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Abstract—The operations of many modern cyber-physical
systems, such as smart grids, are based on increasingly interdepen-
dent networks. The impact of cascading failures on such networks
has recently received significant attention due to the correspond-
ing effect of these failures on the society. In this paper, we conduct
an empirical study on the robustness of interdependent systems
formed by the coupling of power grids and communication
networks by putting real distribution power grids to the test.
We focus on the assessment of the robustness of a large set
of medium-voltage (MV) distribution grids, currently operating
live in the Netherlands, against cascading failures initiated by
different types of faults / attacks. We consider both unintentional
random failures and malicious targeted attacks which gradually
degrade the capability of the entire system and we evaluate their
respective consequences. Our study shows that current MV grids
are highly vulnerable to such cascades of failures. Furthermore,
we discover that a small-world communication network structure
lends itself to the robustness of the interdependent system. Also
interestingly enough, we discover that the formation of hub
hierarchies, which is known to enhance independent network
robustness, actually has detrimental effects against cascading
failures. Based on real MV grid topologies, our study yields
realistic insights which can be employed as a set of practical
guidelines for distribution system operators (DSOs) to design
effective grid protection schemes.

I. INTRODUCTION

Our modern society is increasingly reliant on networks for
various aspects of life, ranging from basic needs (e.g., energy
supplies) to those contributing to better standard of living (e.g.,
transportation, information systems). The integration of these
increasingly intelligent and critical infrastructure networks, in
turn, has also made the various originally separate networks
dependent on each other (e.g., a cyber-network overlaying
a physical-network). While the strong coupling of networks
enhances their functionalities, it also significantly increases
the vulnerability of the system as a whole [1], [2]. This is
because failures in one network may cascade to the other
and vice versa, resulting in an iterative failure process. Hence,
robustness of such interdependent network systems (sometimes
known as network of networks (NoN)) has recently received
much attention (see for example [3]).

In this paper, we focus our study on the resilience of
interdependent networks consisting of an electric power grid
and a communication network against such cascading failures
since the energy and telecommunication sectors are found to

be the main sectors initiating such cascade of failures [4],
[5]. The symbiotic relationship between the two networks is a
result of the grid requiring the service from the communication
network for monitoring, control and management operations,
while the communication network depends on the grid for
electricity supply. A real-world example demonstrating such
interdependency and the corresponding vulnerability is the
national blackout in Italy in September 2003 [1]. This inter-
dependency is expected to increase with the advent of smart
grids introducing bi-directional communication patterns among
multiple entities.

Our work focuses on the medium-voltage (MV) distribution
grid domain, which is recently undergoing transformative
changes due to the advent of smart grid applications, but
have yet to receive the same level of attention as its high-
voltage (HV) counterpart (e.g., as highlighted in [6], [7]).
The introduction of multiple dynamic active components,
e.g., distributed (renewable) energy resources (DERs) such as
solar/wind farms and electric vehicles (EVs), at the distri-
bution level poses new significant challenges to the system
stability especially on protection and reliability of the grid.
The traditional assumptions of distribution networks being
mostly passive and static no longer apply as they evolve
towards the so-called Active Distribution Networks (ADNs)1

where increased fine-grained observability of the grid power
conditions, faster response and enhanced protection are needed
to manage the increased volatility of the system in a timely
fashion. The operation and, more importantly, the protection
of distribution grids are thus increasingly reliant on a robust
and efficient communication infrastructure that must provide
seamless and timely communication service, such that full
observability of power conditions is maintained at all times
[8]. In fact, to cater for the challenges of next generation
smart grids, there are already work in the literature to apply
the latest information-centric networking paradigm for smart
grid applications (e.g., [9], [10], [11]).

However, the communication network landscape in the
MV domain is far from clear [12]. The distribution grid (i.e.,
the MV domain) covers smaller geographical areas compared
to HV grids, as well as areas of different nature i.e., rural

1ADNs are distribution networks that have systems in place to control a
combination of DERs (e.g., generators, loads and storage). DSOs have the
possibility of managing electricity flows via a flexible network topology. DERs
take some responsibility for system support, depending on a suitable regulatory
environment and connection agreement.



but also denser (sub-)urban areas. As a result, the adoption
of technologies employed in the HV domain to our case is
not straightforward, mainly due to the associated deployment
costs [12]. Furthermore, distribution system operators (DSOs)
have multiple options for the communication network, such
as engaging the service of public Internet service provider(s)
(ISPs), deploying their own private communication infrastruc-
ture (e.g., investing in fibre optic and/or exploiting existing
powerline communication (PLC) technologies, such as that
proposed in [12]) or adopting a hybrid solution, using both
the private and public options above. In view of this still
evolving communication environment, we employ widely used
network topology models with different characteristics, as
the communication network component of the interdependent
system, to gain insights on the robustness of the overall NoN.

Our work aims to close the gap in the study on the vulner-
ability of interdependent systems against cascading failures,
which hitherto mainly focused on purely theoretical analysis
(cf. Section II for model descriptions). For instance, focusing
on a special case where the system consists of two totally
identical networks dependent on each other, the authors in
[13] studied the system using algebraic connectivity of an
interdependent system as the robustness indicator. In [1], the
robustness of the interdependent network system is studied
assuming totally uncorrelated networks using percolation the-
ory. Since it is known that such uncorrelated networks do not
exist in the real world and almost always the interdependent
networks do not share common topologies, we put real distri-
bution grids to the test i.e., we use a large set of real MV grid
networks currently operating live in the Netherlands by a major
Dutch DSO, engaging thus in an extensive empirical study
(cf. Section III) to quantitatively gain insights into the system
behaviour. Furthermore, we focus our study on the MV domain
which is increasingly becoming more dynamic and thus, more
prone to such cascading failures. While the communication
network landscape in the MV domain is still shaping, our
findings provide practical guidelines on the desirable topolog-
ical characteristics that can enhance system robustness when
designing / deploying the communication infrastructure over
the distribution grid. Moreover, our study broadens the set
of failure types encountered in the considered NoN. Namely,
Hines et al. reported that the majority of cascading failures
in power grids are results of natural disasters, but also high-
lighted the recent increase of cyber-attacks initiating blackouts
via hacking of the communication network [14]. Our study
covers a spectrum of different failure types, ranging from
unintentional faults to malicious attacks, each characterized by
specific node removal pattern (cf. Sections III-C1 and III-C2).
Additionally, instead of considering one single failure that
initiates a cascade of failures, we consider a more general
context where multiple cascading failures occur. We discuss
our observations and insights, providing a better understanding
of the system behavior under failures and thus, facilitating
the design of effective protection schemes against different
types of cascading failures (cf. Section IV). We summarize
and conclude our findings in Section V.

II. CASCADING FAILURES IN INTERDEPENDENT
SYSTEMS

We consider an interdependent system with two undirected
graphs, G

sg = (V sg

, E

sg) and G

com = (V com

, E

com),

representing the (smart) power grid and communication net-
work respectively. Let N

net be the network size where
net 2 {sg, com}. Then, V net = v

net
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net

and E
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in the corresponding network. Further, let A
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N

net ⇥ N
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if there exists a link between nodes i and j and 0 otherwise.
The interdependency of the two graphs is represented by an
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and 0 otherwise.

A. Interdependent System Model

For this work, without loss of generality, we establish the
baseline interdependent system as follows:

• Both networks are equal in size, Nsg = N

com = N ,
but they do not necessarily possess the same topolo-
gies (as opposed to [13] where A

sg = A

com is
assumed).

• There is 1-to-1 dependency between nodes in G

sg and
G

com (i.e., there are N interdependency links in the
system). This can correspond to cases where each S-
SS is equipped with a communication network node
for the support of monitoring and control applications,
e.g., [8].

• The dependency is bi-directional (i.e., mutually depen-
dent). A node failure in G

sg will result in the failure of
the corresponding dependent node in G

com and vice
versa.

• Drawing on the observations of real-world interdepen-
dent systems reported in [15], we follow the positive

degree correlation method and create dependency be-
tween nodes with similar level of degrees (i.e., nodes
with high degree (nodes having many immediate
neighbors) in one network are coupled with nodes
having high degrees in the other network and vice
versa [16])2.

Real-world interdependent systems may not always have
such “balanced” interdependencies. Nevertheless, it is straight-
forward to accommodate unbalanced cases such as n-to-m
node inter-network connections and non-symmetric dependen-
cies (e.g., in [17]) in our methodology (cf. Section III). In this
case, we note system robustness may be enhanced with higher
number of interdependency links (i.e., a node may only fail
when all of its counterpart nodes in the other network fails).
However, as studied in [18], the cost to achieve the added
robustness must be carefully considered.

B. Cascading Failure Model

In this work, we follow the cascading failure model de-
scribed in [1] which has since been widely used in the literature
as the basis of several studies (e.g., [2], [19], [20], [21]). In
this model, a cascading failure begins with the failure (i.e.,

2We have also experimented with random and negative degree correlations
for creating interdependency between the two networks but insignificant
divergences are observed.

3We leave out specific practical details of power grid in the example such as
the switching of P-SS for power source or possibility of islanding operations.
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Fig. 1: (Color Online) An illustration of a cascading failure suffered by an interdependent system of size N

sg = N

com = N = 4
triggered by a failure at node SS-43.

removal) of a fraction, 1 � p of nodes from network A. All
the links connecting to these failed nodes in network A will
thus be down. Further, the nodes in network B depending on
these nodes will also fail. Any link connected to these failed
nodes in network B will also be removed. This process may
fragment both networks and form different network compo-
nents since the two networks are differently connected. The
nodes belonging to the largest mutually connected component
(i.e., the giant component) retain their functionality while the
smaller components fail.

Figure 1 illustrates a simple example of a cascading failure
triggered by the failure of one node (i.e., N(1 � p) = 1)
in an interdependent system consisting of N = 4 nodes in
each network. The initial failure occurs at node SS-4 in G

sg

causing its removal along with the link to node SS-3 and the
interdependent link to node R-4 in G

com. The loss of the
interdependent link causes the failure of node R-4 and of all the
links connected to it. This causes G

com to fragment whereby
only the giant component retains its functionality i.e., nodes R-
2, R-3 and the link connecting them. The fragmented smaller
clusters fail. This cascades back to G

sg causing the failure of
node SS-1 and of all links connected to it.

III. METHODOLOGY

A. Network Models

In practice, the complete knowledge of how the separate
networks are dependent on each other may not always be
possible since multiple stakeholders are often involved. In
our case, when DSOs rely on communication infrastructure
providers, the exact communication network information (e.g.,
the network topology) is confidential4. In our study, we create
the interdependent systems using real data for Gsg . However,
as the communication network environment in the MV do-
main still evolves, we resort to widely accepted theoretical
graph models for G

com. Within this context, our objective is
to investigate the key structural properties that improve the
resilience of the considered interdependent networks, deriving

4This non-disclosure is mutual as DSOs also do not offer information
regarding their own power grid.

practical guidelines for the design of communication networks
for the MV domain.

Smart grid network, Gsg – we use real data extracted from
16 MV distribution grids, covering an area of approximately
350km2 in central eastern Netherlands. They include a total
of 16 primary sub-stations (P-SSes) and 1,857 secondary sub-
stations (S-SSes). The grid topologies resemble that of tree
structures rooted at P-SS(es), which perform(s) the high-to-
medium voltage transformation. Each tree branch emanating
from the P-SS corresponds to a distinct feeder. Table I shows
the basic topological characteristics of these grids5 and Fig. 2
shows the aggregated degree distribution of all the sub-stations
(SSes) across the entire set of MV grids. Almost 90% of SSes
have low number of neighbors (i.e., degree of one or two)
while approximately 20% of SSes are leaf nodes (i.e., nodes
connected to only one other node).

Communication network, Gcom – we use three main the-
oretical graph models widely used in the literature to study
network robustness (e.g., [22]) to gain insights into the graph
properties that would deter/promote cascading failures.

• Erdős-Rényi (ER) model – Given N , a link ran-
domly connects a pair of nodes with probability p

r

independent of all other links. In our experiments,
we use p

r

= lnN

N

which is the sharp threshold of
connectedness to ensure connected graphs while at
the same time sufficiently small to avoid a highly
meshed topology [23]. ER graphs are characterized
by a short average path length and low clustering
coefficient, since a consequence of pure random edge
allocation is that the degree distribution converges to
a Poisson distribution. The simplicity of the model
has lent itself to many theoretical studies on network
resilience (e.g., [1]). In our case, the ER model can
be considered as an “unplanned” network layer that is
resulted from gradual ad hoc deployment of network
nodes to incrementally support the new requirements
from the grid over time.

• Small world (SW) model – We construct SW graphs
following the Watts and Strogatz model [24], with

5We “anonymize” the grids by removing location/power related information.



rewiring probability, � = 0.1 and mean degree,
k̄ = 0.05 ⇥ N . A low � value is used to avoid
creating SW graphs that closely resemble ER graphs
since when � = 1, the resultant graph’s average
path length converges to that of a random graph
(i.e., ln(N)/ln(k̄)). In addition, when � << 1, SW
graphs also form local clusters (i.e., having high
clustering coefficient) as opposed to graphs such as
lattices which exhibit the opposite characteristic (“big
world” graphs). Moreover, since our work focuses
on MV grids which usually do not span over large
spatial proximity, there is high probability that the
corresponding G

com will exhibit SW properties.

• Scale-free (SF) model – In our study, SF graphs are
constructed based on the Barabási-Albert (BA) model
[25], using a 3-node seed graph. In this model, each
new node is connected to an existing node with a
probability proportional to the existing nodes’ degree
(i.e., the more neighbors a node has, the more likely
it attracts a new node to attach to it). Owing to this
preferential attachment process, SF graphs result in
power law degree distribution. This property has been
observed in many real-world networks (e.g., [26])
which results in the forming of hubs within the graph.
Since there is no prevailing communication network
design for the support of smart grid applications in
the MV domain, we also investigate the effect of the
interdependent system when coupled with SF graph
topologies.
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Fig. 2: Aggregated degree distribution of sub-stations in the
dataset showing majority of sub-stations have low connectivity.

B. Metrics

To evaluate the impact of cascading failures, we follow the
literature to use the size of the giant component which mea-
sures the level of connectivity of a network as an evaluation
metric (e.g., [1], [2], [16]). In practice, the functional com-
ponent also depends on the actual power source (i.e., P-SS),
the re-configurability of the grid (e.g., locations of breakers)

6Link density = M

net

N

net(Nnet�1)/2
.

TABLE I: Properties of real MV grid topologies of a large
European DNO.6

Grid Nsg Msg Mean Clustering Link Mean
degree coefficient density path

length
Area 1 126 126 2.000 0.0039 0.0160 8.3194
Area 2 83 82 1.9759 0.0000 0.0241 6.5601
Area 3 191 192 2.0105 0.0035 0.0106 9.6177
Area 4 23 22 1.9130 0.0000 0.0870 5.5652
Area 5 178 177 1.9888 0.0000 0.0112 10.0176
Area 6 29 28 1.9310 0.0000 0.0690 8.0296
Area 7 51 51 2.0000 0.0000 0.0400 7.1529
Area 8 102 101 1.9804 0.0000 0.0196 9.3345
Area 9 99 98 1.9798 0.0000 0.0202 8.4684

Area 10 209 210 2.0096 0.0000 0.0097 11.6043
Area 11 47 47 2.0000 0.0156 0.0435 8.1082
Area 12 294 298 2.0272 0.0024 0.0069 11.8471
Area 13 85 84 1.9765 0.0000 0.0235 8.1815
Area 14 42 41 1.9524 0.0000 0.0476 4.7433
Area 15 146 147 2.0137 0.0000 0.0139 9.7879
Area 16 168 169 2.0119 0.0000 0.0120 10.5974

as well as the ability to perform islanding operations. In this
sense, the nodes in the system are not homogeneous and have
different resiliency in reality. For instance, nodes located near
breakers may be more easily switched to another power source
and thus, in certain cases, becoming less vulnerable. Due to
the fact that these specific cases are dependent on the distinct
operations of the network, we take a topological approach
to draw more general insights that should be applicable to
different interdependent systems.

In addition, to understand how the communication func-
tionality degrades, we measure the communication efficiency
of the G

com, ⌘ following [27]:

⌘ =

P
1i<jN

1/�
i,j�

N

2

� (1)

where �

i,j

is the shortest path length (in hopcount) between
node i and j. It measures how fast information spreads in a
network. A fully mesh network has ⌘ = 1 since all nodes are
reachable in one hop (i.e., all node pairs have 1-hop distance).
This metric is especially relevant to time-critical smart grid
applications such as synchrophasor-based monitoring where
the measurements taken at geographically distributed locations
are synchronized and must reach the phasor data concentrators
(PDCs) within very stringent time window [8], [12].

C. Failure Models

Our investigation of the considered NoN’s resilience prop-
erties is based on a sequential process where we remove one
node after another, with each removal triggering a cascading
failure each time. This results in a series of cascading failures.
Throughout this process, we track the gradual degradation
of the system functionalities in terms of both the above-
mentioned metrics. The order in which nodes are removed
from the system depends on the failure type. In the following,
we describe the different types of failures considered in this
work.



1) Unintentional Random Failures: Unintentional failures
include those caused by equipment failures, natural disasters
(e.g., earthquake, tsunami, etc.) or simply accidental human
errors (e.g., misconfigurations). For such failures, the sites
where they take place are usually non-determinable or fore-
casted. Such failures are modeled via random node removals.
We use random point (RP) node removals for failures caused
by equipment failures or human errors and random area (RA)
node removals for failures caused by natural disasters that
usually spread in a specific geographical area. Namely,

• Random Point (RP) failure – Given 1 � p, N(1 � p)
nodes are randomly selected for removal.

• Random Area (RA) failure – Given 1 � p, start
by removing a random node in the graph and then
proceed to remove a random neighbor of the removed
node that has survived the resulting cascading failure
due to the removal of the initial node. Repeat the
process of removing random neighbors of removed
nodes until N(1� p) nodes have been removed.

2) Malicious Targeted Attacks: Malicious attacks aim to
maximize damage to the interdependent system by targetting
parts of the system believed to be vulnerable. Such attacks
may come in physical form, via equipment tampering or
electronically via intentional misconfigurations or spreading of
computer viruses. To conduct such an attack, the perpetrator
must possess some prior intelligence regarding the targeted
system such as knowledge on the topologies and their interde-
pendencies. Logically, with the intention to cause maximum
damage, the attacker will attack nodes deemed to be most
important to the system operation. We assume that the attacker
ranks the nodes based on their importance in descending order
and attacks the system in that order.

To compute this ranking, we consider four centrality mea-
sures, widely used when studying network robustness [28],
[29]:

• Node degree (DC) – relates node importance with the
number of immediate neighbors i.e., local connectiv-
ity.

• Betweenness (BC) – measures the involvement of a
node in the set of shortest paths of all node pairs in
the network

• Closeness (CC) – measures the distance of a node to
all other nodes in a connected network

• Eigenvector (EC) – relates node importance to the
importance of its neighbors

Each centrality measure above deduce importance of nodes
based on different factor: DC – connectivity, BC – path, CC –
distance and EC – spectral structure of the topology. In [29], an
in-depth comparative assessment of these centrality measures
in the context of communication networks is conducted.

We extend the centrality concepts to account for the added
importance of each node with regards to its counterpart in
the other network. Specifically, for each node, v, we compute
the mean value of the normalized node centrality within its
own network and those node(s) in the other network that

TABLE II: Centrality indices used for targeted attacks.

Centrality Index Definition
Degree (DC) cDC(v) = deg(v)

N

↵�1

Betweenness cBC(v) = 2
(N↵�1)(N↵�2)

P
i 6=v 6=j2V

↵

�

i,j

(v)

�

i,j

(BC)
Closeness (CC) cCC(v) = N

↵�1P
j2V

↵

,i 6=j

�

i,j

Eigenvector (EC) cEC(v) = 1
�

P
j2V

↵

A↵

v,j

⇥ cEC(j)
N : graph size, ↵,�: indicates which network (either sg or com),
deg(v): number of neighbors of node v within its own network,

�: eigenvalue, �
i,j

: shortest path length from i to j,
�
i,j

(v): shortest path length via v

have a connection to it. Table II shows the original centrality
definitions and Eq. 2 gives the extended definitions.

For each centrality index, x 2 {DC,BC,CC,EC}, we
extend them to the coupled network system as follows:

c

x

ext

(v) =
c

x(v) +
P

j2V

�

A

dep

v,j

⇥ c

x(j)

1 +
P

j2V

�

A

dep

v,j

. (2)

The above equation assumes the importance of a node is
proportionally increased based on the (total) importance of the
node(s) depending on it (i.e., additive effect). Note that Eq. 2
is universally applicable to unbalanced interdependent systems
(cf. as discussed in Section II-A).

IV. VULNERABILITY ANALYSIS

We conducted an extensive simulation study across 16
real MV grids coupled with three types of communication
network models (i.e., {ER,SW,SF}) against six types of
failure trigger patterns (i.e., {RA,RP,DC,BC,CC,EC})
(cf. Section III). For each simulation setup, we obtained 95%
confidence intervals for all metrics. For each repeat simulation
run, we regenerated a new G

com since reusing the same one
results in exact same node ranking for targeted attacks. Due to
the large number of possible scenarios, we present selected
but representative results and discuss our observations and
findings.

A. Impact of Random Cascading Failures

We first show in Fig. 3 representative results of MV
grid coupling with different G

com models. From all sets of
results, we observe that MV grids coupled with SF networks
are the least robust against both types of random cascad-
ing failures (SF � ER � SW

7) with the size of the
giant component rapidly decreasing. This corroborates with
[1] where interdependent SF graphs with different power-
law degree distributions are found to be more vulnerable to
interdependent ER graphs. For the RA case, the degradation
of the system is close for MV grids dependent on ER and
SW networks. The distinction becomes less clear for small
distribution grids (see insets in Fig. 3). The observed order
of robustness, SF � ER � SW , is also observed in [22]

7To simplify discussion, we use X � Y (X � Y ) to indicate that X is less
(more) robust against cascading failures than Y within the considered setup.



which considers failures in single layer network models with
no interdependency.
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Fig. 3: (Color Online) The impact of cascading failures with
RP (left) and RA (right) failures for an MV grid with N > 30.
(Insets: Results for an MV grid with N < 30.)

We next show in Fig. 4 how the network degrades in
terms of the communication efficiency at Gcom and the size
of the giant component at G

sg . Both metrics suffer similar
deterioration for all cases. RP causes relatively less severe
functionality degradation (RA � RP). However, when 1 � p

increases, we observe consistently that at one point the reverse
trend (RA � RP) becomes true. This behavior is also observed
in small MV grids with N < 30 (see insets of Fig. 4). This
indicates that when the spreading effect of cascading failures
is limited (i.e., when the network system is small), randomized
failure points cause more detrimental impact than the gradual
failure of immediate neighbors of failed nodes.

B. Impact of Targeted Cascading Failures

To get a better understanding of the different types of
targeted cascading failures, as expressed by our extended
centrality (Eq. 2), we first investigate the extend to which
different centrality measures result in attacks on different
nodes. To this end, we use Spearman coefficients, as a full rank
correlation proxy, and the percentage of top-10% node overlap,
as a high rank-correlation proxy. Tables III and IV give a
sample Spearman coefficient and top-10% overlap respectively.
The Spearman coefficients across all the MV grids show that
the centrality pairs have low correlations. In fact, extended
EC often negatively correlates with others. The observation is
consistent for high rank nodes (top-10% overlap) where the
overlap tends to be low. As such, the actual targeted nodes
(both the set of nodes and the order) are different when based
on the different extended centrality rankings.

Interestingly, despite this, our results show that their impact
to the system is rather similar. Figure 5 shows the impact of the
different attacks on different network interdependencies where
we observe overlapping curves. This behavior is consistent
across all the MV grids, suggesting that the MV grid topology
structures are especially vulnerable to cascading failures in
general, regardless of the points of attack. This indicates that
simple protection schemes protecting nodes with high central-
ity are not sufficient to defend MV grids against cascading

failures. This observation agrees with the theoretical findings
in [2]. Our observations here generalize [2]’s conclusion to
include different types of attacks (i.e., not only for degree-
based attacks).

TABLE III: Sample Spearman coefficient for MV grid coupled
with different Gcom models.

DC BC CC EC Gcom

1 ER
DC 1 SW

1 SF
0.5120 1

BC 0.4636 1 -//-
0.8485 1
0.7100 0.5155 1

CC 0.5258 0.5234 1 -//-
0.3308 0.3851 1
-0.7854 -0.4488 -0.9162 1

EC 0.1728 -0.3482 -0.4642 1 -//-
-0.0622 -0.1734 0.2818 1

TABLE IV: Sample top-10% overlap (%) for MV grid coupled
with different Gcom models.

DC BC CC EC Gcom

1 ER
DC 1 SW

1 SF
0.3158 1

BC 0.4737 1 -//-
0.4211 1
0.5263 0.5790 1

CC 0.5790 0.6316 1 -//-
0.2105 0.4211 1

0 0 0 1
EC 0.3158 0 0.0526 1 -//-

0.4211 0.1579 0.2105 1

For all the three coupling cases, {ER, SW, SF}, we
found that the different targeted attacks are very effective
(i.e., the size of the giant component and communication
efficiency decrease rapidly after only approximately 10% of
nodes removed). This is attributed to two factors: (1) the
MV grids have (near-)zero clustering coefficient (see Table
I) and (2) high number of nodes with degree = 2 (⇡ 65% of
total nodes, see Fig. 2). The co-existence of these properties
results in high probability of network fragmentation as there
is very good chance that a failure involves a “bridge” node
that singularly connects the grid network. As only the giant
component survives, such fragmentation rapidly disintegrates
the system. Moreover, we note that the MV grids also have
low path diversity and exhibit relatively long mean path lengths
which further increase the importance of the “bridge” nodes
in maintaining connectivity.

For all types of targeted attacks, we observe the robustness
follows SF � ER � SW order which is consistent with
that observed for random failure cases. Therefore, for the case
of MV grids, they are most resilient against cascading fail-
ures when dependent on a communication network exhibiting
small-world properties such as low average path lengths and
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Fig. 4: (Color Online) The impact of random cascading failures on the communication efficiency (top row) and the size of giant
component for an MV grid (bottom row) when 1� p fraction of nodes are removed based on RP and RA strategies for an MV
grid with N > 30 (Inset: grid with N < 30) coupled with ER (left column), SW (center column) and SF (right column) graph.
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Fig. 5: (Color Online) The impact of cascading failures on the communication efficiency, ⌘ (top row) and the size of giant
component (bottom row) when 1� p fraction of nodes are removed based on different targeted attacks for an MV grid coupled
with N > 30 interdependent on ER (left column), SW (center column) and SF (right column) graph.

high clustering coefficient. Conversely, MV grids coupled with
SF networks are always the least robust against cascading
failures. On one hand, this corroborates with past analysis
for targeted attacks (e.g., [30]) since simultaneous removal
of top well connected hubs rapidly fragments the network.
On the other hand, this finding is also counter-intuitive as

SF networks are known to be robust to random removals
[25] due to the fact that (1) most nodes have small degree
(non-hub) and (2) major hubs are usually connected to other
smaller hubs; forming a hierarchy of hubs that resists network
fragmentation. Tracking the system following our sequential
cascading failure simulations, we found that such vulnerability
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Fig. 6: (Color Online) Effect of cascading failures on the number of resulting components for MV grid coupled with ER (left),
SW (center) and SF (right) networks.

is due to the fact that cascading failures have a spreading effect
which in most cases, involves the removal of multiple hubs
in a single cascade. Hence, the existence of multiple hubs
surrounding a hub that “protects” the network from losing its
connectedness turns out to be the very reason why coupling
with SF networks is especially vulnerable, as cascading failures
have high probability of removing multiple hubs in the near
vicinity simultaneously.

For each type of theoretical graph model, we further experi-
mented with varying clustering coefficient and link density. We
found no direct relationship between clustering coefficient and
the impact of cascading failures (i.e., the size of giant compo-
nent / communication efficiency) – high clustering coefficient
does not necessarily provide better resilience. However, we
find that, for relatively sparse networks (i.e., at low link density
region), link density can be a good relative robustness indicator
with better system robustness found in systems with higher
link density. Nevertheless, this is not to be used singularly
as a determinant of system robustness as the robustness still
depends on the exact degree distribution of the networks. For
instance, an MV grid coupled with an SW graph with lower
link density may still be more robust than a system coupled
with an SF graph with high link density.

Next, we investigate the extreme case where we fail the
system gradually until all nodes fail. For this, we relax the
assumption that only the giant component retains functionality
but allow any component of size > 1 to be functional. This
allows us to gain insights into the change (if any) in the
disruptive power of individual cascading failures when the
networks are gradually disconnected. We show sample results
with N = 191 in Fig. 6. Systems coupled with SF networks re-
main to be the most vulnerable ones. The system is completely
disintegrated after only approximately 10 ⇠ 15 cascading
failures for SF networks while interdependent systems that

couple with ER and SW networks require approximately 40
and 90 cascading failures respectively. While most failure
types cause similar level of damage, RA failures seem to
be most effective when MV grids are dependent on ER and
SW networks. When MV grids couple with SF networks, RA
failure is the least effective (on average) but the confidence
interval indicates that the results differ significantly compared
against others.

Finally, we show in Fig. 7 the average number of cascading
failures required to complete the disintegration of the system
(i.e., all nodes disconnected) for the entire set of real MV
grids from our dataset. We observe that MV grids coupled
with SF networks are so vulnerable that an increase in N

does not result in increasing number of cascading failures
required. On the other hand, we see the gradual increase of the
number of cascading failures required for MV grids coupled
with SW networks when N increases, suggesting that small-
world properties are beneficial to protect an interdependent
system against cascading failures.

V. SUMMARY AND CONCLUSIONS

In this paper, we study the impact of cascading failures
on an interdependent system consisting of a communication
network and an MV distribution power grid, using real grid
networks that are currently operating in the Netherlands. We
evaluate the effect of such iterative failures on the MV grids
coupled with different types of communication networks (in-
cluding random, small world and scale-free network models)
and types of failures (both unintentional and intentional fail-
ures). Our study shows that MV grids are extremely vulnerable
to cascading failures, a finding of particular importance when
considering the advent of the smart grid with the increasing
interdependency of the grid and supporting communication
network. The tree-like structure of MV grids, featuring very
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Fig. 7: (Color Online) Number of cascading failures to fully
disintegrate the interdependent system.

low clustering coefficient, high mean path lengths and mean
node degree close to two, is the main contributing factor to
this, since a high number of “bridge” nodes increases the
probability of fragmentation of the MV grids. The interde-
pendent system as a whole is almost equally susceptible to
catastrophic damage regardless of the nature of failures. Simple
protection schemes focusing on protecting specific “important”
nodes (e.g., high centrality nodes) will not be effective against
cascading failures. Furthermore, broad degree distribution of
the communication network topologies, known to strengthen
the resilience of network against single non-cascading failures,
is found to have the reverse effect on interdependent systems.
Specifically, the existence of multiple hubs (as in SF graphs) is
detrimental to the system against cascading failures. Coupling
with SW networks result in the most robust system, implying
small-world properties are beneficial for the robustness of
interdependent systems. Finally, we found that higher link
density in sparse networks (i.e., at low density region) provides
better robustness for the same type of network model.
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