Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections

Jeffrey R. Reimersab*, Laura K. McKemmish,cd Ross H. McKenzie,e and Noel S. Hushdf

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

The three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping from the ground-state BO surface to an excited state surface near the transition state and back again is shown to be inadequate as the DC acts first to block access to the transition state by dramatically increasing the transition state energy from \[\Delta E^\lambda = (E_0 + \lambda)^2 / 4\lambda - |J| \] by \[\Delta E^\omega = (\hbar \omega)^2 \lambda / 16\lambda^2 \] (where \(E_0 \) is the free-energy change, \(\lambda \) the reorganization energy, \(J \) the electronic coupling and \(\omega \) the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to \(\Delta E^\omega \) rather than exponentially damped, owing to the effects of tunneling and surface hoping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they may well be described simply and easily based on the Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. These conclusions are based on an analytical and numerical study of the model chemical reaction formed when two diabatic harmonic potential-energy surfaces are coupled linearly through a single vibration (sometimes called the Jahn-Teller \(E \otimes B \) Hamiltonian or the two-site Holstein model). This model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. In addition, the properties of model chemical systems are considered including: ammonia inversion, aromaticity in benzene, the Creutz-Taube ion, the bacterial photosynthetic reaction centre, BNB, the molecular conductor Alq3, and inverted-region charge recombination in a ferrocene-porphyrin-fullerene triad photosynthetic model compound. The range of the parameter space in which the BO approximation works well is also described. Throughout, the fundamental nature of BO breakdown is linked to the properties of the Cusp Catastrophe: the cusp diameter is shown to determine the magnitudes of all couplings, numerical basis-set and trajectory-integration requirements, and to simply depict the transmission coefficient \(\kappa \) often used to model deviations from transition-state theory.

1. Introduction

The Born-Oppenheimer (BO) adiabatic approximation1,4 was introduced in 1927 and provides a mathematical basis for the interpretation of basic chemical processes, processes whose fundamental quantum nature were understood very soon after the introduction of quantum mechanics in 1925.5,7 It delivers the concept of molecules as collections of distinguishable moving atoms,4 specifying molecular potential-energy surfaces constructed simply by solving the quantum motion of the electrons repeatedly at different molecular geometries; significantly, such surfaces do not depend on the nuclear motion. Analyses of these BO surfaces for small displacements from equilibrium geometries adequately describe much of chemical thermodynamics and spectroscopy, whilst transition-state theory, in either its traditional classical Arrhenius form or its generalized quantum form including through-barrier tunneling, describes much of chemical reactivity. However, a range of thermodynamic, spectroscopic and kinetic phenomena require in addition explicit treatment of the vibronic coupling between nuclear motion and electronic wavefunctions. Finding conceptually enlightening and/or quantitatively accurate solutions in such cases is at the forefront of research in chemical physics,8 involving identification and treatment of the causes for...
breakdown of the BO approximation. While it is possible to avoid the BO approximation by directly solving the coupled quantum electron-nuclear dynamics,\(^{15-20}\) the associated computationally difficult leads to it being much more common to start with the Born-Oppenheimer approximation, calculate potential energy surfaces, then take into account BO breakdown. Two fundamentally different strategies are in common use for the treatment of BO breakdown. The adiabatic approach starts with the BO approximation and in an a priori fashion seeks to determine directly the consequences of its shortcomings on observable properties.\(^{11, 21-34}\) It has the advantage of requiring in principle no approximations and therefore of being able to deliver the "exact" answer. In competition to this is the diabatic approach that transforms the representation of the electronic states from the BO basis into diabatic states, also known as crude-adiabatic (CA) states,\(^{3}\) in which not all of the electronic interactions are represented in diagonal (eigenstate) form. This process has the advantage that it allows complex adiabatic surfaces to be represented in much simpler form,\(^{35-39}\) for example, anharmonic reactive BO potential-energy surfaces can be transformed to an essentially harmonic representation. In this process, complex problems involving chemical reactions can be described in simple, chemically intuitive ways to provide an excellent qualitative picture of the critical processes involved. It has the disadvantage that no diabatic representation is unique, that nuclear exchange is not included, and the success of the method is directly correlated with the chemical intuition (entered either manually or else using some automated procedure) used in the construction of the diabatization \(^{31, 19, 21, 26-28, 34, 46-55}\) Another advantage of the diabatic approach is that numerically converged full quantum solutions are typically easy to obtain whereas this process is often very difficult when using expansions in adiabatic basis functions. So it is usually quite easy to obtain a "good" answer via a diabatic approach but difficult to obtain the "exact" answer; the process of diabatization, including especially ways of automating it, is thus of significant current interest.\(^{4, 17-14, 26, 34, 46, 51, 52, 54, 55}\) Electronic states obtained from a priori calculations using some physically motivated equation of constraint are usually termed quasidiabatic states.\(^{39, 56}\)

In this work we are concerned with the general applicability of the BO approximation and, more importantly, the fundamental nature, mathematical form, varying significance, and inherent interconnectivity of the terms that lead to its breakdown. It is well known that, neglecting nuclear exchange, breakdown of the BO approximation stems from three neglected contributions to the molecular energy operator: the adiabatic diagonal correction (DC), the first-derivative (nuclear momentum) coupling (FD), and the second-derivative (nuclear kinetic-energy) coupling (SD).\(^{2, 3, 57}\) The diagonal correction modifies BO surfaces to produce mass-dependent Born-Huang adiabatic potential-energy surfaces,\(^{2, 45, 57, 58}\) whilst the other two terms introduce nonadiabatic couplings between the BO states.\(^{2, 3, 45, 57}\) While powerful general relationships relating the operators which specify these effects are known,\(^{10, 59-61}\) practical computational methods rarely exploit them but instead choose to focus on just the contribution believed to be dominant.

The DC modifies the shape of the potential-energy surfaces, changing heat of formation, vibrational frequencies, transition-state energies, etc., and the application of this correction can naively be thought of as just improving the quality of BO surfaces without changing their fundamental character.\(^{62}\) However, the DC is mass dependent and so different sets of Born-Huang adiabatic potential-energy surfaces are produced for each molecular isotope, introducing mass dependence in a far more profound way than occurs say simply by the inclusion of tunneling corrections or zero-point energy effects for properties evaluated within the BO approximation. Diagonal correction is sometimes applied in calculations of infrared spectra, equilibrium geometries, and chemical reaction energies, with results suggesting that its widespread adoption as a standard procedure is now warranted.\(^{2, 57, 63-91}\)

The FD and SD corrections are non-adiabatic and so mix the potential-energy surfaces, eliminating after their application critically useful qualitative chemical descriptors such as the concept of molecular vibration frequencies and the concept of a transition state. Nevertheless, the FD correction is widely applied during the study of chemical reactions as this is the lowest-order correction that induces surface hopping. Conversely, the SD correction is rarely applied because it is a higher-order correction and FD alone often appears to suffice.\(^{79}\)

Currently, the FD correction is evaluated by a range of quantum-chemistry software packages for applications to nonadiabatic processes.\(^{12}\) The SD correction is rarely evaluated but can be,\(^{80}\) while a small but steadily increasing number of software packages evaluate the DC term.\(^{64-74}\) Important tools for the evaluation of the DC and SD corrections have been developed,\(^{10, 59-61}\) tools that imply a strong connection between the different corrections but yet remain underexploited in practical applications. Recently, however, Kutzelnigg\(^{62}\) has shown that, for the model molecule H\(_2^+\), the DC term is unexpectedly the dominant correction for all properties considered. Excellent modern discussions of these issues are contained in his work and elsewhere.\(^{52}\)

So at the moment we see that a variety of effective computational methods focusing on different fundamental properties are available or developable to treat BO breakdown in a wide range of scenarios, but there is no general understanding as to how they fit together into a holistic picture. From a very general mathematical perspective, BO breakdown is known to provide an example of a pitchfork-hysteresis catastrophe.\(^{93-95}\) Such systems are by their very nature extremely sensitive to the details of their controlling parameters, are poorly suited to treatment through use of simplifying approximations, and lead to numerical instabilities such as exponentially increasing errors with time during the numerical solution of dynamics near the cusp. In general, the naive ansatz that adding more of the correction terms simply produces a better answer in a monotonic way, as is typical of much of chemistry, would not be expected to apply near a cusp. As a consequence, significant interplay between the DC, FD, and SD corrections is expected, and the standard chemical practice of considering only one of these terms in isolation is questioned.

Historically, the model systems used to consider the consequences of BO breakdown for thermochemistry and vibrational spectroscopy have been fundamentally different to those used to describe photochemical reactions involving conical intersections.\(^{2, 3, 13, 14, 56-59, 96, 97}\) For thermochemistry and vibrational spectroscopy, harmonic-oscillator models form the basis of discussion, models that do not allow for chemical reactions. However, non-BO effects in ground-state chemical reactions are usually considered using methods developed for conical intersections,\(^{13, 14, 97}\) although specific approaches such as the "small polaron" model have proven useful.\(^{96}\) Further, it is well known that the effects of BO breakdown manifest quite differently during electron-transfer reactions in the "normal" and "inverted" regimes,\(^{96}\) and we find that typical high-energy photochemical processes dominated by conical intersections are also fundamentally different. These three scenarios are sketched in Fig. 1. For most thermally activated chemical reactions
Horiuti and Polanyi in 1935 used them to describe proton and leads to the original unstable species that must come back to re-encounter the reactive region some time later, whilst passage breakdown effects. However, only the same year. Eyring and Polanyi developed London's more general treatment of non-adiabatic effects from which the two states are coupled by a single nuclear motion.

For high-energy reactions above that of the conical intersection, the inclusion of at least two vibrational motions is essential to properly include important Jahn-Teller and BO-breakdown effects. However, only one nuclear coordinate is required for a useful description of many thermally-activated reactions (in both the "normal" and "inverted" regimes) that involve crossing from one potential-energy well to another along essentially a single nuclear coordinate, while general reactions of the form A=B→C+D in solution typically involves passing through precursor and successor molecular complexes as so take the form of an isomerization reaction (AB)→(CD) during the critical stage.

Focusing on these latter situations which are well described by a single nuclear coordinate, we analytically and numerically apply a chemical model to overview the effects of BO breakdown on ground-state chemical and spectroscopic properties, providing a unified description of thermochemistry, spectroscopy and low-energy kinetics. This model is a two-diabatic-state Hamiltonian in which the two states are coupled by a single nuclear motion. A very wide range of chemical processes can be described in terms of this simple qualitative model. Diabatic concepts underpin the perturbation theories of Landau and Zener from 1932 for infrequent processes in physics as well as London's more general treatment of non-adiabatic effects from the same year. Eyring and Polanyi developed London's earlier ideas to construct the adiabatic LEP potential in 1931 and Horiiuti and Polanyi in 1935 used them to describe proton and hydrogen transfer. This description was subsequently extended by Hush in 1953 to hydrogen-transfer oxidation-reduction processes and it now forms the basis of modern electron-transfer theory. Describing for example excitation and charge transport through molecules, organic conductors and organic photovoltaics as well as electron-transfer reactions in biochemistry. It also describes general racemization processes. Indeed, it has suggested that all chemical processes can be described in this way as a pseudo Jahn-Teller effect, and we have shown that this model depicts the basic physics underlying the insightful reaction-force model of chemical reactivity. Further, the traditional language of Herzberg-Teller theory (a method widely applied in spectroscopic analyses) can easily be recast into diabatic-surface concepts. Diabatic models are also of widespread interest in condensed-matter physics where this general approach is depicted in the Jahn-Teller Hamiltonian and in the two-site Holstein model. However, most of these chemical systems in reality display complex phenomena involving more than one type of nuclear motion and often involve more than two electronic states, limiting the quantitative applicability of our two-site one-mode model. Such complicating effects are not directly considered here but instead we consider purely the effects of calculations based on the BO approximation to accurately reproduce the easily calculable properties of the model systems if the BO approach is unable to reproduce the exact results for the model system, then it will also perform poorly in more extensive treatments of the pertinent molecular systems. Nevertheless, scenarios such as the Jahn-Teller effect, processes that occur at energies above that of a conical intersection, and reaction control by solvent friction do exist for which a two-state single-model model is qualitatively inappropriate, and these are discussed in Electronic Supporting Information (ESI).

As the parameter space of the model is very large, we focus discussion using 10 molecular example systems and a further 8 characteristic sample points. The single-mode two-state model is in fact semi-quantitatively accurate for all of these 10 molecular systems but the other sample points are selected more generally and do include regions that would be dominated by Jahn-Teller effects. This extension is done so as to facilitate a more complete depiction of the properties of the model.

The 10 molecular systems considered are shown in Fig. 2: the tunneling inversion motion in gas-phase ammonia, aromatic resonance in benzenes, breakdown of aromaticity in the triplet (π,π*) ground-state of pyridine (PYR), the Creutz-Taube ion in aqueous solution (CT), possibly including an orthomethoxy substituent on the pyrazine ring (CT-OMe), a variant of this in which pyrazine is replaced by a dipryridyl polyene (DPP), the bacterial photosynthetic reaction centre from Rhodobacter sphaeroides (PRC), gas-phase BNB pertinent to organic light-emitting diodes (OLEDs) and artificial photovoltaics the fastest hole-transfer process in the β-phase crystal of the molecular conductor mer-tris(8-hydroxyquinolino)aluminum(III) (Alq3), and a ferrocene-porphyrin-fullerene model triad molecule (FcPCo3)
undergoes long-range photochemical charge recombination.150, 151 Limitations of the application of the one-mode model to these molecular systems are discussed in the ESI.49, 150, 152, 153

For the model systems, the BO potential-energy surfaces describing the chemical processes of interest are sketched in Fig. 5 and include double-well potentials with localized vibrations that are both strongly coupled (e.g. ammonia) and weakly coupled (e.g. Alq\textsubscript{3}, and DPP in the "normal" region and FcPC\textsubscript{60} in the "inverted" region), well-separated delocalized ground-state (GS) and excited-state (ES) BO surfaces (e.g., benzene), double-well potentials that do not support zero-point motion (e.g., BNB), asymmetric systems which retain a double-well structure in which each well supports zero-point vibration (e.g., 3PYR), and asymmetric systems in which the delocalization is sufficient to overcome the asymmetry (e.g., PRC). While study of the iconic Creutz-Taube ion paved the way for the modern understanding of

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{Some sample molecular systems (see text) with electronic states that can be described using two coupled diabatic potential-energy surfaces. OMe is methoxy, PHY is phytol; \textit{t}Bu is tertiary butyl; A is ammonia; FePC\textsubscript{60} is Zinc, \{\[5,10,16,21-tetrakis\[3,5-bis\[1,1-dimethylethyl\]phenyl\]-13-\[4-(1',5'-dihydro-1'-methyl-2H\[5,6\]]fullereno-C\textsubscript{60}\[Ih\]-[1,9-\textit{c}pyrrol-2'-yl]phenyl\]-1,12-dihydro-23H,25H-dimidazo\[4,5-b:4',5'-f\]porphin-2-yl-κ\textsubscript{N}\textsubscript{23,κ\textsubscript{N}\textsubscript{24,κ\textsubscript{N}\textsubscript{25,κ\textsubscript{N\textsubscript{26}}ferrocenato(2-)\]}, (SP-4-1); Alq\textsubscript{3} is \textit{mer}-tris(8-hydroxyquinolinato)aluminum(III); DPP is Ruthenium(5+), decammine[μ-[4,4'-
\begin{eqnarray}
\text{Fig. 2}
\text{Some sample molecular systems (see text) with electronic states that can be described using two coupled diabatic potential-energy surfaces. OMe is methoxy, PHY is phytol; \textit{t}Bu is tertiary butyl; A is ammonia; FePC\textsubscript{60} is Zinc, \{\[5,10,16,21-tetrakis\[3,5-bis\[1,1-dimethylethyl\]phenyl\]-13-\[4-(1',5'-dihydro-1'-methyl-2H\[5,6\]]fullereno-C\textsubscript{60}\[Ih\]-[1,9-\textit{c}pyrrol-2'-yl]phenyl\]-1,12-dihydro-23H,25H-dimidazo\[4,5-b:4',5'-f\]porphin-2-yl-κ\textsubscript{N}\textsubscript{23,κ\textsubscript{N}\textsubscript{24,κ\textsubscript{N}\textsubscript{25,κ\textsubscript{N\textsubscript{26}}ferrocenato(2-)\]}, (SP-4-1); Alq\textsubscript{3} is \textit{mer}-tris(8-hydroxyquinolinato)aluminum(III); DPP is Ruthenium(5+), decammine[μ-[4,4'-
\begin{eqnarray}
\text{Fig. 3}
\text{Adiabatic potential-energy surfaces (relative energy } E / \hbar \omega \text{ vs. nuclear coordinate } Q) \text{ at the characteristic points A–H and for model compounds 0 – 9 (see Table 1 and Fig. 2, 5 and 6 coincide on the projection shown), featuring (1) the BO ground-state (magenta) } \epsilon_{\text{BO}}(Q) \text{ and excited-state (green) } \epsilon_{\text{ES}}(Q) \text{ surfaces (Eqn. (3)) and their lowest two vibrational eigenstates, as well as the vibrational density of the lowest energy level in black, and (2) the Born-Huang adiabatic ground-state surface } \epsilon_{\text{BH}}(Q) \text{ (Eqn. (10)) in blue for the cases in which the change in activation energy } \Delta\epsilon_{\text{BH}} \text{ (Eqn. (23)) is larger than the original BO activation energy (Eqn. (21)).}
\end{eqnarray}
\begin{eqnarray}
\text{Fig. 3}
\text{Adiabatic potential-energy surfaces (relative energy } E / \hbar \omega \text{ vs. nuclear coordinate } Q) \text{ at the characteristic points A–H and for model compounds 0 – 9 (see Table 1 and Fig. 2, 5 and 6 coincide on the projection shown), featuring (1) the BO ground-state (magenta) } \epsilon_{\text{BO}}(Q) \text{ and excited-state (green) } \epsilon_{\text{ES}}(Q) \text{ surfaces (Eqn. (3)) and their lowest two vibrational eigenstates, as well as the vibrational density of the lowest energy level in black, and (2) the Born-Huang adiabatic ground-state surface } \epsilon_{\text{BH}}(Q) \text{ (Eqn. (10)) in blue for the cases in which the change in activation energy } \Delta\epsilon_{\text{BH}} \text{ (Eqn. (23)) is larger than the original BO activation energy (Eqn. (21)).}
\end{eqnarray}

strongly coupled molecular charge-transfer systems (e.g., as found in natural photosynthesis), its properties remain controversial,143 here it is depicted as a double-well system that does not support zero-point vibration; the molecule CT-OMe interestingly introduces a slight asymmetry into the scenario.144

In Section 2 the model Hamiltonian and its solution using both efficient CA-based methods and often highly inefficient BO-based methods is described, introducing explicit analytical expressions for the DC, FD, and SD corrections. Section 3 considers the physical meaning of the parameter space of the model, focusing on the properties of the 10 model systems as well as other characteristic points in the parameter space. Section 4 provides the main results, comparing the formally equivalent solutions obtained using CA-based methods with those obtained using the BO approximation after the application of all 3 correction terms. Then these solutions are compared to ones obtained using either none or just one or else two of the BO correction terms. The analyzed properties include the nature of the lowest-two vibronic levels and the spectroscopic transition between them, the nature of eigenstates near the transition state, the nature of spectroscopic transitions near the transition state, and the dynamics of coherent-state wavepackets depicting chemical reactions. Further, all results are analyzed in terms of the diameter of the cusp at the transition state and the degree of technical difficulty required to actually solve for properties using a BO description. Finally, the results of the quantum wavepacket propagations are compared to those obtained from Landau-Zener152, 160 non-adiabatic reaction-rate theory and also its weak-coupling Golden-Rule approximation.107, 154, 155 Subsequently, we look at how entanglement between the BO states can be used to quantify BO breakdown.156

2. Methods

The model Hamiltonian expresses the total electron-vibration molecular Hamiltonian H containing the electronic and nuclear kinetic energies, the electron-electron, electron-nuclear and nuclear-nuclear Coulomb potentials energies, and the electron-electron exchange energies (but neglects nuclear exchange) in terms of the diabatic states $\phi^C_A(r,Q)$ and $\phi^C_B(r,Q)$ as

$$H^C(Q) = \begin{pmatrix} H^C_{LL}(Q) & H^C_{LR}(Q) \\ H^C_{RL}(Q) & H^C_{RR}(Q) \end{pmatrix}$$

where

$$H^C_{LL}(Q) = \left\{ \phi^C_L(r,Q)|H|\phi^C_L(r,Q) \right\} = \frac{\hbar \omega}{2} (Q + Q_m)^2 - \frac{\hbar^2}{2} \frac{d^2}{dQ^2}$$

$$H^C_{RR}(Q) = \left\{ \phi^C_R(r,Q)|H|\phi^C_R(r,Q) \right\} = \frac{\hbar \omega}{2} (Q - Q_m)^2 - \frac{\hbar^2}{2} \frac{d^2}{dQ^2} + E_0$$

$$H^C_{LR}(Q) = \left\{ \phi^C_L(r,Q)|H|\phi^C_R(r,Q) \right\} = J$$

$$H^C_{RL}(Q) = \left\{ \phi^C_R(r,Q)|H|\phi^C_L(r,Q) \right\} = J$$

and J is the electronic coupling between the diabatic states, r represents the electronic coordinates, Q represents the chosen antisymmetric nuclear coordinate, Q_m is a displacement that locates the two harmonic potentials at different nuclear geometries, ω is the vibration frequency of the harmonic diatomic oscillators in the absence of coupling, and E_0 is an energy asymmetry that represents the free-energy change in a chemical reaction. While asymmetric molecules and reaction paths intrinsically involve structures with different fundamental vibration frequencies, the free-energy change between the two species is typically the dominant factor and so frequency asymmetry is neglected in this simple model. However, the use of different frequencies would be essential in any calculation of the properties of dissipative reactions (see Fig. 1) in which this model is applied. The nuclear displacement coordinate Q can be related to mass-weighted normal coordinates q by157

$$Q = q/q_{\text{qpt}}$$

where q_{qpt} is the zero-point vibrational length157

Numerically exact energy levels and wavefunctions of this Hamiltonian may be determined in a number of ways, each of which is very efficient in some region of the parameter space.$^{51, 144}$ Here we adopt a single approach for all points considered that utilizes a harmonic-oscillator basis set161 centered at $Q=0$, including all functions with vibrational quanta of $0 \leq i < N$. The final (sparse) symmetric Hamiltonian matrix elements in the electron-vibration product basis set \{ $\phi^L_C(r,Q)|, \phi^R_C(r,Q)$, $X_i(Q)$ \} are then given by

$$H_{ij}^L = \left\{ X_i(Q)|\phi^L_C(r,Q)|H|\phi^L_C(r,Q)X_j(Q) \right\}$$

$$= \delta_{ij} - \hbar \omega \bar{Q}_i \bar{Q}_j + \frac{\hbar^2}{2} \frac{d^2}{dQ^2} \frac{d^2}{dQ^2}$$

$$H_{ij}^R = \left\{ X_i(Q)|\phi^R_C(r,Q)|H|\phi^R_C(r,Q)X_j(Q) \right\}$$

$$= \delta_{ij} + \hbar \omega \bar{Q}_i \bar{Q}_j - \frac{\hbar^2}{2} \frac{d^2}{dQ^2} \frac{d^2}{dQ^2}$$

$$H_{ij}^{LR} = \left\{ X_i(Q)|\phi^L_C(r,Q)|H|\phi^R_C(r,Q)X_j(Q) \right\} = \delta_{ij} + \hbar \omega \bar{Q}_i \bar{Q}_j$$

when $j \geq i$.161 Our chosen approach is computationally efficient whenever the number of bound levels inside a well below a transition state is small, with typically only a few vibrational basis functions required for convergence. However, as a matter of routine, we use a large number of 256 basis functions per state throughout most of the parameter space. However, when $\hbar \omega / \Delta E < 0.005$ and $2|J| / \lambda < 1$, the number of vibrational levels below the transition state can be very large and so we increase this to 512 functions.

An interpretation of this model is that the BO approximation demands that the coupling J is zero and that other values intrinsically indicate BO breakdown.160 This interpretation is not consistent with the historical interpretation of the Born-Oppenheimer states as being those obtained by parametrically diagonalizing the electronic Hamiltonian as a function of nuclear coordinate, however,52 and is not adopted herein; indeed, we show shortly that the BO corrections become undefined at $J=0$, making this the worst-possible situation for the BO approximation which then manifests derivative discontinuities in the potential-energy surfaces, while from Eqn. (1) it is clearly that for $J=0$ it is in fact the CA basis states that specify the exact solution. Here we apply the BO approximation in its standard form to Eqn. (1), parametrically diagonalizing the electronic states as a function of nuclear coordinate Q, leading to GS and ES adiabatic potential-energy surfaces $\varepsilon_c(Q)$ and $\varepsilon_e(Q)$, respectively, where

$$\varepsilon_c(Q) = \frac{E_0}{2} + \frac{\lambda}{4} Q^2 + \frac{\hbar \omega}{2} (Q_m Q)^2 + 4J^2$$

with the reorganization energy defined as

$$\lambda = 2\hbar \omega Q_m^2$$

This journal is © The Royal Society of Chemistry [year]
new BO electronic basis states
\[\phi_a(r,Q) = \alpha(Q) \phi_{e^a_a}(r,Q) + \beta(Q) \phi_{e^a_b}(r,Q) \]
\[\phi_b(r,Q) = -\beta(Q) \phi_{e^a_a}(r,Q) + \alpha(Q) \phi_{e^a_b}(r,Q) \]
where
\[a(Q) = \frac{J}{J^2 + \left[\epsilon_a - \hbar \omega(Q + Q_m)^2 / 2 \right]^2} \], and
\[b(Q) = \frac{-\epsilon_a - \hbar \omega(Q + Q_m)^2 / 2}{J^2 + \left[\epsilon_a - \hbar \omega(Q + Q_m)^2 / 2 \right]^2} \].

Application of the standard BO approximation then proceeds in its usual modern way, evaluating all molecular properties from these potential-energy surfaces and electronic wavefunctions. However, using the BO electronic states in Eqn. (5) as a new basis set, the Hamiltonian Eqn. (1) may be rewritten without approximation as \(H^{BO}(Q) \) where
\[H^{BO}_{ab}(Q) = \langle \phi_a | H^{BO} | \phi_b \rangle \] for \(a, b = \pm, - \) and
\[H^{BO}_{QQ}(Q) = \epsilon_a(Q) + \Delta H^{DC}(Q) - \hbar \omega \frac{\varepsilon_a^2}{2 \partial Q^2} \]
\[H^{BO}_{QQ}(Q) = \epsilon_b(Q) + \Delta H^{DC}(Q) - \hbar \omega \frac{\varepsilon_b^2}{2 \partial Q^2} \]
\[H^{BO}_{QQ}(Q) = -H^{BO}_{QQ}(Q) = \Delta H^{FD}(Q) \frac{\partial}{\partial Q} + \Delta H^{SD}(Q) \]
Here,
\[\Delta H^{DC}(Q) = \frac{-\hbar \omega}{2} \left(a(Q) \frac{\partial^2 a(Q)}{\partial Q^2} + b(Q) \frac{\partial^2 b(Q)}{\partial Q^2} \right) \]
\[\Delta H^{FD}(Q) = \frac{-\hbar \omega}{2} \left(a(Q) \frac{\partial b(Q)}{\partial Q} + b(Q) \frac{\partial a(Q)}{\partial Q} \right) \]
\[\Delta H^{SD}(Q) = \frac{-\hbar \omega}{2} \left(a(Q) \frac{\partial^2 b(Q)}{\partial Q^2} + b(Q) \frac{\partial^2 a(Q)}{\partial Q^2} \right) \]
provide the DC, FD, and SD corrections \(\Delta H^{DC} \), \(\Delta H^{FD} = \Delta H^{FD} \frac{\partial}{\partial Q} \), and \(\Delta H^{SD} \), respectively, to the BO approximation, with also
\[Q_m = \frac{E_b}{\lambda} Q_m \] being the nuclear coordinate at which the two CA states intersect. Note that as a result of the coordinate-dependent transformation, \(H^{BO}(Q) \) appears antisymmetric in both the electronic and nuclear coordinates but is symmetric overall; this feature generates the well-known selection rule that for symmetric molecules odd-quanta levels of one electronic state can only interact with even-quanta levels of the other.

An important feature is that the DC correction is always positive, and in general the inclusion of this correction results in a variational method for which the calculated lowest vibronic energy level (i.e., that which defines the heat of formation) is strictly greater than it’s exact energy. However, Eqn. (8) shows that all BO corrections become undefined ("0/0") at \(Q = Q_m \) when \(J = 0 \) because of the manifested derivative discontinuity, making impossible the determination of the exact answer using an adiabatic approach; however, the CA basis states provide the analytical solution to the exact answer in this case. The BO adiabatic approximation is defined by Eqns. (3-6) and neglects all three corrections in Eqn. (8), while numerically exact solutions to the original Hamiltonian Eqn. (1) can be obtained by including them all (we term this the “full calculation” FC=DC+FD+SD), with a variety of intermediary approximations also being possible such as the inclusion of just the DC correction to produce the Born-Huang adiabatic potential-energy surfaces.

\[e_{\pm}^{BH}(Q) = e_{\pm}(Q) + \Delta H^{DC}(Q). \]

To evaluate vibrational matrix elements of the Hamiltonian in the BO electronic-state basis, we use the same centered harmonic-oscillator basis set as used previously to evaluate matrix elements of the Hamiltonian in the crude-adiabatic basis as this is the most computationally efficient procedure. Required matrix elements such as \(\langle x_i | \phi_j(Q) \rangle \) are evaluated numerically while analytical integrals are used for the nuclear kinetic energy integrals and the effects of the momentum operator
\[\frac{\partial}{\partial Q} \langle x_i | \phi_j(Q) \rangle = \sqrt{\frac{j+1}{2}} \left| x_{j+1}(Q) \right| + \sqrt{\frac{j}{2}} \left| x_{j-1}(Q) \right| \]
Other vibrational basis sets such as plane waves offer advantages through say the use of Fourier-transform technology but typically need four times the number of basis functions to achieve a similar level of convergence as found for the harmonic-oscillator basis.

The numerical determination of the vibronic energy levels and eigenfunctions then proceeds simply by selecting the desired level of approximation \(\epsilon_j(Q) \) plus one, two, or all of the BO correction terms \(\Delta H^{DC} \), \(\Delta H^{FD} = \Delta H^{FD} \frac{\partial}{\partial Q} \), and \(\Delta H^{SD} \), constructing the integrals using a vibrational basis set truncated at \(N \) levels, and diagonalizing the resulting matrix to yield the \(2N \) (numerically exact) eigenfunctions
\[\psi_j(r,Q) = \sum_{\gamma=1}^{N} \sum_{\gamma'=1}^{N} C_{\gamma \gamma'} \phi_{\gamma}(r,Q) | x_\gamma(Q) \rangle \]
and associated energy levels \(\epsilon_j \). It is, however, conceptually convenient to consider the full Hamiltonian and the partially-corrected Hamiltonians in the basis of the vibrational eigenfunctions
\[\phi_{\pm}(r,Q) = \sum_{i=1}^{N} e_{\pm i} \left| x_i(Q) \right| \]
of the BO Hamiltonian. The BO Hamiltonian in this basis is simply a diagonal matrix with elements \(e_{\pm i} \), i.e.,
\[\left| x_i(Q) \phi_{\pm i}(r,Q) \right| \phi_{\pm i}(r,Q) = e_{\pm i} \]
allowing specific inter-level effects of the BO breakdown terms to be explicitly manifested.
3. The parameter space of the model

As presented in Eqn. (1), the one-mode coupled two-state model contains four parameters, J, α, ω, and E_0. However, as in practice most situations involve a variety of coupling motions, we choose to express as many properties as possible in terms of the mass of the parameter space. In the language of Catastrophe Theory, the reorganization energy summed over all coupling modes that is the activation energy (Eqn. (23)), $\Delta \omega_0$ - error in the energy of the lowest vibrionic level (Eqn. (29)), and $\Delta \omega_0$ - error in the lowest transition energy (Eqn. (30)), evaluated using the BO approximation or this plus either the DC correction (Eqn. (10)), or the FD correction only; κ - transmission coefficient from Landau-Zener (L-Z) theory (Eqns. (38-40), its Golden-Rule (G-R) approximation (Eqn. (48)) and crudely estimated from approximate coherent-state dynamics (DC, FD) compared to the exact dynamics (CA); see text for the sources of the molecular parameters.

Table 1 Estimates (see text and ESI) of parameters values for the coupled harmonic potential-energy surfaces for molecular systems 0–9 (see Fig. 2) and characteristic points A–H, along with the evaluated properties: N - minimum number of BO vibrational basis functions per state needed to converge the lowest two vibrionic levels to 0.2%; Q_c - the cusp diameter (Eqn. (17)), $\Delta E^{FD}=(\Delta E^{DC})_{\max}$ is the DC contribution to the activation energy (Eqn. (23)); $\Delta \omega_0$ - error in the energy of the lowest vibrionic level (Eqn. (29)), and $\Delta \omega_0$ - error in the lowest transition energy (Eqn. (30)), evaluated using the BO approximation or this plus either the DC correction (Eqn. (10)), or the FD correction only; κ - transmission coefficient from Landau-Zener (L-Z) theory (Eqns. (38-40), its Golden-Rule (G-R) approximation (Eqn. (48)) and crudely estimated from approximate coherent-state dynamics (DC, FD) compared to the exact dynamics (CA); see text for the sources of the molecular parameters.

| System | $2|J|$ | $h_\omega/\Delta E$ | E_0/h_ω | N | Q_c | $\Delta \omega_0^B$ | $\Delta \omega_0^D$ | $\Delta \omega_0^E$ | $\Delta \omega_0^F$ | $\Delta \omega_0^G$ | $\Delta \omega_0^H$ | $\Delta \omega_0^{FD}$ | κ_{L-Z} | κ_{GR} | κ_{DC} | κ_{FD} |
|----------|------|---------------------|----------------|-----|-------|-----------------|-----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| FePC$_{40}$ | 0.029 | 0.15 | -13 | 2 | 0.06 | 45 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | - | - |
| DPP | 0.043 | 0.08 | 0 | 4 | 0.11 | 11 | -0.003 | 0.001 | 0.005 | 0.002 | 0.001 | 1.17 | 2.86 | 4.67 | - | - |
| 2 Alq$_3$ | 0.08 | 0.16 | 0 | 128 | 0.14 | 63 | -0.046 | 0.011 | 0.074 | 0.020 | 0.032 | 1.21 | 2.41 | 3.88 | - | - |
| 34PYR | 0.3 | 0.095 | 1.3 & | 4 | 0.67 | 0.28 | -0.004 | 0.001 | -0.019 | 0.003 | -0.019 | 8.1 | 1.02 | 1.13 | - | - |
| 4 NBN | 0.74 | 0.18 | 0 | 4 | 1.11 | 10 | -0.045 | 0.005 | 0.043 | 0.013 | 0.035 | 14 | 1.03 | 1.07 | - | - |
| 5 CT | 0.80 | 0.089 | 0 | 2 | 1.68 | 0.045 | -0.026 | 0.001 | 0.016 | 0.003 | 0.014 | 46 | 0.96 | 0.99 | - | - |
| 6 CT-O-Me | 0.80 | 0.089 | 1.5 & | 4 | 1.68 | 0.045 | -0.013 | 0.001 | -0.007 | 0.002 | 0.009 | - | - | - | - | - |
| 7 NH$_3$ | 0.80 | 0.006 | 0 | 2 | 6.45 | 0.003 | -0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 2650 | 0.88 | 0.88 | - | - |
| 8 PRC | 1.8 | 0.41 | 0.6 | 4 | 1.39 | 0.065 | -0.029 | 0.009 | 0.036 | 0.026 | 0.017 | - | - | - | - | - |
| 9 Benzene | 3.3 | 0.01 | 0.02 | 128 | 0.14 | 6.3 | -0.046 | 0.011 | 0.074 | 0.020 | 0.032 | 1.21 | 2.41 | 3.88 | - | - |

a indicated in the figures at the approximate location of $E_0/h_\omega = 1.4$.

b in excess of N, a minimum of 256 basis functions are actually used in all calculations except 1024 functions are used for the dynamics of 2, A, and D but the results for A are not near convergence.

is the BO electronic energy gap at the diabatic state minima ($Q = \pm Q_m$) in the absence of asymmetry E_0 (nb., at the adiabatic minimum-energy geometry the corresponding vertical transition energy is just λ). While the derivation of the BO approximation was originally made based on an expansion in the ratio of the reduced nuclear mass of a diatomic molecule to the electron mass, the essential physical insight behind this approximation is that it is possible to ignore the effects of the nuclear momentum and kinetic-energy operators on the electronic wavefunctions when the timescales (or energy scales) of the two types of motion are quite different. The ratio $h_\omega/\Delta E$ captures this physical insight in a simple and general way: lower values of this parameter <1 will always increase the accuracy of the BO approximation. The most significant way in which the mass-dependent effects of BO breakdown are manifest in this work is through the mass dependence of this ratio which stems from the mass dependence of the diabatic-state vibration frequency ω. Finally, we scale the energy asymmetry by the vibration frequency to obtain a third parameter, E_0/h_ω. In this way the actual value of the vibration frequency can be considered to be an arbitrary scale parameter. Its value is conserved throughout the various potential-energy surfaces shown in Fig. 3.

Indeed, Fig. 3 shows the BO potential-energy surfaces and the two lowest BO vibronic energy levels ε_0^B and ε_0^D for both the GS (-) and ES (+) surfaces, as well as the exact vibrational density of the lowest-vibronic level for the 10 sample molecules 0–9 and 8 characteristic points A–H, as

This journal is © The Royal Society of Chemistry [year].
detailed in Table 1. Also indicated in the figure are the locations of these systems on a 2-dimensional log-scale plot depicting $\hbar \omega / \Delta E$ and $2|J|/\lambda$. These plots consider the ranges $0.01 \leq 2|J|/\lambda \leq 10$ and $0.00316 \leq \hbar \omega / \Delta E \leq 3.16$, values extreme enough so that the asymptotic limits of the parameter space are exposed. Values for ammonia and benzene are taken from our previous interpretation of spectroscopic data, along with results for CT, along with recent spectroscopic analyses used for BNB148 and FePC60. Data for Alq3 are taken from a recent study of the most prolific hole-transport pathway through the β-phase of the Alq3 crystal, and J and λ for DPP are taken from our experimental spectroscopic interpretation with the deduced typical solvent frequency for CT also applied, and CT-OMe is taken to be CT perturbed by $E_0 = 0.15$ eV.344

Issues concerning the application of a one-model model to some of these molecules is described in the ESI.49, 150, 153

The sample molecules present parameters with the ranges $0.03 \leq 2|J|/\lambda \leq 3.3$ and $0.006 \leq \hbar \omega / \Delta E \leq 0.41$ only, with 6 systems being symmetric ($\Delta E = 0$) and for the remainder either $\Delta E / \hbar \omega = -13, 0.6, 1.3, 1.5$; values for these latter two systems are subsequently shown on figures obtained at the intermediary value of $\Delta E / \hbar \omega = 1.4$ for brevity. Charge-transfer systems of importance can display a wide range of $2|J|/\lambda$ values, with for example in Alq3 crystal the depicted process has $2|J|/\lambda = 0.08$ but this is pertinent to the most prolific hole-transfer pathway, with other hole-transfer pathways having values orders of magnitude smaller while for electron-transfer in Alq3 crystal, $2|J|/\lambda$ can approach unity. However, it is uncommon to find functional molecular systems with values of $\hbar \omega / \Delta E$ exceeding 0.5 as this requires high frequencies, weak coupling, and low reorganization energies. Nevertheless, the region with $\hbar \omega / \Delta E \approx 1$ depicting say a double-well molecule in which the well depth is too shallow to support zero-point vibration can be important, whilst $\hbar \omega / \Delta E \gg 1$ could become manifest at e.g., conical intersections. As mentioned earlier, such conical intersections should be described using an enhanced model containing at least one symmetric vibration, but the results obtained for our simpler one-mode problem remain informative.

As the sample molecules do not probe this region, the iconic systems A – H provide a more systematic coverage of the model’s parameter space. Systems A – C with $\hbar \omega / \Delta E = 1$ depict different scenarios applicable when the vibrational and electronic energy spacings are equivalent, D, E and H represent the isomerization processes or electron transfer in a typical molecule with many bound vibrational levels and a well defined transition state separating two different isomers, G depicts aromatic molecules with delocalized electronic states, and F is an intermediate case with the ground-state BO frequency highly depressed with quartic contributions dominating the ground-state potential-energy surface.

4. Results

a. The cusp diameter, Born-Huang adiabatic potential-energy surfaces, and the fundamental relationships between the three Born-Oppenheimer breakdown contributions

The curvatures of the transition states shown in Fig. 3 for A, D, E, H, 0 (FePC60), 1 (DPP) and 2 (Alq3) are all very high, indicating the presence of a cusp through which the BO surfaces change rapidly from L-dominated (large $|a|$, small $|b|$) in Eqn. 6 to R-dominated (small $|a|$, large $|b|$); this change is illustrated in Fig. 4 for scenario F. We define the cusp diameter as the distance between the two roots of $\partial^2 \alpha^2 (Q) / \partial Q^2 = 0$ (see Eqn. 6) i.e.,

$$Q_c = \frac{2 |J|}{\lambda} Q_m - \frac{2 |J|}{\sqrt{2 \hbar \alpha \lambda}} \approx 0.16 \left(\frac{2 |J|}{\lambda} \right)^{3/4} \left(\frac{\hbar \omega}{\Delta E} \right)^{1/2}. \tag{17}$$

This diameter is a characteristic descriptor of non-adiabatic processes and is shown in Fig. 4 as a function of the parameter-space investigated in this study wherein it varies by over 5 orders of magnitude. As the displacements Q_m is in units of the length of the zero-point motion of the diabatic oscillators, the cusp diameter is mass dependent, a feature that is clearly apparent from Fig. 4 via the shown dependence on $\hbar \omega / \Delta E$. Further, the approximate description of Q_c given in Eqn. (17) (which is accurate to $\pm 40\%$ over this and a wider parameter range) indicates the expected14 (electron mass / nuclear mass) dependence for the breakdown of the BO approximation whilst simultaneously quantifying the additional dependence of BO breakdown on the chemical property $2|J|/\lambda$.

London’s 1932 theory for non-adiabatic chemical reactions was the first to focus on the rapid change in $\alpha^2 (Q)$ that occurs as the cusp is crossed.44 Hush capitalized on this in his 1950’s adiabatic-based general theory of electron transfer, highlighting the partial charge transfer at the transition state, which allows transition-state properties to be tuned chemically, and the importance of the cusp and its properties to the breakdown of the BO breakdown.147, 148, 149 The cusp diameter is independent of energy asymmetry E_0 and is appropriate independent of whether or not the ground-state adiabatic surface has a single well or a double well. Note that single wells arise owing to either delocalization or to large values of $|E_0|$ as would be found in the inverted region of chemical reaction; they occur whenever

$$\left(\frac{E_0}{\Delta E} \right)^2 \geq \left[1 - \left(\frac{2 |J|}{\lambda} \right)^2 \right]^{2/3} \left[1 + \left(\frac{2 |J|}{\lambda} \right)^2 \right]. \tag{18}$$

This relation implies a profound connection between the forces that lead to aromaticity and those that stabilize high-energy
excited states in e.g. organic conductors and molecular photovoltaics. However, Q_e will be large and hence BO-breakdown small when resonance leads to a single well whereas it will be small and hence BO breakdown large in the inverted region.

From Eqn. (8), the large values attained by the BO-correction terms in the region of the cusp are related to each other by

$$\Delta H^{BH}(Q) = \frac{1}{2\hbar \omega} \left(\Delta P^{FD}(Q)\right)^2$$

and

$$\Delta H^{SD}(Q) = \frac{2\Delta P^{FD}(Q)}{\hbar \omega} \left(\frac{Q}{Q_c} - 1\right) \left(\Delta P^{FD}(Q)\right)^2 = \frac{4}{Q_c} \left(\frac{Q}{Q_c} - 1\right) \Delta H^{BH}(Q).$$

These equations provide specific examples of generally known relationships\(^8,9\) that, independent of the number of vibrational modes or electronic states included, link the three BO-breakdown correction terms. For our model system, the maximum absolute correction terms. For our model system, the maximum absolute values of $\Delta H^{DC}(Q)$ and $\Delta P^{FD}(Q)$ occur at $Q = Q_c$, the point at which the BO states are equal mixtures of the L and R CA states, while the maximum value of $\Delta H^{SD}(Q)$ occurs at $Q = Q_c + 3^{-1/2} Q_c$; these maxima are:

$$\left|\Delta P^{FD}(Q)\right|_{\text{max}} = \frac{\hbar \omega}{2 Q_c},$$

$$\left(\Delta H^{DC}(Q)\right)_{\text{max}} = \frac{\hbar \omega}{8 Q_c},$$

and

$$\left(\Delta H^{SD}(Q)\right)_{\text{max}} = \frac{3\sqrt{3} \hbar \omega}{32 Q_c^2} = \frac{3\sqrt{3}}{4} \left(\Delta H^{BH}\right)_{\text{max}}$$

and scale simply with the cusp diameter in the anticipated fashion. Hence this diameter is the critical physical property that leads to BO breakdown. These equations show that the DC and SD contributions should be equally important, as the DC contribution appears directly as a diagonal contribution whereas the SD contributions must be weighted by the inverse energy gap between the ES and the GS and so is most competitive only near conical intersections; this effect also diminishes the impact of the FD correction. The effect of the DC correction is to add a sharply spiked peak equally to both the GS and ES BO potential-energy surfaces, producing the Born-Huang adiabatic potential-energy surfaces specified in Eqn. (13) that must be included in order to obtain convergence of the calculated energies of the lowest two vibronic levels of the full Hamiltonian. For symmetric solutions ($E_0 = 0$) this increases the activation energy from its BO value of

$$\Delta E^+ = \frac{\lambda}{4} \left(1 - \frac{2|\lambda|}{\lambda}\right)^2$$

(21)

and scale simply with the cusp diameter in the anticipated fashion. Hence this diameter is the critical physical property that leads to BO breakdown. These equations show that the DC and SD contributions should be equally important, as the DC contribution appears directly as a diagonal contribution whereas the SD contributions must be weighted by the inverse energy gap between the ES and the GS and so is most competitive only near conical intersections; this effect also diminishes the impact of the FD correction. The effect of the DC correction is to add a sharply spiked peak equally to both the GS and ES BO potential-energy surfaces, producing the Born-Huang adiabatic potential-energy surfaces specified in Eqn. (13) that must be included in order to obtain convergence of the calculated energies of the lowest two vibronic levels of the full Hamiltonian. For symmetric solutions ($E_0 = 0$) this increases the activation energy from its BO value of

$$\Delta E^+ = \frac{\lambda}{4} \left(1 - \frac{2|\lambda|}{\lambda}\right)^2$$

(21)

and scale simply with the cusp diameter in the anticipated fashion. Hence this diameter is the critical physical property that leads to BO breakdown. These equations show that the DC and SD contributions should be equally important, as the DC contribution appears directly as a diagonal contribution whereas the SD contributions must be weighted by the inverse energy gap between the ES and the GS and so is most competitive only near conical intersections; this effect also diminishes the impact of the FD correction. The effect of the DC correction is to add a sharply spiked peak equally to both the GS and ES BO potential-energy surfaces, producing the Born-Huang adiabatic potential-energy surfaces specified in Eqn. (13) that must be included in order to obtain convergence of the calculated energies of the lowest two vibronic levels of the full Hamiltonian. For symmetric solutions ($E_0 = 0$) this increases the activation energy from its BO value of

$$\Delta E^+ = \frac{\lambda}{4} \left(1 - \frac{2|\lambda|}{\lambda}\right)^2$$

(21)

and scale simply with the cusp diameter in the anticipated fashion. Hence this diameter is the critical physical property that leads to BO breakdown. These equations show that the DC and SD contributions should be equally important, as the DC contribution appears directly as a diagonal contribution whereas the SD contributions must be weighted by the inverse energy gap between the ES and the GS and so is most competitive only near conical intersections; this effect also diminishes the impact of the FD correction. The effect of the DC correction is to add a sharply spiked peak equally to both the GS and ES BO potential-energy surfaces, producing the Born-Huang adiabatic potential-energy surfaces specified in Eqn. (13) that must be included in order to obtain convergence of the calculated energies of the lowest two vibronic levels of the full Hamiltonian. For symmetric solutions ($E_0 = 0$) this increases the activation energy from its BO value of

$$\Delta E^+ = \frac{\lambda}{4} \left(1 - \frac{2|\lambda|}{\lambda}\right)^2$$

(21)

and scale simply with the cusp diameter in the anticipated fashion. Hence this diameter is the critical physical property that leads to BO breakdown. These equations show that the DC and SD contributions should be equally important, as the DC contribution appears directly as a diagonal contribution whereas the SD contributions must be weighted by the inverse energy gap between the ES and the GS and so is most competitive only near conical intersections; this effect also diminishes the impact of the FD correction. The effect of the DC correction is to add a sharply spiked peak equally to both the GS and ES BO potential-energy surfaces, producing the Born-Huang adiabatic potential-energy surfaces specified in Eqn. (13) that must be included in order to obtain convergence of the calculated energies of the lowest two vibronic levels of the full Hamiltonian. For symmetric solutions ($E_0 = 0$) this increases the activation energy from its BO value of

$$\Delta E^+ = \frac{\lambda}{4} \left(1 - \frac{2|\lambda|}{\lambda}\right)^2$$

(21)

and scale simply with the cusp diameter in the anticipated fashion. Hence this diameter is the critical physical property that leads to BO breakdown. These equations show that the DC and SD contributions should be equally important, as the DC contribution appears directly as a diagonal contribution whereas the SD contributions must be weighted by the inverse energy gap between the ES and the GS and so is most competitive only near conical intersections; this effect also diminishes the impact of the FD correction. The effect of the DC correction is to add a sharply spiked peak equally to both the GS and ES BO potential-energy surfaces, producing the Born-Huang adiabatic potential-energy surfaces specified in Eqn. (13) that must be included in order to obtain convergence of the calculated energies of the lowest two vibronic levels of the full Hamiltonian. For symmetric solutions ($E_0 = 0$) this increases the activation energy from its BO value of

$$\Delta E^+ = \frac{\lambda}{4} \left(1 - \frac{2|\lambda|}{\lambda}\right)^2$$

(21)

and scale simply with the cusp diameter in the anticipated fashion. Hence this diameter is the critical physical property that leads to BO breakdown. These equations show that the DC and SD contributions should be equally important, as the DC contribution appears directly as a diagonal contribution whereas the SD contributions must be weighted by the inverse energy gap between the ES and the GS and so is most competitive only near conical intersections; this effect also diminishes the impact of the FD correction. The effect of the DC correction is to add a sharply spiked peak equally to both the GS and ES BO potential-energy surfaces, producing the Born-Huang adiabatic potential-energy surfaces specified in Eqn. (13) that must be included in order to obtain convergence of the calculated energies of the lowest two vibronic levels of the full Hamiltonian. For symmetric solutions ($E_0 = 0$) this increases the activation energy from its BO value of

$$\Delta E^+ = \frac{\lambda}{4} \left(1 - \frac{2|\lambda|}{\lambda}\right)^2$$

(21)
For typical deep-welled molecular systems with $\frac{\hbar \omega}{\Delta E} < 0.1$, the BO approximation works very well requiring the minimum value of just $N=2$ vibrational levels per BO electronic state. This indicates that either the BO approximation accurately reproduces the exact properties or else simple analytical methods like perturbation theory could be introduced to describe any BO breakdown. However, the number of required functions increases steeply outside of this region as $\frac{\hbar \omega}{\Delta E}$ increases and $\frac{2|J|}{\lambda}$ falls, quickly exceeding our practical limit of $N=1024$. Of particular significance are the small changes in the parameters found capable of transforming the BO approximation from an excellent description to a very poor one in the region of $2|J|/\lambda < 0.1$, $\hbar \omega/\Delta E \approx 0.1$, a region of significant interest for charge (and exciton) transfer.

The poor convergence of calculations performed using a BO electronic basis via Eqn. (7) can be understood considering the cusp diameter Q_c, Eqn. (17). The DC, FD, and SD terms cause low-energy BO GS wavefunctions to mix with either GS or ES wavefunctions that have nodal spacings of the order of Q_c. Hence the number of basis functions required to achieve a specified level of convergence of molecular properties naively must increase in proportion to $1/Q_c^2$. Indeed, this effect gives rise to the extreme sensitivity of N evidenced in Fig. 5. Comparing the utilized value of the vibrational basis set size N to Q_c, we find empirically for symmetric situations with $E_0 / \hbar \omega = 0$, that, for $\hbar \omega / \Delta E \approx 0.1$,

$$N \approx \max \left(2.6Q_c^{-2} \right)$$

$$6Q_c^{-2} = \frac{\hbar \omega}{\lambda} \left(\frac{2J}{\lambda} \right)^2 \approx 40 \left(\frac{2|J|}{\lambda} \right)^{3/2} \frac{\hbar \omega}{\Delta E}$$

although in a few percent of cases the numerically optimized value is significantly smaller indicating that the convergence conditions used are not always strict enough. From within our sampled parameter space, this expression predicts that the maximum number of BO vibrational eigenfunctions per state that must be included in an accurate numerical solution of the full Hamiltonian occurs for the point $2J/\lambda = 0.01$, $\hbar \omega / \Delta E = 3.16$ and is $N = 380,000$.

Asymmetry mixes the ES into the GS, significantly influencing the lowest two vibronic wavefunctions. For $E_0 > 0$, the BO GS skew towards the L-region minimum, taking the wavefunctions away from the transition-state region in which the BO breakdown is large. Hence Fig. 5 shows that the BO approximation performs much better for the low-energy levels of asymmetric potentials than it does for symmetric ones, with the number of basis functions required for convergence decreasing significantly as the magnitude of E_0 increases. The most difficult region becomes that for double-well potentials ($2|J|/\lambda < 1$) with comparable vibrational and electronic energy gaps ($\hbar \omega / \Delta E \approx 1$). This result has been previously noted and is associated with entanglement between electronic and vibrational motion.

While Fig. 5 shown the minimum number of vibrational basis functions per electronic state required for convergence of the lowest two levels to 0.2%, all subsequently reported results were performed using a minimum of 256 levels per state, ensuring convergence to much better than 1 in 10^6 for most data points.

c. Shortcomings of calculations for the thermochemical energy of the lowest vibronic level and for the lowest spectroscopic transition energy evaluated using approximate BO-based methods.

The top row of Fig. 6 shows the error

$$\Delta E_0^{BO} = E_0^{BO} - E_0^{FC}$$

in the lowest-energy level evaluated using the BO approximation whilst the third row shows the associated absolute error in the calculated spectroscopic first transition energy

$$\Delta \epsilon_{01}^{BO} = \left| \epsilon_{01}^{BO} - \epsilon_{01}^{FC} \right|$$

Here FC stands for the full calculation using all three BO correction terms ΔH^{DC}, ΔH^{FD}, and ΔH^{SD} in Eqn. (7) (or equivalently using Eqn. (1) and the CA basis), and the BO approximation is enforced by simply neglecting all three corrections. Note that while the lowest vibronic level always resides on the GS, the higher-energy level involved in the lowest-energy transition may originate from either the GS or the ES surfaces, and the transition energy may represent tunneling, a GS vibrational transition, or a vibronic transition to the ES surface. For symmetric systems with $E_0 / \hbar \omega = 0$, the BO energy of the lowest vibronic level is found to always be less than the exact energy level but the difference is mostly small, the largest calculated error being $-0.2 \hbar \omega$ at $2J/\lambda < 0.01$, $\hbar \omega / \Delta E = 1$. The associated errors in the lowest transition energy adopt a similar pattern but the quantity is always overestimated and the magnitude of the error is much larger, up to 0.6 $\hbar \omega$. Hence it is clear that the errors made by the BO approximation for the first excited vibronic level are always larger in magnitude to those made for the ground state. As these quantities are evaluated using only the BO surfaces $\epsilon_\perp(Q)$ assuming that the sharply peaked cusp-derived quantities ΔH^{DC}, ΔH^{FD}, and ΔH^{SD} can be neglected, calculations at the BO level are rapidly convergent over the whole parameter space considered. The errors are a maximum when the electronic and vibrational energy spacings are equivalent ($\hbar \omega / \Delta E = 1$) and the GS surface has a double peak.

Fig. 5 The number N of BO vibrational basis functions per state required for convergence of the lowest two energy levels to 0.2% (~ 1024 in light gray regions). Sample model compounds 1-9 are indicated, see Table 1.
well ($2|\lambda|/\lambda < 1$), decreasing steadily in magnitude as $E_0/\hbar \omega$ deviates from zero. They are small for most typical molecules ($\hbar \omega / \Delta E < 0.1$) but for such systems the maximum breakdown occurs in the strongly anharmonic transition region between single-welled and double-welled systems ($2|\lambda|/\lambda = 1$).

However, Table 1 shows calculated values for the 10 sample molecules and the errors in the BO approximation can be significant, up to 5% of $\hbar \omega$ for the ground-state energy and 7% for the lowest vibrational transition energy.

A variety of approximate methods aimed at improving the BO approximation can be constructed by retaining one or two of the three neglected terms ΔH^{DC}, ΔH^{FD}, and ΔH^{SD} in Eqn. (7). Fig. 6 and Table 1 also show the error in the lowest energy level...
obtained when just ΔH^{DC} is included (the Born-Huang adiabatic approximation, Eqn. (10)), as well as the absolute errors in the lowest transition energy obtained using this method and by including only either ΔH^{FD}, ΔH^{SD}, or $\Delta H^{FD} + \Delta H^{SD}$.

As Eqn. (8) indicates that the DC correction to the BO potential energy surfaces is always positive (see e.g., Fig. 3), it always increases energy levels. Unlike the BO approximation, the Born-Huang approximation is variational and always overestimates the exact ground vibronic level's energy; this is demonstrated in Table 1 where the calculated values of Δe_{BH}^{BO} and Δe_{BH}^{DC} are given for the sample molecules and characteristic data points. For all molecules considered, DC results in a significant improvement to the calculated transition energies, supporting the use of this approach in thermochemical applications. Application of only the non-adiabatic FD and/or SD corrections always act to lower the calculated ground-state energy, thus always increasing the error compared to the BO approximation rather than reducing it. As Table 1 and Fig. 6 show, this scenario is typically maintained for the lowest transition energy too, and this is the reason why DC is normally used in spectroscopy for the description of BO breakdown rather than the derivative corrections. However, the error in the BO approximation is quite small, < 5%, in all of these cases, and for systems such as A the BH approximation is found to overestimate the energy level by more than the BO approximation originally underestimated it. As the cusp diameter decreases and BO breakdown becomes large, using single Born-Huang adiabatic potential-energy surfaces becomes inadequate and the inclusion of the non-adiabatic correction terms is essential. In this regime the effects of the three BO breakdown corrections are highly non-additive, but even when the corrections are small, typically inclusion of all three terms is required for quantitative analysis. Some calculations in which these terms have been evaluated have noted this effect also.

Useful analytical expressions may be derived for typical molecules with $\hbar \omega / \Delta E \ll 1$ and $E_0 = 0$. For single-well systems with $2|J| / \lambda > 1$, the DC contribution decreases the force constants (see Eqn. (15)) to

$$\frac{\partial^2}{Q^2} \omega_{BH}^{2} (Q) \bigg|_{Q=0} = \hbar \omega \left(1 \pm \frac{\lambda}{2|J|} - \frac{1}{2} \frac{\lambda}{2|J|} \left(\frac{\hbar \omega}{\lambda} \right)^2 \right)^{1/2} \right. \right) \bigg|_{Q=0} \right. \right) \right) \bigg|_{Q=0}$$

(31)

so that the associated Born-Huang vibration frequencies are given by

$$\omega_{BH}^{2} = \omega \left(1 \pm \frac{\lambda}{2|J|} - \frac{1}{2} \frac{\lambda}{2|J|} \left(\frac{\hbar \omega}{\lambda} \right)^2 \right)^{1/2} \right) \bigg|_{Q=0} \right. \right) \bigg|_{Q=0}$$

(32)

Double-well character persists in the Born-Huang potential up to

$$\left[2|J| / \lambda \right] \left[1 + 2 \left(\frac{\hbar \omega}{\lambda} \right)^2 \right]^{1/2} \right) \bigg|_{Q=0} \right. \right) \bigg|_{Q=0}$$

(33)

However, the location, energy correction, and force constant of the double-well minima cannot be expressed in closed form; while accurate expansions are given in ESI, the dominant contributions in the limits of $2|J| / \lambda \ll 1$ and $\hbar \omega / \Delta E \ll 1$ are:

$$Q_{\min}^{BH} \approx Q_m \left[1 - \left(\frac{2\lambda}{J} \right)^2 \left(1 - 4 \frac{\hbar \omega}{J} \right)^2 \right]^{1/2} \right) \bigg|_{Q=0} \right. \right) \bigg|_{Q=0}$$

$$e^{-\beta \Delta E} (Q_{BH}^{BH}) - e^{-\beta \Delta E} (Q_{BO}^{BH}) \approx \frac{\hbar \omega}{4 \lambda} \left(\frac{2\lambda}{J} \right)^2 \left(\frac{\hbar \omega}{\lambda} \right)^2 \right) \bigg|_{Q=0} \right. \right) \bigg|_{Q=0}$$

(34)

respectively, revealing how DC acts to increase localization, increase the heat of formation, and increase molecular vibration frequencies compared to BO predictions (i.e., those obtained setting $\hbar \omega / \lambda \approx \hbar \omega / \Delta E = 0$ in Eqn. (34)). In addition, DC raises the transition-state energy of the Born-Huang energy surface by ΔE_{\min} (Eqns. (22) and (23)) plus the much smaller correction $e^{-\beta \Delta E} (Q_{BH}^{BH}) - e^{-\beta \Delta E} (Q_{BO}^{BH})$.

d. Shortcomings of calculated energy-level spacings near the transition state evaluated using approximate BO-based methods.

In ESI an analysis is presented of the energy gap between the two vibronic levels closest in energy to that of any transition state. As the cusp diameter decreases, introducing the ΔH^{FD} and/or ΔH^{SD} corrections alone causes this energy gap to deviate much further from the "true" value than was produced by the original BO approximation. Again we see that all three corrections must be applied in order to obtain robust and reliable results.

e. Shortcomings of quantum dynamics evaluated using approximate BO-based methods.

The rates for electron-transfer and other processes that are poorly described by tunneling-corrected transition-state theory are most commonly modeled quantitatively using trajectories ran on multiple or mixed BO potential-energy surfaces, though diabatic surfaces have also been used. In general, a wide variety of ansatz are available for this, but here we evoke none of these but instead focus on a simple enabling property—the quantum dynamics of a wavepacket running at the energy of the transition state. All methods for determining thermal rate expressions introduce the concept of temperature and then manipulate dynamics in some way, either by simple analytical approximation or by using some modified classical, semi-classical, or quantum propagation scheme. Quantum dynamics is solved by first diagonalizing the (possibly approximated) Hamiltonian operator, Eqn. (7), in the classical, or quantum propagation scheme.

Quantum dynamics is solved by first diagonalizing the Hamiltonian operator, Eqn. (7), in the truncated vibrational basis. The time dependence of the wavepacket is then expressed as

$$\frac{\partial}{\partial t} |\Psi(r,t)\rangle = i\hbar \left[\mathcal{H} |\Psi(r,t)\rangle \right]$$

(35)

where $d_\ell(t)$ is the projection of the initial coherent state

$$|\Psi(r,0)\rangle = \pi^{-1/4} \exp \left[-Q + Q_m \right] |\Psi(r,0)\rangle$$

(36)

onto the eigenfunctions $|\psi_i(r)\rangle$ of the Hamiltonian, Eqn. (12),

where

$$d_\ell(t) = d_\ell(0) \exp \left[-\alpha e^{it} / \hbar \right]$$

(37)

An alternative procedure would be to numerically solve the time-dependent Schrödinger equation $i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \mathcal{H} |\Psi\rangle$, a procedure that is usually computationally much more efficient as
The propagation time used is very short, only one vibrational period. However, all numerical integrators that we used were unstable, displaying large Lyapunov exponents which induced rapid exponential divergence of numerical error as time increased. Such phenomena are a known property of the Cusp Catastrophe.

We choose the initial coherent-state wavepacket starting at the left-hand end of the BO surfaces sketched in Fig. 3 (essentially localized in the L diabatic well). This then runs towards the transition-state region, with some of its contents passed through into the R well and some reflected back into the L well. We determine the probability \(\kappa_{LR} \) of crossing the transition state on first attempt, evaluated as the density of the wavepacket found on the right-hand side of the transition state after one period (\(t = 2\pi / \omega \)) of motion; we do not attempt to analyze the results of multiple crossings as this would introduce severe wavepacket interference effects into the analysis, effects that would be highly dependent on features such as the number of included modes and dephasing. If the coupling between the diabatic states \(J \) is zero, then this probability is zero, the wavepacket moving coherently (i.e., without changing shape with its average position and momentum evolving according to Hamilton's classical equations of motion)\(^{176}\) from its starting position to slightly past the transition state and then back to its original position. Note that our approach ignores possible decoherence phenomena associated with molecular vibrations not included in the single-mode model.\(^{177-179}\) Such decoherence would need to act faster than one vibrational period in the active mode for our analysis to be invalid, an unusual but not unprecedented scenario.

Fig. 7 shows the calculated quantum dynamics of this wavepacket for scenario D from Table 1 and Fig. 3 with \(2J / \lambda = 0.01, \hbar\omega / \Delta E = 0.1, E_0 = 0.0 \). The top row of the figure shows the results of solving Eqn. (1) in the CA basis for a wavepacket initially localized on the BO ground-state (see later in Eqn. (36), projected back onto the diabatic basis). Shown in the figure is the vibrational density of this wavepacket projected onto the L and R CA basis electronic states. At such a small value of \(2J / \lambda \), the wavepacket moves essentially coherently on the L surface and is reflected back from the transition state with a penetration of only \(\kappa_{LR} = 0.0036 \) at the end of the trajectory (intermediate values are plotted in the bottom panel of the figure).

The second row shows the results of a similar calculation evaluated in the BO basis using the full set of all 3 BO correction terms (FC) in Eqn. (7). Here the vibrational density is projected onto the GS and ES BO electronic basis states. In principle the sum of the two projected densities in the first two rows should be equivalent, but only \(N=1024 \) harmonic-oscillator basis functions per electronic state are used with the BO basis for which adequate convergence is not yet obtained. The differences are small enough to neglect for our purposes here (CA transmission is 3.036%, FC is 1.4%) but would be important for any molecular calculation performed in this region of the parameter space.

We now consider the impact of using approximate dynamics in the BO basis, including either one, two, or none of the BO breakdown terms from Eqn. (7) in the calculations. Firstly row 3 of Fig. 7 shows the results of orthodox BO adiabatic dynamics, neglecting all three correction terms. The wavepacket approaches the transition state unhindered with just over half of it (that half with an energy in excess of the transition state) passing through and one half being reflected. Results of this nature are imbedded into standard transition-state theory and fail to capture the critical impact that BO breakdown has on the dynamics.

The next row shows the results of similar adiabatic dynamics involving no surface hopping applying only the DC to enforce dynamics on the Born-Huang GS surface, Eqn. (10). As Fig. 3 indicates, DC adds a huge positive potential in the immediate vicinity of the transition state, raising the transition-state energy by \(\Delta \epsilon^3 = \hbar \omega / 8Q^2 = \hbar^2 \omega^2 / 16J^2 = 250 \hbar \omega \) (Eqns. (20-23)) to well beyond the average energy of the wavepacket (which is centered at the BO transition-state energy of \(\Delta \epsilon^3 = 2.5 \hbar \omega \) (Eqn. (21))). This forces the wavepacket to reflect almost in its entirety into the L well, with tunneling through the high but narrow Born-Huang potential-energy barrier being responsible for the calculated small product yield of 1.8% (close to the previous result from the full dynamics of 1.6%). Thus the Born-Huang dynamics closely mimics the exact dynamics yet does not involve surface hopping or other non-adiabatic effects.

The effects of the lowest-order non-adiabatic correction \(\Delta \epsilon^{FD} \) acting alone are shown in row 5 of Fig. 7. As the wavepacket approaches the transition state, surface hopping...
transitions of around 1.5%, about the same yield as for all 3 terms combined.

The nature of the processes involved are revealed further by consideration of the results at $t = \pi / \omega$, a time just after the wavepacket impinges on the transition state. The exact dynamics (FC) and the dynamics on the Born-Huang potential-energy surface (DC) show the same major qualitative feature with the maximum in the vibrational density never reaching the transition state. Naively, such blocking is not expected as DC arises\(^9\) as the square of the FD correction (Eqn. (19)-(20)) and so is intrinsically narrower (e.g., at $Q = Q_0$).

$\Delta P_{FD} / \Delta H_{DC} = 1/2$ while $\Delta H_{DC} = 1/4$, allowing surface hopping to occur before access is blocked. However, as $\Delta \Delta E^\dagger \gg \Delta E^\dagger$ the outer tail of the correction actually exceeds the energy of the wavepacket at distances well removed from the transition state, blocking motion. From Eqn. (8), $\Delta \Delta E^\dagger = \hbar \omega$ at $|Q - Q_0| = 12Q_0$, a geometry at which $\Delta P_{FD} / \Delta H_{DC} = 0.007$ (Eqns. (8) and (19)) and so, even allowing for tunneling through the thin DC spike, the impact of the momentum correction in reduced from what it might otherwise have been. Including the FD correction alone gives 13% of the wavepacket on the ES at $t = \pi / \omega$, while including only SD gives a higher value of 15%; note that these are instantaneous values and that some of the density that had earlier crossed to the ES by this time has now re-crossed back to the GS. However, the complex nature of the interplay between all 3 correction terms is demonstrated by noting that FD+SD combined yields only 2% on the ES at this time, the two contributions acting to largely cancel each other out, while the full calculation DC+FD+SD yields 27% on the ES so that the FD and SD terms now appear to reinforce each other. It is clear that the FD and SD terms enhance tunneling through the Born-Huang potential barrier and then funnel this density onto the ES by surface hopping, a feature that most likely is a legacy of the enhanced width of the FD function.

Fig. 8 shows corresponding plots for scenario E from Table 1 and Fig. 3 with $2J / \lambda = 0.1$, $\hbar \omega / \Delta E = 0.1$, and $E_0 = 0$ for which there are no convergence problems when using the BO description. The much larger coupling opens up a substantial gap between the GS and ES at the transition state, increases considerably the cusp diameter and so increases the likelihood that transition-state theory could adequately describe chemical reaction dynamics. This scenario is nevertheless close to the actual ones for the charge-transfer molecules 1 (DPP) and 2 (Alq3), systems that would normally be treated using non-adiabatic electron-transfer theory rather than transition-state theory or some adiabatic variant. In the CA basis, $\kappa_{LR} = 0.24$ of the wavepacket crosses from the L diabatic state to the R diabatic state at the transition state, yielding reaction products identified after one period of motion. Using the full Hamiltonian containing all 3 corrections in the BO basis (FC), a numerically equivalent total density is obtained, but the partitioning of the wavepacket into the different electronic basis states is quite different with in this case the wavepacket returning to the BO GS at the end of the trajectory after a substantial fraction crossed to the ES and then back again to yield no net reaction. Using the BO approximation on the GS surface only, the fraction of products is much larger, 0.63, indicating that BO breakdown remains important. The FD-only approximation also seriously overestimates the product yield at $\kappa_{LR} = 0.53$ while using the DC
The quantum dynamics of a coherent-state (if \(J=0\)) wavepacket starting at the far left of the left-hand BO well at the energy of the transition state for scenario 0 (FePC$_{60}$), 2 \(J\omega\) =0.029, \(h\omega/\Delta\omega = 0.15\), \(E_{\gamma}/h\omega = -13\). The top frames show the wavepacket vibrational density resolved onto the electronic basis states (either CA, with propagation based on Eqn. (1), or else BO, with propagation based on Eqn. (7)), superimposed as appropriate on either the CA potential-energy surfaces (red - L, blue-R) or else one or two of the BO or Born-Huang surfaces (green - GS, magenta - ES) for different Hamiltonians. BO dynamics is based on either: full corrections (FC=DC+FD+SD, red), BO only (no corrections, green), using DC correction only (blue), FD correction only (brown), SD correction only (magenta), or FS=FD+SD corrections (cyan). The lower figures show the fraction \(\kappa_{LR}\) of the wavepacket located to the right of the transition as a function of time for one period of a vibration.

The fraction of the wavepacket transmitted after one period of vibration is shown in ESI over the whole parameter space used in this study. At no point in the parameter space at which significant BO breakdown occurs does the application of any partial correction lead to quantitatively accurate results, though the DC-only and FD-only approaches can yield qualitatively useful information, with the error for DC-only typically being significantly less than that for FD-only. This is particularly true for important charge-transfer systems such as 1 (DPP), 2 (Alq3), and 5 (CT), as well as for spectroscopically relevant systems such 4 (BNB) and 3 (PyR).

Fig. 9 shows analogous dynamics for charge recombination in 0 (FePC$_{60}$), 2 \(J\omega\) =0.029, \(h\omega/\Delta\omega = 0.15\), and \(E_{\gamma}/h\omega = -13\). As Fig. 2 indicates, this process is highly exothermic and occurs in the "inverted" region, despite the absence of an adiabatic transition state. The initial wavepacket is launched on the upper surface towards the point of intersection of the two diabatic surfaces. The exact calculations show a small amount \(\kappa_{LR} = 2\%\) of the wavepacket undergoes surface hoping to the ground state during the first collision. From a broad perspective the BO and BH approximations, which predict no reaction at all, describe this scenario well; however, it is only the fraction that reacts that is of practical importance, a feature that both of these methods fail to describe. Including only the FD term leads to a severe overestimate of the reactivity, however, predicting 48% reaction, while SD only predicts 28%. Again, the central feature of the non-adiabatic reaction dynamics is that the FD and SD terms largely cancel each other out, with the FS approximation predicting only 5% reactivity, and inclusion of all three terms is again required for quantitative accuracy. So, while the effects of BO breakdown on thermal reactions manifest quite differently for normal reactions over transition states from those of reactions in the "inverted" region (Fig. 1), the general conclusions reached remain the same concerning the significance of all three coupling terms.

The other scenario depicted in Fig. 1 pertains to high-energy reactions above the conical-intersection for which single-mode models are inadequate. Nevertheless, in ESI the analogous quantum dynamics of the 1-mode model is depicted. While the effects of the BO-breakdown terms again manifest themselves qualitatively differently, all three BO-breakdown terms are found to be essential for quantitative analysis. Indeed, the continued importance of the SD term in multi-dimensional simulations is anticipated based on the known general relationships that specify the relative magnitudes of the FD and SD corrections, as well as the known properties of the Cusp Catastrophe.

f. Relationship between this quantum dynamics and the Landau-Zener and Golden Rule approaches for electron-transfer reactions.

We now introduce a primitive method, similar to approximations used in deriving analytical expressions for rate constants, for mapping the results from the previous quantum dynamics calculations onto the transmission coefficient \(\kappa\) that is often used to describe the breakdown of transition-state theory. As only about one half of the incoming wavepacket has enough energy to cross the transition state in a classical fashion, assuming that all density that enters into the \(R\) well is immediately dephased, this transmission is approximated by

\[
\kappa = \min(1, 2\kappa_{LR}) ,
\]

and this function is shown in Fig. 10 evaluated at \(E_{\gamma} = 0\); the comprehensive results presented in ESI demonstrate that the probability \(\kappa_{LR}\) of a wavepacket crossing the transition state is highly independent of asymmetry and so the presented results are taken to be generally indicative. Fig. 10 shows results evaluated using the CA basis that are compared to the numerically equivalent ones obtained using the full Hamiltonian in the BO basis. Whilst some numerical convergence issues with the BO calculations were apparent in Fig. 7, the broader picture displayed
in Fig. 10 indicates that this effect is not qualitatively significant. Approximate transmission coefficients obtained using just none, one, or two of the BO-breakdown corrections are also shown in the figure. The BO approximation itself (no corrections used) has unit transmission by definition whereas the transmissions predicted using only the DC or FD corrections are qualitatively similar to the exact results. To highlight the differences, the ratio of the transmissions predicted using only the FD or DC corrections to that from the exact calculations are also shown in the figure, with results for the sample molecules also given in Table 1. The errors for the electron-transfer systems (DPP) and (Alq3) are significant, factors of 2-3 for DC-only and 3-4 for FD-only, demanding that all corrections be included in quantitative calculations but nevertheless indicating the utility of the simpler methods for semi-quantitative analysis. Always the DC-only approximation gives more accurate results than does FD-only.

From a qualitative perspective, nonadiabatic chemical reactions are usually interpreted using Landau-Zener theory. In this approach, the probability P that a crossing of the transition state (treated as a conical intersection) is crossed; there is, however, some ambiguity concerning the scaling of the exponent in this equation, with other modern sources quoting $\pi/2$ rather than $\pi^2/2$. Numerically, we find that P is an accurate value to be 7.5, a value that fits the numerically integrated results over the parameter space considered to an accuracy of 3.4% over a wide temperature range. In terms of transition-state theory, non-adiabatic reaction-rate constants k can be modeled if one regards a possible reactive collision as happening once per molecular vibration, where the non-adiabaticity parameter κ is given by:

$$\kappa = \frac{2\langle P \rangle}{1 + \langle P \rangle}.$$ (44)

This property is also shown in Fig. 10 where it is compared to the analogous quantity determined from the trajectory propagations. Qualitatively, the results of the full quantum dynamics using all three BO correction terms are in good agreement with the standard Landau-Zener result, whereas using any approximate Hamiltonian gives poor results. Empirically the results in Fig. 10 can be represented using the simple function:

$$\kappa \approx \frac{2\langle P \rangle}{1 + \langle P \rangle}.$$ (45)

where we fit $c=3.22$, $\alpha=7$, $\beta=-4$ to the results from the trajectory propagation and $c=1.63$, $\alpha=4$, $\beta=-3$ to the Landau-Zener results. In ESI, the fitted data is compared to the original.
with the RMS errors found to be 5% (trajectory data) and 2% (Landau-Zener). Some significant quantitative differences between the trajectory results and the Landau-Zener expression are thus found. An alternative simpler empirical expression that describes the trajectory calculations to the same accuracy (see ESI) is

\[\kappa = \frac{(Q_c / 0.056)^3}{1 + (Q_c / 0.056)^4}, \]

highlighting the critical role played by the cusp diameter in determining reaction kinetics. According to this equation, the rate constant halves whenever \(Q_c = 0.056 \), a value much smaller than the value of \(Q_c = 0.35 \) previously identified as the largest value of the cusp radius for which the influence of DC on the activation energy was negligible, stressing the importance of this term to the reactivity.

In the weak-coupling limit of \(\pi^{3/2} f^2 / \hbar \omega (k_B T)^{1/2} \ll 1 \), Eqn. (42) reduces to the standard Golden Rule expression for the rate constant\(^{105,154,155} \)

\[k = \frac{2 \pi^2 f^2}{\hbar^2 \pi^2 k_B T} \exp \frac{\Delta E}{k_B T}, \]

so that the transmission coefficient becomes

\[\kappa = \frac{2 \pi^2 f^2}{\hbar^2 \pi^2 k_B T} = \pi^{3/2} \left(\frac{\lambda}{k_B T} \right)^{1/2} Q_c^2. \]

Hence the transmission is reduced as the temperature increases and as the ratio of the vibrational to electronic energy spacings increase but most importantly scales with the square of the cusp radius and therefore inversely with the magnitude of the Born-Huang correction to the transition-state energy, Eqn. (19). This is why it is not possible to have a significant correction to the transition-state theory rate constant without the DC being important. Naively, the effect of the increased activation energy \(\Delta E^f = (\hbar \omega)^2 \lambda / 16 f^2 \) would be expected to decrease the rate constant exponentially but tunneling through the rather narrow associated barrier, combined with the effects of surface hopping, reduce this dependence to only inverse proportionality.

Fig. 10 also shows the Golden-Rule rate from Eqn. (47) as well as the ratio of this value to that obtained using the Landau-Zener method, exposing the consequences of use of the small-coupling approximation; ratios for the sample molecules and test systems are thus found. An alternative simpler empirical expression that provides a generalization of the conclusions drawn recently by Kutzelnigg\(^{12} \) for \(H_2 \), establishing this as a general aspect of ground-state phenomena. Such a generalization is consistent with implications of the known fundamental relationships\(^{50,59,61} \) that related the three BO-correction terms for problems involving multiple vibrational motions, conical intersections, and multiple electronic states. In general, however, quantitatively accurate results require the inclusion of all three correction terms as the magnitudes of the smaller terms remain significant. Further, the effects of the three individual terms are non-additive, with often one minor-looking contribution acting to switch off more major-looking ones.

Three key qualitative conclusions flow from this concerning the language that is in normal use concerning BO breakdown and chemical processes:

- thermal reactions that occur much slower than (tunneling corrected) transition-state theory rate predictions are usually termed "non-adiabatic" reactions that are perceived as being blocked owing to non-adiabatic transitions to/from excited states, but as the DC term better accounts for the low rates and does not involve surface hopping, these reactions should only be termed "non-Born-Oppenheimer" ones. This in particular applies to weakly-coupled charge-transfer processes. Indeed, recent research\(^{154,156} \) is highlighting the principle \(^{157} \) that it is always possible to describe such chemical process exactly using an adiabatic description. However, it is conceptually most helpful to still consider thermal reactions in the "inverted regime" and many high-energy photochemical processes to be "non-adiabatic" as the reactants and products are well represented by different adiabatic potential-energy surfaces.

5. Conclusions

This work is based on a simple model Hamiltonian that qualitatively accounts for a wide range of chemical thermodynamic, spectroscopic and kinetic processes in molecules, biological systems, and functional materials. Using it, we demonstrate that, when the BO approximation performs poorly, it is usually necessary to treat all three contributions to BO breakdown so as to achieve quantitative results. This is demonstrated for:

- the lowest energy-level of the molecule and hence thermochemical properties,
- vibration eigenstates at the bottom of deep potential-energy wells,
- the lowest-energy vibrational transitions,
- tunneling transitions,
- vibrational eigenstates in the vicinity of the transition state and for the spectroscopic transitions between them,
- quantum dynamics mimicking thermal reactions over a barrier, and
- quantum dynamics mimicking thermal reactions in the "inverted" region where there is no transition state.

Use of the diagonal-correction (DC)-only correction (to produce the Born-Huang potential energy surface) is shown to be appropriate in some regions of the parameter space for ground-state thermochemistry, vibrational spectroscopy, and thermal reactions including electron-transfer processes but use of first derivative (FD)-only methods is found never to be adequate. The DC term will contribute significantly to ground-state kinetic processes whenever the Born-Huang transition-state energy change \(\Delta E^f \) (Eqn. (21-23)) is large compared to the available reaction energy. It blocks access to the transition state to inhibit surface hopping, leading to no reaction in the case of say thermal isomerization or electron-transfer processes. For thermochemical or spectroscopic data pertinent to the bottom of deep wells, the DC correction is well known to be the dominant one owing to the large energy gap between the BO ground-state and excited-state which inhibits non-adiabatic interactions. Our extensions of this result to include many other processes including thermal kinetics provide a generalization of the conclusions drawn recently by Kutzelnigg\(^{12} \) for \(H_2 \), establishing this as a general aspect of ground-state phenomena. Such a generalization is consistent with implications of the known fundamental relationships\(^{50,59,61} \) that related the three BO-correction terms for problems involving multiple vibrational motions, conical intersections, and multiple electronic states. In general, however, quantitatively accurate results require the inclusion of all three correction terms as the magnitudes of the smaller terms remain significant. Further, the effects of the three individual terms are non-additive, with often one minor-looking contribution acting to switch off more major-looking ones.

Three key qualitative conclusions flow from this concerning the language that is in normal use concerning BO breakdown and chemical processes:

- thermal reactions that occur much slower than (tunneling corrected) transition-state theory rate predictions are usually termed "non-adiabatic" reactions that are perceived as being blocked owing to non-adiabatic transitions to/from excited states, but as the DC term better accounts for the low rates and does not involve surface hopping, these reactions should only be termed "non-Born-Oppenheimer" ones. This in particular applies to weakly-coupled charge-transfer processes. Indeed, recent research\(^{154,156} \) is highlighting the principle \(^{157} \) that it is always possible to describe such chemical process exactly using an adiabatic description. However, it is conceptually most helpful to still consider thermal reactions in the "inverted regime" and many high-energy photochemical processes to be "non-adiabatic" as the reactants and products are well represented by different adiabatic potential-energy surfaces.
- provided that full quantum descriptions of molecular motion on
 a single potential-energy surface are always used, Born-Huang
 adiabatic potential-energy surfaces are in general more useful
 than Born-Oppenheimer ones, providing a significantly
 improved picture of chemical thermodynamics, vibration
 spectroscopy, and kinetics whilst retaining key chemical
 features such as the concepts of molecular vibration
 frequencies and transition-state energies.

- the properties of BO breakdown should be linked to the general
 description of the Cusp Catastrophes as all identified major
 qualitative features stem from this primary origin. Dynamics
 around cusps is typically unstable owing to large Lyapunov
 exponents, and the results of trajectory propagations are known
 to be extremely sensitive to the initial conditions and
 approximations used. Further, the cusp diameter is identified
 as the critical physical property controlling BO breakdown
 based on simple analytical expressions (Eqn. (19-20)) that
 relate the three BO breakdown terms to each other and
 establish their close connection and common origin in terms of
 the cusp diameter. Indeed, deviations of rate constants from
 the predictions of transition-state theory are also shown to
 correlate well with the cusp diameter (Eqn. (45)). These links
 developed between analytically solvable properties of the
 single-mode two-state model are of fundamental importance
 because the anticipated consequences stemming from the
 mathematics of the cusp catastrophe are completely general in
 nature and underpin all effects of BO breakdown including the
 properties of conical intersections.

Unfortunately, with a few exceptions,66-74 most quantum
chemistry codes evaluate directly only the first-derivative
properties of all types of charge-transfer systems, but especia lly
in general required for quantitative understanding of the
properties do not enter into the alternative perturbation
expressions, though Marcus did propose "fictitious charges" as a
possible explanatory device for the properties of electron-transfer
transition states.190-192 We see here that diabatic approaches are
in general required for quantitative understanding of the
properties of all types of charge-transfer systems, but especially
those displaying the types of fast reaction rates desired for
modern device applications.

Acknowledgments

We thank the Australian Research Council Discovery Projects
scheme for funding, National Computational Infrastructure (NCI)
for providing computational resources, and Profs. John Stanton,
Meredith Jordan and Timothy Schmidt for helpful discussions.

Notes and references

a: International Centre for Quantum and Molecular Structure, College
of Sciences, Shanghai University, Shanghai 200444 China; Tel: 86-
13618155341; E-mail: Jeffrey.Reimers@uts.edu.au
b: School of Mathematical and Physical Sciences, University of
Technology Sydney, NSW 2007 Australia
c: c: Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT UK
d: School of Chemistry, The University of Sydney, Sydney, NSW 2006
Australia
e: School of Mathematics and Physics, The University of Queensland,
QLD 4072 Australia
f: School of Molecular Biosciences, The University of Sydney, NSW, 2006
Australia

† Electronic Supporting Information (ESI) available: S1. The use of a
single-mode two-state model to describe complex molecular systems; S2.
More accurate expressions for properties of the Born-Huang adiabatic
surface; S3. Shortcomings of calculated energy-level spacings near the
transition state evaluated using approximate BO-based methods; S4. The
fraction of the wavepacket depicting thermal reactions transmitted after
one period of motion; S5. Approximating the transmission coefficient;
S6. High-energy dynamics above the conical intersection as is pertinent
to say photochemical processes. See DOI: xxxxxxxxxx