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The practical consequences of climate change challenge society to formulate responses that 

help better achieve long-term objectives, even if those responses have to be made in the face 

of uncertainty1,2. Such a decision-analytic focus uses the products of climate science as 

probabilistic predictions about the effects of management policies3. Here we present 

methods to detect when climate predictions are failing to capture the system dynamics. For 

a single model, we measure goodness of fit based on the empirical distribution function, 

and define failure when the distribution of observed values significantly diverges from the 

modelled distribution. For a set of models, the same statistic can be used to provide relative 

weights for the individual models, and we define failure when there is no linear weighting 

of the ensemble models that produces a satisfactory match to the observations. Early 

detection of failure of a set of predictions is important for improving model predictions and 

the decisions based upon them. We show that these methods (i) would have detected a 

range shift in northern pintail 20 years before it was actually discovered, and (ii) are 
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increasingly giving more weight to those climate models that forecast a September ice-free 

Arctic by 2055. 

 Recognizing the decision context of climate change issues identifies a meaningful role for 

empirical science, and shifts the debate to pragmatic solutions1,2,4. The central role of traditional 

climate science in decision-making processes is to provide probabilistic predictions about 

outcomes of interest under various management strategies3. These predictions are, of course, 

made with uncertainty. The explicit articulation of this uncertainty is healthy, because it allows 

both risk analysis and adaptive management4. With risk analysis, individuals and society can 

examine the consequences of taking (or not taking) any action and being wrong, and so search 

for solutions that appropriately weigh the various risks. With adaptive management, management 

actions can be adjusted in response to new information that reduces uncertainty; indeed, the 

anticipation of this learning may influence initial actions. Both risk analysis and adaptive 

management require the articulation of uncertainty as a set of alternative predictions about the 

future. For climate forecasting, the set of coupled general circulation models (GCMs) and the 

various forcing scenarios provide the basis for alternative predictions about the outcomes of 

many potential management actions5. 

The ability to learn and make good management decisions within an adaptive framework 

will depend on whether the true system dynamics are contained within, bounded by, or close to 

the set of models that capture current uncertainty. Two types of surprise could undermine this 

ability: first, the truth might not be bounded by the model set, because of a failure to anticipate 

some important elements of the system; or second, the system might change in unanticipated 

ways that lead the true dynamics outside behavior predicted by the model set. Both of these 

unanticipated outcomes can be considered “unknown unknowns” or “black Swans”6. Adaptive 
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management includes an internal layer of learning (“single-loop learning”7) that allows 

discernment among the existing predictions as information accrues, and adaptation of future 

management actions to that new understanding. In addition, a second layer of learning is needed, 

which examines if the system is responding as might be expected given the model set available, 

or if, instead, unpredicted responses are occurring. In the latter case, “double-loop learning”8 is 

triggered, in which the model set itself is reexamined, in an effort to develop new hypotheses that 

explain the surprising results. For example, satellite observations of arctic sea-ice extent declined 

faster than forecast by the World Climate Research Programme Coupled Model Intercomparison 

Project Phase 3 (CMIP3) models, leading to hypotheses for the discrepancy and efforts to 

improve subsequent models9. The first step in double-loop learning is the detection of the failure 

of the model set. Early detection of failure of a set of predictions can trigger the process of 

diagnosis and the process of generating new predictions, quickly turning “unknown unknowns” 

into “known unknowns” and leading to better ongoing management and policy interventions 

through adaptive management.  

In this paper, we develop methods for detecting the failure of a single model and the 

failure of a model set. We illustrate these methods in two contexts: detecting a shift in breeding 

distribution for northern pintails (Anas acuta)10; and detecting a failure of climate models to 

predict the loss of Arctic sea ice9. 

 

Assessing the plausibility of a single model 

The role of models in a decision context is to make predictions about system response through 

time and as a function of management actions. These predictions are usually probabilistic11, to 

represent uncertainty arising from a number of sources, including environmental variation, 
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incomplete knowledge of system dynamics, sampling error, and incomplete control of 

management actions12. Thus, a model can be viewed as a hypothesis about the distribution of the 

response variable of interest. We would like our probabilistic predictions to be well calibrated 

and sharp13: over time, the observations should be compatible with the modelled distribution14. 

For example, in forecasting rainfall, we would like the observed frequency of wet and dry years 

to match the predicted (hindcast or forecast) frequencies generated by GCM simulations. The 

empirical distribution function (EDF) tests, a class of goodness-of-fit tests, examine the 

agreement between two continuous distributions using a statistic that measures the distance (Dn) 

between the empirical cumulative distribution from the real system (Fn(x), where n is the 

accumulated sample size) and the hypothesized cumulative distribution based on the prediction 

from the model (F(x))15. One of the advantages of the EDF tests is that the prediction can take 

any form of distribution. The Kolmogorov-Smirnov (K-S) test is one of many EDF tests, and 

uses the distance metric 

 

   𝐷𝑛 = max
𝑥
|𝐹𝑛(𝑥) − 𝐹(𝑥)|.      (1) 

 

The northern pintail (Anas acuta) is a waterfowl species that is important for recreational hunting 

in North America16. Pintails depend on ephemeral prairie wetlands for breeding and their 

dynamics are strongly influenced by climatic conditions17. The annual distribution of this 

species, as measured by the latitude of its centroid, is an indicator of the habitat conditions, with 

individuals breeding farther north in drier years. Because reproductive rate is also associated 

with habitat condition, the latitude of the breeding population is used as a predictor in setting 

hunting regulations18. Between 1961 and 1974 the mean latitude of the breeding distribution was 
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53.569 (SD=1.549) (Fig. 1A, red line). Data collected from the mid-eighties onwards shows a 

northerly shift in the pintail distribution, but given the variability in the data it is difficult to 

discern if or when this shift occurred and whether concerns should be raised about the harvest 

rates set using Model 1. The K-S statistic shows the observations were compatible with Model 1 

(Fig. 1B, red line) until 1985 (red circle). After 1985, the distance between the observations and 

the predictions under Model 1 suggests a significant change in the pintail distribution. In this 

way, and EDF statistic can be used to identify when a single model is no longer plausible. 

 

Assessing the plausibility of a model set 

Often, a decision maker will entertain several different explanations of cause-and-effect in a 

system, that is, several alternative models. These models may represent a comprehensive set, in 

the sense that the truth is believed to be one of the models, but more commonly, the hope is 

merely that the set of models somehow bounds the truth. What would it mean for a model 

ensemble to bound the truth? We propose this means there is weighted combination of the 

models in the set that makes predictions consistent with the observations. If that is not the case, 

then the observations are falling outside anything predicted by the ensemble, which would 

indicate the need for careful evaluation of the model set. The EDF statistic for the best-weighted 

model, then, is a measure of the plausibility of the model set. 

 

There are a number of ways that models could be weighted to form an intermediate model. One 

possibility is to form a linear-weighted average of the cumulative distribution functions (CDF) 

for each model. Another way is to average the moments of the individual distributions. In either 

case, the best-fitting weighted model minimizes the EDF statistic. In the examples that follow, 
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we have used the second weighting method, because we were particularly interested in bounding 

the first two moments, but the first weighting method may be appropriate in other contexts. 

 

In 1985, when the observed pintail data indicated a divergence from the 1961-1974 model 

(Model 1), a possible response would have been to propose a second model with a fixed mean of 

55.374 (the 5-yr moving average in 1985) and standard deviation of 1.549 (Fig. 1A, dashed blue 

line). This second model was not plausible between 1970 and 1985 (as judged against a K-S test 

with nominal  = 0.05), but became plausible in 1985 and has remained so since (Fig. 1B, blue 

line). The weights in the best-fitting weighted model show the change in system dynamics (Fig. 

1C): between 1971 and 1980, Model 1 received all of the weight; by 1988, all the weight had 

shifted to Model 2; and since 1998, the weights have fluctuated. In the period 1988-1998, having 

all of the weight on Model 2 raises the question whether the true dynamics have moved outside 

the model set and Model 2 is just the best approximation available. Nevertheless, the best-fitting 

weighted model remains plausible over the entire time series, suggesting that the two-model 

ensemble set currently bounds the true range dynamics of the northern pintail and would have 

performed well for setting harvest rates (Fig. 1B, black line). Use of the Anderson-Darling 

statistic (another in the class of EDF tests15) instead of the K-S statistic produces quite similar 

results, with two minor differences: first, the failure of Model 1 alone is detected in 1984 instead 

of 1985; and second, for one year in 1993, the tests warns that the model set may be failing. (See 

Supplementary Information for a comparison of the power of these two tests.) 

 

Forecasting Arctic sea ice 



Runge et al., Detecting failure of climate predictions page 7 

The rapid loss of Arctic sea ice over the past two decades has been one of the most visible and 

dramatic effects of global climate change19 and has led to significant concern about many aspects 

of the Arctic environment, including for example, the status of polar bears20,21. Sea-ice extent 

and volume have been declining at a rate that was faster than forecast by the CMIP3 models9. 

More recent models (CMIP5) match the trends in the observed record better22 (Fig. 2A), but the 

question remains whether they are capturing the Arctic sea-ice dynamics well enough to support 

decision-making. The K-S statistics for the individual CMIP5 models (RCP8.5) are relatively 

stable from the early 1980s to the mid 1990s, but show substantial shifts beginning about 1995 

(Fig. 2B), with one model that had previously fit the observed time series well (CESM1) falling 

out of favor, and several others beginning to show a better fit (HadGEM2-CC, IPSL-CM5A-MR, 

MRI). Throughout this time period, a linear weighting of the CMIP5 models can be found that 

produces a satisfactory fit to the observations, suggesting the model set is still bounding the 

behavior of the system (Fig. 2B, black line). Nevertheless, the sharp changes in the individual K-

S statistics serve as an early indicator that the Arctic system is changing in a way that is not 

captured by any one of the current CMIP5 models with the RCP8.5 forcing scenario. If that trend 

continues, the K-S statistic for the best-fit weighted model may begin to indicate a failure of the 

entire model set, triggering the need for new model development. This suggests that, for the 

moment, the current set of models can be used by decision-makers concerned about Arctic sea 

ice, but a watchful eye is needed to be sure the model set still bounds the observations over the 

coming years. 

 

The best fit linear weighting of the CMIP5 models changed over time (Fig. 2C), particularly after 

1995, when the observed September sea ice extent began to drop relative to the multi-model 
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ensemble of predictions. The best fit model can be used to forecast the sea ice extent in the future 

(Fig. 3), with the forecast changing as the model weights are updated with each year’s 

observation. Since 2000, the forecast September 2055 sea ice extent under the RCP8.5 emission 

scenario has dropped; the most recent forecast (based on data through 2015) is 0.77 million sq. 

km (90% prediction interval: 0.10-1.45), very close to what is considered an “ice-free” Arctic. 

The probability that the sea ice extent will be below 1.0 million sq. km increased from 44% 

using the model weights in 2000 to 71% using the model weights in 2015 (Fig. 3). 

 

Tracking system change 

The model weights, the EDF statistics for the individual models, and the EDF statistic for the 

best-fitting weighted model provide a way to track system change and evaluate the multi-model 

ensemble. A shift in model weights over time may be an indicator that the dynamics of the 

system are changing (or that if the system dynamics are in fact stationary, such stationarity is not 

captured by the models in the ensemble). If the EDF statistic for the best-fitting weighted model 

remains plausible, then the multi-model ensemble is bounding the behavior of the system. But if 

the EDF statistic for even the best-fitting weighted model is not plausible, then the ensemble is 

not functioning; a double-loop adaptation should be triggered, and the model set should be 

examined to try to explain the emerging surprises. In the case of northern pintails, this would 

have brought awareness to the change in system dynamics in 1985, twenty years before the effect 

was in fact identified and incorporated into management of hunting regulations. In the case of 

Arctic sea ice extent, although the model set currently bounds the observed system behavior, 

rapid shifts in the plausibility of individual models are an early warning that the current model 

set might be starting to fail.  
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Methods 

Data and models. For northern pintails, the data are the observed latitude of the breeding 

population in North America, 1961-2015, taken from the Waterfowl Breeding Population and 

Habitat Survey. Two models, both normally distributed, were compared: Model 1 predicted a 

constant mean and variance (based on the mean and variance of the observed latitude, 1961-

1974); Model 2 used the 5-year moving average at 1985 as the mean, and the same variance as 

Model 1. Both Models 1 and 2 use a fixed long-term mean, rather than a more complicated time-

series model because harvest regulations for northern pintails are set assuming a fixed long-term 

mean for the latitude of the breeding population. 

 

The sea ice data measure the extent of sea ice in September (million sq. km). The observational 

record is based on a combination of passive microwave sea ice concentrations from the NASA 

Team sea ice algorithm23 and earlier satellite, aircraft, and ship observations available from the 

Had1SST data set24 that were merged to create a consistent time-series25. Hindcast and forecast 

September sea ice extent was extracted from 11 CMIP5 models (CCSM4, 6 ensemble members; 

CESM1-cam5, 3; EC-EARTH, 12; GFDL-CM3, 1; HadGEM2-AO, 1; HadGEM2-CC, 1; 

HadGEM2-ES, 4; IPSL-CM5A-LR, 4; IPSL-CM5A-MR, 1; MIROC5, 2; MRI-CGCM3, 1), 

using the RCP8.5 forcing scenario. The CMIP5 models use observed greenhouse gas 

concentrations through 2005 and forecast concentrations thereafter. The subset of 11 was chosen 

from the full set of CMIP5 models based on their ability to capture basic features of the Arctic 

climate, as reflected in observed ice thickness distributions26.  
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The CMIP5 model results are replicate simulations taking into account temporal variation, 

parametric uncertainty, and uncertainty in starting conditions; each replicate is a possible future 

trajectory. These results, however, are not in themselves probabilistic forecasts of sea-ice extent. 

To develop probabilistic forecasts of sea-ice extent, we used the replicate CMIP5 results to 

estimate time-specific means and variances. For each of the CMIP5 models, a year-specific mean 

was estimated with LOESS smoothing ( = 2, 25-yr window for ), and a corresponding year-

specific variance was estimated with LOESS smoothing of the variance of the residuals. The 

year-specific forecast was a normal distribution with the corresponding mean and variance. This 

method for developing probabilistic forecasts from the CMIP5 model results, including the 

assumption of a normal distribution, is one possible approach and appears to work well for the 

sea-ice metric; other approaches and distributions have been explored3 and may be more 

appropriate for other metrics. 

 

Individual model fit. To assess the fit of each model to the data, a moving window was used (10 

years for the pintail data, 30 years for the sea ice data). Within the moving window, the 

observations were expressed as a normalized residual from the corresponding year-specific 

predicted distribution. An empirical cumulative distribution function was formed from the set of 

residuals within the window and compared against the cumulative distribution function for a 

standard normal distribution to calculate the Kolmogorov-Smirnov statistic (equation 1) or 

Anderson-Darling statistic, with an appropriate critical value15. In a decision context, the choice 

of the critical value is an important value judgment that reflects the relative importance of Type 1 

and Type 2 errors, and the nominal critical value needs to be adjusted to account for multiple 

comparisons as well as the estimation of parameters27. These topics are investigated in detail in 
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the Supplementary Information. Throughout the main body of the paper, we have used the 

critical value associated with a nominal Type 1 error rate () of 0.05. 

 

Weighted models. Weighted models were formed from the component models with linear 

weighting of the first two moments. For example, to combine the 11 sea-ice models, a set of 11 

weights (summing to 1) were used to weight the 11 means and the 11 standard deviations. A set 

of weights were evaluated by calculating the K-S statistic for the weighted model in the 

preceding window associated with a particular point in time. The best-fit weighted model at each 

point in time was found by searching for the set of weights that minimized the K-S statistic: for 

the pintail example using multivariate constrained optimization, specifically, sequential quadratic 

programming28; for the sea ice example using multivariate unconstrained optimization, 

specifically, a gradient-based quasi-Newton method29 with a cubic line search procedure28.  

 

The sea-ice forecast based on a weighted model (Fig. 3) used the year-specific means and 

variances from the 11 CMIP5 models, weighted by the best fit set of weights. Each of the 11 

models has a forecast for the sea-ice extent in September 2055; these forecasts were weighted by 

the sets of weights at each point in the observational record. The quantiles were found by 

assuming the weighted forecast was normally distributed. 
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Figure Legends 

 

Figure 1. Analysis of trends in distribution of northern pintails (Anas acuta), 1961-2015. (A) 

Latitude of the centroid of the pintail breeding distribution. Model 1 (red line) is the average for 

the period 1961-1974. Model 2 (blue line) is the 5-year moving average, 1965-1985. (B) 
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Kolmogorov-Smirnov fit statistics for Model 1 (red), Model 2 (blue), and the best weighted 

model (black), using a 10-year moving window of the data. The nominal critical value (α = 0.05) 

is shown as a dashed line. (C) Weights on Models 1 (red) and 2 (blue) that provide the best fit to 

a 10-year moving window of observations, as measured by the Kolmogorov-Smirnov statistic. 

 

Figure 2. Analysis of trends in the extent of sea ice in the Arctic, 1953-2015. (A) September 

Arctic sea ice extent (million sq. km)22. The thin lines show loess means from 11 CMIP5 models 

(RCP8.5). The thick red line shows the observed record. (B) Kolomogorov-Smirnov fit statistics 

for the individual CMIP5 models and the best weighted model (thick black line), using a 30-year 

moving window of the data. The critical value (nominal α = 0.05) is shown as a dashed line. (C) 

Weights on the individual CMIP5 models that provide the best fit to a 30-year moving window 

of observations, as measured by the Kolmogorov-Smirnov statistic. 

 

Figure 3. Forecast extent of sea ice in the Arctic in 2055 as a function of the weights on the 11 

CMIP5 models over the course of the observed record, and assuming the RCP8.5 forcing 

scenario. The boxplots show the 5%, 25%, 50%, 75%, and 95% quantiles of the weighted model. 

The dashed line (at 1.0 million sq. km) is frequently cited as the threshold for an “ice-free” 

Arctic. The black line shows the probability that the sea-ice extent will be less than 1.0 million 

sq. km in 2055, based on the best-fit weighted model. 
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Figure 3. 
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