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Abstract

Necessary conditions are obtained for certain types of rational delay differential
equations to admit a non-rational meromorphic solution of hyper-order less than one.
The equations obtained include delay Painlevé equations and equations solved by
elliptic functions.

1 Introduction

There have been many studies of the discrete (or difference) Painlevé equations. One
way in which difference Painlevé equations arise is in the study of difference equations
admitting meromorphic solutions of slow growth in the sense of Nevanlinna. The idea that
the existence of sufficiently many finite-order meromorphic solutions could be considered
as a version of the Painlevé property for difference equations was first advocated in [1].
This is a very restrictive property, as demonstrated by the relatively short list of possible
equations obtained in [3] of the form w(z+1)+w(z−1) = R(z, w(z)), where R is rational
in w with meromorphic coefficients in z, and w is assumed to have finite order but to grow
faster than the coefficients. It was later shown in [4] that the same list is obtained by
replacing the finite order assumption with the weaker assumption of hyper-order less than
one.

Some reductions of integrable differential-difference equations are known to yield delay
differential equations with formal continuum limits to (differential) Painlevé equations. For
example, Quispel, Capel and Sahadevan [8] obtained the equation

w(z) [w(z + 1)− w(z − 1)] + aw′(z) = bw(z), (1.1)

where a and b are constants, as a symmetry reduction of the Kac-van Moerbeke equa-
tion. They showed that equation (1.1) has a formal continuum limit to the first Painlevé
equation

d2y

dt2
= 6y2 + t. (1.2)

Furthermore, they obtained an associated linear problem for equation (1.1) by extending
the symmetry reduction to the Lax pair for the Kac-van Moerbeke equation.

Painlevé-type delay differential equations were also considered in Grammaticos, Ra-
mani and Moreira [2] from the point of view of a kind of singularity confinement. More
recently, Viallet [10] has introduced a notion of algebraic entropy for such equations.

We will assume that the reader is familiar with the standard notation and basic results
of Nevanlinna theory (see, e.g., [5]). Let w(z) be a meromorphic function. The hyper-order
(or the iterated order) of w(z) is defined by

ρ2(w) = lim sup
r→∞

log log T (r, w)

log r
,

1Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK.
r.halburd@ucl.ac.uk

2Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101
Joensuu, Finland. risto.korhonen@uef.fi

1



where T (r, w) is the Nevanlinna characteristic function of w. Most of the present paper is
devoted to a proof of the following.

Theorem 1.1. Let w(z) be a non-rational meromorphic solution of

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= R(z, w(z)) =

P (z, w(z))

Q(z, w(z))
, (1.3)

where a(z) is rational, P (z, w) is a polynomial in w having rational coefficients in z, and
Q(z, w) is a polynomial in w(z) with roots that are nonzero rational functions of z and
not roots of P (z, w). If the hyper-order of w(z) is less than one, then

degw(P ) = degw(Q) + 1 ≤ 3 or degw(R) ≤ 1. (1.4)

We have used the notation degw(P ) = degw(P (z, w)) for the degree of P as a poly-
nomial in w and degw(R) = max{degw(P ),degw(Q)} for the degree of R as a rational
function of w.

If degw(R(z, w)) = 0 then equation (1.3) becomes

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= b(z), (1.5)

where a(z) and b(z) are rational. Note that if b(z) ≡ pπia(z), where p ∈ N, then w(z) =
C exp(pπiz), C 6= 0, is a one-parameter family of zero-free entire transcendental finite-
order solutions of (1.5) for any rational a(z). In the following theorem we will single out
the equation (1.1) from the class (1.5) by introducing an additional assumption that the
meromorphic solution has sufficiently many simple zeros.

In value distribution theory the notation S(r, w) usually means a quantity of magnitude
o(T (r, w)) as r →∞ outside of an exceptional set of finite linear measure. In what follows
we use a slightly modified definition with a larger exceptional set of finite logarithmic
measure. We use the notation N(r, w) to denote the integrated counting function of poles
counting multiplicities and N(r, w) to denote the integrated counting function of poles
ignoring multiplicities.

Theorem 1.2. Let w(z) be a non-rational meromorphic solution of equation (1.5), where
a(z) 6≡ 0 and b(z) are rational. If the hyper-order of w(z) is less than one and for any
ε > 0

N

(
r,

1

w

)
≥
(

3

4
+ ε

)
T (r, w) + S(r, w), (1.6)

then the coefficients a(z) and b(z) are both constants.

Finally, we consider an equation outside the class (1.3).

Theorem 1.3. Let w(z) be a non-rational meromorphic solution of

w(z + 1)− w(z − 1) =
a(z)w′(z) + b(z)w(z)

w(z)2
+ c(z), (1.7)

where a(z) 6≡ 0, b(z) and c(z) are rational. If the hyper-order of w(z) is less than one and
for any ε > 0

N

(
r,

1

w

)
≥
(

3

4
+ ε

)
T (r, w) + S(r, w), (1.8)

then (1.7) has the form

w(z + 1)− w(z − 1) =
(λ+ µz)w′(z) + (νλ+ µ(νz − 1))w(z)

w(z)2
, (1.9)

where λ, µ and ν are constants.
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When µ = ν = 0 and λ 6= 0 then equation (1.9) has a multi-parameter family of elliptic
function solutions:

w(z) = α [℘(Ωz; g2, g3)− ℘(Ω; g2, g3)] ,

where ℘ is the Weierstrass elliptic function, Ω, g2 and g3 are arbitrary (provided that
℘′(Ω; g2, g3) 6= 0 or ∞) and α2 = −λΩ/℘′(Ω; g2, g3). Furthermore, when µ = 0, equation
(1.9) has a formal continuum limit to the first Painlevé equation. Specifically, we take the
limit ε→ 0 for fixed t = εz, where w(z) = 1− ε2y(t), λ = 2+O(ε) and λν = −1

3ε
5 +O(ε6).

Then equation (1.9) becomes d3y/dt3 = 12y dy/dt + 1, which integrates to d2y/dt2 =
6y2 + t− t0, for some constant t0. Replacing t with t+ t0 gives the first Painlevé equation
(1.2). Finally, when µ = 0 and λν 6= 0, equation (1.9) is a symmetry reduction of the
known integrable differential-difference modified Korteweg-de Vries equation

vt(x, t) = v(x, t)2 (v(x+ 1, t)− v(x− 1, t)) ,

in which v(x, t) = (−2λνt)−1/2w(z), where z = x− (2ν)−1 log t.

2 Value distribution of slow growth solutions

We begin by proving an important lemma, which relates the value distribution of mero-
morphic solutions of a large class of delay differential equations to the growth of these
solutions. A differential difference polynomial in w(z) is defined by

P (z, w) =
∑
l∈L

bl(z)w(z)l0,0w(z + c1)
l1,0 · · ·w(z + cν)lν,0w′(z)l0,1 · · ·w(µ)(z + cν)lν,µ ,

where c1, . . . , cν are distinct complex constants, L is a finite index set consisting of elements
of the form l = (l0,0, . . . , lν,µ) and the coefficients bl(z) are rational functions of z for all
l ∈ L.

Lemma 2.1. Let w(z) be a non-rational meromorphic solution of

P (z, w) = 0 (2.1)

where P (z, w) is differential difference polynomial in w(z) with rational coefficients, and
let a1, . . . , ak be rational functions satisfying P (z, aj) 6≡ 0 for all j ∈ {1, . . . , k}. If there
exists s > 0 and τ ∈ (0, 1) such that

k∑
j=1

n

(
r,

1

w − aj

)
≤ kτ n(r + s, w) +O(1), (2.2)

then the hyper-order ρ2(w) of w is at least 1.

Proof. We suppose against the conclusion that ρ2(w) < 1 aiming to obtain a contradiction.
We first show that the assumption P (z, aj) 6≡ 0 implies that

m

(
r,

1

w − aj

)
= S(r, w). (2.3)

This fact is an extension of Mohon’ko’s theorem and its difference analogue (see [4, Re-
mark 5.3]) for differential delay equations with meromorphic solutions of hyper-order less
than one.
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By substituting w = g + aj into (2.1) it follows that

Q(z, g) +R(z) = 0, (2.4)

where R(z) 6≡ 0 is a rational function, and

Q(z, g) =
∑
l∈L

bl(z)Gl(z, g) (2.5)

is a differential difference polynomial in g such for all l in the finite index set L, Gl(z, g)
is a non-constant product of derivatives and shifts of g(z). The coefficients bl in (2.5) are
all rational. Now, letting E1 = {θ ∈ [0, 2π) : |g(reiθ)| ≤ 1} and E2 = [0, 2π) \E1, we have

m

(
r,

1

w − aj

)
= m

(
r,

1

g

)
=

∫
θ∈E1

log+
∣∣∣∣ 1

g(reiθ)

∣∣∣∣ dθ2π
. (2.6)

Moreover, for all z = reiθ such that θ ∈ E1,∣∣∣∣Q(z, g)

g

∣∣∣∣
=

1

|g|

∣∣∣∣∣∑
l∈L

bl(z)g(z)l0,0g(z + c1)
l1,0 · · · g(z + cν)lν,0g′(z)l0,1 · · · g(µ)(z + cν)lν,µ

∣∣∣∣∣
≤
∑
l∈L
|bl(z)|

∣∣∣∣g(z + c1)

g(z)

∣∣∣∣l1,0 · · · ∣∣∣∣g(z + cν)

g(z)

∣∣∣∣lν,0 · ∣∣∣∣g′(z)g(z)

∣∣∣∣l0,1 · · ·
∣∣∣∣∣g(µ)(z + cν)

g(z)

∣∣∣∣∣
lν,µ

,

since degg(Gl) ≥ 1 for all l ∈ L with l = (l0,0, . . . , lν,µ). Now, since

log+
∣∣∣∣ 1

g(z)

∣∣∣∣ ≤ log+
∣∣∣∣R(z)

g(z)

∣∣∣∣+ log+
∣∣∣∣ 1

R(z)

∣∣∣∣
= log+

∣∣∣∣Q(z, g)

g(z)

∣∣∣∣+ log+
∣∣∣∣ 1

R(z)

∣∣∣∣
by equation (2.4), it follows from (2.6) by defining c0 = 0 that

m

(
r,

1

w − aj

)
≤
∫
θ∈E1

log+
∣∣∣∣Q(z, g)

g(z)

∣∣∣∣ dθ2π
+O(log r)

≤
ν∑

n=0

µ∑
m=0

ln,mm

(
r,
g(m)(z + cn)

g(z)

)
+O(log r)

≤
ν∑

n=0

µ∑
m=0

ln,m

(
m

(
r,
g(m)(z + cn)

g(z + cn)

)
+m

(
r,
g(z + cn)

g(z)

))
+O(log r).

(2.7)

The claim that (2.3) holds follows by applying the lemma on the logarithmic derivative, its
difference analogue [4, Theorem 5.1] and [4, Lemma 8.3], to the right hand side of (2.7).

To finish the proof, we observe that from the assumption (2.2) it follows that

k∑
j=1

N

(
r,

1

w − aj

)
≤ (τ + ε)kN(r + s, w) +O(log r) (2.8)

where ε > 0 is chosen so that τ + ε < 1. The first main theorem of Nevanlinna theory now
yields

kT (r, w) =

k∑
j=1

(
m

(
r,

1

w − aj

)
+N

(
r,

1

w − aj

))
+O(log r). (2.9)
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By combining (2.3), (2.8) and (2.9) it follows that

kT (r, w) ≤ (τ + ε)kN(r + s, w) + S(r, w) ≤ (τ + ε)k T (r + s, w) + S(r, w). (2.10)

An application of [4, Lemma 8.3] yields T (r + s, w) = T (r, w) + S(r, w), and so (2.10)
becomes

T (r, w) ≤ (τ + ε)T (r, w) + S(r, w),

which gives us the desired contradiction T (r, w) = S(r, w) since τ + ε < 1. We conclude
that ρ2(w) ≥ 1.

3 The proof of Theorem 1.1

Before proving Theorem 1.1 we first prove three lemmas related to equations of the form
(1.3). The first bounds the degree of R.

Lemma 3.1. Let w(z) be a non-rational meromorphic solution of equation (1.3) where a
and R are rational functions of one and two variables respectively. If the hyper-order of w
is less than one then degw(R) ≤ 4. Furthermore, if the hyper-order of w is less than one
and degw(R) = 4 then N(r, 1/w) = T (r, w) + S(r, w).

Proof. Taking the Nevanlinna characteristic function of both sides of (1.3) and applying
an identity due to Valiron [9] and Mohon’ko [7] (see also [6, Theorem 2.2.5]), we have

T

(
r, w(z + 1)− w(z − 1) + a(z)

w′(z)

w(z)

)
= T (r,R(z, w(z)))

= degw(R)T (r, w(z)) +O(log r).

Thus by using the lemma on the logarithmic derivative and its difference analogue [4,
Theorem 5.1], it follows that

degw(R)T (r, w(z))

≤ T (r, w(z + 1)− w(z − 1)) + T

(
r,
w′(z)

w(z)

)
+O(log r)

≤ N (r, w(z + 1)− w(z − 1)) +m(r, w(z)) +N(r, w(z))

+N

(
r,

1

w(z)

)
+ S(r, w).

(3.1)

On using [4, Lemma 8.3] to obtain

N (r, w(z + 1)− w(z − 1)) ≤ N (r, w(z + 1)) +N (r, w(z − 1))

≤ 2N(r + 1, w(z)) = 2N(r, w(z)) + S(r, w),

inequality (3.1) becomes

degw(R)T (r, w(z)) ≤ T (r, w(z)) +N(r, w(z)) +N(r, w(z))

+N

(
r,

1

w(z)

)
+ S(r, w).

(3.2)

Therefore

(degw(R)− 3)T (r, w(z)) ≤ N
(
r,

1

w(z)

)
+ S(r, w), (3.3)

which implies the conclusions of the lemma.
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Next we consider the case in which R(z, w) is a polynomial in w.

Lemma 3.2. Let w be a non-rational meromorphic solution of the equation

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= P (z, w(z)), (3.4)

where a(z) is rational in z and P (z, w) is a polynomial in w and rational in z. If the
hyper-order of w is less than one then degw(P ) ≤ 1.

Proof. Assume that degw(P ) ≥ 2, and suppose first that w(z) has either infinitely many
zeros or poles (or both). Let w(z) have either a zero or a pole at z = ẑ. Then either there
is a cancelation with a zero or pole of some of the coefficients in (3.4), or w(z) has a pole
of order at least 1 at z = ẑ+ 1, or at z = ẑ− 1. Since the coefficients of (3.4) are rational,
we can always choose a zero or a pole of w(z) in such a way that there is no cancelation
with the coefficients. Suppose, without loss of generality, that there is a pole of w(z) at
z = ẑ + 1. By shifting (3.4) up we obtain

w(z + 2)− w(z) + a(z + 1)
w′(z + 1)

w(z + 1)
= P (z + 1, w(z + 1)),

from which it follows that w(z) has a pole at z = ẑ + 2 of order at least degw(P ), and a
pole of order at least (degw(P ))2 at z = ẑ + 3, and so on. The only way that this string
of poles with exponential growth in the multiplicity can terminate, or that there can be
a drop in the orders of poles, is if there is a cancelation with a suitable zero or pole of a
coefficient of (3.4). But since the coefficients are rational and thus have finitely many zeros
and poles, and w(z) has infinitely many zeros or poles, we can choose the starting point
ẑ of the iteration from outside a sufficiently large disc in such a way that no cancelation
occurs. Thus,

n(d+ |ẑ|, w) ≥ (degw(P ))d

for all d ∈ N, and so

λ2(1/w) = lim sup
r→∞

log log n(r, w)

log r

≥ lim sup
d→∞

log log n(d+ |ẑ|, w)

log(d+ |ẑ|)

≥ lim sup
d→∞

log log(degw(P ))d

log(d+ |ẑ|)
= 1.

Therefore, ρ2(w) ≥ λ2(1/w) ≥ 1.
Suppose now that w(z) has finitely many poles and zeros, and that ρ2(w) < 1. Then

w(z) = f(z) exp(g(z)), (3.5)

where f(z) is a rational function and g(z) is entire. By substituting (3.5) into (3.4), it
follows that

f(z + 1)eg(z+1) − f(z − 1)eg(z−1) + a(z)

(
f ′(z)

f(z)
+ g′(z)

)
= P (z, f(z) exp(g(z))). (3.6)

Now, since ρ2(exp(g(z))) < 1, it follows from the difference analogue of the lemma on the
logarithmic derivatives, [4, Theorem 5.1], that

T
(
r, eg(z+1)−g(z)

)
= m

(
r, eg(z+1)−g(z)

)
= S(r, eg),
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and similarly

T
(
r, eg(z−1)−g(z)

)
= m

(
r, eg(z−1)−g(z)

)
= S(r, eg).

Hence, by writing (3.6) in the form

eg(z)
(
f(z + 1)eg(z+1)−g(z) − f(z − 1)eg(z−1)−g(z)

)
+ a(z)

(
f ′(z)

f(z)
+ g′(z)

)
= P (z, f(z) exp(g(z))),

and taking Nevanlinna characteristic from both sides, we arrive at the equation

degw(P )T (r, eg) = T (r, eg) + S(r, eg) +O(log r).

Since degw(P ) ≥ 2 by assumption, this implies that g is a constant. But this means that
w is rational, which is a contradiction. Thus ρ2(w) ≥ 1.

In our final lemma we consider the case in which Q(z, w) has a repeated root as a
polynomial in w.

Lemma 3.3. Let w be a non-rational meromorphic solution of the equation

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
=

P (z, w(z))

(w(z)− b1(z))κQ̌(z, w(z))
, (3.7)

where a and b1 are rational functions of z, P (z, w) and Q̌(z, w) are polynomials in w and
rational in z, and κ is an integer greater than one. Furthermore we assume that w−b1(z),
P (z, w) and Q̌(z, w) are pairwise co-prime. Then w has hyper-order at least one.

Proof. Notice that b1(z) is not a solution of (3.7), even if b1 ≡ 0, thus the first condition
of Lemma 2.1 is satisfied for b1. Suppose that ẑ is a zero of w(z) − b1(z) of order p
and that neither a(z), b1(z) nor any of the coefficient functions in P (z, w) nor Q̌(z, w)
has a zero or a pole at ẑ. We will also require that these coefficient functions do not
have zeros or poles at points of the form ẑ + j for a finite number of integers j (in this
particular case, we take −4 ≤ j ≤ 4). We will call such a point ẑ a generic zero of
order p. We will assume, often without further comment, that in similar situations we
are only considering generic zeros. Since the coefficients are rational, when estimating
the corresponding unintegrated counting functions, the contribution from the non-generic
zeros can be included in a bounded error term, leading to an error term of the type O(log r)
in the integrated estimates involving T (r, w).

Now either w(z + 1) or w(z − 1) has a pole of order q ≥ κp at z = ẑ, and we suppose
without loss of generality that ẑ + 1 is such a pole. Suppose next that

degw(P ) ≤ κ+ degw(Q̌). (3.8)

Then w(z) has a pole of order one at ẑ+2 and a pole of order q at ẑ+3. By continuing the
iteration, it follows that w(z) has either a simple pole or a finite value at ẑ+ 4. Therefore
it may be that w(ẑ+ 4) = b1(ẑ+ 4), and so it is at least in principle possible that w(ẑ+ 5)
is a finite value. This can only happen if the order of the zero of w(z)− b1(z) at z = ẑ+ 4
is p′ = q/κ ≥ p. But even so, by considering the multiplicities of zeros and poles of w− b1
in the set {ẑ, . . . , ẑ+ 4}, we find that there are 2q+ 1 > 2q ≥ κp+κp′ poles of w for p+ p′

zeros of w− b1. This is the “worst case scenario” in the sense that if w(ẑ+ 4) 6= b1(ẑ+ 4),
or a zero of Q̌(z, w(z)), then ẑ + 5 is a pole of w of order q ≥ κp, and we have even more
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poles for every zero of w − b1. By adding up the contribution from all points ẑ to the
corresponding counting functions, it follows that

n

(
r,

1

w − b1

)
≤ 1

κ
n(r + 4, w) +O(1).

Thus both conditions of Lemma 2.1 are satisfied, and so the hyper-order of w is at least
one.

Assume now that
degw(P ) ≥ κ+ degw(Q̌) + 1. (3.9)

Suppose again that ẑ is a generic zero of w(z) − b1(z) of order p. Then, as in the case
(3.8), w(z) has a pole of order q ≥ κp at either ẑ+ 1 or ẑ− 1, say ẑ+ 1. This implies that
w(z) has a pole of order q′ ≥ q at ẑ + 2, and so, the only way that w(ẑ + 4) can be finite
is that w(z)− b1(z) has a zero at ẑ+ 3 with multiplicity p′ = q′/κ, or w(ẑ+ 3) is a zero of
Q̌(z, w(z)). Even if this would be the case, we have found at least κp+ κp′ poles, taking
into account multiplicities, that correspond uniquely to at most p + p′ zeros of w − b1.
Therefore, we have

n

(
r,

1

w − b1

)
≤ 1

κ
n(r + 3, w) +O(1)

by going through all zeros of w − b1 in this way. Lemma 2.1 thus implies that the hyper-
order of w is at least one.

Proof of Theorem 1.1.
From lemmas 3.1, 3.2 and 3.3, it follows that degw(P ) ≤ 4 and 1 ≤ degw(Q) ≤ 4 and that
Q(z, w) has only simple roots as a polynomial in w. We will begin with the case in which
degw(Q) = 1. We can therefore without loss of generality write the denominator of the
right hand side of (1.3) in the form Q(z, w) = w − b1.

Assume first that degw(P ) ≥ 3. Let ẑ be a generic zero of w(z) − b1(z) of order p.
Then w(z) has a pole of order at least p at ẑ + 1 or ẑ − 1. We assume without loss of
generality that ẑ + 1 is such a pole. Then ẑ + 2 is a pole of order at least 2p and ẑ + 3 is
a pole of order at least 4p, and so on. In this case we therefore have

n

(
r,

1

w − b1

)
≤ 1

3
n(r + 2, w) +O(1).

Lemma 2.1 thus implies that the hyper-order of w is at least one.
Assume now that Q(z, w) = w−b1 and degw(P ) ≤ 2. If degw(P ) = 2, then degw(P ) =

degw(Q) + 1 and if degw(P ) ≤ 1, then degw(R) = 1, thus the assertion (1.4) holds.
Suppose now that the denominator of R(z, w(z)) has at least two simple non-zero

rational roots for w as a function of z, say b1(z) 6≡ 0 and b2(z) 6≡ 0. Then we may write
equation (1.3) in the form

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
=

P (z, w(z))

(w(z)− b1(z))(w(z)− b2(z))Q̃(z, w(z))
, (3.10)

where P (z, w(z)) 6≡ 0 and Q̃(z, w(z)) 6≡ 0 are polynomials in w(z) of at most degree 4
and 2 respectively, with no common factors. Then neither b1(z), nor b2(z) is a solution of
(3.10), and so they satisfy the first condition of Lemma 2.1. Let z = ẑ be a generic zero
of order p of w − b1.
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Now, by (3.10), it follows that either w(z+ 1) or w(z− 1) has a pole at z = ẑ of order
at least p. Without loss of generality we may assume that w(z + 1) has such a pole at
z = ẑ. Then, by shifting the equation (3.10), we have

w(z + 2)− w(z) + a(z + 1)
w′(z + 1)

w(z + 1)

=
P (z + 1, w(z + 1))

(w(z + 1)− b1(z + 1))(w(z + 1)− b2(z + 1))Q̃(z + 1, w(z + 1))
,

(3.11)

which implies that w(z + 2) has a pole of order one at z = ẑ provided that

degw(P ) ≤ degw(Q̃) + 2. (3.12)

We suppose first that (3.12) is valid. By iterating (3.10) one more step, we have

w(z + 3)− w(z + 1) + a(z + 2)
w′(z + 2)

w(z + 2)

=
P (z + 2, w(z + 2))

(w(z + 2)− b1(z + 2))(w(z + 2)− b2(z + 2))Q̃(z + 2, w(z + 2))
.

(3.13)

Now, if p > 1 then w must be a pole of order at least p at ẑ + 3. Hence, in this case, we
can pair up the zero of w − b1 at z = ẑ together with the pole of w at ẑ + 1 without the
possibility of a similar sequence of iterates starting from another point, say z = ẑ+ 3, and
resulting in pairing the pole at ẑ + 1 with another zero of w− b1, or of w− b2. Therefore,
we have found a pole of order at least p which can be uniquely associated with the zero
of w − b1 at ẑ. If, on the other hand, p = 1 it may in principle be possible that there is
another zero of w − b1 or of w − b2 at z = ẑ + 3 which needs to be paired with the pole
of w at z = ẑ + 2. But since now all of the poles in the iteration are simple, we may still
pair up the zero of w− b1 at z = ẑ and the pole of w at z = ẑ+ 1. If there is another zero
of, say, w− b1 at z = ẑ + 3 such that w(ẑ + 4) is finite, we can pair it up with the pole of
w at z = ẑ + 2. Thus for any p ≥ 1 there is a pole of multiplicity at least p which can be
paired up with the zero of w − b1 at z = ẑ.

We can repeat the argument above for zeros of w−b2 in a completely analogous fashion
without any possible overlap in the pairing of poles with the zeros of w − b1 and w − b2.
By considering all generic zeros of w(z)− b1(z), and similarly for w(z)− b2(z), it follows
that

n

(
r,

1

w − b1

)
+ n

(
r,

1

w − b2

)
≤ n(r + 1, w) +O(1). (3.14)

Therefore the remaining condition (2.2) of Lemma 2.1 is satisfied, and so w must be of
hyper-order at least one.

We consider now the case where the opposite inequality to (3.12) holds, i.e.,

degw(P ) > degw(Q̃) + 2.

If degw(P ) = 3, it immediately follows that degw(Q) = 2, and so the first part of assertion
(1.4) holds in this case. Now assume that

4 = degw(P ) > degw(Q̃) + 2 = 2 (3.15)

and suppose that ẑ is a generic zero of w(z) − b1(z) of order p. Then again, by (3.10),
either w(z + 1) or w(z − 1) must have a pole at z = ẑ of order at least p, and we suppose
as above that w(z+ 1) has the pole at ẑ. Then, it follows that w(z+ 2) has a pole of order
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2p, and w(z+ 3) a pole of order 4p at z = ẑ. Hence we can pair the zero of w− b1 at z = ẑ
and the pole of w at z = ẑ + 1 the same way as in the case (3.12). Identical reasoning
holds also for the zeros of w− b2, and so (3.14) holds. Lemma 2.1 therefore yields that w
is of hyper-order at least one.

Suppose then that
4 = degw(P ) > degw(Q̃) + 2 = 3, (3.16)

and that ẑ is a generic zero of order p of w(z)− b1(z). Since now degw(Q̃) = 1, we have

Q̃(z, w(z)) = w(z)− b3(z),

where b3(z) 6≡ bj(z) for j ∈ {1, 2} is a rational function of z. Also, it follows by an
assumption of the theorem that b3 6≡ 0. As before, we see from (3.10) that either w(z+ 1)
or w(z−1) has a pole of order at least p at z = ẑ, and we may again suppose that w(z+1)
has that pole. If p > 1 then (3.11) implies that w(z + 2) has a pole of order at least p at
z = ẑ. Even if w − bj has a zero at z = ẑ + 3 for some j ∈ {1, 2, 3}, we have found at
least one pole for each zero of w − bj in this iteration sequence, taking multiplicities into
account. Hence we can pair the zero of w− b1 at z = ẑ and the pole of w at z = ẑ+ 1 the
same way as in cases (3.12) and (3.15). However, if p = 1 it may in principle be possible
that the pole of the right hand side of (3.11) at z = ẑ cancels with the pole of the term

a(z + 1)
w′(z + 1)

w(z + 1)

at z = ẑ in such a way that w(ẑ+2) remains finite. If w(ẑ+2) 6= bj(ẑ+2) for j ∈ {1, 2, 3},
then it follows from (3.13) that w(z+3) has a pole at z = ẑ, and we can pair up the zero of
w−b1 at z = ẑ and the pole of w at z = ẑ+1. If w(ẑ+2) = bj(ẑ+2) for some j ∈ {1, 2, 3},
it may happen that also w(ẑ + 3) stays finite. If all points ẑ such that w(ẑ) = bj(ẑ) are a
part of an iteration sequence of this form, i.e., that

w(ẑ) = bj1(ẑ), w(ẑ + 1) =∞, w(ẑ) = bj2(ẑ), j1, j2 ∈ {1, 2, 3},

then by considering the multiplicities of all zeros of w − bj , j ∈ {1, 2, 3}, we have the
inequality

n

(
r,

1

w − b1

)
+ n

(
r,

1

w − b2

)
+ n

(
r,

1

w − b3

)
≤ 2n(r + 1, w) +O(1).

As this is the “worst case scenario”, this estimate remains true in general. Also, we have
already noted that neither b1, nor b2 satisfy the equation (3.10). The same is true also for
b3, and so all conditions of Lemma 2.1 are satisfied. Hence the hyper-order of w is at least
one also in the case (3.16).

4 The proof of Theorem 1.2

Let z = ẑ be a generic zero of w(z), then by (1.5) there is a pole of w(z) at z = ẑ + 1 or
at z = ẑ − 1 (or at both points). We need to consider two cases. Suppose first that there
is a pole of w(z) at both points z = ẑ − 1 and z = ẑ + 1. Then, from (1.5) it follows that
there are poles of w(z) at z = ẑ − 2 and z = ẑ + 2. Now, at least in principle we may
have w(ẑ − 3) = 0 = w(ẑ + 3). Hence, in this case we can find at least four poles of w(z)
(ignoring multiplicity) which correspond to three zeros (also ignoring multiplicity) of w(z)
and to no other zeros.
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Assume now that there is a pole of w(z) at only one of the points z = ẑ+1 and z = ẑ−1.
Without loss of generality we can then suppose that w(z) has a pole at z = ẑ+1 (the case
where the pole is at z = ẑ − 1 is completely analogous). We will begin by showing that
we need only consider simple generic zeros of w(z). Let N1(r, 1/w) denote the integrated
counting function for the simple zeros of w and let N[p(r, 1/w) be the counting function for
the zeros of w, which are of order p or higher. Then N(r, 1/w) = N1(r, 1/w) +N[2(r, 1/w)
and

N

(
r,

1

w

)
= N1

(
r,

1

w

)
+N [2

(
r,

1

w

)
≤ N1

(
r,

1

w

)
+

1

2
N[2

(
r,

1

w

)
≤ 1

2
N1

(
r,

1

w

)
+

1

2
N

(
r,

1

w

)
.

Hence, using the assumption (1.6),

N1

(
r,

1

w

)
≥ 2N

(
r,

1

w

)
−N

(
r,

1

w

)
≥
(

3

2
+ ε

)
T (r, w)−N

(
r,

1

w

)
≥
(

1

2
+ ε

)
T (r, w) + S(r, w).

Thus there are at least “(1/2 + ε)T (r, w)” worth of simple poles of w. So if we consider
the case in which the zero of w at ẑ is simple, we have

w(z − 1) = K +O(z − ẑ), K ∈ C, α ∈ C \ {0}
w(z) = α(z − ẑ) +O((z − ẑ)2),

w(z + 1) = − a(z)

z − ẑ
+O(1),

w(z + 2) =
a(z + 1)

z − ẑ
+O(1),

w(z + 3) =
a(z + 2)− a(z)

z − ẑ
+O(1)

(4.1)

in a neighborhood of ẑ.
If a(ẑ+2)−a(ẑ) 6= 0 then w(z+4) = (a(z+3)+a(z+1))/(z− ẑ)+O(z− ẑ). Therefore

either we have infinitely many points such that a(z + 2) = a(z) and therefore the rational
function a is a constant, or we can find at least four poles for every two simple zeros of w.
In the second case it follows that

T (r, w) ≤ 1
1
2 + ε

N1

(
r,

1

w

)
+O(log r)

≤ 2

1 + 2ε

1

2
N (r + 2, w) +O(log r)

≤ 1

1 + 2ε
T (r, w) + S(r, w).

But this implies that T (r, w) = S(r, w), which is a contradiction. Thus a(z) must be a
constant.
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5 The proof of Theorem 1.3

Let ẑ be a generic zero of w(z) of order p. We need to consider two cases. Suppose first
that there is a pole of w(z) at both points z = ẑ − 1 and z = ẑ + 1. Then, even if there
are zeros of w(z) at both z = ẑ − 2 and z = ẑ + 2, we can group together three zeros of w
(ignoring multiplicity) with at least four poles of w (counting multiplicity).

Assume now that there is a pole of w(z) at only one of the points z = ẑ+1 and z = ẑ−1.
Without loss of generality we can then suppose that w(z) has a pole at z = ẑ+1 (the case
where the pole is at z = ẑ − 1 is completely analogous). Consider first the case where the
zero is simple, and suppose that c(z) 6≡ 0. Then, in a neighborhood of ẑ,

w(z − 1) = K +O(z − ẑ), K ∈ C,
w(z) = α(z − ẑ) +O((z − ẑ)2), α ∈ C \ {0}

w(z + 1) =
a(z)

α(z − ẑ)2
+

b(z)

α(z − ẑ)
+ c(z) +K +O(z − ẑ),

w(z + 2) = c(z + 1) +O(z − ẑ),

w(z + 3) =
a(z)

α(z − ẑ)2
+

b(z)

α(z − ẑ)
+O(1),

(5.1)

where there can be at most finitely many ẑ such that c(ẑ + 1) = 0. Hence there are two
poles of w(z) (counting multiplicity) corresponding to one zero (ignoring multiplicity) in
this case.

Assume now that c(z) ≡ 0, w(z) has a pole at z = ẑ + 1, and that w(ẑ − 1) is finite.
Then, in a neighborhood of ẑ,

w(z − 1) = K +O(z − ẑ), K ∈ C,
w(z) = α(z − ẑ) +O((z − ẑ)2), α ∈ C \ {0}

w(z + 1) =
a(z)

α(z − ẑ)2
+

b(z)

α(z − ẑ)
+O(1),

w(z + 2) = α

(
1− 2a(z + 1)

a(z)

)
(z − ẑ) +O((z − ẑ)2),

w(z + 3) =
a(z)(a(z + 2)− 2a(z + 1) + a(z))

(a(z)− 2a(z + 1))α(z − ẑ)2
+

γ(z)

α(z − ẑ)
+O(1),

(5.2)

where

γ(z) =
a(z)b(z + 2)− (2a(z + 1)− a(z))b(z)

a(z)− 2a(z + 1)

− 2a(z + 2)[a(z)a′(z + 1)− a(z + 1)a′(z)]

(a(z)− 2a(z + 1))2
.

(5.3)

If w(ẑ+3) is a pole of order two, then are at least four poles (counting multiplicities) in this
sequence that can be uniquely grouped with the two zeros of w(z) (ignoring multiplicities).
The only way that w(z) can have a simple pole at z = ẑ + 3 is that

a(ẑ + 2)− 2a(ẑ + 1) + a(ẑ) = 0 (5.4)

and γ(z) 6≡ 0. But in this case from equation (1.7) it follows that

w(z + 4) = −αa(z + 3)

γ(z)
+O(z − ẑ)
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for all z in a neighborhood of ẑ, and so w(ẑ+4) is finite and non-zero with at most finitely
many exceptions. Thus we can group together three poles of w(z) (counting multiplicities)
and two zeros of w(z) (ignoring multiplicities). The only way that w(ẑ + 3) can be finite
is that (5.4) holds together with γ ≡ 0.

If the order of the zero of w(z) at z = ẑ is p ≥ 2, then there are always at least three
poles of w(z) (counting multiplicity) for each two zeros of w(z) (ignoring multiplicity) in
sequence (5.1) and (5.2).

If there are only finitely many zeros ẑ of w(z) such that (5.4) and γ(z) ≡ 0 both hold,
then

n

(
r,

1

w

)
≤ 3

4
n(r + 1, w) +O(1).

Hence, for any ε > 0,

N

(
r,

1

w

)
≤
(

3

4
+
ε

2

)
N(r + 1, w) +O(log r),

and so by using [4, Lemma 8.3] to deduce that N(r + 1, w) = N(r, w) + S(r, w), we have

N

(
r,

1

w

)
≤
(

3

4
+
ε

2

)
T (r, w) + S(r, w).

This is in contradiction with (1.8), and so there must be infinitely many points ẑ such that
(5.4) and γ(z) ≡ 0 are both satisfied. The only rational functions a(z) satisfying (5.4) at
infinitely many points have the form a(z) = λ+µz, for some constants λ and µ. Equation
γ(z) ≡ 0 becomes

b(z + 2)

a(z + 2)
− b(z)

a(z)
= 2

a(z + 1)a′(z)− a(z)a′(z + 1)

a(z)a(z + 2)
= µ

(
1

a(z)
− 1

a(z + 2)

)
.

Hence b(z) = ka(z)− µ, where k is a constant (since a and b are assumed to be rational).
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