Highlights

- Detailed stratigraphic record of the Paleocene-Eocene thermal maximum in shallow marine environment of the northern Indian margin, eastern Tethys ocean

- Two scenarios may be envisaged for the major origin of Paleocene/Eocene disconformity: tectonic or climatic control
Shallow-water carbonate responses to the Paleocene–Eocene Thermal Maximum in the Tethyan Himalaya (southern Tibet): tectonic and climatic implications

Juan Li¹, Xiumian Hu¹*, Eduardo Garzanti², Marcelle BouDagher-Fadel³

¹ State Key Laboratory of Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
² Laboratory for Provenance Studies, Department of Earth and Environmental Sciences, Università di Milano-Bicocca, 20126 Milano, Italy
³ Department of Earth Sciences, University College London, London WC1H 0BT, UK

*Corresponding author: Dr. Xiumian Hu

E-mail: huxm@nju.edu.cn; Tel: 0086 25 89683002

Abstract

This study presents a detailed stratigraphic record of the Paleocene–Eocene Thermal Maximum (PETM) in the Gamba area of the Tethyan Himalaya, a carbonate-platform succession originally deposited along the southern margin of the eastern Tethys Ocean. The Paleocene-Eocene boundary interval is marked by a negative carbon isotope excursion at the boundary between members 3 and 4 of the Zongpu Formation. The succession is erosionally truncated at this surface, which is overlain by an intraformational carbonate conglomerate, and only the upper part of the PETM interval is preserved. Foraminiferal assemblages of Shallow Benthic Zone 4 are present below the conglomerate bed, but are replaced by assemblages of
Shallow Benthic Zone 6 above the conglomerate. Depositional facies also change across this surface; below the disconformity, floatstones and packstones containing nummulitid forams record progressive transgression in an open-marine environment, whereas restricted or lagoonal inner-ramp deposits containing Alveolina and Orbitolites are typical above the disconformity. The prominent negative excursion observed in the δ¹³C of whole-rock carbonate (-1.0‰ at Zongpu, -2.4‰ at Zengbudong) and organic matter (-24.7‰, at Zengbudong) is correlated to the characteristic PETM carbon isotope excursion. This major negative excursion in shallow-marine carbonates may have partly resulted from syndepositional alteration of organic matter. The erosional unconformity can be constrained to the lower PETM interval (between 56 and 55.5 Ma), and is identifiable throughout the Tethyan Himalaya. This widespread disconformity is attributable to tectonic uplift associated with the southward migration of an orogenic wave, originated 3±1 Ma earlier in the middle Paleocene at the first site of India-Asia continent-continent collision. A possible eustatic component of the pre-PETM sea-level fall, which resulted in the excavation of incised valleys filled during the subsequent sea-level rise when the conglomerate bed was deposited, remains to be assessed.

Key words: PETM; Tethys Ocean; Carbonate platform; Disconformity; India-Asia collision; Carbon isotope excursion

1. Introduction

The Paleocene–Eocene Thermal Maximum (PETM) was a geologically brief (~170-200 kyr) episode of globally elevated temperatures (Röhl et al., 2007; Murphy et al., 2010), superimposed
on a longer-term late Paleocene to early Eocene warming trend, which culminated in the highest ocean temperatures of the Cenozoic (the early Eocene climatic optimum; Kennett and Stott, 1991; Zachos et al., 2001). The PETM was characterized by global warming of both the earth’s surface and the deep oceans, by 5-8° C (McInerney and Wing, 2011). Its onset is defined by a negative carbon isotope excursion (CIE) recorded worldwide (Dupuis et al., 2003). Although the ultimate cause and trigger of the CIE is uncertain (Sluijs et al., 2006), the dissociation of methane hydrates along continental margins is a plausible hypothesis that may explain the injection of large amounts of 13C-depleted carbon into oceanic and atmospheric reservoirs (Dickens et al., 1997). Major global biotic changes occurred simultaneously with the CIE, including a major extinction of deep-sea benthic foraminifera, blooms of tropical and subtropical planktonic foraminifera, a turnover in ‘larger benthic foraminifera’, an increased abundance of dinoflagellates, and the disappearance of coral reefs (Bowen et al., 2006; Sluijs et al., 2007; Speijer et al., 2012). The onset of the CIE is an excellent global chemostratigraphic correlation tool (McInerney and Wing, 2011), and is formally used to define the base of the Eocene (Aubry et al., 2007).

To fully understand biotic responses to climate change during the PETM, detailed analyses of faunal and floral evolution are needed from a wide spectrum of different environments, including the deep oceans, shallow seas, and terrestrial settings. Despite major advances in our understanding of the PETM in open-marine environments, shallow-marine settings remain poorly explored, and the effects of this global climatic event on the widespread epeiric carbonate platforms of the Paleogene remain unclear. The Tethys Ocean was a vast, east-west trending subtropical seaway during the Paleogene, with neritic deposition occurring in a variety of environments along its margins, making it an excellent place to study the PETM in
shallow-marine settings.

The thick shallow-marine carbonate succession of the Tethyan Himalaya spans the critical late Paleocene-early Eocene interval, and is characterized by abundant index fossils (Willems et al., 1993; Hu et al., 2012; Zhang et al., 2013; Li et al., 2015), offering a rare opportunity to study a detailed, biostratigraphically controlled record of the PETM in the eastern Tethys. Biostratigraphy based on larger benthic foraminifera, coupled with precise carbon isotope chemostratigraphy, allows us to place firm constraints on the stratigraphic and environmental evolution of the Indian margin during the very first stages of the India-Asia collision, a period that spans the critical interval of the PETM.

2. Geologic setting and lithostratigraphy

The Tethyan Himalaya, situated between the Greater Himalaya to the south and the Indus-Yarlung-Zangbo Suture and Lhasa Block to the north (Fig.1A), consists of sedimentary rocks originally deposited along the northern margin of the Indian continent. The Tethyan Himalaya is traditionally subdivided into southern and northern zones, separated by the Gyirong-Kangmar Thrust. The southern zone includes a Paleozoic to Eocene succession, composed largely of shelf carbonates and terrigenous deposits (Willems et al., 1996; Sciunnach and Garzanti, 2012), whereas the northern zone is dominated by deeper-water Mesozoic to Paleocene slope and rise sediments. Paleomagnetic data indicate that the Tethyan Himalaya was located at peri-equatorial latitudes in the latest Mesozoic and early Cenozoic, ranging from 5.6±2.8° S during Campanian-Maastrichtian time to 10.1±2.0° N during Selandian-Thanetian time (Yi et al., 2011).
Our study area is located in the southern Tethyan Himalaya, near the town of Gamba (Fig. 1B). The site has a continuously exposed marine sedimentary succession ranging from the Upper Cretaceous to Eocene, subdivided into three lithostratigraphic units (the Jidula, Zongpu and Enba formations). Lower Paleocene shoreface deposits of the Jidula Formation consist of quartzose sandstones derived from the Indian continent (Garzanti and Hu, 2015). The overlying Zongpu Formation is composed of thin- to massively-bedded fossiliferous limestones at the base, with nodular limestones in the middle and thick-bedded fossiliferous limestones in the upper part of the formation (Willems and Zhang, 1996; Li et al., 2015). In the Gamba area, the Zongpu Formation can be further subdivided into four members: thin- to medium-bedded limestones in member 1, nodular limestones in member 2, nodular marly limestones in member 3, and thick- to massively-bedded limestones in member 4. Members 3 and 4 are separated by a lenticular conglomerate bed, marking an erosional disconformity that roughly corresponds to the Paleocene-Eocene boundary (Wang et al., 2010; Wan et al., 2002; Li et al., 2015; Fig. 2B, 2C, 2D).

The Enba Formation comprises greenish-grey marls, intercalated in the upper part of the formation with litho-quartzose sandstones sourced from the Asian continent, and deposited in prodelta to offshore environments (Wan et al., 2002; Hu et al., 2012).

3. Materials and methods

3.1. Stratigraphic sections

We focused our study on the Zongpu Formation, by measuring two main sections in the Gamba area (Zongpu and Zengbudong), and sampling them in detail for petrographic, biostratigraphic and carbon isotope analysis (Fig. 1).
Microfacies analysis was carried out on 550 thin sections from the Zongpu section and 80 thin sections from the Zengbudong section using transmitted-light microscopy. This allowed us to make semiquantitative estimates of the main sedimentary components, as well as observe primary textural and diagenetic features, identify microfossils (with a special emphasis on larger benthic foraminifera), and interpret of depositional settings. Samples for isotope measurements were collected with an average spacing of 1 m, reduced to ~0.4 m across the Paleocene-Eocene boundary. Biostratigraphic correlations were based on the distribution of larger benthic foraminifera (identification based on Hottinger, 1960; BouDagher-Fadel, 2008). We used the Tethyan Shallow Benthic Zonation established by BouDagher-Fadel (2008, 2015). These shallow benthic biozones can be correlated with the well-established ranges of planktonic foraminifera (BouDagher-Fadel, 2013), in order to assign biostratigraphic ages to different intervals.

3.2. Carbon and oxygen isotopes

To assemble a detailed chemostratigraphic record of the studied sections, we analyzed whole-rock carbonate isotope values throughout the entire succession. We processed a total of 357 samples from the Zongpu section and 84 from the Zengbudong section. Powdered samples were obtained by micro-drilling, taking care to avoid cement-filled veins and pores, or larger bioclasts. The carbon and oxygen isotope ratios of powdered samples were measured at the State Key Laboratory for Mineral Deposits Research at Nanjing University, using a Finnigan MAT Delta Plus XP mass spectrometer coupled to an in-line GasBench II autosampler. Samples were reacted with purified orthophosphoric acid at 70°C. Data are expressed in standard delta notation, as permil deviations from the Vienna Pee Dee Belemnite (VPDB) standard. Duplicate measurements of standards yielded an analytical precision (1σ) of 0.05‰ for δ¹³C and 0.07‰ for δ¹⁸O.
To supplement our carbonate isotope results, we analyzed organic carbon isotopes across the critical Paleocene-Eocene boundary interval in the Zengbudong section. Thirty-eight samples were decarbonated using 10% HCl, and analysed at the SINOPEC Wuxi Research Institute of Petroleum Geology, using a Finnigan MAT Delta Plus XL mass spectrometer. The results were corrected to the VPDB scale and are expressed using delta notation. Additionally, 14 limestone clasts collected from the conglomerate bed in the Zengbudong section were analyzed for both whole-rock carbonate and organic carbon isotopes.

4. Results

4.1. Lithostratigraphy

The sedimentology and stratigraphy of the Zongpu and Zengbudong sections are described in detail in Li et al. (2015). Here we focus on the stratigraphic interval immediately surrounding the Paleocene-Eocene boundary, and on the sedimentological features of the Paleocene-Eocene disconformity (Fig. 3).

Below the conglomerate bed, the uppermost strata of member 3 are composed mainly of floatstones or packstones, which contain nummulitids. This interval records the progressive transition to open-marine environments, with the uppermost strata deposited below fair-weather wave base (Fig. 3C).

The ≤4 m thick conglomerate bed, found marking the boundary between members 3 and 4 of the Zongpu Formation in the Gamba area, is markedly lenticular in shape, with a sharp erosional base and flat, normally-graded top (Fig. 2A, 2E). Clasts are mostly subrounded to rounded, though some angular clasts are present. They range in diameter from 0.5 to 15 cm, and consist mainly of
coarse-grained, nummulitid-bearing wackestones and packstones derived from the coeval (or slightly older) Thanetian limestones of member 3 (Fig. 3B). The poor sorting, homogeneous character of the clasts, and presence of some angular fragments suggests a local source area, and possibly rapid transport and deposition. The occurrence of rounded clasts does imply some transport in a channel system, but not to the same degree that would be inferred from rounded silicate clasts, since limestone pebbles are rounded quite easily by mechanical abrasion (Kuenen, 1964; Mills, 1979). The lenticular bedding and erosive contact with underlying strata both indicate deposition by bedload traction in a high energy, channelized flow. The thicker, more laterally continuous conglomerate units are interpreted to have been deposited in an incised channel, within a braided channel system (Wang et al., 2010; Li et al., 2015).

Above the conglomerate bed, the base of member 4 consists mainly of restricted to lagoonal inner-ramp deposits, characterized by Alveolina and Orbitolites. These transition up-section into shallow-marine deposits, and finally open-marine floatstones with Nummulites and Alveolina, deposited below wave base in a middle ramp environment (Fig. 3A).

4.2. Biostratigraphy

The biostratigraphy of the Upper Cretaceous to lower Paleogene shallow-water succession of the Tibetan Himalaya is described in detail in BouDagher-Fadel et al. (2015), which correlated the planktonic foraminiferal zones of BouDagher-Fadel (2013) and the shallow benthic foraminiferal zones of the Paleogene into a comprehensive new Tibetan biozonation scheme (Fig. 4). Here we focus on: 1) the stratigraphic interval spanning the Paleocene-Eocene boundary, and 2) the biostratigraphic features of the Paleocene-Eocene disconformity.
In both studied sections, the boundary between SBZ3 and SBZ4 (or TP2 and TP3) is defined by the first appearance of Aberisphaera gambanica. Within SBZ4/TP3, Lockhartia conditi, Lockhartia haimei, Lockhartia cushmani, Daviesina langhami (Fig. 5A), Orbitosiphon punjabensis (Fig. 5B), Ranikothalia sindensis (Fig. 5C-a), Orbitosiphon praepunjabensis (Fig. 5C-b), Miscellanea juliettae (Fig. 5D), Lockhartia roeae (Fig. 5C-d) and Miscellanea yvettae (Fig. 5E) are common. The first appearance of Alveolina pasticillata and Alveolina ellipsoidalis (Fig. 5F-b) marks the base of TP5 (within the lower part of SBZ6), corresponding to the base of the Ypresian. This subzone is dominated by Orbitolites complanatus (Fig. 5F-a), Glomalveolina subtilis, Alveolina pasticillata, Alveolina ellipsoidalis (Fig. 5H), Alveolina aramaea and Alveolina illerdensis. The boundary between SBZ6 and SBZ7 is marked by the first appearance of Alveolina moussoulensis.

Carbonate clasts from the conglomerate bed in the Gamba area yielded SBZ 4 to SBZ 6 index fossils, including Lockhartia haimei, Lockhartia conditi, Daviesina langhami, Miscellanea juliettae and M. yvettae in SBZ4, Alveolina vredenburgi in SBZ5, and Orbitolites complanatus and Alveolina ellipsoidalis in SBZ 6 (Fig. 3, Fig. 5G).

4.3. Stable carbon isotope stratigraphy

Stable carbon isotope values are plotted stratigraphically in Fig. 6 for the Zongpu section and Fig. 7 for the Zengbudong section. The lower Thanetian is characterized by high variability in whole-rock carbonate isotope values, while the upper Thanetian and lower Eocene show δ^{13}C_carb values centered around +2 ‰ and +1‰, respectively, with an abrupt negative shift at the disconformable transition from open marine to restricted lagoonal deposits marked by the
conglomerate bed (Figs. 6, 7). Above this negative excursion, a recovery trend is evident in both Zongpu and Zengbudong sections, beginning in the *Alveolina* packstone or floatstone at the base of member 4. The negative excursion in δ¹³C_carb begins at 314.6 m in the Zongpu section (δ¹³C_carb = -1.0‰) and at 12.7 m in the Zengbudong section (δ¹³C_carb = -2.4‰), and persists over an interval of ~4 m in the Zongpu section, of ~5.4 m in the Zengbudong section. The magnitude of the CIE reaches 3.4‰ in the Zongpu section, and 4.9‰ in the Zengbudong section. The organic carbon isotope values measured across the Paleocene-Eocene boundary in the Zengbudong section display a trend similar to the whole-rock carbonate record. In the upper part of member 3, δ¹³C_org ranges from -22.1‰ to -21.6‰, with an average value of -21.8‰ (Fig. 7). An abrupt negative excursion, with a magnitude of 3‰, occurs at the base of member 4 (-24.6‰). These δ¹³C-depleted values persist over a 5.4 m interval, then show a positive trend corresponding to that seen in carbonate isotopes, with values rising from -24.7‰ to -22.4‰. The carbonate clasts in the conglomerate bed marking the Paleocene-Eocene boundary in the Zengbudong section are apparently altered, and display extreme δ¹³C_carb values, ranging from -2.4‰ down to -6‰ (Fig. 8A). The organic carbon isotope values of the carbonate range vary from -23.0‰ to -25.1‰ (Fig. 8B).

5. The Paleocene–Eocene thermal event in the Himalaya

Previous studies of shallow-water successions in the Pyrenean Basin in Spain (Orue-Etxebarria et al., 2001; Pujalte et al., 2003, 2009, 2014, 2015, 2016), the Galala Mountains in Egypt (Scheibner et al., 2005; Scheibner and Speijer, 2009), the Adriatic carbonate platform in SW Slovenia (Zamagni et al., 2008, 2012), the Indus Basin in Pakistan (Afzal et al., 2011), the
Zagros Basin in SW Iran (Bagherpour and Vaziri, 2012), and the Pacific region (Robinson, 2011), have extensively documented the correlation between the negative carbon isotope excursion associated with the PETM and the evolution of larger benthic foraminifera. However, many of these studies were conducted in European and Mediterranean regions corresponding to the western Tethys; the applicability of Shallow Benthic Zones (SBZ) and regional biostratigraphic correlations to the shallow-water environments of the eastern Tethys remains uncertain (Wang et al., 2010), although Zhang et al. (2013) proposed a temporal correlation between the PETM and the evolution of larger benthic foraminifera in southern Tibet.

5.1. Diagenetic effects on carbon isotope curves

Dissolution and recrystallization processes during diagenesis of carbonate minerals can significantly alter their carbon isotope composition (Garzione et al., 2004). The carbon isotope ratio of authigenic carbonate may also change as a result of the transformation of aragonite and high-Mg calcite to low-Mg calcite during diagenesis, or from the presence of skeletal grains, which may exhibit nonequilibrium isotopic fractionation (Immenhauser et al., 2002; Swart and Eberli, 2005). Thin section analysis reveals that the carbonates of the Zongpu Formation are wackestones or packstones, with a homogeneous micritic matrix and skeletal grains. Microsparry calcite is rare, and sparry calcite is absent, indicating that the original sedimentary fabric has been largely preserved. The skeletal grains include both smaller and larger benthic foraminifera and echinoderms, and were originally composed of low-Mg to high-Mg calcite. Mineralogical stabilization of high-Mg calcite to low-Mg calcite can occur without any textural change in skeletal calcite, especially in porcellaneous foraminifera like alveolinids and larger miliolids (Budd and Hiatt, 1993). In the absence of subaerial exposure, the transformation of high-Mg to
low-Mg calcite occurs under the influence of marine pore waters, with only minor modification of
the carbon isotope composition of skeletal grains. Overall, petrographic features suggest that
carbonate strata in the studied sections have undergone minimal diagenetic alteration.

Measured δ^{13}C values range from -4.0‰ to 2.5‰, and δ^{18}O values range from -10‰ to -4‰.

A crossplot of carbon and oxygen isotope values shows no significant correlation ($R^2=0.39$ for the
Zongpu section; $R^2=0.02$ for the Zengbudong section; Fig. 8A). The crossplot also lacks the slope
characteristic of “mixing lines” produced by the addition of variable quantities of cement to
primary skeletal calcite (Marshall, 1992), suggesting that the isotopic values obtained from the
studied sections likely record a primary palaeoceanographic signal.

5.2. Completeness of the PETM record in southern Tibet

The onset of the CIE and its shape are considered to be the most reliable correlation tools for
the Paleocene-Eocene boundary interval (Röhl et al., 2007). The major environmental and biotic
changes associated with the PETM provide additional criteria to both pinpoint the
Paleocene-Eocene boundary and assess the stratigraphic completeness of the PETM event as
recorded in south Tibet.

In both studied sections of the Zongpu Formation, sedimentological and biostratigraphic
analyses indicate a major erosional unconformity between the top of member 3 (which dates to the
latest Paleocene SBZ 4), and the base of member 4 (which dates to the early Ypresian SBZ 6).
This disconformity should thus represent at least 400 kyr, corresponding to the missing SBZ5 and
the earliest part of SBZ6 (BouDagher-Fadel et al., 2008; Fig. 4). Analysis of carbonate clasts
contained in the conglomerate bed helps to further constrain the time interval represented by the
disconformity, and to assess the processes driving this erosion. Intraformational carbonate clasts
include index fossils from SBZ4 through SBZ6 (Fig. 3). The sedimentary record of the
Paleocene-Eocene boundary within SBZ6 (BouDagher-Fadel et al., 2008), including the onset of
the PETM, was thus truncated by latest Paleocene erosion.

The discontinuity of the sedimentary record is highlighted by the abruptness of the isotopic
excursion. In southern Tibet, the negative δ^{13}C$_{\text{carb}}$ and δ^{13}C$_{\text{org}}$ excursions are extremely sharp (from
2.5 to -2.0‰ and from -21.6 to -24.6‰, respectively), consistent with the presence of a hiatus.
The base of the Eocene in the Gamba area also shows a sudden change from open marine to
restricted-lagoonal environments. Both δ^{13}C$_{\text{carb}}$ and δ^{13}C$_{\text{org}}$ values remain consistent or increase
slightly immediately below the conglomerate bed, implying that the onset of the CIE is not
recorded in these strata. The 4 to 7 m thick interval with consistently low δ^{13}C$_{\text{carb}}$ and δ^{13}C$_{\text{org}}$ values
(i.e., the CIE) is followed by a gradual return to pre-exursion values (Figs. 6, 7, 9), suggesting that
while the onset of the PETM is truncated by erosion, the stratigraphic record of the upper PETM
interval is expanded and continuous.

5.3. Comparison between southern Tibet and other marine successions

Constraining the magnitude of the CIE is critical to evaluating its potential causes (Higgins
and Schrag, 2006) and understanding the sensitivity of the climate system to the associated
greenhouse gas forcing. Measurements vary widely, ranging from 2‰ to 4.5‰ in marine
carbonates depending on the studied location and substrate (Giusberti et al., 2007; Sluijs and
Dickens, 2012). The observed magnitude of the negative excursion in our whole-rock carbonate
records (~3.4‰ in the Zongpu section and ~4.9 ‰ in the Zengbudong section) is slightly greater than
the values reported from other shallow-marine continental margins (e.g., between 2.8‰ and 3.5‰ for the North American shelf; John et al., 2008), the Adriatic carbonate platform (~1‰ in the Kozina section and ~3‰ in the Čebulovica section; Zamagni et al., 2012), Pacific guyots (~3‰; Robinson, 2011), and deep-sea bulk carbonates (between 2.5‰ and 4.0‰).

The magnitude of the negative CIE in our shallow-marine carbonate record is quite large compared to open-marine records of the PETM, with an excursion in whole-rock carbonate samples of up to 4.9‰ in the Zengbudong section (Fig. 10). The low $\delta^{13}C$ values of these carbonates may be due to a combination of several effects, including restricted circulation and a smaller carbon reservoir size in the platform-top water mass, a local flux of carbon weathering from the land, and syndepositional diagenesis of carbonate mud in organic-rich sediments (Immenhauser et al., 2008).

In the Gamba area, the Zongpu Formation was deposited in a carbonate ramp setting characterized by good water circulation, suggesting that water mass restriction was not a major factor. Low pore water $\delta^{13}C$ values may have resulted from the oxidation of organic matter. Syndepositional dissolution of CaCO$_3$ caused by organic matter oxidation can alter the isotopic composition of carbonate, resulting in lower $\delta^{13}C$ values in diagenetic carbonates (Sanders, 2003; Patterson and Walter, 1994). The strongly negative excursions in whole-rock $\delta^{13}C_{\text{carb}}$ values observed in the Zongpu Formation may reflect syndepositional alteration of organic matter. Climatic conditions during the PETM, with intensified chemical weathering and seasonality driving more efficient physical weathering and erosion (Egger et al., 2005; Giusberti et al., 2007), promoted the accumulation of organic-rich black shales along the margin of the Neo-Tethys Ocean (Speijer and Wagner, 2002). Current-driven redistribution of organic matter along the carbonate ramp may have contributed to the differences in the magnitude of negative carbon isotope excursions observed between the Zongpu and Zengbudong sections, with the
former characterized by less negative $\delta^{13}C_{\text{carb}}$ values.

6. Origin of the P-E boundary unconformity

The channelized intraformational conglomerate bed that marks the boundary between members 3 and 4 of the Zongpu Formation in the Gamba area has long been biostratigraphically correlated with a similar unit in the Zanskar Range of the northwestern Tethyan Himalaya. This conglomerate is interpreted to be the result of tectonic uplift, due to landward migration of a collision-related flexural wave (Garzanti et al., 1987). The same mechanism has been proposed to explain the conglomerate bed in the Gamba area (Zhang et al., 2012; Li et al., 2015), and a similar disconformity and conglomerate bed can be observed in the Tingri and Düela areas (unpublished field observations). The Paleocene-Eocene erosional unconformity is not limited to the Gamba area, but can be traced for 200 km across southern Tibet. Considering the similarity between stratigraphic records in the Gamba area and the Zanskar Range, we conclude that this Paleocene-Eocene disconformity is a widespread, roughly synchronous feature in the Tethyan Himalaya. The combination of biostratigraphy and detailed carbon isotope chronostratigraphy presented in this study allow us to establish that this erosional event occurred during the lower PETM interval (i.e., around 56 or 55.5 Ma; Hilgen et al., 2010; Westerhold et al., 2012).

The origin of the Paleocene-Eocene boundary unconformity in the Tethyan Himalaya is discussed below, in relation to: 1) tectonic uplift of the Zongpu carbonate platform, and 2) climate-driven incision and erosion prior to the PETM.

6.1. Tectonic uplift of the Zongpu platform

Based on evidence from the northwestern Himalaya, Garzanti et al. (1987) proposed that the
Indian passive margin was tectonically uplifted by southward migration of an orogenic wave that initiated at the Trans-Himalayan Trench during the onset of the collision between India and Asia. In depositional settings from the outer Indian margin, exposed in the Zanskar Range, pelagic outer-shelf sediments yielding planktonic foraminifera of Thanetian age are unconformably overlain by peritidal dolostones and nummulitid-rich calcarenite shoals of early Ypresian age. Channelized quartz-rich sandstone beds are reported to occur during the same interval in the inner Zanskar margin (Nicora et al., 1987), whereas debris-flow conglomerates containing limestone pebbles of Cretaceous to latest Paleocene age occur in the most distal part of the Indian margin (Fuchs and Willems, 1990).

In the Gamba sections of southern Tibet, the unusually low carbon isotope values of conglomerate clasts (δ^{13}C as negative as -6‰ PDB; Fig. 8) suggest a period of weathering and freshwater influx associated with prolonged subaerial exposure (Immenhauser et al., 2002). This interpretation is strongly supported by three independent lines of evidence: 1) the presence of channelized intraformational conglomerates mantling a major stratigraphic disconformity; 2) a stratigraphic gap of ~400 kyr, corresponding to the missing SBZ5; and 3) a sharp break in the δ^{13}C record, documented in all studied sections. Facies analysis, biostratigraphy, and carbon isotope measurements thus provide compelling evidence that, during a period of warm climate and sea level rise (Kominz et al., 2008; Sluijs et al., 2008), the Paleocene-Eocene disconformity was produced via tectonic uplift. Collision with Asia was already underway (DeCelles et al., 2014; Hu et al., 2015), and this marked uplift event recorded throughout the inner Tethyan Himalaya, from Zanskar to southern Tibet, may be the result of an orogenic wave propagating from the point of first continent-continent contact and moving progressively landward across the Indian margin.
Integrated biostratigraphic and zircon chronostratigraphic studies conducted on sedimentary successions from the most distal part of the Indian margin indicate that the onset of collision occurred in the Selandian (middle Paleocene) at 59±1 Ma (DeCelles et al., 2014; Wu et al., 2014; Hu et al., 2015). If the unconformity was indeed caused by tectonic uplift related to a flexural wave, we can estimate the time required for the orogenic front to reach the inner Indian margin in Gamba, Tingri and Zanskar to be 3±1 Myr. Assuming an original paleomargin width between 250 and 300 km (van Hinsbergen et al., 2012; Lippert et al., 2014), this corresponds to a migration velocity of 90±20 km/Myr (mm/a). The convergence rate between India and Asia is estimated to have been ~150 mm/a based on paleomagnetic data (Copley et al., 2010; van Hinsbergen et al., 2011). A convergence/shortening ratio of 1.7±1.0 is somewhat larger than what is typically observed in orogenic belts generated by continental collision, but with all of the uncertainties considered, it is still compatible with existing models (Doglioni et al., 2007).

6.2. Climate-driven incision and erosion prior to the PETM

It is widely understood that valleys in marine-basin margins are usually incised during periods of relative sea-level fall, and filled with sediments during the subsequent sea-level rise (Boyd et al., 2006; Strong and Paola, 2008; Pujalte et al., 2015). A sea-level lowstand preceding the PETM has been widely recognized; in the Pyrenees (Pujalte et al., 2014, 2015, 2016), the North Sea region (Dupuis, 2000), the Austrian Alps (northern margin of the Tethys, Egger et al., 2009, 2011), and the Nile Valley (southern margin of the Tethys, Aubry, 2009). This sea level fall was followed by an equally widespread sea-level rise.

In the Gamba area of the Tethyan Himalaya, the channelized intraformational conglomerate
bed within the Paleocene-Eocene boundary interval of the Zongpu Formation also marks the boundary between the open-marine environments of member 3 and the restricted to lagoonal inner-ramp deposits of member 4. The roughly coeval disconformity in the Zanskar Range (Garzanti et al., 1987) clearly records a pronounced fall in relative sea-level, and consequently the formation of an incised valley in previously deposited carbonate-ramp strata (Li et al., 2015). The subsequent rise in relative sea-level began ~40 kyr before the Paleocene–Eocene boundary, leading to the filling of incised valleys and deposition of the conglomerate bed. Relative sea-level continued to rise during and after the PETM, leading to the deposition of floatstones containing *Alveolina* and *Orbitolites* in member 4 of the Zongpu Formation. Deposition of the conglomerate bed, which sedimentological evidence suggests may have occurred in a fluvio-deltaic or shallow-marine environment, would have had to have been rapid in this scenario.

The tectonic and eustatic components of base-level change cannot be easily distinguished in the stratigraphic record, and we are unable to deconvolve their relative contributions to the formation of the Paleocene-Eocene disconformity. The unique features of the conglomerate bed, which has no equivalent in the underlying Paleocene succession, point to a single specific event driving subaerial exposure and erosion. Tectonic activity was certainly underway during these earliest stages of the India-Asia collision, and therefore tectonic reduction of accommodation space remains a viable explanation. This is especially true of the disconformity in the Zanskar region, which separates pelagic marly limestones below from peritidal carbonates above, suggesting a drastic relative sea-level fall of at least 100 meters. Glacio-eustasy is a mechanism capable of driving large and rapid fluctuations in sea-level, but can be ruled out due to the extremely warm climatic conditions around the Paleocene-Eocene boundary. The aquifer-eustasy hypothesis
(Wendler and Wendler, 2015) has yet to be proven as a workable alternative mechanism. However, we have no evidence to rule out a climatically-driven eustatic component, and further work is needed to better understand the possibly superimposed processes that drove deep incision and erosion along the inner margin of the Tethyan Himalaya prior to the PETM.

7. Conclusions

This study reports a detailed stratigraphic record of the Paleocene–Eocene Thermal Maximum from the Tethyan Himalaya. The succession is truncated by a major disconformity around the Paleocene-Eocene boundary, marked by a conglomerate bed now identified in both the Gamba and Tingri areas of southern Tibet. As a result of this unconformity, only the upper part of the PETM interval is preserved. By coupling sedimentological, biostratigraphic, and geochemical data, we were able to reconstruct in detail the sedimentary and tectonic evolution of the southern Indian margin during the earliest stages of the India-Asia collision. Our results allows us to conclude that:

1) The Paleocene-Eocene unconformity corresponds with the boundary between members 3 and 4 of the Zongpu Formation, documenting an abrupt environmental change from open-marine environments below to restricted or lagoonal inner-ramp environments above. The prominent negative excursion in $\delta^{13}C$ at the base of member 4 is seen in both whole-rock carbonate and organic carbon records, and can correlated using larger-benthic-foraminifera biostratigraphy with the carbon isotope excursion defining the PETM. The strong ^{13}C depletion seen in shallow-marine carbonates in southern Tibet may have resulted partly from syndepositional alteration of organic matter.
The marked negative shift in carbon isotope values across the Paleocene-Eocene boundary is associated with conglomerate beds in the Gamba area of southern Tibet, and a stratigraphic gap of as much as 400 kyr, providing compelling evidence of subaerial exposure. This major Paleocene-Eocene disconformity may be ascribed to tectonic uplift associated with the southward migration of an orogenic wave that originated 3±1 Myr earlier, as India began to collide with Asia in the middle Paleocene. Eustatic sea-level fall may have caused the incision of valleys prior to the PETM, with subsequent filling of the valleys during the interval of conglomerate deposition, however the impact of eustasy on the stratigraphy of the Tethyan Himalaya requires further study.

Acknowledgments

We would like to express our gratitude to Wei An, Zhong Han, and Mingyuan Lai for their assistance in the field and the laboratory for Provenance Studies, and to Carlo Doglioni, Shijun Jiang, Yongxiang Li and Jiangan Wang for their advice in preparing this manuscript. This study was financially supported by the National Natural Science Fund for Distinguished Young Scholars (41525007) and the Chinese MOST 973 Project (2012CB822001). We would also like to thank our two reviewers and Editor Prof. Isabel Patricia Montanez for their constructive comments.

References

bracket the PETM. In: Strong, P., Crouch, E., Hollis, C. (Eds.), and Biotic Events of the
Paleogene, CBEP 2009, Wellington, New Zealand, Conference program and Abstracts, p. 144
across Paleocene Eocene of the Taleh Zang Formation in the Zagros Basin, SW-Iran. Historical
Biology, v. 24, p.121-142.
foraminiferal biozones in the Tibetan Himalayas, and a pan-Tethyan foraminiferal correlation
BouDagher-Fadel, MK, (2008). Evolution and Geological Significance of Larger Benthic Foraminifera:
BouDagher-Fadel, MK, (2013). Biostratigraphic and geological significance of planktonic foraminifera,
Eocene hyperthermal event offers insight into greenhouse warming: EOS, Transactions, American
Geophysical Union, v. 87, p. 165-169.
Budd, A.D., and Hiatt, E.E., 1993, Mineralogical stabilization of high-magnesium
calcite—Geochemical evidence for intracrystal recrystallization within Holocene porcellaneous
Copley, A., Avouac, J. P., and Royer, J. Y., 2010, India-Asia collision and the Cenozoic slowdown of
the Indian plate: Implications for the forces driving plate motions: Journal of Geophysical
DeCelles, P., Kapp, P., Gehrels, G., and Ding, L., 2014, Paleocene-Eocene foreland basin evolution in
the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision:
Simulating first-order effects of massive dissociation of oceanic methane hydrate: Geology, v. 25,

Marshall, J. D., 1992, Climatic and oceanographic isotopic signals from the carbonate rock record and

Westerhold, T., Röhl, U., and Laskar, J., 2012., Time scale controversy: Accurate orbital calibration of the early Paleogene: Geochemistry, Geophysics, Geosystems, v. 13, no. 6, p. n/a-n/a.

Zhang, Q., Willems, H., Ding, L., Gräfe, K.-U., and Appel, E., 2012., Initial India-Asia

Figure captions

Fig. 1: A) Schematic geologic map of the Himalayan Range; B) Geologic maps of the Gamba area, showing the location of the studied sections.

Fig. 2: Field photographs: (A) Member 3, conglomerate bed, and member 4 of the Zongpu Formation in the Zengbudong section, Gamba area; (B) nodular marly limestones of uppermost member 3; (C) the conglomerate bed in the Zongpu Formation, Gamba area; (D) thick- and massively-bedded limestones of member 4.

Fig. 3: Lithological log of the Zongpu Formation (Zongpu and Zengbudong sections) spanning the Paleocene/Eocene boundary, showing the distribution of larger benthic foraminifera, carbonate microfacies, interpreted palaeowater depths and depositional environments, and the distribution of larger benthic foraminifera in carbonate clasts of the conglomerate bed. A) Floatstone with *Alveolina* and *Orbitolites* in lowermost member 4; B) packstone with nummulitids in the carbonate clasts, from the conglomerate bed; C) packstone with nummulitids in uppermost member 3. SBZ = Shallow Benthic Zonation of Serra-Kiel et al., 1998; FWWB = fair-weather wave base. Data from Li et al. (2015).

Fig. 4: Integrated chrono- and biostratigraphic framework for the Gamba sections of the southern Tethyan Himalaya. Planktonic foraminiferal biozones from BouDagher-Fadel (2013); larger benthic foraminiferal biozones from BouDagher-Fadel (2008, 2015). Timescale is based on Gradstein et al. (2012). Legend corresponds to that in Fig. 3.

Fig. 5: Larger benthic foraminifera of SBZ4 through SBZ6 in the Zongpu and Zengbudong sections. A) *Daviesina langhami*, Thanetian, SBZ4, 12ZP133; B) *Orbitosiphon punjabensis*, Thanetian, SBZ4, 12ZP133; C) a. *Ranikothalia sindensis*, b. *Orbitosiphon prae punjabensis*
Adams, c. Miscellanea juliettae, d. Lockhartia roeae, Thanetian, SBZ4, 12ZP182; D) Miscellanea juliettae, Thanetian, SBZ4, 12ZP182; E) Miscellanea yvettae, Thanetian, SBZ4, 12ZP229; F) a.

Orbitolites complanatus, b. Alveolina ellipsoidalis, Ypresian, later part of SBZ6, 13ZB72; G) a.

Orbitosiphon punjabensis, b. Lockhartia conditi, c. Miscellanea miscella, d. Lockhartia diversa, reworked late Thanetian SBZ4 assemblage mixed with early Ypresian assemblage, 12ZD69; H) Alveolina ellipsoidalis and Alveolina pasticillata, Ypresian, late SBZ6, 13ZB72.

Fig. 6: Lithostratigraphy, biostratigraphic ranges of large benthic foraminifera, and whole-rock carbonate δ¹³C curve for the Zongpu section, Gamba area. SBZ= Shallow Benthic Zone, TP=Tibetan Foraminiferal Biozone, CIE= Carbon Isotopic Excursion; M= mudstone; W= wackestone; P= packstone; G= grainstone; F= floatstone. Legend corresponds to that in Fig. 3.

Fig. 7: Lithostratigraphy, biostratigraphic ranges of large benthic foraminifera, and δ¹³C curves for whole-rock carbonate and organic matter from the Zengbudong section, Gamba area.

Fig. 8: Crossplots of: A) Whole-rock carbonate carbon versus oxygen isotopes (δ¹³C vs. δ¹⁸O) from the Zongpu Formation, in the Zongpu and Zengbudong sections; B) Whole-rock carbonate carbon versus organic carbon isotopes (δ¹³C_carb vs. δ¹³C_org) of carbonate clasts from the conglomerate bed in the Zengbudong section.

Fig. 9: Integrated field photography, lithological log, and stable isotope curve from the Zengbudong section, spanning the Paleocene/Eocene boundary in the Gamba area, southern Tibet.

Fig. 10: Chemostratigraphic correlation of PETM records based on stable carbon isotopes, from the Gamba area of southern Tibet (this study), Kozina, SW Slovenia (Zamagni et al., 2012), and the Southern Ocean (ODP690; Kennett et al., 1991).
Figure

Li et al., Fig.1
Fig. 2 Li et al.
<table>
<thead>
<tr>
<th>Formation</th>
<th>Lithology</th>
<th>Larger benthic Foraminifera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Member 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zongpu Conglomerate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Li et al., Fig. 3
Fig. 4
Zongpu Section, Gamba

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Stage</th>
<th>Member</th>
<th>TP Zones</th>
<th>SB Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danian</td>
<td>Selandian</td>
<td>TP1</td>
<td>SBZ2</td>
<td>SBZ1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TP2</td>
<td>SBZ3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TP3</td>
<td>SBZ4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>SBZ5</td>
<td></td>
</tr>
</tbody>
</table>

Interval details

Lithology

Larger benthic foraminifers

Fig. 6

δ¹³C, ‰, PDB

- [Graph showing δ¹³C values over time]

- [List of foraminifer species with δ¹³C values]

- [Legend for foraminifer species]

Table of foraminifer species

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Stage</th>
<th>Member</th>
<th>TP Zones</th>
<th>SB Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danian</td>
<td>Selandian</td>
<td>TP1</td>
<td>SBZ2</td>
<td>SBZ1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TP2</td>
<td>SBZ3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TP3</td>
<td>SBZ4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>SBZ5</td>
<td></td>
</tr>
</tbody>
</table>

Interval details

Lithology

Larger benthic foraminifers

Fig. 6

δ¹³C, ‰, PDB

- [Graph showing δ¹³C values over time]

- [List of foraminifer species with δ¹³C values]

- [Legend for foraminifer species]
<table>
<thead>
<tr>
<th>Epoch</th>
<th>Stage</th>
<th>Member</th>
<th>TP-Zones</th>
<th>SB-Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Paleocene</td>
<td>Thanetian</td>
<td>3</td>
<td>T5</td>
<td>SBZ4</td>
</tr>
<tr>
<td>Early Eocene</td>
<td>Ypresian</td>
<td>4</td>
<td>T56</td>
<td>SBZ6</td>
</tr>
</tbody>
</table>

Lithology

1. Alveolina ellipsoidalis
2. Orbitolites complanatus
3. Alveolina moussoulensis
4. Alveolina conradi
5. Alveolina globula
6. Alveolina aragonensis
7. Alveolina regularis
8. Alveolina corbarica
9. Nummulites globulus
10. Daviesina langhami
11. Orbitolites tingriensis
12. Assilina diversa
13. Assilina sutleri
14. Lockhartia condii
15. Lockhartia haimei
16. Miscellanea yvettae
17. Miscellanea miscella
18. Assilina yvettae
19. Assilina suteri
20. Discocyclina sella

Epochs and Stages

- Early Eocene: Ypresian
- Late Paleocene: Thanetian

Fig. 7

- CIE
- δ¹³C, ‰, PDB
- Recovery
Carbonate clasts from the conglomerate bed

Fig. 8
Zengbudong section

Field view of the conglomerate directly overlying the member 3

Fig. 9
Fig. 10 δ^{13}C_{carb,‰}, PDB
Dear Editor (

Palaeogeography, Palaeoclimatology, Palaeoecology),

We would like to submit our original article entitled “Shallow-water carbonate response to the Paleocene–Eocene thermal maximum in the Tethys Himalaya (southern Tibet): tectonic and climatic implications” for publication.

This manuscript is entirely original and not submitted elsewhere for publication. If accepted, we are willing to pay the extra charge for color figures.

For potential referees, we would like to recommend the following researchers, who are familiar with Paleocene–Eocene thermal maximum and Tethyan Himalaya geology.

Dr. Helmut Weissett, ETH Zurich, Switzerland, Email: helmut.weissert@erdw.ethz.ch
Dr. Appy Sluijs, Utrecht University, Netherlands; Email: a.sluijs@uu.nl
Dr. Qinghai Zhang, University of Bremen, Germany; Email: zhang@uni-bremen.de
Dr. Xiaoqiao Wan, China University of Geosciences, Beijing; Email: wanxq@cugb.edu.cn
Dr. Victoriano Pujalte, University of the Basque Country, Spain; Email: victoriano.pujalte@ehu.es

We thank you for your kind consideration, and look forward to hearing from you in due course.

Sincerely yours,

Xiumian Hu (Corresponding author, huxm@nju.edu.cn)

Juan Li, Xiumian Hu*, Eduardo Garzanti, Marcelle BouDagher-Fadel
Supplementary Interactive Plot Data (CSV)
Click here to download Supplementary Interactive Plot Data (CSV): Appendix.xls