Low-grade epilepsy-associated neuro-epithelial tumours (LEAT) in the 2016 WHO classification of tumours of the nervous system: what’s old, new and blue?

Ingmar Blümcke1, Eleonora Aronica2,3, Albert Becker4, David Capper5, Roland Coras1, Mrinalini Honavar6, Thomas S. Jacques7, Katja Kobow1, Hajime Miyata8, Angelika Mühlebner3,9, Jose Pimentel10, Figen Söylemezoğlu11, Maria Thom12

1 Department of Neuropathology, University Hospital Erlangen, Germany
2 Brain Center Rudolf Magnus, Department of Pathology, University Medical Center Utrecht, The Netherlands
3 Department of (Neuro)Pathology, Academic Medisch Centrum (AMC) and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
4 Department of Neuropathology, University of Bonn Medical Centre, Bonn, Germany
5 Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg and Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
6 Department of Anatomic Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
7 Developmental Biology and Cancer Section, UCL Great Ormond Street Institute of Child Health and the Department of Histopathology, Great Ormond Street Hospital for Children, London, United Kingdom
8 Department of Neuropathology, Research Institute for Brain and Blood Vessels – Akita, Akita, Japan
9 Department of Pediatrics, Medical University Vienna, Vienna, Austria
10 Laboratory of Neuropathology, Department of Neurology, Hospital de Santa Maria (CHLN), Lisbon, Portugal
11 Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
12 Dept. of Neuropathology, Institute of Neurology, University College London, UK
Abstract

Histological classification of brain tumours using the World Health Organization (WHO) system is the gold standard for treatment decision. Dizzying developments in molecular-genetic technology and research have rapidly advanced our current understanding of neuro-oncology. As a consequence, the WHO has invited their expert panels to revise the current classification system of tumours of the nervous system and to introduce for the first time, a molecular-genetic approach for selected tumour entities, thus setting a new gold standard in histopathology. In May 2016, the revised 4th Edition of the “blue book” for brain tumours was released and will have a major impact in stratifying diagnosis and treatment. However, as in previous editions, low grade neuro-epithelial tumours presenting with a mixed neuronal and glial phenotype and early-onset epilepsy as the major neurological symptom (herein designated as low-grade epilepsy-associated neuro-epithelial tumours, LEAT) have not been the subject of significant histological or molecular-genetic innovations, which will be critically reviewed by the Neuropathology Task Force of the International League against Epilepsy (ILAE). The Task Force also proposes a roadmap of how to develop a clinically meaningful and integrated clinico-pathological-genetic classification system for LEAT in the near future.

Introduction

The WHO series of organ-specific tumour classification systems is the gold standard for histological tumour typing, and compiled in the “blue book series”. Hence, timely updates are required for each tumour entity to take account of improved knowledge of the underlying pathomechanisms and best patient management as new targets for precision medicine become available. In May 2016, the revised WHO classification of tumours of the central nervous system was released\(^1\,^2\) and has already revolutionized the arena of neuro-oncology. It is for the first time in the blue book series of brain tumours that molecular-genetic information is required for an integrated phenotypic-genotypic diagnosis\(^3\), and this applies to diffusely infiltrating glial and embryonal tumours. Capacity building for molecular-genetic analysis is an ongoing challenge, but many centres around the world have already
implemented this new concept. Increasing availability of immunohistochemical surrogates for molecular genetic alterations\(^4\) will also help in the practical application of the new WHO classification system. It was the consensus of the WHO panel to acknowledge the rapid developments in neuro-oncology since the breakthrough discoveries of 1p/19q co-deletions as diagnostic, prognostic and predictive biomarker in oligodendrogliomas \(^5\)–\(^8\), followed by discovery of MGMT (O6-methylguanine-DNA methyltransferase) hypermethylation in glioblastomas as a predictive biomarker for treatment response to temozolomide\(^9\),\(^10\), and the discovery of the R132H mutation in the IDH1 gene in diffuse gliomas \(^11\),\(^12\), which can also be detected immunohistochemically \(^13\),\(^14\). The growing number of randomized trials for best treatment of brain tumours, in which patients were stratified by molecular-genetic analysis of microscopically-reviewed surgical tissue, were most helpful to validate clinically meaningful patient cohorts\(^11\),\(^15\)–\(^18\).

However, this successful multidisciplinary strategy has not been developed nor systematically applied for LEAT, and tumour entities lacking ample evidence for distinct molecular-genetic signatures have fallen behind this rapidly developing process. The ever-expanding gulf between Virchow’s original concepts of cellular pathology (as a subjective diagnosis based on education and experience) and the evolving era of molecular pathology (as an objective diagnosis obtained from laboratory tests) will further divide the field into tumours with a targeted tumour therapy based on defined molecular alterations and those without. The latter applies in particular to rare low-grade tumour entities. These are difficult to recruit prospectively in sufficiently large series to generate meaningful survival data in reasonable time periods. Indeed, ‘neurodevelopmental tumours’ with a mixed glial and neuronal phenotype, a benign course, temporal lobe localization, and seizure onset at a young age as a major clinical symptom did not meet current WHO criteria for integrated histological and genetic classification. Such “low-grade epilepsy-associated brain tumours (LEAT)” cover a large spectrum of neuropathological entities (Table 1), and represent the second largest group of patients submitted to epilepsy surgery\(^19\). The International League against Epilepsy (ILAE) has charged its Commission on Diagnostic Methods and Neuropathology Task Force to address this controversial topic and we will discuss herein both, conceptual benefits of an integrated phenotypic-genotypic approach and also how to bridge the current knowledge gap.
The 2016 WHO classification system: what’s new?

The 2016 WHO classification includes a number of novel tumour entities, such as the diffuse midline glioma, H3K27M mutated (WHO IV°) with predominantly astrocytic differentiation, occurring mostly in children20. The presence of a K27M mutation in either histone \textit{H3F3A} or \textit{HIST1H3B/C} is mandatory for the diagnosis of this tumour. With respect to epilepsy-associated brain tumours, a gangliocytic tumour was recently reported in a total of 12 adults presenting with temporal lobe epilepsy21, 22. This lesion is now included in the WHO blue book under the name of “multinodular and vacuolating neuronal tumour of the cerebrum”. There is no grade assigned yet and it is unclear if it is neoplastic or hamartomatous. It is beyond the scope of this review, however, to systematically list all newly introduced tumour entities. The most important innovation in the new WHO 2016 classification is the panel of molecular genetic tests added to the neuropathologist’s armamentarium for studying and classifying brain tumours2, and which has also helped to discover clinically meaningful new entities17. The integrated histopathology report should describe, therefore, not only the cellular (microscopic) composition of tumour tissue but also their molecular (genetic) signature3. As a prominent example, a genetically driven tumour classification applies for all diffuse astrocytic and oligodendroglial tumours. The histological discrimination between astrocytomas, oligodendrogliomas and mixed oligo-astrocytomas has provoked longstanding controversy in past decades in trying to decipher strict histological criteria in both low or high grade subtypes23. It has been long recognized that the so called clear cell (“oligodendroglial”) component was associated with a better response to chemotherapy6, yet, interobserver agreement during histological work-up of surgical brain tumour specimens remained poor24. To solve this ongoing controversy, the WHO now refers to \textit{IDH} and 1p/19q as molecular-genetic markers to objectively differentiate the spectrum of histopathologically diverse gliomas into clinically meaningful subgroups. Clinical trials confirmed that \textit{IDH1} mutated gliomas have a better prognosis than \textit{IDH1} wildtype25 and that 1p/19q co-deletions are strongly associated with favourable outcome in patients with anaplastic gliomas23, 26.

The 2016 WHO classification system: what’s old?
Low-grade epilepsy associated neuro-epithelial tumours remain an ever challenging issue for histopathological classification throughout all editions of the WHO blue book, with a remarkable history of newly introduced tumour entities (Table 2). These tumours consist mostly of neuronal and mixed neuronal-glial variants as well as supratentorial low-grade gliomas (see Table 1). As a group, early-onset drug-resistant epilepsy (mean of < 15 years) is often the patient’s major or only neurological symptom. Another differentiating feature from diffusely infiltrating gliomas are the tumour’s frequent localization in the temporal lobe. This group of tumours has been previously termed, and is nowadays recognized as long-term epilepsy-associated tumours (LEAT), with gangliogliomas (GG) and dysembryoplastic neuroepithelial tumours (DNT) as prominent examples. The term LEAT was originally introduced by the Bonn Epilepsy Centre because of a long history of drug-resistant epilepsy (> 2 years) and the epilepsy surgery approach (i.e. intent to treat epilepsy) in all of their patients. Meanwhile, the clinical definition for “epilepsy” and “drug resistant epilepsy” has changed, as has the concept of epilepsy surgery as last treatment resort. We suggest, therefore, to change it’s definition to “low-grade epilepsy-associated neuro-epithelial tumours (LEAT)”. However, this term does not meet the WHO concept for a nosological tumour classification. The same applies for terms such as “Epilepsoma” or “Epileptoma”. Compared to malignant gliomas, meningiomas or brain metastases, LEAT are rare, representing approximately 2-5% of the entire brain tumour cohort. However, they are the second most common lesion in patients submitted to epilepsy surgery. The very broad histological spectrum of these neoplasms is another intriguing observation. This relates to their variable composition of astroglia, oligodendroglia, other clear cells or neurones, inflammatory cellular infiltrates, calcification or protein aggregation, and also to their variable patterns of papillary, rosetted, or nodular growth (Figure 1). Diffuse infiltration with clusters remote from the tumour mass is another frequent observation. Associated focal cortical dysplasia has been reported in vastly different frequencies, thereby representing another complex issue in need of clarification. Published evidence remains heterogeneous and controversial, and the WHO panel could not develop or propose an integrated genotype-phenotype classification and grading system at present. Nevertheless, with recent studies advocating adjuvant chemo-radiation therapy in addition to surgery in low-grade gliomas, it is becoming increasingly important that LEAT are clearly distinguishable from IDH1/2-wildtype low-grade gliomas to avoid any hazards of over-
treatment\(^{37}\). Making the distinction is a challenge for the neuropathologist\(^{37}\). Improved imaging, leading to earlier surgery before recognition as an “long-term epilepsy-associated” tumour rather than a tumour presenting with seizures, sometimes piece-meal removal and finally the large variety of histological appearances, may result in an incorrect diagnosis as a diffuse low-grade glioma.

The 2016 WHO classification system: what’s blue?

As histopathological classification systems will be continuously updated and revised, the WHO’s current roadmap towards better understanding of carcinogenesis and personalized treatment needs to be adopted to LEAT. It is now generally accepted and also recognized in the 2016 WHO classification, that LEATs lack IDH1 or IDH2 mutations as well as 1p/19q co-deletions\(^{11,36,38,39}\). Published literature on prevalent molecular alterations in LEAT point to the RAS/RAF/MAPK pathway and the PI3K/AKT/mTOR pathway (Figure 2). BRAF V600E mutations were most consistently reported as genetic driver in gangliogliomas (18-56%). It’s variable detection also in DNT (0-50%)\(^{40-48}\) may reflect, however, the aforementioned difficulties in separating both tumour entities at the microscopic level (see also\(^{40,49}\)). As BRAF V600E mutations were observed also in pleomorphic xanthoastrocytomas\(^{42}\) and pilocytic astrocytomas\(^{42,50}\), their presence cannot be regarded yet as specific for a given tumour entity. In DNT, tyrosine kinase activating FGFR1 gene mutations prevail (58-82%)\(^{40,49}\), whereas MYB/MYBL1 alterations were encountered in 87% of angiocentric gliomas\(^{50}\), another LEAT tumour entity associated with drug-resistant epilepsy and early seizure onset\(^{51}\). A methylation-based classification from visually selected tumour regions of formalin fixed and paraffin embedded tissue represents a promising new option\(^{40,52-54}\), but has not been systematically applied and validated for the entire LEAT spectrum. Use of mutational-specific antibodies, i.e. directed against the V600E BRAF mutation\(^ {55}\), may help to further explore the extent of cellular and genetic mosaicism\(^ {46,48,56}\). It needs to be shown, however, if such features also contribute to the epileptogenic phenotype. These studies need a careful design based on a validated histopathological classification scheme.

In order to further develop this field, the Task Force recommends a specific scenario and environment for randomized controlled trials (RCT; Figure 3), which are largely missing in the
field of LEAT. Given that the majority of these tumours are rare and grow slowly, RCTs will need to include multiple centres to recruit sufficient patient numbers within a reasonable time period. An additional goal should be to develop reference pathology centres and biorepositories of surgical brain specimens and matched blood samples across all different continents to allow for a systematic molecular testing, keeping pace with new technologies or biomarkers as they become available. Reliable assessment of the biological behaviour of a given LEAT and risk for malignant progression (reported as low in general with documented cases of malignant progression\(^{57}\)) needs clarification, as the current WHO edition did not specify atypical LEAT variants (WHO II°). The tumour’s epileptogenic potential to irritate remote cortical areas or recruit remote cortical networks is another challenging issue in need of clarification. Seizure semiology is determined by a tumour’s localization within the brain, i.e. in the mesial or lateral temporal lobe\(^ {37}\). However, satellite tumour cell infiltrates remote from the mass lesion, as described in CD34 immunoreactive gangliogliomas\(^ {19,35,58}\), may compromise a successful postsurgical outcome. These questions should be addressed in an RCT setting with systematic genotype-phenotype analysis which also help to clarify the best time period for postsurgical drug withdrawal after complete tumour resection. Although such RCTs do not aim for new interventional treatment targets, they will help to provide evidence for a comprehensive and clinically meaningful clinico-pathological and genetic tumour classification scheme in the near future.

ILAE’s Task Force for Neuropathology was charged to address this issue and to launch an interdisciplinary agreement study for tumour grading and classification. This Task Force has recently been successful in the implementation of international consensus classification systems for Focal Cortical Dysplasia\(^ {59}\) and Hippocampal Sclerosis\(^ {60}\) in patients with drug-resistant epilepsy, and also introducing a collaborative virtual microscopy platform\(^ {61}\). In a first agreement study of 30 tumours randomly selected from a multicentre epilepsy surgery series (German Neuropathology Reference Centre for Epilepsy Surgery in Erlangen), agreement amongst 25 invited colleagues from 12 countries experienced in epilepsy surgery programmes reached only 40% (unpublished data, R. Coras personal communication). Use of immunohistochemical markers to more reliably differentiate histopathological epilepsy-associated neuroepithelial tumours features, i.e. CD34 and MAP2\(^ {19,58,62}\), achieved slightly better agreement in the same series of tumour specimens (unpublished data, R. Coras
personal communication). The current situation is reminiscent, therefore, of that in oligodendrogliomas (as discussed above), and we should follow WHO’s molecular-genetic vision to achieve a comprehensive and robust classification of LEAT.

Conclusion

By establishing an integrated phenotype-genotype diagnosis, the new 2016 WHO classification system has introduced a substantial change in our current neuropathological work-up. It represents a paradigm shift, that microscopic inspection alone is not sufficiently reliable to predict the clinical course and treatment response in a given brain tumour. In young patients with epilepsy, a distinct subgroup of brain tumours can be encountered (herein termed ‘low-grade epilepsy-associated neuro-epithelial tumours’). They present with a large and often mixed phenotypic spectrum and are difficult to classify by existing schemes. Also, published series have reported a variable representation of genetic alterations. Randomized clinical trials have not yet been performed to approve clinically meaningful tumour entities. Therefore, the revised WHO classification 2016 contains no histopathological or molecular-genetic advances in relation to this group of tumours. Adapting WHO’s vision is mandatory to establish a comprehensive clinico-pathological and genetic classification system for epilepsy-associated neuro-epithelial tumours in the near future.

Acknowledgments

Members of the ILAE Neuropathology Task Force have been partially supported by the Seventh Framework Programme of the European Commission (DESIRE GA # 602531 to IB; EPITARGET GA # 602102 to AB, and EA; EPISTOP # 602391 to EA). TJ was funded by the Brain Tumour Charity, Children with Cancer, Great Ormond Street Children’s Charity and NIHR.

References

Figure 1: Is it all in one? The histopathological spectrum of nodular growth in low-grade epilepsy-associated neuro-epithelial tumours

Legend to Figure 1: Three examples of difficult-to-classify mixed neuronal-glial tumours in the temporal lobe, characterized by areas of nodular tumour growth (arrows in A, C, and E). All patients suffered from intractable epilepsy with seizure onset at young age. **A-B:** This nodule is composed of unequivocal clusters of ganglion cells (arrowhead in B), not otherwise explicable by anatomical location. **C-D:** Multinodular intracortical growth consisting of
oligodendroglia-like cells and floating neurones (so-called „specific glio-neuronal element“, arrowhead in D). **E-F:** Predominantly astroglial nodule with Rosenthal fibres (arrowhead in F) and protein droplets. All tumours showed other areas of diffuse cell infiltration, with or without aberrant CD34-immunoreactive cell clusters. Other tumours of this patient cohort presented with a different composition of same cytological features. It is an ever challenging question in disease classification whether to lump these variants together as one tumor entity, i.e. „epileptoma“ or specify n+1 new entities, i.e. ganglioglioma vs. DNT vs. composite glio-neuronal tumour? Comprehensive molecular analysis (in a RCT setting, Figure 2) will help to solve this dilemma (see text for further discussion). Scale bar in A = 1mm (applies also to C, E), scale bar in B = 50µm (applies also to D, F).
Legend to Figure 2: Genetic alterations commonly found in LEAT connect 2 major pathways in cell metabolism, the RAS/RAF/MAPK pathway (green) and the PI3K/AKT/mTOR pathway (blue). Upstream in receptor signalling, mutations of FGFR1 have been described in DNT leading to activation of the RAS/RAF/MAPK pathway and the PI3K/AKT/mTOR pathway. BRAF is a component further downstream in the RAS/RAF/MAPK signalling cascade. Activation of this pathway by the V600E mutation leads to phosphorylation of MAPKs, which phosphorylate and regulate activities of partners such as transcriptions factors (CREB, c-fos) for cell proliferation and differentiation. These functions made BRAF and MEK1/2 reasonable targets for therapeutic approaches (pink). On the other hand activation is tightly regulated
by substrates of the PI3K/AKT/mTOR signalling cascade. Especially, the inhibiting function of the 2 major complexes TSC and mTOR play a profound role in the regulation of autophagy, protein synthesis and cell survival. One of these transcription factors is c-myb/ myb1 (purple) which is altered in angiocentric gliomas. All genetic alterations described are indicated with a lightening bolt.

Abbreviations:
- AKT (v-akt murine thymoma viral oncogene homologs 1, 2, 3) (alias: PKB): AKT1 (14q32); AKT2 (19q13); AKT3 (1q44)
- DEPTOR (8q24, DEP domain containing MTOR-interacting protein)
- FOS (v-fos FBJ murine osteosarcoma viral oncogene homolog) and FOS-like antigen): FOS (14q24); FOSB (19q13); FOSL1 (11q13); FOSL2 (2p23)
- GRB2 (17q25) (growth factor receptor-bound protein 2)
- INSR (19p13) (insulin receptor)
- MAPK (mitogen-activated protein kinase): MAPK1 (22q11) (alias: ERK2); MAPK3 (16p11) (alias: ERK1)
- MAP2K (mitogen-activated protein kinase kinase 1): MAP2K1 (15q22) (alias: MAPKK1, MEK1); MAP2K2 (19p13) (alias: MAPKK2, MEK2)
- MDM2 (12q15) (transformed mouse 3T3 cell double minute 2, p53 binding protein)
- MYC (8q24) (v-myc myelocytomatosis viral oncogene homolog (avian)
- MTOR (1p36) (mechanistic target of rapamycin)
- PI3K (phosphoinositide-3-kinase, catalytic, alpha, beta, delta, gamma polypeptide): PIK3CA (3q26); PIK3CB (3q22); PIK3CD (1p36); PIK3CG (7q22)
- PKD1 (14q11) (protein kinase D) (alias: PRKCM (mu)) (Wang et al., 2006)
- PTEN (10q23) (phosphatase and tensin homolog deleted on chromosome ten)
- RAF (v-raf murine sarcoma viral oncogene homolog): ARAF (Xp11); BRAF (7q34); RAF1 (3p25)
- RAS (RAS viral oncogene homolog): HRAS (11p15) (Harvey); KRAS (12p12) (Kirsten); NRAS (1p13) (neuroblastoma)
- RHEB (7q36) (ras homolog enriched in brain)
- SOS1 (2p21) (son of sevenless homolog 1)
- STAT (signal transducer and activator of transcription): STAT1 (2q32); STAT2 (12q13); STAT3 (17q21); STAT4 (2q32); STAT5a (17q11); STAT5b (17q11); STAT6 (12q13)
- TSC1 (9q34) (tuberous Sclerosis 1)
- TSC2 (16p13) (tuberous Sclerosis 2)
Figure 3

Roadmap to a comprehensive clinico-pathological and genetic WHO/ILAE classification of epilepsy-associated neuro-epithelial tumours

Assessment of epileptogenesis and surgical outcome

To Do: examine surgical resection borders (infiltration pattern and associated FCD) and *test for early AED withdrawal* when tumor resection is complete

Aim: verify clinically meaningful entities by co-registration of neuroimaging and EEG analysis with histopathology and molecular studies

Randomized controlled multicenter trials for epilepsy-associated neuro-epithelial tumours in children and young adults

Neuropathology

To Do: histopathological agreement studies by referral centers or virtual microscopy platforms

Aim: to achieve neuropathological consensus for clinico-pathological and genetic classification

Assessment of tumour biology

To Do: brain banking of matched brain/blood samples for molecular-genetic analysis

Aim: to identify molecular entities, origin of tumor cells, and risk factors for malignant progression
Legend to Figure 3: A useful and doable scenario for systematic investigations of meaningful clinico-pathological LEAT entities. We believe that the basis for a successful WHO classification is a systematic genotype-phenotype assessment, validated by randomized and controlled clinical trials. These RCTs can be also used to clarify the benefit of early AED withdrawal after complete tumour resection, but do not primarily aim at novel interventional treatment options (as new drug targets are not validated yet in LEAT).
Table 1: The spectrum of epilepsy – associated neuro-epithelial tumours

<table>
<thead>
<tr>
<th>Entity</th>
<th>Numbers (%)</th>
<th>Onset</th>
<th>Duration</th>
<th>Age OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT I°</td>
<td>5 (0.4%)</td>
<td>2.0</td>
<td>13.0</td>
<td>19.7</td>
</tr>
<tr>
<td>GG I°</td>
<td>673 (48.7%)</td>
<td>12.8</td>
<td>12.7</td>
<td>24.9</td>
</tr>
<tr>
<td>GG II°/III°</td>
<td>77 (5.6%)</td>
<td>14.2</td>
<td>11.0</td>
<td>26.9</td>
</tr>
<tr>
<td>ISO I°</td>
<td>29 (2.1%)</td>
<td>14.4</td>
<td>17.7</td>
<td>27.9</td>
</tr>
<tr>
<td>DNT I°</td>
<td>256 (18.5%)</td>
<td>14.7</td>
<td>10.7</td>
<td>25.2</td>
</tr>
<tr>
<td>PA I°</td>
<td>81 (5.9%)</td>
<td>14.8</td>
<td>12.1</td>
<td>25.1</td>
</tr>
<tr>
<td>PXA II°</td>
<td>38 (2.7%)</td>
<td>18.8</td>
<td>12.2</td>
<td>29.3</td>
</tr>
<tr>
<td>OLIGO II°/III°</td>
<td>97 (7%)</td>
<td>24.5</td>
<td>12.5</td>
<td>38.6</td>
</tr>
<tr>
<td>ASTRO II°/III°</td>
<td>110 (8%)</td>
<td>29.5</td>
<td>6.7</td>
<td>36.2</td>
</tr>
<tr>
<td>Total</td>
<td>1382</td>
<td>16.5</td>
<td>11.7</td>
<td>27.9</td>
</tr>
</tbody>
</table>

Legend to Table 1: Summary of tumours collected in adults and children at the German Neuropathology Reference Center for Epilepsy Surgery in Erlangen. More than 80% of tumours present with seizure onset before age of 15 years (upper 6 rows), and localize in 77% to the temporal lobe, herein designated as low-grade epilepsy-associated neuro-epithelial tumours (LEAT). Early seizure onset and temporal localization separate LEAT from semi-benign and diffusely infiltrating gliomas also encountered in epilepsy surgery series (lower 3 rows). Age at epilepsy onset (mean in years); Epilepsy duration (mean in years); Age at operation (mean in years); ANT – angiocentric glioma WHO I°; GG – gangliogliomas WHO I° - III°; GG II° is not specified by the WHO classification (‘analogue WHO II°’) according to the proposal by Blumcke and Wiestler; ISO - isomorphic astrocytoma variant (analogous to WHO I°); DNT – Dysembryoplastic neuroepithelial tumour WHO I°; PA – pilocytic astrocytoma WHO I°; PXA – pleomorphic xantoastrocytoma WHO II°; OLIGO – oligodendroglioma including mixed glioma WHO II° and III°; ASTRO – diffuse astrocytoma subtypes WHO II° and III°.
<table>
<thead>
<tr>
<th>Gangliocytoma</th>
<th>1979</th>
<th>1993</th>
<th>2000</th>
<th>2007</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composed predominantly of mature ganglion cells</td>
<td>unchanged</td>
<td>Well differentiated, slowly growing neuroepithelial tumours composed of neoplastic, mature ganglion cells, either alone (GC Grade I), or in combination with neoplastic glial cells (GG Grade I or II). Tumours with anaplastic glial component “anaplastic GG” Grade III or IV</td>
<td>Well differentiated, slowly growing neuroepithelial tumours composed of neoplastic, mature ganglion cells, either alone (GC Grade I), or in combination with neoplastic glial cells (GG Grade I), observed in patients with long-term epilepsy. Anaplastic GG, Grade III Criteria for Grade II not established.</td>
<td>IDH1/2 wildtype $^{24,26-28}$ BRAF V600E mutation in 18-56% $^{25,29-36}$</td>
<td></td>
</tr>
<tr>
<td>Ganglioglioma</td>
<td>1979</td>
<td>1993</td>
<td>2000</td>
<td>2007</td>
<td>2016</td>
</tr>
<tr>
<td>Composed of mature ganglion cells and neoplastic glial cells Grades I or II</td>
<td>unchanged</td>
<td>Well differentiated, slowly growing neuroepithelial tumours composed of neoplastic, mature ganglion cells, either alone (GC Grade I), or in combination with neoplastic glial cells (GG Grade I or II). Tumours with anaplastic glial component “anaplastic GG” Grade III or IV</td>
<td>Well differentiated, slowly growing neuroepithelial tumours composed of neoplastic, mature ganglion cells, either alone (GC Grade I), or in combination with neoplastic glial cells (GG Grade I), observed in patients with long-term epilepsy. Anaplastic GG, Grade III Criteria for Grade II not established.</td>
<td>IDH1/2 wildtype $^{24,26-28}$ BRAF V600E mutation in 18-56% $^{25,29-36}$</td>
<td></td>
</tr>
<tr>
<td>Anaplastic (malignant) ganglioglioma</td>
<td>1979</td>
<td>1993</td>
<td>2000</td>
<td>2007</td>
<td>2016</td>
</tr>
<tr>
<td>Gangliocytoma or ganglioglioma with anaplasia Grades III or IV</td>
<td>Ganglioglioma with anaplasia in the glial component Grade III</td>
<td>Well differentiated, slowly growing neuroepithelial tumours composed of neoplastic, mature ganglion cells, either alone (GC Grade I), or in combination with neoplastic glial cells (GG Grade I or II). Tumours with anaplastic glial component “anaplastic GG” Grade III or IV</td>
<td>Well differentiated, slowly growing neuroepithelial tumours composed of neoplastic, mature ganglion cells, either alone (GC Grade I), or in combination with neoplastic glial cells (GG Grade I), observed in patients with long-term epilepsy. Anaplastic GG, Grade III Criteria for Grade II not established.</td>
<td>IDH1/2 wildtype $^{24,26-28}$ BRAF V600E mutation in 18-56% $^{25,29-36}$</td>
<td></td>
</tr>
<tr>
<td>Dysplastic gangliocytoma of cerebellum (Lhermitte-Duclos)</td>
<td>1979</td>
<td>1993</td>
<td>2000</td>
<td>2007</td>
<td>2016</td>
</tr>
<tr>
<td>Described as a dysplastic variant of Gangliocytoma Grade I</td>
<td>Described separately as a tumour-like lesion Grade I</td>
<td>Discussed in association with Cowden Disease under Familial tumour syndromes Not clear if neoplastic or hamartomatous. If neoplastic, corresponds to Grade I</td>
<td>Discussed in association with Cowden Disease under Familial tumour syndromes Not clear if neoplastic or hamartomatous. If neoplastic, corresponds to Grade I</td>
<td>PTEN (10q23) Grade I</td>
<td></td>
</tr>
<tr>
<td>Paraganglioma</td>
<td>1979</td>
<td>1993</td>
<td>2000</td>
<td>2007</td>
<td>2016</td>
</tr>
<tr>
<td>Identical to extra-adrenal paraganglioma originating in filum terminale Grade I</td>
<td>unchanged</td>
<td>Well differentiated, slowly growing neuroepithelial tumours composed of neoplastic, mature ganglion cells, either alone (GC Grade I), or in combination with neoplastic glial cells (GG Grade I or II). Tumours with anaplastic glial component “anaplastic GG” Grade III or IV</td>
<td>Well differentiated, slowly growing neuroepithelial tumours composed of neoplastic, mature ganglion cells, either alone (GC Grade I), or in combination with neoplastic glial cells (GG Grade I), observed in patients with long-term epilepsy. Anaplastic GG, Grade III Criteria for Grade II not established.</td>
<td>IDH1/2 wildtype $^{24,26-28}$ BRAF V600E mutation in 18-56% $^{25,29-36}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Evolving WHO classification of neuronal and mixed neuronal-glial tumours over years 1979 – 2016

Grades I, II, III, IV refer to increasing degree of malignancy.
<table>
<thead>
<tr>
<th>Desmoplastic infantile astrocytoma/ ganglioglioma</th>
<th>Mixed neuronal-gliaal neoplasm of infancy with desmoplasia Named as DIG</th>
<th>Glial neoplasm of infancy with desmoplasia named as DIA Glial and neuronal neoplasm of infancy with desmoplasia named as DIG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade I</td>
<td>Grade I</td>
</tr>
<tr>
<td>Dysembryoplastic neuroepithelial tumour</td>
<td>Epilepsy-associated tumour with intracortical location, multinodular architecture and heterogeneous cellular composition</td>
<td>Simple form with unique glioneuronal element; Complex form with glial nodules in combination with glioneuronal element Reference to non-specific histological forms (clinical features and imaging need to be considered)</td>
</tr>
<tr>
<td></td>
<td>Grade I</td>
<td>Grade I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simple form with unique glioneuronal element; Complex form with glial nodules in combination with glioneuronal element Non-specific histological form remains controversial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade I</td>
</tr>
<tr>
<td>Central neurocytoma</td>
<td>Intraventricular tumour composed of uniform round cells with immunohistochemical (SYN) and ultrastructural features of neuronal differentiation</td>
<td>Intraventricular tumour composed of uniform round cells with immunohistochemical (SYN) and ultrastructural features of neuronal differentiation</td>
</tr>
<tr>
<td></td>
<td>Grade I</td>
<td>Grade II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraventricular</td>
<td></td>
<td>Intraventricular tumour composed of uniform round cells with immunohistochemical (SYN) and ultrastructural features of neuronal differentiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade II</td>
</tr>
</tbody>
</table>

IDH1/2 wildtype\(^24\), 26-28

BRAF V600E mutation in (0-50%)\(^36\), 39-48

FGFR1 mutation in 58-82%\(^40\), 49

Grade I

Upgraded: WHO II\(^o\)

Well-circumscribed

IDH1/2
<table>
<thead>
<tr>
<th>neurocytoma</th>
<th></th>
<th></th>
<th>neoplasm composed of uniform round cells with neuronal differentiation, located in brain parenchyma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebellar liponeurocytoma</td>
<td>Rare cerebellar neoplasm of adults with advanced neuronal/neurocytic and focal lipomatous differentiation, previously classified as lipomatous medulloblastoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillary glioneuronal tumour</td>
<td>Tumour composed of GFAP-positive astrocytes lining hyalinised vascular pseudopapillae and synaptophysin-positive interpapillary collections of sheets of neurocytes, neurons and “ganglioid” cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosette-forming glioneuronal tumour of the 4th ventricle</td>
<td>Neoplasms of fourth ventricular region composed of a) uniform neurocytes forming rosettes or perivascular pseudorosettes and b) component resembling pilocytic astrocytoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumour Type</td>
<td>Grade</td>
<td>FGFR1 mutations74</td>
<td>No KIAA1549-BRAF fusion or BRAF V600E mutations75</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Multinodular and vacuolating neuronal tumour of the cerebrum</td>
<td>Grade I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffuse leptomeningeal glioneuronal tumour</td>
<td>Grade not assigned</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deletion 1p in 59%76,77, IDH1/2 wildtype76,78, KIAA1549-BRAF fusion in 75%77
Legend to Table 2: BRAF = v-Raf murine sarcoma viral oncogene homolog B, DIA = Desmoplastic infantile astrocytoma, DIG = Desmoplastic infantile ganglioglioma, GC = Gangliocytoma, GG = ganglioglioma, GFAP = glial fibrillary acidic protein, IDH = isocitrate dehydrogenase, MAP2 = microtubule-associated protein 2, NFP = neurofilament protein, NOS = not otherwise specified, NSE = neuron-specific enolase, OLC = oligodendroglial-like cells, PTEN = phosphatase and tensin homolog, SYN = synaptophysin, TSC = tuberous sclerosis complex. * mentioned tumours were classified under “Neuronal Tumours” along with Ganglioneuroblastoma and Neuroblastoma in the WHO’s 1979 classification. ** first appearance of the chapter entitled “Neuronal and mixed neuronal-glial tumours”, still including Olfactory Neuroblastoma and its variant Olfactory neuroepithelioma.