classic example of distributed systems modelling is distributed coordination without mutual
exclusion, the most common form of which is that of the producer–consumer system [11, section
2.3.5]. In such a scenario, one entity generates work that another entity can handle at a later point.
We modify this slightly to the scenario with two entities, where each entity can generate work for,
and consume work from, the other.

We extend Example 10. Suppose a concurrent transition system

((N×N)∪{e},Act,→,=,◦,e),

where
(m,n)

p1−→ (m,n+1)

(m+1,n)
c1−→ (m,n)

(m,n)
p2−→ (m+1,n)

(m,n+1)
c2−→ (m,n)

(m,n)
1−→ (m,n),

and (m1,m2) ◦ (n1,n2)=(m1+n1,m2+n2).
The states of the concurrent transition system are pairs of natural numbers, where the first element

of the pair denotes the number of work packages that the first entity can consume and the second
element of the pair denotes the number of work packages that the second entity can consume. The
action p1 denotes production of a work package by the first entity for the second entity, and the action
c1 denotes the consumption of a work package by the first entity. The actions p2 and c2 have the
obvious converse denotations.

Consider the situation where the entities ‘profit’ from the consumption of work packages, and must
‘pay’ to create work packages. A pair of possible payoff functions v1 and v2, for the two entities,
which represents this situation is

v1(p1)=−1 v1(c1)=3 v1(p2)=0 v1(c2)=0
v2(p1)=0 v2(c1)=0 v2(p2)=−2 v2(c2)=4.

Note that each entity has no direct preferences over the actions of the other entity.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1435

Let the discount factor δ be 0.8, and the strategy σ be a function such that each entity consumes if
possible, does nothing if the other is consuming, and produce together when there are no resources
for either to consume:

σ ((m,n))=

⎧⎪⎪⎨
⎪⎪⎩

(c1c2,(m−1,n−1)) if 1≤m and 1≤n
(c1,(m−1,n)) if 1≤m and n=0
(c2,(m,n−1)) if m=0 and 1≤n
(p1p2,(m+1,n+1)) if m=0 and n=0.

Consider the resource (10,0). As there are only work packages available for the first entity, the
actions defined on the resource are the consume action c1, the produce actions p1 and p2, and the
distinguished action 1. Each entity incurs a negative payoff when performing a produce action, which
only benefits the other entity. The payoffs that can be obtained by performing the p1 and c1 actions,
in the state (10,0), are as follows,

v1(p1)+δ×uv1,σ,δ(10,1) ≈ −1+δ×13.4 ≈ 9.7
v1(c1)+δ×uv1,σ,δ(9,0) ≈ 13.4
v2(p1)+δ×uv2,σ,δ(10,1) = 0+0.8×4 = 3.2
v2(c1)+δ×uv2,σ,δ(9,0) = 0.

In state (10,0), the action c1 gains the most for the first entity and p1 gains the most for the second.

For either action, it is not possible to swap to an alternative action that makes one of the entities
better off, without making the other entity worse off. This notion is called Pareto optimality.

Definition 35 (Pareto optimality)
A state s is Pareto optimal if there exists an action a such that, for all other actions b, if some entity
weakly prefers that action b be performed, then there is some other agent that strongly prefers that
action a be performed. Formally, the state s is Pareto optimal if, for entities with payoff functions v1,
…, vn,

R�∃α.∀β.(¬(β≡α))→⎛
⎜⎜⎜⎜⎝

∀x,x′.∃y,y′.(
(〈α〉uv1 (x))∧(〈β〉uv1 (x′))∧(x<x′)

)→(
(〈α〉uv2 (y))∧(〈β〉uv2 (y′))∧(y′<y)

)
∨...∨(
(〈α〉uvn (y))∧(〈β〉uvn (y′))∧(y′<y)

)

⎞
⎟⎟⎟⎟⎠

∨...∨⎛
⎜⎜⎜⎜⎝

∀x,x′.∃y,y′.(
(〈α〉uvn (x))∧(〈β〉uvn (x′))∧(x<x′)

)→(
(〈α〉uv1 (y))∧(〈β〉uv1 (y′))∧(y′<y)

)
∨...∨(
(〈α〉uvn−1(y))∧(〈β〉uvn−1(y′))∧(y′<y)

)

⎞
⎟⎟⎟⎟⎠.

We abbreviate the above formula as PO(v1,...,vn). In Example 34, the resource (10,0) is Pareto
optimal, witnessed by both the actions p1 and c1, and (10,0)�PO(v1,v2) holds. Note that optimality
is defined in terms of actions; this is because, here, we take seriously the representation of actions
that perform allocations. A transition is then an (actively performed) state allocation.

One field in which notions of optimality have been studied significantly is that of games and
decision theory. We can model games in our resource semantics. A classic decision-making example
from game theory is the prisoner’s dilemma.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1436 A Substructural Modal Logic of Utility

Example 36 (Prisoner’s dilemma)
Two individuals have been arrested, and are kept separately, so that they cannot collude in their
decision-making. Each is offered the choice of attempting to ‘defect’, and give evidence against their
partner, or to ‘collaborate’, and say nothing. If one person collaborates and the other defects, then the
collaborating partner goes to jail for a long time, and the defecting partner goes free. If both people
defect, then they both go to jail for a moderate time. If both people collaborate, then they both go to
jail for a short time.

Let Act be the action structure freely generated by the actions c1, d1, c2, d2 and 1, where 1 is the
distinguished action. Let S={r1,r2,r1,2,e} be the state space. The state r1 denotes a resource where
the first person can make a choice, the r2 resource denotes a resource where the second person can
make a choice and the r1,2 resource denotes a resource where both people can make a choice at the
same time. Let r1 ◦r2 =r1,2 be defined, and

r1
c1−→e r1

d1−→e r2
c2−→e r2

d2−→e.

The c1 action denotes collaboration by the first person, and the d1 action denotes defection by the
person. The c2 and d2 actions have the obvious denotations for the second person. Then, (S,Act,→
,=,◦,e) is a concurrent transition system.

We make use of the trivial strategy, for all states s∈S, σ (s)= (1,s). The action payoff functions v1
and v2 for the two people are

v1(c1c1)=−2 v1(c1d2)=−6 v1(d1c2)=0 v1(d1d2)=−4
v2(c1c1)=−2 v2(c1d2)=0 v2(d1c2)=−6 v2(d1d2)=−4.

So, if the first person collaborates and the second defects, then the first person receives six years in
prison (cost v1(c1d2)=−6), while the second receives no time in prison (cost v2(c1d2)=0).

We can define notions of best response and Nash equilibrium.

Definition 37 (Best response)
An action a is a best response for a given entity to a particular choice of action b by another entity,
at a given resource, if the (former) entity has no other action c available to it such that the action cb
is defined on the resource and the entity strongly prefers cb to ab. Formally, a is the best response to
action b at resource s if

s � ∀α.∃x,y.
((

(〈a〉�∧〈α〉�)∗(〈b〉�)
)∧([a�b](uv(x))∧[α�b](uv(y))

))
→(

(v(α�b)+δ×y)≤ (v(a�b)+δ×x)
)
.

We abbreviate the above formula, denoting that a is the best response to action b for the agent
whose payoff function is v, as BR(a,b,v). In the prisoner’s dilemma example, the best response for
the first agent to the action c2 is d1, and r1,2 �BR(d1,c2,v1) holds.

We generalize this notation slightly, so that we write BR(a,b1,...,bn,v) to denote that a is the best
response to the composite action b1 ...bn, for the payoff function v. Formally,

R � ∀α.∃x,y.⎛
⎝
(
(〈a〉�∧〈α〉�)∗(〈b1 �(...�bn)〉�)〉)∧([a�(b1 �(...�bn))](uv(x))

)∧([α�(b1 �(...�bn))](uv(y))
)

⎞
⎠

→(
(v(α�(b1 �(...�bn)))+δ×y)≤ (v(a�(b1 �(...�bn))))+δ×x)

)
.

Now we can express Nash equilibrium.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1437

Definition 38 (Nash equilibrium)
A state s is a Nash equilibrium for a set of entities I ={1,...,n} if there is a collection of actions a1,
…, an such that, for each entity i∈ I with payoff function vi, the action ai is the best response to the
composition of actions aj, where j∈ I \{i}. Formally, the state s is a Nash equilibrium if

s�∃α1 ...αn .BR(α1,α2,...,αn,v1)∧ ...∧BR(αn,α1,...,αn−1,vn).

We abbreviate the above formula as NE(v1,...,vn). In the prisoner’s dilemma example, the Nash
equilibrium is the state r1,2, witnessed by the actions d1 and d2, for payoff functions v1 and v2, and
r1,2 �NE(v1,v2) holds.

4 Resource semantics and modelling

In this section, we take the first step towards using MBIU as a logic of state for a fully featured
process algebra. To this end, we recall our theory of distributed systems modelling, as presented in,
for example, [2, 11, 12]. Building on the classical distributed systems theory [13], the structural
components of this modelling framework are location, resource, and process, together with a
stochastically modelled environment. In this article, we make no further use of stochastically modelled
environments.

Mathematically, we capture the structural components as follows:

• Location. In general, locations can be conveniently modelled using a range of graph-theoretic
and topological structures [9, 11], with directed graphs being the key example for most practical
modelling work. For simplicity, we make no further use of locations in this article. The reader
might think of them either as implicitly present, or consider them to be rolled up into the
definition of resources (see [11] for relevant technical support):

• Resource. In general, resources are assumed to form a preordered partial commutative resource
monoid, in which resource elements can be combined, using the monoid operation, compared,
using the preorder. The partiality ensures that not all combinations need be considered such as
those beyond a certain size in a resource monoid based on the natural numbers. The structure of
the monoid is subject to some coherence conditions [11, 16, 25]. A key example of a monoid of
resources is given by the natural numbers (with 0), with addition as the monoid operation and
less-than-or-equals as the order: (N,≤,+,0). For this article, we work in the simpler setting in
which we omit the preorder (see Definition 39, below):

• Process. In general, our treatment of process is based on Milner’s synchronous calculus of
communicating systems (SCCS) [23], as developed as a basis for systems modelling in [11, 12].
Note that asynchronous calculi can be encoded within such synchronous calculi [23].

The key idea is that resources and processes co-evolve, according to one of the following judgement:

R,E
a→R′,E′, which is read as ‘the process E, using resources R, performs action a and so becomes

the process E′ that is able to evolve using resources R′’. The operational semantics that defines such
a transition system relies on a (partial) modification function (see Definition 40, below) that specifies
how a given action modifies a given resource. This approach is known as resource semantics.

A simple way to describe distributed systems — neglecting for now the process-theoretic
structure — is using resource semantics for the state space and concurrent composition, and using a
modification function as the dynamics of the transition system. This family of systems are concurrent
transition systems, and have all the properties that we described in Section 2. Later, in Section 5, we
develop the theory in the process of a fully featured process algebra.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1438 A Substructural Modal Logic of Utility

For now, we begin with the notion of resource from Boolean BI [18].

Definition 39 (Resource monoid)
A resource monoid is a structure R= (R,◦,e) with carrier set R, commutative partial binary operation
◦:R×R⇀R, and unit e∈R.

Let Act be a commutative monoid of actions, freely generated from a set of atomic actions, with
operation · and unit 1. The actions correspond to the events of the system. The dynamics of the system
is then given by the modification function, which describes how actions transform resources.

Definition 40 (Modification function)
A modification function is a partial function μ :R×Act⇀R such that

• for all R and S, and all a and b, ifμ(R,a),μ(S,b), and R◦S are all defined, thenμ(R,a)◦μ(S,b)
and μ(R◦S,ab) are both defined, and μ(R◦S,ab)=μ(R,a)◦μ(S,b);

• for all R, μ(R,1)=R;
• for all R and S, and all c, if R◦S and μ(R◦S,c) are defined, then there exist a and b such that

c=ab, and μ(R,a) and μ(S,b) are both defined; and
• the distinguished action 1 is s.t. μ(e,1)=e and, for all s and a, if μ(e,a)=s, then a=1 and

s=e.

If μ(R,a) is defined, then we say that action a is defined on resource R. We refer to a structure
(R,Act,μ,=,◦,e) as a resource monoid model.

A key systems modelling example, seen previously in Example 5, is that of semaphores. Note
that Example 41 is essentially the same as Example 5, excepting that here we use the modification
function as the transition relation.

Example 41 (Semaphores)
Let Act be the free monoid generated by the atomic actions a and 1, where 1 is the distinguished
action. Let R be the resource monoid (R,◦,e) such that s◦e=s and s◦s is undefined. We use a
modification function such that μ(sa)=s. We then have that no resource can perform the action aa,
that is, μ(e,aa)↑ and μ(s,aa)↑. The resource monoid model acts like a semaphore, in that only one
access action a can be performed at any given time.

The mutual producer–consumer model (Example 34) and the prisoner’s dilemma model
(Example 36) are also resource semantics models. In fact, all resource models (as specified in this
section) are concurrent transitions systems (as specified in Definition 4).

Proposition 42

A resource monoid model (R,Act,μ,=,◦,e) is a concurrent transition system.

Proof. By Definition 40, we have that (R,Act,μ) is a transition system.
Suppose some a,b,c∈Act. By the definition of a commutative monoid, we have that a1=a,

ab=ba, and, if a=a′ and b=b′, ab=a′b′. Hence = is an action-composition equivalence relation.
Suppose some states r,s,r′,s′,r′′ ∈S and actions a,b∈Act. As ◦ is commutative, if r◦s is defined,

then s◦r is defined. The other required properties of ◦ follow straightforwardly from Definition 40.
�

If the modification function is defined for an action a on a resource R, and μ(R,a)=S, then we

say that there exists a transition R
a−→S, and that S is a successor of R. The notion of bisimulation in

Definition 6 is immediately applicable to resource models.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1439

In order to use of resource models as a semantics for MBIU, we restrict ourselves to those resource
models that conform to Definitions 28 and 30. With those restrictions in place, we can then use
resource monoid models as a semantics for MBIU. So we can make use of logical characterizations
of notions of optimality, such as were described in Section 3, over distributed systems modelled using
resource monoid models.

We conclude this section with a property of payoff functions for resource monoid models which
is not true of payoff functions for generic concurrent transition systems; namely, that if a strategy
chooses the unit action in some state, then the payoff of that state is always 0.

Lemma 43

For all action payoff functions v, strategiesσ , and discount factors δ, ifσ (s)= (1,s′), then uv,σ,δ(s)=0.

Proof. By Definition 14, we have that v(1)=0. By Definitions 11 and 40, we have that s
1−→s

and s′ =s. By Definition 16, we have that uv,σ,δ(s)=0+δ×uv,σ,δ(s). As (1−δ) �=0, we have that
uv,σ,δ(s)=0. �

5 Resource–process systems modelling

One modelling approach, which might be expected to form the basis of an example of our methodology
in Section 2, is that based on the resource–process calculi, as given in [11, 12] and introduced in
Section 4. These calculi consist of two components: resources, which describe objects that can
be created, moved, and consumed; and processes, which describe the dynamics of systems, and
have a more complex, algebraic structure, including sequencing, non-deterministic choice, and fixed
points. Each component has a notion of composition, and so resource–process pairs have the obvious
composition pairwise on the components.An action-indexed transition system can be defined in terms
of a structural operational semantics over the structure of processes, so that resources and processes

(i.e., the state) co-evolve: R,E
a−→R′,E′.

Unfortunately, in such calculi (e.g., in [11, 12]), bisimulation fails to be a congruence for concurrent
composition. As a result, the soundness direction of the Hennessy–Milner property holds only for
fragments of the logic that exclude multiplicative implication (−−∗). Bisimulation fails to be a congru-
ence for concurrent composition because of the way in which the resource semantics interacts with
the resource–process operational semantics. Resources can be viewed as being ‘capabilities’, which
enable behaviour in the process components of the pairs. When performing concurrent composition,
these ‘capabilities’can be exchanged between the process components of the pairs, enabling different
behaviour in different compositions. This clearly violates the required congruence property.

This problem has been solved, in [2], by changing the resource semantics to ensure that ‘capa-
bilities’ cannot be exchanged between process components in the operational semantics. Additional
structure is added to the resource model, beyond that in [11, 12] and Section 4. The key structural
modification is the introduction of additional combinatorial structure to the resource semantics —
resources are bunched, being combined using either ⊗, corresponding to the monoidal composition
◦, or ⊕, which builds in choice — with the key property being injectivity of concurrent composition.

In this section, we review the resource–process calculi as set up in [2] and show that they are
indeed examples of our methodology. In particular, we show that our analysis of utility extends
to these resource–process calculi, and provide an extended example (Example 64, below) based
on the ‘mutual producer–consumer’ introduced in Example 34, comprising distributed coordination
without mutual exclusion: a mutual producer–consumer system, where each ‘agent’ can generate
work for, and consume work from, the other. In Example 34, the ‘agents’ performing the production

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1440 A Substructural Modal Logic of Utility

and consumption are represented indirectly. For example, it is not possible to consider one agent’s
behaviour on its own; as the dynamics are directly encoded via the resource semantics, both agents
are always ‘present’ in any given resource. Using the richer resource–process framework that we
introduce in this section, we can represent the dynamics of the different agents more directly.
Specifically, we represent these agents as processes. We can then demonstrate how, for example,
the first entity cannot make progress when it only possesses resources that the second process can
consume available to it.

The set-up of the required process calculi — henceforth known as Calculi of Bunched Resources
and Processes, or CBRP — assumes the provision of certain additional data pertaining to some
semantic structure (Act,R,μ,�,H) — of actions, resources, modification function, a set redistribution
functions, and a set hiding functions, respectively — over which we work and which we define in
the development below. The actions, resources (excepting the injective bunching structure), and
modification are defined as they are in Section 4, the redistribution functions are used to specify how
combinations of resources defined using ⊗ and ⊕ can be rearranged, and the hiding functions are
used to bind resources to processes locally (see Definition 50, below). The modification function,
the redistribution functions, and the hiding functions are all essential parts of the operational
semantics (see Figure 2). Thus we should properly refer to the calculus as (Act,R,μ,�,H)-CBRP.
In this section, however, we suppress the prefix as, at every stage, we work with a fixed such
structure.

We begin with a notion of resource which can be seen as restricting the combinatorial structure
taken in Section 4 in that it considers choices between resources, and it requires the notions of
composition to be injective. Let R be a set of resources, equipped with an ‘empty’ element e∈R.
We write R, S, etc. to denote resources. We consider unique (partial) concurrent composition of, and
non-deterministic choice between, resources. In [11, 12, 25, 27], and other works in the relevant logic
tradition, bunches are trees with leaves labelled by atomic resources, and internal nodes labelled by
either ⊕ or ⊗. We implement bunching through the use of two injective functions; a resource is a
node of a particular type if there exists some (unique) pair of resources that are mapped to the initial
resource by the relevant function.

Definition 44 (Resource models)
A resource model (R,e,⊗,⊕) is a structure consisting of a set of resources R with a distinguished
‘empty’ resource e∈R, and two injective, partial functions ⊗,⊕:R×R⇀R, such that, for all
R,S,T ∈R and �∈{⊕,⊗},

(1) R�S is defined if and only if S �R is defined,
(2) R�(S �T) is defined if and only if (R�S)�T is defined,
(3) R⊗e is defined,
(4) R⊕R is defined, and
(5) R⊗(S ⊕T) is defined if and only if (R⊗S)⊕(R⊗T) is defined.

Note that properties 2, 4, and 5 are only required to obtain the algebraic results (Proposition 56)
and are not necessary to obtain the Hennessy–Milner correspondence via the approach in Section 2.

In the sequel, when we write an expression of the form R⊗S or R⊕S, we assume that the result
of the application of the partial function to its arguments is defined. Actions correspond to the events
of a system. In resource–process algebra as set up in [11, 12], actions are used to determine how
resources evolve. This necessitates a relationship between the concurrent structure of actions and the
concurrent structure of resources. To obtain an analogous relationship in our setting (formally stated
in Definition 47), we also require action composition to be injective.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1441

Definition 45 (Action model)
An action model (Act,·,1) is a structure consisting of a set of actions with a distinguished unit action
1∈Act, and an injective, total function ·.

In many process algebras, such as SCCS and SCRP, the commutative monoid structure of actions
is used to prove various algebraic properties of states. In this section, unlike resource monoid models
(Section 4), as we do not require that 1 be a unit for · with respect to syntactic equality, the actions
do not form a (commutative) monoid with respect to syntactic equality. We establish that the CBRP
notion of actions (Definition 45) is an action structure (as in Definition 1), a property that we will use
when we demonstrate that CBRP are instances of concurrent transition systems (Proposition 54).

Lemma 46

The structure (Act,·,1) is an action structure.

Proof. As Act is closed under pairing, (Act,·) is a total magma. �
The semantics of resources is then given by a modification function from action-resource pairs to

resources.

Definition 47 (Modification function)
A modification function is a partial function μ :R×Act⇀R such that

• for all R and S, and all a and b, ifμ(R,a),μ(S,b), and R⊗S are all defined, thenμ(R,a)⊗μ(S,b)
and μ(R⊗S,ab) are both defined, and μ(R⊗S,ab)=μ(R,a)⊗μ(S,b) holds;

• for all R, μ(R,1)=R;
• for all R and S, and all c, if R⊗S and μ(R⊗S,c) are defined, then there exist a and b such that

c=ab, and μ(R,a) and μ(S,b) are both defined;
• the distinguished action 1 is s.t. μ(e,1)=e and, for all s and a, if μ(e,a)=s, then a=1 and

s=e.

Note that the action 1 is a unit with respect toμ’s action on resources. Note also that a modification
function is one of the parameters to the calculus.

Modification functions are homomorphisms with respect to the concurrent product structure of
resource bunches. As a result, we cannot use the modification function to ‘move’ resources from one
side of a concurrent product to another (such a move corresponds to changing the process to which
the resources are allocated; for example, passing an object from producer to consumer). Using a
modification function, we can only add or remove resources to each side of a product independently
of what is on the other side of the concurrent product.

As we cannot use a modification function for redistribution of resources, instead, we make use of
redistribution functions. In Figure 2, the rules for the operational semantics of sequential composition
are

R,E
a−→R′,E′ → γ ∈�

R,E :γ F
a−→R′,E′ :γ F

PrefixOne

R,E
a−→R′,E′ �→ γ ∈�

R,E :γ F
a−→γ (R′),F

PrefixTwo.

The resource–process pair R,E :γ F consists of a resource bunch and a sequential composition. The
sequential composition consists of two processes, E and F , and a redistribution function γ . If the
prefix E can evolve with the resources R to a non-blocked state, then the sequential composition
evolves similarly (the PrefixOne rule). If the prefix E can evolve with the resources R to a blocked
state, then the redistribution function is applied to the resulting resources R′, and the pair that consists
of the redistributed resources and the suffix, γ (R′),F , is the result of the transition (the PrefixTwo

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1442 A Substructural Modal Logic of Utility

Figure 2. Operational semantics.

rule). The redistribution function is applied to the resources so that the structure of the resulting
resources will match the structure of the suffix process. Redistribution functions are total so that the
evolution of a sequential composition can only be blocked by the behaviour of the prefixing process,
not the redistribution of resources.

Definition 48 (Redistribution functions)
A redistribution function is a total function γ :R →R. Let there be a set of redistribution functions
� whose elements are written γ , γ ′, etc..

Let�, which is one of the parameters to the calculus, include the identity function. From a modelling
perspective, we argue that the use of redistribution functions encourages good discipline with respect
to making decisions about how resources are allocated to processes within a system. In [9, 11, 12],
following a transition, all possible allocations are possible, and a system can non-deterministically
choose between them. In the resource–process modelling methodology used in this section, whenever
resources are to be reallocated (i.e., following each reduction step, within a sequential composition),
a conscious modelling decision is required as to where the resources should be allocated.

In classical process calculi, restriction is used to ensure that certain behaviour is only visible, or
accessible, in certain parts of a system. A similar feature can be incorporated into resource–process
modelling [12]. The hiding operator on processes associates additional resources with the process
to which it is applied. If a resource–process pair is allocated additional resources, it may be able to
perform additional actions. This behaviour must then be restricted, however; only actions that could
be performed without the additional resources must be visible beyond the process where the hidden
resources are available. First, we define a notion of action containment, so that we can formalize the
notion of ‘additional behaviour’.

Definition 49 (Action-containment order)
We define ≤ to be the least reflexive-transitive relation on actions such that 1≤α, for any atomic
action α, and if a≤a′ and b≤b′, then a ·b≤a′ ·b′.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1443

Then, we define hiding functions on actions and resources. In Figure 2, the rule for the operational
semantics of hiding functions is

h(R),E
a−→h(R′),E′ h∈H

R,νh.E
νh.a−−→R′,νh.E′

Hide.

A resource–process pair R,νh.E evolves by stripping the hiding operator νh. from the process
component and applying the hiding function h to the resource component, resulting in the resource–
process pair h(R),E. Following the evolution of the transformed state, the resulting pair h(R′),E′ is
modified by applying the inverse of the hiding function to the resource component and adding the
hiding operator to the process component, resulting in the resource–process pair R′,νh.E′. To ensure
that a hiding function and its inverse can be uniquely applied, hiding functions on resources are
bijections. Moreover, the action performed in the evolution of the transformed state must be suitably
transformed to restrict external visibility of actions that can only be performed with the additional
resources.

Definition 50 (Hiding functions)
Let (R,e,⊗,⊕) be a resource model and μ be a modification function. A function h :R→R on a
resource model is a hiding function if it is a bijection. Let there be a set of hiding functions H whose
elements are written h, h′, etc.. Define A :H→Act→P(Act) such that

A(h,a)={b≤a | for all R,S ∈R,μ(h(R),a)=h(S) implies μ(R,b)=S} .

Then, a hiding function on actions ν :H→Act→Act is defined as

νh.a=
{

sup(A(h,a)) if sup(A(h,a)) is defined and unique
1 otherwise.

Let H, which is one of the parameters to the calculus, include the identity function. Next, we define
processes formally.

Definition 51 (Processes)
Processes are formed according to the following grammar:

E ::=0 |X |a |E+E |E×E |E :γ E |νh.E |fixX .E.

Here, 0 is the null process, X is a process variable, a is an action, γ ∈� is a redistribution function,
and h∈H is a hiding function. Let Proc be the set of all processes, and E, F etc. denote processes.
The process 1, which performs the action 1 infinitely, is denoted as μX .1 :id X .

Closed processes are those processes that contain no free variables. A state is a pair consisting of
a resource and a closed process. Let State be the set of all states, and CState be the set of all closed
states.

The operational behaviour of a closed state is defined by a labelled family of transition relations

a−→ ⊆ CState×Act×CState,

The family is defined recursively using the derivation rules in Figure 2.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1444 A Substructural Modal Logic of Utility

An action process reduces according to the modification functionμ. Nondeterminism is introduced
solely through the presence of sums. There, a choice must be made both in the process component and
the resource component. Product processes distribute the resources according to the multiplicative
structure in the resources.

Sequential composition behaves slightly counter-intuitively. If the prefix is reduced to a non-
blocking state, then the sequential composition follows similarly. If the prefix process is reduced
to a blocking state, then the sequential composition reduces to the resource that results from
applying the redistribution function to the residual resources from evolving the prefix, and the suffix.
The redistribution function is used to redistribute the resources between the process components,
following a reduction that moves to the second part of a sequential composition. It should be noted
that the use of process prefixing, rather than action prefixing, is a deliberate design decision, made
so that models can more intuitively reflect the structure of the system they abstract.

We can then show that all CBRP, equipped with a suitable notion of equivalence of actions and
composition of states, are concurrent transition systems (as specified in Definition 4).

Definition 52 (resource–process action equivalence)
Let the relation ≡ be the least action equivalence relation such that, for all actions a, b, c, a ·(b·c)≡
(a ·b)·c.

Definition 53 (Concurrent composition of resource–process states)
The concurrent composition of resource–process states ◦ is the partial function (R1,E1) ◦ (R2,E2)=
(R1 ⊗R2,E1 ×E2), that is defined if and only if R1 ⊗R2 is defined.

Proposition 54

The structure (CState,Act,→,≡,◦,(e,1)) is a concurrent transition system.

Proof. By Lemma 46, Act is an action structure. Then, we straightforwardly have that
(CState,Act,→) is a transition system, and ≡ is an action-composition equivalence relation.

Suppose some states (R,E),(S,F),(R′,E′),(S ′,F ′),(T ,G)∈CState and actions a,b∈Act. By
Definition 44, we have that, if R⊗S is defined, then S ⊗R is defined, and hence if (R,E)◦(S,F)

is defined, then (S,F)◦(R,E) is defined. Suppose that (R,E)◦(S,F) is defined, R,E
a−→R′,E′

and S,F
b−→S ′,F ′. By the Prod rule, we have that R⊗S,E×F

ab−→R′⊗S ′,E′×F ′. Suppose that

R⊗S,E×F
c−→T ,G. By the Prod rule, we have that there exist a, b, R′, S ′, E′, F ′ such that c=ab,

T =R′⊗S ′, G=E′×F ′, R,E
a−→R′,E′ and S,F

b−→S ′,F ′. Suppose that e,μX .1 :id X
a−→S ′,F ′. By the

Fix, PrefixTwo and Act rules, and Definition 47, we have that S ′ =e, F ′ =μX .1 :id X and a=1. By
Definition 44, we have that R⊗e is defined, and hence (R,E)◦(e,1) is defined. �

In order to use CBRP transition systems as a semantics for MBIU, we must restrict ourselves
to those calculi that conform to Definitions 28 and 30. In order to obtain the property specified in
Definition 28, it is sufficient to restrict ourselves to those calculi that have the following property:

Definition 55 (∼-resource-closed CBRP)
A calculus is ∼-resource-closed if, for all R1, E1, S1, F1, R2, E2, S2, F2, if R1,E1 ∼S1,F1 and
R2,E2 ∼S2,F2, then R1 ⊗R2 (respectively, R1 ⊕R2) is defined if and only if S1 ⊗S2 (respectively,
S1 ⊕S2) is defined.

Henceforth, we consider only CBRP that are ∼-resource-closed. An immediate result is that
concurrent compositions of bisimilar resource–process pairs are bisimilar (Lemma 29), and that
we have the Hennessy–Milner completeness result (Theorems 32 and 33).

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1445

In order to reason equationally about resource–process states, it is also useful to establish various
algebraic properties concerning concurrent composition and choice. Notable standard algebraic
properties of process calculi are commutativity and associativity of concurrent composition. We
obtain such properties for CBRP.

Proposition 56 (Algebraic properties)
For all bunched resources R,S,T ∈R and closed processes E,F,G,

(Commutativity of choice) R⊕S,E+F ∼S ⊕R,F +E
(Unit of choice) R⊕R,E+0∼R,E
(Associativity of choice) R⊕ (S ⊕T),E+(F +G)∼

(R⊕S)⊕T ,(E+F)+G

(Commutativity of product) R⊗S,E×F ∼S ⊗R,F ×E
(Unit of product) R⊗ e,E×1∼R,E
(Zero property of product) R⊗ e,E×0∼e,0
(Associativity of product) R⊗ (S ⊗T),E×(F ×G)∼

(R⊗S)⊗T ,(E×F)×G

(Distribution of product R⊗ (S ⊕T),E×(F +G)∼
over choice) (R⊗S)⊕ (R⊗T),(E×F)+(E×G).

Proof. Commutativity of choice. Let

R={((R⊕S,E+F),(S ⊕R,F +E)) |E and F are closed}∪∼ .

Suppose that R⊕S,E+F
a−→T ,G. By the Sum rule, either R,E

a−→T ,G or S,F
a−→T ,G. As R⊕S is

defined, by Definition 44[1], S ⊕R is defined. By the Sum rule, S ⊕R,F +E
a−→T ,G. By Definition 52,

a≡a. By Lemma 7, T ,G∼T ,G, and hence (T ,G)R(T ,G).
The other case is similar. Hence R is closed and a bisimulation.
Unit of choice. Let

R={((R⊕R,E⊕0),(R,E)) |E is closed}∪∼ .
Suppose that R⊕R,E⊕0

a−→T ,G. By the Sum rule, either R,E
a−→T ,G or R,0

a−→T ,G. By Figure 2,

R,0 �→, and hence R,E
a−→T ,G. By Definition 52, a≡a. As simulation is an equivalence relation,

T ,G∼T ,G, and hence (T ,G)R(T ,G).

Suppose that R,E
a−→T ,G. By Definition 44[3], R⊕R is defined. By the Sum rule, R⊕R,E⊕0

a−→
T ,G. By Lemma 7, T ,G∼T ,G, and hence (T ,G)R(T ,G).

Hence R is closed and a bisimulation.
Associativity of choice. Let

R={((R⊕ (S ⊕T),E+(F +G)),((R⊕S)⊕T ,(E+F)+G)) |E,F,G are closed}∪∼ .

Suppose that R⊕ (S ⊕T),E+(F +G)
a−→U ,H . By repeated application of the Sum rule, either

R,E
a−→U ,H , S,F

a−→U ,H , or T ,G
a−→U ,H .As R⊕ (S ⊕T) is defined, by Definition 44 (2), (R⊕S)⊕

T is defined. Suppose that R,E
a−→U ,H . By repeated application of the Sum rule, R⊕S,E+F

a−→U ,H

and (R⊕S)⊕T ,(E+F)+G
a−→U ,H . Suppose that S,F

a−→U ,H . By repeated application of the Sum

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1446 A Substructural Modal Logic of Utility

rule, R⊕S,E+F
a−→U ,H and (R⊕S)⊕T ,(E+F)+G

a−→U ,H . Suppose that T ,G
a−→U ,H . By the

Sum rule, (R⊕S)⊕T ,(E+F)+G
a−→U ,H . By Definition 52, a≡a. By Lemma 7, U ,H ∼U ,H , and

hence (U ,H)R(U ,H).
The other case is similar. Hence R is closed and a bisimulation.
Commutativity of product. Let

R={((R⊗S,E×F),(S ⊗R,F ×E)) |E and F are closed}.

Suppose that R⊗S,E×F
c−→T ,G. By the Prod rule, there exist a, b, R′, S ′, E′, and F ′, such that

c=ab, T =R′⊗S ′, G=E′×F ′, R,E
a−→R′,E′, and S,F

b−→S ′,F ′. By Definition 44 (2), S ⊗R and

S ′⊗R′ are defined. By the Prod rule, S ⊗R,F ×E
ba−→S ′ ⊗R′,F ′×E′. By Definition 52, ab≡ba. We

immediately have that (R′ ⊗S ′,E′×F ′)R (S ′ ⊗R′,F ′×E′).
The other case is similar. Hence R is closed and a bisimulation.
Unit of product. Let

R={((R⊗ e,E×1),(R,E)) |E is closed}.

Suppose that R⊗ e,E×1
c−→T ,G. By the Prod rule, there exist a, b, R′, E′, S ′, F ′ such that c=ab,

T =R′⊗S ′, G=E′×F ′, R,E
a−→R′,E′, and e,1

b−→S ′,F ′. As 1=fix X .(1 :X), by the Rec, PrefixTwo

and Act rules, b=1, S ′ =μ(e,1), and F ′ =1. By Definition 40, S ′ =e. By Definition 52, a1≡a. We
immediately have that (R′ ⊗ e,E′×1)R (R′,E′).

Suppose that R,E
a−→R′,E′. As 1=fix X .(1 :X), by the Rec, PrefixTwo and Act rules, e,1

1−→
μ(e,1),1. By Definition 40, S ′ =e. By Definition 44[3], R⊗e and R′⊗e are defined. By the Prod

rule, R⊗ e,E×1
a1−→R′⊗e,E′⊗1. By Definition 52, a1≡a. We immediately have that (R′ ⊗ e,E′×

1)R (R′,E′).
Hence R is closed and a bisimulation.
Zero property of product. Let

R={((R⊗ e,E×0),(e,0)) |E is closed}.

Suppose that R⊗ e,E×0→. By the Prod rule, R,E → and e,0→. This is a contradiction as, by
Figure 2, e,0 �→.

The other case is similar. Hence R is closed and a bisimulation.
Associativity of product. Let

R={((R⊗(S ⊗T),E×(F ×G)),((R⊗S)⊗T ,(E×F)×G)) |E,F,G are closed}.

Suppose that R⊗(S ⊗T),E×(F ×G)
d−→U ,H . By repeated application of the Prod rule, there

exist a, b, c, R′, S ′, T ′, E′, F ′, G′, such that d =a(bc), U =R′⊗(S ′⊗T ′), H =E′×(F ′×G′), R,E
a−→

R′,E′, S,F
b−→S ′,F ′. and T ,G

c−→T ′,G′. By Definition 44 (2), we have that (R⊗S)⊗T is defined. By

further application of the Prod rule, (R⊗S)⊗T ,(E×F)×G
(ab)c−−−→ (R′⊗S ′)⊗T ′,(E′×F ′)×G′. By

Definition 52, a(bc)≡ (ab)c. We then have that (R′⊗(S ′⊗T ′),E′×(F ′×G′))R((R′⊗S ′)⊗T ′,(E′×
F ′)×G′).

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1447

The other case is similar. Hence R is closed and a bisimulation.
Distribution of product over choice. Let

R=
{(

(R⊗ (S ⊕T),E×(F +G)) ,
((R⊗S)⊕ (R⊗T),(E×F)+(E×G))

)
| E,F,G are closed

}
.

∪∼

Suppose that (R⊗ (S ⊕T),E×(F +G))
c−→U ,H . By Definition 44[4], (R⊗S)⊕ (R⊗T) is defined.

By the Prod rule, there exists a, b, R′, E′, V ′,I ′ such that c=ab, U =R′⊗V ′, H =E′×I ′, R,E
a−→R′,E′

and S ⊕T ,F +G
b−→V ′,I ′. By the Sum rule, either S,F

b−→V ′,I ′ or T ,G
b−→V ′,I ′. Suppose the former.

By the Prod rule, R⊗S,E×F
ab−→R′⊗V ′,E′×I ′. By the Sum rule, (R⊗S)⊕ (R⊗T),(E×F)+

(E×G)
ab−→R′⊗V ′,E′×I ′. Suppose the latter. By the Prod rule, R⊗T ,E×G

ab−→R′⊗V ′,E′×I ′. By

the Sum rule, (R⊗S)⊕ (R⊗T),(E×F)+(E×G)
ab−→R′⊗V ′,E′×I ′. By Definition 52, ab≡ab. By

Lemma 7, U ,H ∼U ,H , and hence (U ,H)R(U ,H).
The other case is similar. Hence R is closed and a bisimulation. �

Corollary 57

For all bunched resources R,S,T ∈R and closed processes E,F,G,

R⊕R,E+F ∼R⊕R,F +E R⊕S,E+E ∼S ⊕R,E+E
R⊗R,E×F ∼R⊗R,F ×E R⊗S,E×E ∼S ⊗R,E×E.

Moreover, it is possible to reason equationally about the payoffs of resource–process pairs. We
define a class of strategies that generate payoffs functions whose output will follow the structure of
the resource–process pairs (Proposition 62). These strategies are known as elementary strategies.

Definition 58

An elementary CBRP strategy is a strategy σ such that, for all actions a, b, c, resources R, S, R′, S ′,
T and closed processes E, F , E′, F ′, G,

(1) if σ (R,E)= (a,(R′,E′)) and (R′,E′) �→, then σ (R,E :γ F)= (a,(γ (R′),F)),
(2) if σ (R,E)= (a,(R′,E′)) and (R′,E′)→, then σ (R,E :γ F)= (a,(R′,E′ :γ F)),
(3) σ (R1 ⊕R2,E1 +E2)=σ (Ri,Ei), for some i∈{1,2},
(4) if R⊗S ↓, then c=ab, T =R′⊗S ′, G=E′×F ′,σ (R,E)= (a,(R′,E′)), andσ (S,F)= (b,(S ′,F ′))

if and only if
σ (R⊗S,E×F)= (c,(T ,G)),

and
(5) σ (R,fix X .E)=σ (R,E[fix X .E/X]).
In order to obtain the equational result for concurrent composition (Proposition 62[8]), we establish

two auxiliary lemmas. First, we show that if a strategy can be applied to a state at least n times, then
we can unroll the definition of state payoff functions (Definition 16) n times, and the payoff of the
state is the sum of the discounted payoffs of the action chosen at each step and the discounted payoff
of the state reached after n steps.

Lemma 59

For all states (R,E) and natural numbers n∈N, if uv,σ,δ(R,E) and σ n
state(R,E) are defined, then

uv,σ,δ(R,E) = (
�n

i=0δ
i ×v(σ i

act(R,E))
)+ δn+1 ×uv,σ,δ(σ n

state(R,E)).

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1448 A Substructural Modal Logic of Utility

Proof. By induction over n.
Suppose n=0. We immediately have that

uv,σ,δ(R,E) = v(σ 0
act(R,E))+δ×uv,σ,δ(σ 0

state(R,E)).
= v(σ n

act(R,E))+δn+1 ×uv,σ,δ(σ n
state(R,E)).

Suppose n>0. Let σ (R,E)= (a,(R′,E′)). By Definition 19, σ n−1
state(R′,E′)=S,F . By Definition 16,

v(a) and uv,σ,δ(R′,E′) are defined. By the induction hypothesis,

uv,σ,δ(R′,E′) = �n−1
j=0 δ

j ×v(σ j
act(R,E)) + δn ×uv,σ,δ(σ

n−1
state(R′,E′)).

By Definition 16,

uv,σ,δ(R′,E′) = v(a)+δ×uv,σ,δ(R′,E′)

= v(σ 0
act(R,E))+δ×

(
�n−1

j=0 δ
j ×v(σ j

act(R
′,E′))+

δn ×uv,σ,δ(σ
n−1
state(R′,E′)))

)

= v(σ 0
act(R,E))+(�n−1

j=0 δ
j+1 ×v(σ j

act(R
′,E′))+

δn+1 ×uv,σ,δ(σ
n−1
state(R′,E′)))

= v(σ 0
act(R,E))+(�n

i=1δ
i ×v(σ i−1

act (R′,E′))+
δn+1 ×uv,σ,δ(σ

n−1
state(R′,E′)))

= v(σ 0
act(R,E))+(�n

i=1δ
i ×v(σ i

act(R,E))+
δn+1 ×uv,σ,δ(σ

n−1
state(R′,E′)))

= (
�n

i=0δ
i ×v(σ i

act(R,E))
)+ δn+1 ×uv,σ,δ(σ n

state(R,E)). �
Second, we show that if a strategy can be applied to a concurrent composition of states at least

n times, for all number of applications of the strategy up to n, the action and state chosen by the
strategy is the concurrent composition of the actions and states chosen by the strategy on the states of
the concurrent composition. This provides a way to compositionally reason about actions and states
that are chosen by a strategy for a sequence of transitions of a concurrent composition of states.

Lemma 60

For all elementary strategies σ , natural numbers n, resources R,S,T , and closed processes E,F,G,
if σ n

state(R⊗S,E×F)=T ,G, then, there exist resources R′,S ′ and closed processes E′,F ′ such that
T =R′⊗S ′ and G=E′×F ′, and for all 0≤ i≤n,

σ i
act(R⊗S,E×F) = σ i

act(R,E)·σ i
act(S,F)

σ i
state(R⊗S,E×F) = σ i

state(R,E)◦σ i
state(S,F).

Proof. By induction on n.
Suppose n=0. By Definition 19, there exists an action c such that

σ (R⊗S,E×F)= (c,(T ,G)).

By Definition 11, R⊗S,E×F
c−→T ,G. As the Prod rule is the only operational semantics rule to

evolve concurrent compositions, we have that there exist resources R′,S ′ and closed processes E′,F ′
such that T =R′⊗S ′ and G=E′×F ′. By Definition 58[4], there exist a, b, such that c=ab, T =

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1449

R′⊗S ′, G=E′×F ′, σ (R,E)= (a,(R′,E′)) and σ (S,F)= (b,(S ′,F ′)). As 0≤ i≤n, the only possible
value of i is 0. By Definitions 19 and 53,

σ 0
act(R⊗S,E×F) = σ 0

act(R,E)·σ 0
act(S,F)

σ 0
state(R⊗S,E×F) = σ 0

state(R,E)◦σ 0
state(S,F).

Suppose n>0. By Definition 19, there exist c, U , H such that

σ (R⊗S,E×F)= (c,(U ,H))

and σ n−1
state(U ,H)=T ,G. By Definition 11, R⊗S,E×F

c−→U ,H . As the Prod rule is the only
operational semantics rule to evolve concurrent compositions, we have that there exist resources
R′′,S ′′ and closed processes E′′,F ′′ such that U =R′′⊗S ′′ and H =E′′×F ′′. By the induction
hypothesis, there exist resources R′,S ′ and closed processes E′,F ′ such that T =R′⊗S ′ and
G=E′×F ′, and for all 0≤ i≤ (n−1),

σ i
act(R

′′⊗S ′′,E′′×F ′′) = σ i
act(R

′′,E′′)·σ i
act(S

′′,F ′′)
σ i

state(R′′⊗S ′′,E′′×F ′′) = σ i
state(R′′,E′′)◦σ i

state(S ′′,F ′′).

By Definition 58[4], there exist a, b, such that c=ab, σ (R,E)= (a,(R′′,E′′) and σ (S,F)=
(b,(S ′′,F ′′)), and hence

σ 0
act(R⊗S,E×F) = σ 0

act(R,E)·σ 0
act(S,F)

σ 0
state(R⊗S,E×F) = σ 0

state(R,E)◦σ 0
state(S,F).

By Definition 19, σ i
act(R

′′⊗S ′′,E′′×F ′′)=σ i+1
act (R⊗S,E×F) and σ i

state(R′′⊗S ′′,E′′×F ′′)=
σ i+1

state(R⊗S,E×F). Hence, for all 0≤ i≤n,

σ i
act(R⊗S,E×F) = σ i

act(R,E)·σ i
act(S,F)

σ i
state(R⊗S,E×F) = σ i

state(R,E)◦σ i
state(S,F). �

We define the payoff of a n-length prefix of a trace, for use when considering sequencing.

Definition 61 (Bounded utility calculation)

uv,σ,δ,n(R,E)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(a) if σ (R,E)= (a,(R′,E′)),v(a)↓,
and n=0

v(a)+δ×uv,σ,δ,(n−1)(R′,E′) if σ (R,E)= (a,(R′,E′)),
v(a)↓,uv,σ,δ,(n−1)((R′,E′))↓,
and 0<n

−∞ if σ (R,E)=•
undefined otherwise.

Now we can show that payoffs of states, determined using elementary strategies, have intuitive
equational properties over the structure of states, notably, that the payoff of a non-deterministic choice
is the payoff of one of the possible choices and that the payoff of a concurrent composition is the
sum of the payoffs of the concurrent components.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1450 A Substructural Modal Logic of Utility

Proposition 62

For all valuation functions v, elementary strategies σ , discount factors δ, resources R,R1,R2,R′, and
closed processes E,E′,F,E1,E2, we have the following:

(1) uv,σ,δ(R,0)=−∞;
(2) uv,σ,δ(R,1)=0;
(3) If R,E �→, then uv,σ,δ(R,E :γ F)=−∞;
(4) If σlast(R,E)=n, σ n

state(R,E)=R′,E′, and uv,σ,δ(R,E :γ F) is defined, then

uv,σ,δ(R,E :γ F)=uv,σ,δ,n(R,E)+δ(n+1) ×uv,σ,δ(γ (R′),F);

(5) If uv,σ,δ(R1 ⊕R2,E1 +E2) is defined, then

uv,σ,δ(R1 ⊕R2,E1 +E2)=uv,σ,δ(Ri,Ei),

for some i∈{1,2};
(6) If uv,σ,δ(R1 ⊕R2,E1 +0) is defined, then

uv,σ,δ(R1 ⊕R2,E1 +0)=uv,σ,δ(R1,E1);

(7) If v is total, then

uv,σ,δ(R1 ⊗R2,E1 ×E2)=uv,σ,δ(R1,E1)+uv,σ,δ(R2,E2);

(8) If uv,σ,δ(R,fix X .E) is defined, then

uv,σ,δ(R,fix X .E)=uv,σ,δ(R,E[fix X .E/X]).

Proof.
1. This follows from Definitions 11 and 16.
2. This follows similarly to Lemma 22.
3. As R,E �→, by PrefixOne and PrefixTwo rules, R,E :γ F �→. By Definition 16, uv,σ,δ(R,E :γ

F)=−∞.
4. By induction over n.
Suppose that n=0. By Definition 19, we have that there exists an action a such that σ (R,E)=

(a,(R′,E′)) and σ (R′,E′)=•. By Definition 11, R′,E′ �→. By Definition 63, uv,σ,δ,0(R,E)=v(a).
By Definition 58 (1), σ (R,E :γ F)= (a,(γ (R′),F)). By Definition 16, uv,σ,δ(R,E :γ F)=v(a)+δ×
uv,σ,δ(γ (R′),F), and hence

uv,σ,δ(R,E :γ F)=uv,σ,δ,0(R,E)+δ(n+1) ×uv,σ,δ(γ (R′),F).

Suppose that n<0. By Definition 19, we have that there exists an action a such that
σ (R,E)= (a,(R′′,E′′)) and σ n−1

state(R′′,E′′)=R′,E′. By Definition 63, uv,σ,δ,n(R,E)=v(a)+δ×
uv,σ,δ,(n−1)(R′′,E′′). By the induction hypothesis,

uv,σ,δ(R
′′,E′′ :γ F)=uv,σ,δ,(n−1)(R

′′,E′′)+δn ×uv,σ,δ(γ (R′),F).

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1451

By Definition 58 (1), σ (R,E :γ F)= (a,(R′′,E′′ :γ F)). By Definition 16,

uv,σ,δ(R,E :γ F) = v(a)+δ×uv,σ,δ(R′′,E′′ :γ F)
= v(a)+δ×(uv,σ,δ,(n−1)(R′′,E′′)+δn ×uv,σ,δ(γ (R′),F))
= v(a)+δ×(uv,σ,δ,(n−1)(R′′,E′′))+δ(n+1) ×uv,σ,δ(γ (R′),F)
= uv,σ,δ,n(R,E)+δ(n+1) ×uv,σ,δ(γ (R′),F).

5. By Definition 58 (2), σ (R1 ⊕R2,E1 +E2)=σ (Ri,Ei), for some i∈{1,2}. By Definition 16, we
immediately have that uv,σ,δ(R1 ⊕R2,E1 +E2)=uv,σ,δ(Ri,Ei).

6. Suppose that R1 ⊕R2,E1 +0→. By the Sum rule, R1,E1 →. By Definition 11, σ (R1,E1) �=•,
σ (R2,0)=•, andσ (R1 ⊕R2,E1 +0) �=•. By Case 5,σ (R1 ⊕R2,E1 +0)=σ (R1,E1). By Definition 16,
we immediately have that

uv,σ,δ(R1 ⊕R2,E1 +0)=uv,σ,δ(R1,E1).

Suppose that R1 ⊕R2,E1 +0 �→. By the Sum rule, R1,E1 �→. By Definition 11, σ (R1,E1)=• and
σ (R2,0)=•. By Proposition 62[5], σ (R1 ⊕R2,E1 +0)=•. By Definition 16, we immediately have
that

uv,σ,δ(R1 ⊕R2,E1 +0)=uv,σ,δ(R1,E1)=−∞.

7. To prove this property, we must consider three cases. The first is where the concurrent
composition can make no transitions. The second is where the concurrent composition can make
a finite number of transitions. The third is where the concurrent composition can make an infinite
number of transitions.

For the first case, suppose that R1 ⊗R2,E1 ×E2 �→. By Definition 11, σ (R1 ⊗R2,E1)=•.
By Definition 16, uv,δ,σ (R1 ⊗R2,E1 ×E2)=−∞. By Definition 58[4], there exists i∈{1,2}
such that σ (Ri,Ei)=•. By Definition 16, uv,δ,σ (Ri,Ei)=−∞. Hence uv,σ,δ(R1 ⊗R2,E1 ×E2)=
uv,σ,δ(R1,E1)+uv,σ,δ(R2,E2).

For the second case, suppose that R1 ⊗R2,E1 ×E2 → and that there exists some n∈N such
that σlast(R1 ⊗R2,E1 ×E2)=n. Let σ n

state(R1 ⊗R2,E1 ×E2)= (T ,G). By Definition 19, T ,G �→. By
Definition 11, σ (T ,G)=•. By Definition 16, uv,δ,σ (T ,G)=−∞. By Lemma 60, there exist R′

1, R′
2,

E′
1, E′

2 such that T =R′
1 ⊗R′

2, G=E′
1 ×E′

2, and, for all 0≤ i≤n,

σ i
act(R1 ⊗R2,E1 ×E2) = σ i

act(R1,E1)·σ i
act(R2,E2) (1)

σ i
state(R1 ⊗R2,E1 ×E2) = σ i

state(R1,E1)◦σ i
state(R2,E2). (2)

In particular, we have that σ n
act(R1,E1)=R′

1,E
′
1 and σ n

act(R2,E2)=R′
2,E

′
2. By Lemma 59, as v is total,

uv,σ,δ(R1 ⊗R2,E1 ×E2) = (3)(
�n

i=0δ
i ×v(σ i

act(R1 ⊗R2,E1 ×E2))
)

(4)

+
δn+1 ×uv,σ,δ(T ,G) (5)

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1452 A Substructural Modal Logic of Utility

uv,σ,δ(R1,E1) = (6)(
�n

i=0δ
i ×v(σ i

act(R1,E1))
)

(7)

+
δn+1 ×uv,σ,δ(σ

n
act(R1,E1)) (8)

uv,σ,δ(R2,E2) = (9)(
�n

i=0δ
i ×v(σ i

act(R2,E2))
)

(10)

+
δn+1 ×uv,σ,δ(σ

n
act(R1,E1)). (11)

By the Prod rule, either R′
1,E

′
1 �→ or R′

2,E
′
2 �→. So, by Definitions 11 and 16, either uv,σ,δ(R′

1,E
′
1)=

−∞ or uv,σ,δ(R′
1,E

′
1)=−∞. As a result, uv,σ,δ(T ,G)=uv,σ,δ(R′

1,E
′
1)+uv,σ,δ(R′

2,E
′
2); that is, (5) =

(8) + (11). By Definition 14, for all 0≤ i≤n,

v(σ i
act(R1 ⊗R2,E1 ×E2))=v(σ i

act(R1,E1))+v(σ i
act(R2,E2)), (12)

and hence (4)= (7)+(10). By rearranging the arithmetic, we obtain our desired result.

uv,σ,δ(R1 ⊗R2,E1 ×E2) = (4)+(5)
= ((7)+(10))+((8)+(11))
= ((7)+(8))+((10)+(11))
= (6)+(9)
= uv,σ,δ(R1,E1)+uv,σ,δ(R2,E2).

For the third case, suppose that R1 ⊗R2,E1 ×E2 → and that there exists no n∈N such that
σlast(R1 ⊗R2,E1 ×E2)=n. As we assume that Cσ (R1 ⊗R2,E1 ×E2) is finite, then, by Definition 20,
there exist a state S,F ∈Cσ (R1 ⊗R2,E1 ×E2) and a natural number n such that σ n

state(S,F)=S,F .
Without loss of generality, let n be the least number such that the above holds. By Lemma 59, as
(1−δn+1) �=0,

uv,σ,δ(S,F) = (
�n

i=0δ
i ×v(σ i

act(S,F))
)+ δn+1 ×uv,σ,δ(σ n

state(S,F))
(1−δn+1)×uv,σ,δ(S,F) = (�n

i=0δ
i ×v(σ i

act(S,F))).

Suppose that S,F =R1 ⊗R2,E1 ×E2. By Lemma 60, for all 0≤ i≤n:

σ i
act(R1 ⊗R2,E1 ×E2) = σ i

act(R1,E1)·σ i
act(R2,E2) (13)

σ i
state(R1 ⊗R2,E1 ×E2) = σ i

state(R1,E1)◦σ i
state(R2,E2), (14)

and σ n
act(R1,E1)=R1,E1 and σ n

act(R2,E2)=R2,E2. By Definition 14, for all 0≤ i≤n,

v(σ i
act(R1 ⊗R2,E1 ×E2))=v(σ i

act(R1,E1))+v(σ i
act(R2,E2)).

Then

(1−δn+1)×uv,σ,δ(S,F) = (�n
i=0δ

i ×(v(σ i
act(R1,E1))+v(σ i

act(R2,E2)))) (15)

= (�n
i=0δ

i ×(v(σ i
act(R1,E1)))) (16)

+
(�n

i=0δ
i ×(v(σ i

act(R2,E2)))). (17)

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1453

By Lemma 59,

uv,σ,δ(R1,E1) = (
�n

i=0δ
i ×v(σ i

act(R1,E1))
)+

δn+1 ×uv,σ,δ(R1,E1)

(1−δn+1)×uv,σ,δ(R1,E1) = (�n
i=0δ

i ×v(σ i
act(R1,E1))) (18)

uv,σ,δ(R2,E2) = (
�n

i=0δ
i ×v(σ i

act(R2,E2))
)+

δn+1 ×uv,σ,δ(R1,E1)

(1−δn+1)×uv,σ,δ(R2,E2) = (�n
i=0δ

i ×v(σ i
act(R2,E2))). (19)

So, as S,F =R1 ⊗R2,E1 ×E2,

(15) = (16)+(17)
= (18)+(19)

(1−δn+1)×uv,σ,δ(R1 ⊗R2,E1 ×E2) = (1−δn+1)×uv,σ,δ(R1,E1)+
(1−δn+1)×uv,σ,δ(R2,E2)

uv,σ,δ(R1 ⊗R2,E1 ×E2) = uv,σ,δ(R1,E1)+uv,σ,δ(R2,E2).

Suppose that S,F �=R1 ⊗R2,E1 ×E2. By Definition 20, there exists some natural number m such
that σm

state(R1 ⊗R2,E1 ×E2)=S,F . By Lemma 60, there exist R′
1, R′

2, E′
1, E′

2 such that S =R′
1 ⊗R′

2,
F =E′

1 ×E′
2, and, for all 0≤ i≤m,

σ i
act(R1 ⊗R2,E1 ×E2) = σ i

act(R1,E2)·σ i
act(R2,E2) (20)

σ i
state(R1 ⊗R2,E1 ×E2) = σ i

state(R1,E1)◦σ i
state(R2,E2), (21)

and hence σm
state(R1,E1)=R′

1,E
′
1 and σm

state(R2,E2)=R′
2,E

′
2. By Lemma 59,

uv,σ,δ(R1 ⊗R2,E1 ×E2) = (
�m

i=0δ
i ×v(σ i

act(R1 ⊗R2,E1 ×E2))
)+

δm+1 ×uv,σ,δ(R
′
1 ⊗R′

2,E
′
1 ×E′

2),

uv,σ,δ(R1,E1) = (22)(
�m

i=0δ
i ×v(σ i

act(R1,E1))
)

(23)

+
δm+1 ×uv,σ,δ(R

′
1,E

′
1) (24)

uv,σ,δ(R2,E2) = (25)(
�m

i=0δ
i ×v(σ i

act(R2,E2))
)

(26)

+
δm+1 ×uv,σ,δ(R

′
1,E

′
1). (27)

By Definition 14, for all 0≤ i≤m,

v(σ i
act(R1 ⊗R2,E1 ×E2))=v(σ i

act(R1,E1))+v(σ i
act(R2,E2)),

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1454 A Substructural Modal Logic of Utility

and hence

uv,σ,δ(R1 ⊗R2,E1 ×E2) = (28)(
�m

i=0δ
i ×v(σ i

act(R1,E1))+v(σ i
act(R2,E2))

)
(29)

+
δm+1 ×uv,σ,δ(R

′
1 ⊗R′

2,E
′
1 ×E′

2) (30)

We can use the same technique as in the case where S,F =R1 ⊗R2,E1 ×E2 (above) to prove that

uv,σ,δ(R
′
1 ⊗R′

2,E
′
1 ×E′

2)=uv,σ,δ(R
′
1,E

′
1)+uv,σ,δ(R

′
2,E

′
2),

and hence (30)= (24)+(27). By straightforward rearrangement of arithmetic, we have that (29)=
((23)+(26)). Hence,

uv,σ,δ(R1 ⊗R2,E1 ×E2) = (29)+(30)
= ((23)+(26))+((24)+(27))
= ((23)+(24))+((26)+(27))
= (22)+(25)
= uv,σ,δ(R1,E1)+uv,σ,δ(R2,E2).

8. By Definition 58[5], σ (R,fix X .E)=σ (R,E[fix X .E/X]). By Definition 16, we immediately
have that uv,σ,δ(R,fix X .E)=uv,σ,δ(R,E[fix X .E/X]). �

We can also show similar results for bounded utility calculations.

Proposition 63

For all valuation functions v, elementary strategies σ , discount factors δ, resources R,R1,R2,R′,
processes E,E′,F,E1,E2, and natural numbers m, n, we have the following:

(1) uv,σ,δ,n(R,0)=−∞;
(2) uv,σ,δ,n(R,1)=0;
(3) If R,E �→, then uv,σ,δ,n(R,E :γ F)=−∞;
(4) If σlast(R,E)=m, σm

state(R,E)=R′,E′, uv,σ,δ,n(R,E :γ F)↓, and m<n, then

uv,σ,δ,n(R,E :γ F)=uv,σ,δ,m(R,E)+δ(m+1) ×uv,σ,δ,(n−(m+1))(γ (R′),F);

(5) If σlast(R,E)=m, σm
state(R,E)=R′,E′, uv,σ,δ,n(R,E :γ F)↓, and n≤m, then

uv,σ,δ,n(R,E :γ F)=uv,σ,δ,n(R,E);

(6) If uv,σ,δ,n(R1 ⊕R2,E1 +E2) is defined, then

uv,σ,δ,n(R1 ⊕R2,E1 +E2)=uv,σ,δ,n(Ri,Ei),

for some i∈{1,2};
(7) If uv,σ,δ,n(R1 ⊕R2,E1 +0) is defined, then

uv,σ,δ,n(R1 ⊕R2,E1 +0)=uv,σ,δ,n(R1,E1);

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1455

(8) If v is total, then

uv,σ,δ,n(R1 ⊗R2,E1 ×E2)=uv,σ,δ,n(R1,E1)+uv,σ,δ,n(R2,E2);
(9) If uv,σ,δ,n(R,fix X .E) is defined, then

uv,σ,δ,n(R,fix X .E)=uv,σ,δ,n(R,E[fix X .E/X]).
Proof. This follows Proposition 62. We demonstrate with the cases that differ the most.

4. By induction on m.
Suppose that m=0. By Definition 19, we have that there exists an action a such that

σ (R,E)= (a,(R′,E′)) and σ (R′,E′)=•. By Definition 11, R′,E′ �→. By Definition 63, uv,σ,δ,n(R,E :γ
F)=v(a)+δ×uv,σ,δ,n−1(γ (R′),F) and uv,σ,δ,0(R,E)=v(a). By Definition 58 (1), σ (R,E :γ F)=
(a,(γ (R′),F)). As m=0,

uv,σ,δ,n(R,E :γ F) = uv,σ,δ,m(R,E)+δ×uv,σ,δ,(n−1)(γ (R′),F)
uv,σ,δ,m(R,E)+δ(m+1) ×uv,σ,δ,(n−(m+1))(γ (R′),F).

Suppose that m>0. By Definition 19, we have that there exists an action a such that σ (R,E)=
(a,(R′′,E′′)) and σm−1

state (R′′,E′′)=R′,E′. By Definition 63,

uv,σ,δ,n(R,E :γ F)=v(a)+δ×uv,σ,δ,(n−1)(R
′′,E′′ :γ F).

and
uv,σ,δ,m(R,E)=v(a)+δ×uv,σ,δ,(m−1)(R

′′,E′′).
By the induction hypothesis, we have that

uv,σ,δ,(n−1)(R′′,E′′ :γ F) = uv,σ,δ,(m−1)(R′′,E′′)+
δm ×uv,σ,δ,((n−1)−((m−1)+1))(γ (R′),F).

By straightforward arithmetic, (n−1)−((m−1)+1)= (n−(m+1)). By Definition 58 (1), σ (R,E :γ
F)= (a,(R′′,E′′ :γ F)). Hence

uv,σ,δ,n(R,E :γ F) = v(a)+δ×
(

uv,σ,δ,(m−1)(R′′,E′′) +
δm ×uv,σ,δ,(n−(m+1))(γ (R′),F))

)
= (v(a)+δ×uv,σ,δ,(m−1)(R′′,E′′))+

δ(m+1) ×uv,σ,δ,(n−(m+1))(γ (R′),F)
= uv,σ,δ,m(R,E)+δ(m+1) ×uv,σ,δ,(n−(m+1))(γ (R′),F).

5. By induction on m.
Suppose that m=0.As n≤m, n=0. By Definition 19, we have that there exists an action a such that

σ (R,E)= (a,(R′,E′)). By Definition 63, uv,σ,δ,0(R,E :γ F)=v(a). By Definition 63, uv,σ,δ,0(R,E)=
v(a). By Definition 58[1], σ (R,E :γ F)= (a,(γ (R′),F)). Hence

uv,σ,δ,n(R,E :γ F)=uv,σ,δ,n(R,E).

Suppose that 0<m. By Definition 19, we have that there exists an action a such that σ (R,E)=
(a,(R′′,E′′)) and σm−1

state (R′′,E′′)=R′,E′. By Definition 63

uv,σ,δ,n(R,E :γ F)=v(a)+δ×uv,σ,δ,(n−1)(R
′′,E′′ :γ F)

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1456 A Substructural Modal Logic of Utility

By Definition 63, uv,σ,δ,n(R,E)=v(a)+δ×uv,σ,δ,(n−1)(R′′,E′′). By the induction hypothesis,
we have that uv,σ,δ,(n−1)(R′′,E′′ :γ F)=uv,σ,δ,(m−1)(R′′,E′′). By Definition 58[1], σ (R,E :γ F)=
(a,(R′′,E′′ :γ F)). Hence

uv,σ,δ,n(R,E :γ F) = v(a)+δ×uv,σ,δ,(m−1)(R′′,E′′)
= uv,σ,δ,n(R,E). �

We demonstrate the use of elementary strategies, and their equational payoffs over resource–
process structure, in the following example.

Example 64 (Mutual producer–consumer)
In Example 34, we introduce an example of distributed coordination without mutual exclusion: a
mutual producer-consumer system, where each ‘agent’ can generate work for, and consume work
from, the other. There, the agents performing the production and consumption are represented
indirectly. Using a resource–process framework, we can represent the dynamics of the different
agents more directly. Specifically, we represent these agents as processes. We can then demonstrate
how, for example, the first entity cannot make progress when it only possesses resources that the
second process can consume available to it.

Suppose a resource model (R,e,⊗,⊕) such that, for all resources r,s,t ∈R and for all natural
numbers n1,n2 ∈N,

• (n1,n2)∈R,
• (r,s)∈R if and only if r⊗s= (r,s), and
• r⊕s= t if and only if r =s= t.

Intuitively, a pair of natural numbers denotes the resources, or work packages, that could be
consumed by the two agents in the system (should they have access to them): the first number denotes
the resources that could be consumed by the first entity, and the second number denotes the resources
that could be consumed by the second entity. The p1 action denotes production of a work package by
the first entity for the second entity, and the c1 action denotes the consumption of a work package by
the first entity. Note that a process cannot perform a consume action if there are zero resources that
it can consume available to it. The p2 and c2 actions have the obvious converse denotations. This is
represented formally in the modification function. Let μ be a modification function such that

μ((m,n),p1) = (m,n+1)
μ((m+1,n),c1) = (m,n)
μ((m,n),p2) = (m+1,n)
μ((m,n+1),c2) = (m,n).

We represent the first agent with a process, E1,

E1 =fix Y1.
(

(p1 :Y1)+(c1 :Y1)+1
)
.

The process is a fixed point which consists of three possibilities. The process may either: produce a
resource (for the second process), using p1, and recurse; consume a resource from the other process
(if available), using c1, and recurse; or, perform the tick action and terminate. When combined with
the resource (1,0), it can perform any of its three possible actions, as demonstrated by the following

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1457

derivations.
μ((1,0),p1)= (1,1)

(1,0),p1
p1−→ (1,1),0

(1,0),p1 :E1
p1−→ (1,1),E1

(1,0),(p1 :E1)+(c1 :E1)+1
p1−→ (1,1),E1

μ((1,0),c1)= (0,0)

(1,0),c1
c1−→ (0,0),0

(1,0),(c1 :E1)
c1−→ (0,0),E1

(1,0),(p1 :E1)+(c1 :E1)+1
c1−→ (0,0),E1

μ((1,0),1)= (1,0)

(1,0),1
1−→ (1,0),0

(1,0),(p1 :E1)+(c1 :E1)+1
1−→ (1,0),0

When combined with the resource (0,0), it can only produce (and recurse) or terminate; it cannot
perform the c1 action. The process E2 =fix Y2.((p2 :Y2)+(c2 :Y2)+1), which represents the second
agent, behaves similarly.

In order to transfer the produced resources from one process to another, we make use of a
redistribution function γ such that

γ (z)=
{

((n1 +m1,0),(0,n2 +m2)) if z = ((n1,n2),(m1,m2))
z otherwise.

This redistribution function takes all of the work packages for the first process, including those that
were previously allocated to the second process, and gives them all to the first process, and takes all
of the work packages for the second process, including those that were previously allocated to the
first process, and gives them all to the second process.

The dynamics of the full system can then be defined by the process E:

E =fix X .(E1 ×E2) :γ X .

Suppose that the agents ‘profit’ from the consumption of work packages, and must ‘pay’ to create
work packages. We can represent this situation via a pair of total payoff functions v1 and v2 for the
two entities such that

v1(p1)=−1 v1(c1)=3 v1(p2)=0 v1(c2)=0
v2(p1)=0 v2(c1)=0 v2(p2)=−2 v2(c2)=4.

We make use of a strategy where each entity consumes, if able; if not, and there are no resources for
the other entity, it produces; otherwise, it terminates. This is represented via an elementary strategy
σ such that

(1) σ
(

(n1,n2),(p1 :E1)+(c1 :E1)+1
)

=
(

c1,((n1 −1,n2),E1)
)

if 1≤n1

(2) σ
(

(0,0),(p1 :E1)+(c1 :E1)+1
)

=
(

p1,((0,1),E1)
)

(3) σ
(

(0,n2),(p1 :E1)+(c1 :E1)+1
)

=
(

1,((0,n2),0)
)

if 1≤n2

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1458 A Substructural Modal Logic of Utility

(4) σ
(

(n1,n2),(p2 :E2)+(c2 :E2)+1
)

=
(

c2,((n1,n2 −1),E2)
)

if 1≤n2

(5) σ
(

(0,0),(p2 :E2)+(c2 :E2)+1
)

=
(

p2,((1,0),E2)
)

(6) σ
(

(n1,0),(p2 :E2)+(c2 :E2)+1
)

=
(

1,((n1,0),0)
)

if 1≤n1.

As σ is an elementary strategy, we can the derive the payoff of the resource–process pairs
over their structure, via Propositions 62 and 63, rather than via Definition 16. Suppose that
uv1,δ,σ (((0,0),(0,0)),E) is defined. Let us consider the payoff of the state ((0,0),(0,0)),E, from
the perspective of the first agent.

Let the discount factor δ be 0.8. By Proposition 62[8], the payoff of the fixed point of
((0,0),(0,0)),E is the payoff of the unfolding of the fixed point:

uv1,δ,σ (((0,0),(0,0)),E)=uv1,δ,σ (((0,0),(0,0)),(E1 ×E2) :γ E).

In order to further proceed in the equational handling of utility, we need to determine whether or not
σlast(((0,0),(0,0)),(E1 ×E2)) is defined. To establish this, we can apply the strategy σ repeatedly. As

the strategy σ is elementary, σ (e,E1)=
(

p1,((0,1),E1)
)

, and σ (e,E2)=
(

p2,((1,0),E2)
)

, we have

that
σ (((0,0),(0,0)),(E1 ×E2))= (p1p2,(((0,1),(1,0)),(E1 ×E2))).

Similarly, as σ ((0,1),E1)=
(

1,((0,1),0)
)

and σ ((1,0),E2)=
(

1,((1,0),0)
)

,

σ (((0,1),(1,0)),(E1 ×E2))= (1·1,(((0,1),(1,0)),(0×0))).

As ((0,1),(1,0)),0×0 �→, we have that σlast(((0,0),(0,0)),(E1 ×E2))=1. Let R′,E′ =
σ 1

state(((0,0),(0,0)),E1 ×E2)= ((0,1),(1,0)),0×0.
The payoff of the sequential composition is the payoff of the prefix plus the discounted payoff of

the suffix

uv1,σ,δ(((0,0),(0,0)),(E1 ×E2) :γ E) = uv1,σ,δ,1(((0,0),(0,0)),E1 ×E2)
+δ2 ×uv1,σ,δ(γ (R′),E).

The payoff of the concurrent composition is the sum of the payoffs of the concurrent components:

uv1,σ,δ,1(((0,0),(0,0)),E1 ×E2)=uv1,σ,δ,1((0,0),E1)+uv1,σ,δ,1((0,0),E2).

The payoff of the fixed point of (0,0),E1 is the payoff of the unfolding of the fixed point:

uv1,σ,δ,1((0,0),E1)=uv1,σ,δ,1((0,0),(p1 :E1)+(c1 :E1)+1).

The payoff of the non-deterministic choice is the payoff of the branch chosen by the strategy; that is,

σ
(

(0,0),(p1 :E1)+(c1 :E1)+1
)
=
(

p1,((0,1),E1)
)

:

uv1,σ,δ,1((0,0),(p1 :E1)+(c1 :E1)+1)=uv1,σ,δ,1((0,0),p1 :E1).

The payoff of the sequential composition is the payoff of the prefix plus the discounted payoff of the
suffix. Let σ 0

state((0,0),p1)= (R′
1,E1):

uv1,σ,δ,1((0,0),p1 :E1)=uv1,σ,δ,0((0,0),p1)+δ×uv1,σ,δ,0(R′
1,E1).

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1459

We straightforwardly have that R′
1 =μ((0,0),p1)= (0,1) and uv1,σ,δ,0((0,0),p1)=v1(p1) =−1. The

payoff of the fixed point of (0,1),E1 is the payoff of the unfolding of the fixed point:

uv1,σ,δ,0((0,1),E1)=uv1,σ,δ,1((0,0),(p1 :E1)+(c1 :E1)+1).

The payoff of the non-deterministic choice is the payoff of the branch chosen by the strategy; that is,

σ
(

(0,1),(p1 :E1)+(c1 :E1)+1
)
=
(

1,((0,1),0)
)

:

uv1,σ,δ,0((0,1),(p1 :E1)+(c1 :E1)+1)=uv1,σ,δ,0((0,1),1).

The payoff of the trivial action process is uv1,σ,δ,0((0,1),1)=0. Putting this all together, we have that

uv1,σ,δ,1((0,0),E1)=−1+δ×0=−1.

We can use the same approach to show that uv1,σ,δ,1((0,0),E2)=0, as the first agent has
no (direct) payoffs from the actions performed by the second agent. Hence we have that
uv1,σ,δ,1(((0,0),(0,0)),E1 ×E2)=−1+0=−1.

We then consider the payoff of the suffix, γ (R′),E. Note that when we apply the redistribution
function γ , the work packages are moved to the process that can consume them; that is,

γ (((0,1),(1,0))= ((1,0),(0,1)).

The payoff of the fixed point ((1,0),(0,1)),E is the payoff of the unfolding of the fixed point:

uv1,δ,σ ((1,0),(0,1),E)=uv1,δ,σ ((1,0),(0,1),(E1 ×E2) :γ E).

In order to further proceed, we need to determine whether or not σlast(((1,0),(0,1)),
(E1 ×E2)) is defined. By repeated application of the strategy σ , we determine that

σlast(((1,0),(0,1)),(E1 ×E2))=2.

Let σ 2
state(((1,0),(0,1)),(E1 ×E2))= (R′′,E′′)= ((0,1),(1,0)),0×0. The payoff of the sequential

composition is the payoff of the prefix plus the discounted payoff of the suffix:

uv1,σ,δ(((1,0),(0,1)),(E1 ×E2) :γ E)=
uv1,σ,δ,2(((1,0),(0,1)),E1 ×E2)+δ3 ×uv1,σ,δ(γ (R′′),E).

Following the above approach, uv1,σ,δ,2(((1,0),(0,1)),E1 ×E2) can be determined in terms of the
payoff of the concurrent components. For each component i∈{1,2}, the strategy choses to perform
the action ci, then pi, then 1. So

uv1,σ,δ,2((1,0),E1)=3+0.8×−1+0.82 ×0=2.2,

and uv1,σ,δ,2((0,1),E2)=0. As a result, we have that

uv1,σ,δ(((1,0),(0,1)),(E1 ×E2) :γ E)= (2.2+0)+δ3 ×uv1,σ,δ(((1,0),(0,1)),E).

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1460 A Substructural Modal Logic of Utility

We can solve this simultaneous equation for uv1,σ,δ(((1,0),(0,1)),E), and so

uv1,σ,δ(((1,0),(0,1)),E)≈4.5.

The payoff of the whole system is then the payoff of the original prefix and the discounted payoff
of the original suffix:

uv1,σ,δ(((0,0),(0,0)),(E1 ×E2) :γ E) = uv1,σ,δ,1(((0,0),(0,0)),E1 ×E2)+
δ2 ×uv1,σ,δ(γ (R′),E)

≈ −1+0.82 ×4.5
≈ 1.9.

Recall the notion of Pareto optimality from Definition 35; that is, that a state s is Pareto optimal if
there exists an action a such that, for all other actions b, if some entity weakly prefers (the relation is
not strict) that action b be performed, then there is some other agent that strongly prefers (the relation
is not strict) that action a be performed. Here we have that the state ((0,0),(0,0)),E is Pareto optimal,
witnessed by the action p1 ·p2. The only other action that can be performed by ((0,0),(0,0)),E is 1 ·1.

Note that ((0,0),(0,0)),E
1·1−→ ((0,0),(0,0)),E. The payoff for the first agent obtained by performing

the action 1 ·1 is
v1(1·1)+δ×uv1,δ,σ (((0,0),(0,0)),E) ≈ 0+0.8×1.9

≈ 1.5.

So, for the first agent, switching from the action p1 ·p2 to 1·1 results in a loss of payoff, so the state
is Pareto optimal.

6 Discussion

In this article, we motivate our development from a richly expressive modal logic for resource
semantics and distributed systems modelling, MBIU. This logic includes both additive and
multiplicative propositional connectives and also additive action modalities, as well as certain first-
order quantifiers. We employ an abstract formulation of MBIU that is based on a semantics that
employs a labelled transition system, a notion of concurrent composition of states, and an equivalence
relation on actions. Following the approach in [2], we establish Hennessy–Milner soundness and
completeness for our abstract formulation. This framework and logic is sufficient to model classic
examples from distributed systems modelling and game theory, and to express game-theoretic
concepts, including Pareto optimality, the best-response property, and Nash equilibrium. The key
role of the multiplicative conjunction, ∗, in the formulae representing best response should be noted.
Used with the additives, it allows the separation of the states performing different actions (the as
and bs) to be enforced when required, whilst allowing payoff properties of the overall system to be
expressed relative to the overall resources, as required. We then describe two instantiations of our
abstract formulation. First, monoidal resource semantics: this can be utilized to provide a simple way
to model distributed systems. Many of our early examples in the abstract formulation turned out to be
of this class. Secondly, resource–process modelling: this can be utilized to model scenarios in more
structural detail. Using this approach, we should be able to incorporate the analysis of utility and
optimality presented here into the widely deployed systems and security modelling tools established
in, for example, [10–12], with deployments described in, for example, [3, 5–7, 21].

Some conceptual and technical issues, beyond our present scope, remain to be addressed.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1461

Multiplicative modalities, logical formulae that are often included in multiplicative logics such
as MBI, can be used to reason about transitions in the situations where additional components are
concurrently composed with the state at which a formula is evaluated for satisfiability. With these
modalities, it is possible to provide a natural description of various agent based scenarios, including
the notion that achieving some goal is within an agent’s capabilities, were it to be given additional
resources, and the notion that achieving some goal is never within an agent’s capabilities, no matter
how much additional resource it is given [14]. This can be further extended to represent security
examples where attacks can occur through introduction of racy concurrent behaviour.

There are various possible choices of how to interpret the multiplicative components of a logic in
the case where the states have a multi-dimensional structure [11, 12, 14]. We present and contrast
different possible interpretations (defined informally) of multiplicative implication and multiplicative
modalities.

We can add multiplicative modalities into our system straightforwardly. For example, the
multiplicative modality 〈d〉ν can be specified as

R,E �ρ 〈d〉νφ iff there exist a,S,F,R′,E′ such that R⊗S,E×F
a−→R′,E′,

|d |≡a and R′,E′ �ρ φ.

Note that this formulation adds both a process and a resource component, following the interpretation
of multiplicative implication:

R,E �ρ φ1 −−∗φ2 iff for all S, F , S,F �ρ φ1 implies R⊗S,E×F �ρ φ2.

As a result, this multiplicative modality can be defined in terms of the multiplicative implication and
the additive fragment of the logic [2].

By contrast, in [11, 12], multiplicative implication composes both a resource and a process
component, while the multiplicative modalities compose solely a resource component. An
interpretation of multiplicative implication, following [11, 12], in our resource–process calculus,
would be as above, but an interpretation of the multiplicative modality 〈a〉νφ, following [11, 12], in
our resource–process calculus, would be

R,E �ρ 〈d〉νφ iff there exist a,S,R′,E′ such that R⊗S,E
a−→R′,E′,

|d |≡a, and R′,E′ �ρ φ.

In further contrast, in [14], one of us has considered a generalization of resource semantics to
admit multi-dimensional satisfaction relations of the form, for example, w,r �φ, in which w∈W are
taken to be Kripke worlds (ordered by �, say) in the sense of classical modal logic and r ∈R are
interpreted as resources, where R carries monoidal structure (with composition ◦, say). In this set-up,
we can define a multiplicative modality �s as

w,r ��sφ iff there is a world w�v such that v,r◦s�φ.

Such a modality is highly expressive and, among other things, generalizes the usual S4 modality
[8, 14]. This multiplicative modality can be defined in terms of the multiplicative implication and
the additive fragment of the logic.

Thus, there are various approaches taken in terms of which components are augmented by
multiplicative implication and multiplicative modalities. We believe that an investigation into the

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

1462 A Substructural Modal Logic of Utility

comparative properties of these approaches would be valuable. Furthermore, we conjecture that all of
the above are examples of a more general treatment of multiplicative connectives within a generalized
multi-dimensional handling of concurrent transition systems and that such a handling would have
natural resource interpretations.

Another multiplicative possible extension to the logic is multiplicative quantifiers [11, 12].
Multiplicative quantifiers reason about actions in the presence of hiding; their inclusion of
multiplicative quantifiers into our system is a complex prospect. A rendering of multiplicative
existential quantification, ∃να.φ, for our resource–process calculus, following [11, 12], would be

R,E �ρ ∃να.φ iff there exists S,F,a∈Act,h∈H such that R,E ∼S,νh.F
and h(S),F �ρ[α:=a]φ.

So, multiplicative quantification is closely related to the notion of hiding and to the multi-dimensional
world structure in resource–process calculi. There is no immediately apparent generalization of such
an approach to arbitrary concurrent transition systems that do not have a multi-dimensional world
structure.

It does not appear possible, within the current framework, to handle of the payoff of the hiding
operator equationally. It is relatively straightforward to determine the payoff of a resource–process
pair with hiding in terms of the derivation of the payoff of the relevant resource–process pair without
hiding. This can be done as follows. Extend the notion of elementary strategy (Definition 58), for all
hiding functions h, with

ifσ (h(R),E)= (a,(h(R′),E′)), then σ (R,νh.E)= (νh.a,(R′,νh.E′)).

The payoff of the state h(R),E is specified by a finite set of linear simultaneous equations,

uv,σ,δ(h(R),E) = v(σ 0
act(h(R),E))+δ×uv,σ,δ(σ 0

state(h(R),E))
...

uv,σ,δ(σ
n−1
state(h(R),E)) = v(σ n

act(h(R),E))+δ×uv,σ,δ(σ n
state(h(R),E)).

The payoff of the state R,νh.E, with respect to an elementary strategy σ , can then be specified by
the modified finite set of linear simultaneous equations,

uv,σ,δ(R,νh.E) = v(νh.(σ 0
act(h(R),E)))+δ×uv,σ,δ(σ 0

state(R,νh.E))
...

uv,σ,δ(σ
n−1
state(R,νh.E)) = v(νh.(σ n

act(h(R),E)))+δ×uv,σ,δ(σ n
state(R,νh.E)).

It does not appear possible to render this result so that the payoff uv,σ,δ(R,νh.E) is determined
equationally in terms of the value of the payoff uv,σ,δ(h(R),E). One possibility is to modify our
definition of state payoff functions to include action transformations of the form seen above. Let
an action transformation function be a total function f :Act→Act such that, for all action payoff
functions v∈V and actions a∈Act, if v(a)↓, then v(f (a))↓. We define a transformative payoff
function as

uv,σ,δ,f (s)=
⎧⎨
⎩

v(f (a))+δ×uv,σ,δ,f (s′) if σ (s)= (a,s′),v(f (a))↓, and uv,σ,δ,f (s′)↓
−∞ if σ (s)=•
undefined otherwise.

Let us restrict the set of hiding functions H so that, for all h∈H and v∈V, v(a)↓ implies v(νh.a)↓.
Then, the payoff of (R,νh.E), uv,σ,δ(R,νh.E), is simply the (action transformed) payoff of (h(R),E)
with respect to the hiding function νh, uv,σ,δ,(νh)(h(R),E).

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

A Substructural Modal Logic of Utility 1463

Further research is required to determine how hiding can be used in practice in modelling scenarios
that consider payoff, the extent to which the lack of equational theory is a concern, and our alternative
derivation of payoff in such circumstances.

Finally, while it is possible to define an operational semantics for open states, an appropriate
notion of substitution, and an appropriate notion of bisimulation for open states, in arbitrary
concurrent transition systems are open problems.

Acknowledgements

We are grateful to James Brotherston, Matthew Collinson, Guy McCusker, and Alexandra Silva for
their advice on writing this article. This work has been partially supported by the UK EPSRC project
EP/K033042/1, ‘Algebra and Logic for Policy and Utility in Information Security’.

References
[1] G. Anderson, J. Brotherston and D. Pym. Hennessy-Milner completeness in transition

systems with synchronous concurrent composition. Technical report, RN/15/05, University
College London, 2015. Manuscript at http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/
Research_Notes/RN-15-05.pdf.

[2] G. Anderson and D. Pym. A calculus and logic of bunched resource processes. Theoretical
Computer Science, 614, 63–96, 2016.

[3] Y. Beres, D. Pym and S. Shiu. Decision support for systems security investment. In Proceedings
of the 5th Workshops on Network Operations and Management Symposium, pp. 118–125. IEEE
Xplore, 2010.

[4] Y. Beresnevichiene D. Pym and S. Shiu. Decision support for systems security investment.
In Network Operations and Management Symposium Workshops, pp. 118–125. IEEE Xplore,
2010.

[5] T. Caulfield and D. Pym. Improving security policy decisions with models. IEEE Security and
Privacy, 13, 34–41, 2015.

[6] T. Caulfield and D. Pym. Modelling and simulating systems security policy. In Proceedings
of the 8th Conference on Simulation Tools and Techniques, pp. 9–18. ACM Digital Library,
2015.

[7] T. Caulfield, D. Pym, and J. Williams. Compositional security modelling: structure, economics,
and behaviour. Lecture Notes in Computer Science, 8533, 233–245, 2014.

[8] B. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
[9] M. Collinson, B. Monahan and D. Pym. A logical and computational theory of located resource.

Journal of Logic and Computation, 19, 1207–1244, 2009.
[10] M. Collinson, B. Monahan and D. Pym. Semantics for structured systems modelling and

simulation. In Proceedings of the 3rd Conference on Simulation Tools and Techniques,
pp. 34:1–34:10, 2010.

[11] M. Collinson, B. Monahan and D. Pym. A Discipline of Mathematical Systems Modelling.
College Publications, 2012.

[12] M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling.
Mathematical Structures in Computer Science, 19, 959–1027, 2009.

[13] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems: concepts and design.Addison
Wesley, 3rd edn, 2000.

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN-15-05.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN-15-05.pdf

1464 A Substructural Modal Logic of Utility

[14] J.-R. Courtault, D. Galmiche, and D. Pym. A logic of separating modalities. Theoretical
Computer Science, 637, 30–58, 2016.

[15] Y. Deng and M. Hennessy. Compositional reasoning for weighted markov decision processes.
Science of Computer Programming, 78, 2537–2679, 2013.

[16] D. Galmiche, D. Méry, and D. Pym. The semantics of BI and resource tableaux. Mathematical
Structures in Computer Science, 15, 1033–1088, 2015.

[17] M. Hennessy and G. Plotkin. On observing nondeterminism and concurrency. Vol. 85 of Lecture
Notes in Computer Science, pp. 299–308, 1980.

[18] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In Proceedings
of the 28th Symposium on Principles of Programming Languages, pp. 14–26. ACM SIGPLAN
Notices, 2001.

[19] W. Jamroga. A temporal logic for markov chains. In Proceedings of the 7th Conference on
Autonomous Agents and Multiagent Systems, pp. 697–704. ACM Digital Library, 2008.

[20] J.-B. Jeannin, D. Kozen and A. Silva. Language constructs for non-well-founded computation.
Vol. 7792 of Lecture Notes in Computer Science, pp. 61–80, 2013.

[21] Hewlett-Packard Laboratories. Towards a science of risk analysis. http://www.hpl.hp.
com/news/2011/oct-dec/security_analytics.html (accessed 16 October 2015).

[22] D. Larchey-Wendling and D. Galmiche. Exploring the relation between intuitionistic BI and
Boolean BI: an unexpected embedding. Mathematical Structures in Computer Science, 19,
435–500, 2009.

[23] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25, 267–310,
1983.

[24] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[25] P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5,

215–244, 1999.
[26] D. Pym, P. O’Hearn and H.Yang. Possible worlds and resources: the semantics of BI. Theoretical

Computer Science, 315, 257–305, 2003.
[27] S. Read. Relevant Logic: A Philosophical Examination of Inference. Basil Blackwell, 1989.
[28] J. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the

17th Conference on Logic in Computer Science, pp. 55–75. IEEE, 2002.
[29] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and

Logical Foundations. Cambridge University Press, 2008.
[30] A. Sokolova and E. Vink. Probabilistic automata: system types, parallel composition and

comparison. Vol. 2925 of Lecture Notes in Computer Science, pp. 1–43, 2004.

Received 8 January 2016

Downloaded from https://academic.oup.com/logcom/article-abstract/27/5/1421/2972796
by University College London user
on 08 February 2018

http://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html
http://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html

	A Substructural Modal Logic of Utility
	1 Introduction
	2 A substructural modal logic of utility
	3 Examples and optimality
	4 Resource semantics and modelling
	5 Resource--process systems modelling
	6 Discussion

