Primary familial brain calcification linked to deletion of 5' noncoding region of
SLC20A2

Short title: PFBC due to partial deletion of SLC20A2

Petra Pasanen1,2, Jussi Mäkinen3, Liisa Myllykangas4, Rita Guerreiro5, Jose Bras5, Miko
Valori6, Matti Viitanen7,8, Marc Baumann9, Pentti J. Tienari6,10, Minna Pöyhönen11, and Peter
Baumann12

1 Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
2 Tyks Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, Turku, Finland
3 Department of Neurology, Tampere University Hospital, Tampere, Finland
4 Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
5 Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK and Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
6 Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
7 Department of Geriatrics, University of Turku, Turku, Finland
8 Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
9 Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
10 Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
11 Department of Clinical Genetics, Helsinki University Central Hospital and Department of Medical Genetics, University of Helsinki, Helsinki
12 Department of Neurology and Clinical Neurophysiology, Lapland Central Hospital, Rovaniemi, Finland

Corresponding author:

Petra Pasanen
Institute of Biomedicine, Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
Tel.: +358 2 333 7456
Fax: +358 2 230 1280
e-mail: petra.pasanen@utu.fi
Abstract

Objectives

Primary familial brain calcification (PFBC) is a rare neurological disease often inherited as a dominant trait. Mutations in four genes (SLC20A2, PDGFB, PDGFRB, and XPR1) have been reported in PFBC patients. Of these, point mutations or small deletions in SLC20A2 are most common. Thus far, only one large deletion covering entire SLC20A2 and several smaller, exonic deletions of SLC20A2 have been reported. The aim of this study was to identify the causative gene defect in a Finnish PFBC family with three affected patients.

Materials and methods

A Finnish family with three PFBC patients and five unaffected subjects was studied. Sanger sequencing was used to exclude mutations in the coding and splice site regions of SLC20A2, PDGFRB and PDGFB. Whole-exome (WES) and whole-genome sequencing (WGS) were performed to identify the causative mutation. A SNP array was used in segregation analysis.

Results

Copy number analysis of the WGS data revealed a heterozygous deletion of ~578 kb on chromosome 8. The deletion removes the 5’ UTR region, the noncoding exon 1 and the putative promoter region of SLC20A2 as well as the coding regions of six other genes.

Conclusions

Our results support haploinsufficiency of SLC20A2 as a pathogenetic mechanism in PFBC. Analysis of copy number variations (CNVs) is emerging as a crucial step in the molecular genetic diagnostics of PFBC, and it should not be limited to coding regions, as causative variants may reside in the noncoding parts of known disease-associated genes.
Key words

deletion; primary familial brain calcification; promoter; *SLC20A2*

WORD COUNT OF THE ABSTRACT: 243
Primary familial brain calcification linked to deletion of 5’ noncoding region of
SLC20A2

Introduction

Primary familial brain calcification (PFBC, also previously known as idiopathic basal ganglia calcification, IBGC, or Fahr’s disease) is a rare neurological disorder with a variable phenotype. The disease onset is usually between 30 and 50 years and the typical symptoms include both movement disorders (parkinsonism, dystonia, ataxia, chorea) and neuropsychiatric disturbances such as psychosis, dementia and frontal or subcortical cognitive dysfunction. The typical findings, bilateral and symmetric hydroxyapatite deposits, are seen in basal ganglia, dentate nuclei and thalamus in patients with normal serum levels of calcium, phosphate, alkaline phosphatase, and parathyroid hormone. However, variation in the clinical manifestations is common even within families, and asymptomatic individuals with calcifications have been reported (1-3).

PFBC is often inherited as a dominant trait. The first causative gene, *SLC20A2*, was reported in 2012 by Wang et al. (2) Since the original report, many other studies have confirmed that mutations in this gene account for up to 40 to 50 % of PFBC (4, 5). The other causative genes are *PDGFRB* on 5q32 (6), *PDGFB* on 22q13.1 (7) and *XPR1* on 1q25.1 (8).

SLC20A2 codes for an inorganic phosphate (Pi) transporter, PiT-2 that also functions as a retroviral receptor (9-11). Mutations in *SLC20A2* result in impaired phosphate transport and accumulation of phosphate in the extracellular matrix in the affected brain regions (2, 12). Functional studies suggest that the deleterious consequences of *SLC20A2* mutations are due to haploinsufficiency rather than dominant-negative effects (2). Studies on *Slc20a2* knock-out mice have shown that PiT-2 also has an important role in maintaining the normal low level of Pi in the cerebrospinal fluid (CSF) (13). Jensen et al. hypothesized that increased CSF Pi concentration due to defective PiT-2 could lead to pericyte transformation to a mineralizing
cell type and thus calcification of blood vessels (13). Another disease mechanism is proposed by the functions of PDGFRB and PDGFB which code for the platelet-derived growth factor receptor β and its ligand, platelet-derived growth factor β, respectively. Mutations in both Pdgfb and Pdgfrb have been linked to pericyte deciency and impaired blood-brain barrier (BBB) integrity in mouse models (14, 15), which might lead to accumulation of calcium deposits in the brain (6, 7). The protein coded by XPR1 is a retroviral receptor that has been shown to mediate phosphate export (16). Mutations in XPR1 inhibit phosphate export and are likely to result in increased concentrations of intracellular phosphate (8). This might lead to decreased PiT-2-driven Pi uptake from the CSF, resulting in elevated CSF Pi concentration, as hypothesized by Jensen et al. (13).

Pathogenic SLC20A2 mutations are typically missense (4, 5, 17-24) and nonsense mutations (4, 17, 25, 26), small deletions (2, 4, 5, 17, 19-21, 27-30) or splice site mutations (4, 5, 19). Two studies have broadened the mutational spectrum of SLC20A2: In 2014, a large deletion encompassing the entire coding region of SLC20A2 was reported (25). In a recent study by David and coworkers, smaller deletions covering exon 2, exon 4 and exons 4 and 5 of SLC20A2 were found in four patients in a cohort of 24 PFBC patients (31). Thus, analysis of copy number variations (CNVs) is emerging as a crucial step in molecular genetic diagnostics of PFBC.

Here we report a novel heterozygous deletion covering the 5’ UTR and most likely the promoter region of SLC20A2 and extending up to FNTA. The mutation segregates with PFBC in a Finnish family with three affected subjects. To our knowledge, this is the first report of a Finnish family with PFBC and the first SLC20A2 mutation in the noncoding region.
Materials and methods

Subjects

We studied a PFBC family with three affected patients, the proband (II:2), his sister (II:5) and daughter (III:1). The inheritance pattern was consistent with autosomal dominant disease. The pedigree of the family is shown in Figure 1b. All patients were clinically examined at the Lapland central hospital. Two affected patients and five unaffected persons from the family were recruited for the study. No DNA from the deceased patient (II:2) was available for genetic testing. The study was approved by the Ethics Committee of Oulu University Hospital. Informed consent was obtained from all individual participants included in the study.

The proband, II:2, presented with symmetrical blepharospasm and bilateral facial spasm at the age of 66 years. Botulinumtoxin A injection treatment had only minor effect on the spasms. No additional findings were noted in clinical neurological examination. Brain magnetic resonance imaging (MRI) and computed tomography (CT) studies showed bilateral calcifications in basal ganglia and cerebellum (Figure 1a). Lowered perfusion in these brain areas was also noted in single positron emission tomography (SPECT) examination. The patient died of prostate cancer at the age of 69 years.

Patient II:5 had motor deficits, balance problems and memory disturbance. Clinical neurological examination was performed at 70 years. The patient had slight apraxia, mild balance impairment and lower limb ataxia but no dystonic movements. Mini Mental State Examination (MMSE) score was 19/30 consistent with mild dementia. Brain CT showed
calcifications in corona radiata and in cerebellum, anterior to lateral ventricles and vascular
degeneration. No hippocampal atrophy was seen.

The third affected patient, III:1, was diagnosed with torticollis spasmodica at the age of 29
years. She responded well to botulinumtoxin A injection treatment. Brain MRI showed
bilateral calcifications in the basal ganglia, thalamus and nucleus dentatus.

Serum levels of calcium, phosphate, alkaline phosphatase and parathyroid hormone were
normal in all three patients.

Genetic methods

DNA was extracted from peripheral EDTA blood with the Illustra Nucleon BACC3 Genomic
DNA Extraction Kit (GE Healthcare, Little Chalfont, Buckinghamshire, UK). The coding
regions and flanking intronic splice sites of SLC20A2 (NM_006749.4), PDGFRB
(NM_002609.3) and PDGFB (NM_002608.3) were amplified by PCR and sequenced in both
directions using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,
CA, USA).

Whole exome sequencing (WES) of the two affected patients and one unaffected subject was
performed by the Institute for Molecular Medicine Finland (FIMM, University of Helsinki,
Finland). Exome enrichment was done using the SeqCap EZ Human Exome Library v3.0
(Roche Nimblegen, Basel, Switzerland) and the resulting libraries were sequenced on the
Illumina HiSEQ platform (Illumina, San Diego, CA, USA) to a mean target coverage of
58.8x (II:5), 62.4x (III:1), and 31.3x (III:2). Sequences were aligned to GRCh37/hg19,
variants called using the variant calling pipeline (vcp) developed at FIMM and the resulting
variants were annotated with ANNOVAR(32).

Whole genome sequencing (WGS) of one affected and one unaffected subject was done by
NGI Sweden (The National Genomics Infrastructure, Science for Life Laboratory, Solna,
Sweden). Libraries were prepared using the TruSeq DNA PCR-free kit and sequenced on a
HiSeq X Platform (Illumina, San Diego, CA, USA) to a mean coverage of 41.78x (III:1) and
41.75x (III:2). Sequences were aligned to GRCh37/hg19. Variant calling pipeline followed
the GATK best practice guidelines. Small indels and SNVs were annotated with SnpEff(33)
and ANNOVAR. Structural variants and larger copy number variants were identified by
cn.mops(34) and Manta (https://github.com/Illumina/manta).

Additionally, five samples (II:3, II:4, II:5, II:6, II:7) were genotyped using genome-wide SNP
array, the HumanOmniExpress Bead chip (Illumina, San Diego, USA).

Results

Sanger sequencing ruled out coding and splice site mutations in SLC20A2, PDGFRB and
PDGFB. Exome sequencing did not result in any potentially causative variants shared by the
two affected patients. Copy number analysis of the WGS data (subject III:1) revealed a
heterozygous deletion of 578,164 bp on chromosome 8 (genomic coordinates chr8:
42,338,721 - 42,916,885) (Supporting table 1, Supporting figure 1). The deletion was also
visible in the SNP array data (subject II:5) with breakpoints at rs11780448 (chr 8:
42,325,328) and rs13248091 (chr8: 42,929,226 bp) (Supporting figure 2). The unaffected
subject III:2 did not have the deletion based on WGS (Supporting table 1, Supporting figure
1).
The deletion removes the noncoding exon 1, 5' UTR region and the putative promoter region of SLC20A2 as well as the whole coding regions of six other genes (SMIM19, CHRNA6, THAP1, RNF170, and HOOK3). The other deletion breakpoint is located between second and third exon of FNTA.

In order to test whether the deletion segregates with PFBC in this family, we genotyped additional four unaffected family members on a SNP array. The combination of WGS and SNP array data showed complete segregation of the deletion with the disease: the deletion was found in the two affected family members from whom DNA was available for testing, and was absent in the five unaffected relatives (Figure 1b, Supporting figure 2).

Discussion

Large deletions in causative genes for PFBC have been described in a few families. The first causative large copy number variant (CNV) for PFBC was reported by Baker et al. in a Canadian family (25). A partial deletion of PDGFB was subsequently described by Nicolas et al. (35). Recently, smaller exonic deletions of SLC20A2 were reported in four patients (31).

We identified a ~578 kb deletion in a Finnish family with PFBC using both WGS and a SNP array. The exact breakpoints of the deletion could be identified from the whole genome sequencing data.

The deletion abolishes the first noncoding exon, the 5’ UTR region and most likely the promoter region of SLC20A2 leaving the entire coding region intact. The coding regions of six other genes (SMIM19, CHRNA6, THAP1, RNF170, and HOOK3) are deleted. At the centromeric breakpoint, the putative promoter region and first two exons of FNTA are deleted but the remaining exons are present in two copies (Figure 1c).
The deletion reported by Baker et al. covers the entire coding region of SLC20A2 and most likely results in reduced expression (25). The exonic deletions reported by David et al. presumably lead to loss of function by removing the translation initiation codon (exon 2 deletion), causing a frameshift (exon 4 deletion) or removing two transmembrane domains (deletion of exons 4 and 5) (31). The deletion reported here starts between the first two exons of SLC20A2 removing the noncoding exon 1, 5’ UTR and the putative promoter region upstream of the transcription start site. Generally no transcript is produced if the promoter region is missing. We propose that the deletion leads to reduced expression of SLC20A2 and is thus causative of PFBC in the Finnish family.

Baker et al. reported dystonia in 8 of 11 affected individuals of the family with SLC20A2 deletion (25). They hypothesized that deletion of THAP1 might contribute to this as mutations in THAP1 have been linked to idiopathic torsion dystonia of mixed type (DYT6, OMIM 602629). Interestingly, the youngest patient described here also had cervical dystonia (torticollis spasmodica). The possible phenotypic consequences of the other deleted genes are currently unclear. Genes affected by the deletion code for small integral membrane protein (SMIM19), beta and alpha subunits of the neuronal cholinergic nicotinic receptor (CHRNB3 and CHRNA1), endoplasmic reticulum membrane ubiquitin ligase (RNF170), cytosolic coiled-coil microtubule binding protein (HOOK3), and farnesyltransferase (FNTA). Apart from RNF170, most of them have not been linked to neurological diseases. A missense mutation (p.Arg199Cys) in RNF170 has been shown to segregate with autosomal dominant sensory ataxia in two families (36) but, as also noted by Baker et al.(25), the suggested disease-mechanism was gain-of-function. Thus, the possible effects of deletion of one RNF170 allele are still unknown.

Conclusions
Our results give further support for haploinsufficiency of SLC20A2 as a pathogenetic route in PFBC and suggest that deletion of regulatory regions of SLC20A2 is sufficient to cause the disease. The partial deletion of SLC20A2 described here demonstrates that copy number analysis is essential when screening for mutations in known causative genes in primary familial brain calcification. Ideally, CNV analysis should not be limited to coding regions as causative copy number variations may reside in regulatory regions of known disease-associated genes.

Acknowledgements

The authors thank all the patients and other members of the family for participating in this study.

The authors acknowledge support from Science for Life Laboratory, the Knut and Alice Wallenberg Foundation, the National Genomics Infrastructure funded by the Swedish Research Council, and Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing.

Conflict of interest and sources of funding

All authors declare no conflicts of interest.

This work was supported by Päivikki and Sakari Sohlberg Foundation (PP, LM), Pirkko and Veikko Mäkelä Foundation (PP), the Academy of Finland (LM) and Helsinki University Hospital (MV, LM, PJT and MP). RG and JB are supported by fellowships from the Alzheimer’s Society.

WORD COUNT OF THE ARTICLE: 2066 (including the title, 13 words)
References

Titles and legends to figures

Figure 1. (a) Brain CT of patient II:2 showing calcification (marked with arrows) in basal ganglia and cerebellum. (b) Pedigree of the family with screenshots of SNP array data and the deletion breakpoint in SLC20A2 in WGS data visualized using the Integrative Genomics Viewer (IGV) (37, 38). Circles mark females, squares males. Affected persons are marked by a filled symbol and deceased persons with a slashed symbol. DNA samples were available from persons marked with an asterisk. (c) Schematic drawing of the deletion area on 8p11.2. The deletion reported by Baker et al. (25) is shown for comparison. Orientations of the genes are marked with arrows.
Supplementary table 1. WGS analysis results showing the presence of heterozygous deletion affecting SLC20A2 in PFBC patient's sample (grey-shaded columns).

1a. cn.mops analysis results from the deletion area (CN2 indicates two copies and CN1 one copy of a genomic segment).

<table>
<thead>
<tr>
<th>CHROM</th>
<th>START</th>
<th>END</th>
<th>WIDTH</th>
<th>Reference_sample_1</th>
<th>Reference_sample_2</th>
<th>PFBC_sample</th>
<th>PFBC_control</th>
<th>GENE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>42339001</td>
<td>42429000</td>
<td>90000</td>
<td>CN2</td>
<td>CN2</td>
<td>CN1</td>
<td>CN2</td>
<td>SLC20A2;SMIM19</td>
</tr>
<tr>
<td>8</td>
<td>42431001</td>
<td>42543000</td>
<td>112000</td>
<td>CN2</td>
<td>CN2</td>
<td>CN1</td>
<td>CN2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>42546001</td>
<td>42799000</td>
<td>253000</td>
<td>CN2</td>
<td>CN2</td>
<td>CN1</td>
<td>CN2</td>
<td>CHRN83;CHRNA6;THAP1;RNF170;MIR4469;HOOK3</td>
</tr>
<tr>
<td>8</td>
<td>42800001</td>
<td>42813000</td>
<td>13000</td>
<td>CN2</td>
<td>CN2</td>
<td>CN1</td>
<td>CN2</td>
<td>HOOK3</td>
</tr>
<tr>
<td>8</td>
<td>42816001</td>
<td>42843000</td>
<td>27000</td>
<td>CN2</td>
<td>CN2</td>
<td>CN1</td>
<td>CN2</td>
<td>HOOK3</td>
</tr>
<tr>
<td>8</td>
<td>42844001</td>
<td>42877000</td>
<td>33000</td>
<td>CN2</td>
<td>CN2</td>
<td>CN1</td>
<td>CN2</td>
<td>HOOK3</td>
</tr>
<tr>
<td>8</td>
<td>42878001</td>
<td>42917000</td>
<td>39000</td>
<td>CN2</td>
<td>CN2</td>
<td>CN1</td>
<td>CN2</td>
<td>HOOK3;FNTA</td>
</tr>
</tbody>
</table>

1b. Manta analysis results from the deletion area (0/1 indicates heterozygous deletion, 0/0 indicates wild type).

<table>
<thead>
<tr>
<th>CHROM</th>
<th>POS</th>
<th>ID</th>
<th>REF</th>
<th>ALT</th>
<th>FILTER</th>
<th>INFO</th>
<th>PFBC_sample</th>
<th>PFBC_control</th>
<th>Reference_sample1</th>
<th>Reference_sample2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>42338721</td>
<td>MantaDEL:159946</td>
<td>A</td>
<td></td>
<td>PASS</td>
<td>END=42916885</td>
<td>0/1:PASS</td>
<td>0/0:PASS</td>
<td>0/0:PASS</td>
<td>0/0:PASS</td>
</tr>
</tbody>
</table>