UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Artificial Neural Networks as Non-Linear Extensions of Statistical Methods in Astronomy

Lahav, O; (1994) Artificial Neural Networks as Non-Linear Extensions of Statistical Methods in Astronomy. 10.1016/0083-6656(94)90034-5.

Full text not available from this repository.

Abstract

We attempt to de-mistify Artificial Neural Networks (ANNs) by considering special cases which are related to other statistical methods common in Astronomy and other fields. In particular we show how ANNs generalise Bayesian methods, multi-parameter fitting, Principal Component Analysis (PCA), Wiener filtering and regularisation methods. Examples of morphological classification of galaxies illustrate how non-linear ANNs improve on linear techniques.

Type:Article
Title:Artificial Neural Networks as Non-Linear Extensions of Statistical Methods in Astronomy
DOI:10.1016/0083-6656(94)90034-5
Publisher version:http://dx.doi.org/10.1016/0083-6656(94)90034-5
Additional information:9 pages, uu-encoded compressed postscript file. Also available by anonymous ftp to cast0.ast.cam.ac.uk (131.111.68.35) at ftp://cast0.ast.cam.ac.uk/pub/lahav/vistas/vistas4.ps.Z with figure at ftp://cast0.ast.cam.ac.uk/pub/lahav/vistas/fig1.ps.Z To appear in Vistas in Astronomy, special issue on Artificial Neural Networks in Astronomy
UCL classification:UCL > School of BEAMS > Faculty of Maths and Physical Sciences > Physics and Astronomy

Archive Staff Only: edit this record