UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Tissue engineering of upper airway replacements

Herrmann, P; (2016) Tissue engineering of upper airway replacements. Doctoral thesis , UCL (University College London).

Full text not available from this repository.

Abstract

Laryngotracheal diseases cause considerable morbidity and fully functional replacement after extensive surgical resection is still missing. Regenerative medicine has made considerable progress towards clinical transplantation and offers a potentially attractive solution. To date the use of biological scaffolds is considered promising for tissue engineering, providing structural and microbiological support for cell seeding and integration in the host environment. This thesis investigates the possibility of developing a decellularization protocol suitable for the production of upper airway constructs for clinical transplantation. In the first part of this work a new decellularization protocol for tracheal tissue and laryngeal tissue of different species was developed. The novel use of vacuum technology was explored. Resultant biological scaffolds were characterised by assessment of immunogenicity (H&E staining, DNA quantification, immunohistochemistry and biocompatibility) and extra-cellular matrix architecture (histology, quantitative protein assays, SEM) and biomechanical properties. In the following part of this work the resultant porcine laryngeal scaffolds seeded with human epithelial and mesenchymal stem cells were tested in a large animal model in comparison to a synthetic scaffold. Study duration was two months. In vivo assessments included regular endoscopies with cytological brushings, CT scans and blood tests. Post-mortem analysis included histology and immunohistochemistry. The data supported the hypothesis that biological, decellularized scaffolds possess some advantages for laryngeal bioengineering compared to the synthetic scaffold tested in this thesis.

Type: Thesis (Doctoral)
Title: Tissue engineering of upper airway replacements
Event: UCL
Language: English
Keywords: Tissue engineering, Trachea, Larynx, Decellularization
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Biology and Cancer Dept
URI: https://discovery.ucl.ac.uk/id/eprint/1533028
Downloads since deposit
1Download
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item