Impact of stream impurities on compressor power requirements for CO₂ pipeline transportation

Department of Chemical Engineering, University College London, London WC1E7JE
*Current address: Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, S1 3JDUK

*Corresponding author email: h.mahgerefteh@ucl.ac.uk

Abstract

The economic viability of Carbon Capture and Sequestration (CCS) as a means of mitigating CO₂ emissions is significantly dependent on the minimisation of costs associated with the compression and transportation of the captured CO₂. This paper describes the development and application of a detailed thermodynamic model to compute and compare power requirements for various multistage compression strategies for CO₂ streams containing typical impurities originating from various capture technologies associated with industrial and power emission sectors. The compression options examined include conventional multistage integrally geared centrifugal compressors, supersonic shockwave compressors and multistage compression combined with subcritical liquefaction and pumping. In order to estimate the power demand for inter-stage cooling and liquefaction a thermodynamic model based on Carnot refrigeration cycle is applied. The study shows that for all the compression options examined, the compression power reduces with the increase in the purity of the CO₂ stream, while the inter-stage cooling duty is predicted to be significantly higher than the compression power demand. For CO₂ streams carrying less than 5% impurities, multistage compression combined with liquefaction and subsequent pumping from ca 62 bar pressure can offer higher efficiency than conventional gas-phase compression. In the case of a raw/dehumidified oxy-fuel CO₂ stream of ca 85% purity, subcritical liquefaction at 62 bar pressure is shown to increase the cooling duty by ca 50% as compared to pure CO₂.

Keywords: CCS; CO₂ impurities; Oxy-fuel; Pre-combustion; Compression power; Cooling duty
1. Introduction

Carbon Capture and Sequestration (CCS) is a promising technology for mitigating the impact of anthropogenic CO₂ emissions from manufacturing industries and fossil fuel power generation on the global climate (Metz et al., 2005). An integral part of the CCS chain involves the transportation of the captured CO₂ to geological storage sites. Long-distance transportation of the large quantities of the captured CO₂ can be most efficiently achieved in the dense phase using pipelines at pressures typically above 86 bar (McCoy and Rubin, 2008). Given the relatively low pressure of CO₂ at the point of capture (Pei et al., 2014), its pipeline transportation requires additional upstream compression to reach the desired pressure.

It is estimated that the power demand for CO₂ compression in CCS applied to coal-fired electricity generation plants, can consume 8-12 % of the generated electricity (Moore, et al., 2007). Therefore, the development of efficient schemes for the compression and conditioning of CO₂ prior to its transportation, and integration of these schemes within CCS is an important practical issue, attracting increasing attention (see for example, Ludke, 2004; Romeo et al., 2009; Aspelund and Jordal, 2007, Witkowski and Majkut, 2012; Moore et al., 2011).

In recent years, several types of industrial compressors, including in-line multiple-train and integrally-geared centrifugal compressors currently employed in the natural gas processing industry, as well as novel two-stage supersonic and low-pressure axial compressors, have been considered for compression of CO₂ streams in CCS (Moore and Nored, 2008; IEAGHG, 2011). Particularly, analysis of conventional gas-phase multistage compression technology based on centrifugal compressors has shown that its efficiency can be increased by using a higher number of compression stages, combining compression with liquefaction and pumping, and applying liquefaction at lower temperatures (IEAGHG, 2011). Comparing power consumption in centrifugal and supersonic compression of high-purity CO₂ streams from post-combustion capture has shown that (Witkowski and Majkut, 2012; Witkowski et al. 2013) the relatively low efficiency of supersonic shock-wave compressors can be compensated by utilising the compression heat in other processes in the plant, e.g., for regeneration of amine solutions or preheating the boiler water. Pei et al. (2014) have
performed analysis of waste heat recovery in CO\textsubscript{2} compression using an organic Rankine cycle, showing that the shockwave 2-stage compression consumes less energy than 7-stage centrifugal compression with intercooling.

While the above studies have primarily focused on the development of suitable compression strategies for high-purity CO\textsubscript{2}, it has also been recognised that CO\textsubscript{2} streams in CCS inevitably carry some amount of impurities, whose nature and concentrations depend on the emission source and capture technology applied. In particular, combustion of coal and bio-mass derived fuels are expected to produce CO\textsubscript{2} streams carrying relatively large amount of impurities as compared to the natural gas fired plants. These impurities are expected to reduce the effective storage capacity of the reservoir and also affect the physical properties and vapour-liquid phase equilibrium of the CO\textsubscript{2} stream, directly impacting the design of compression equipment and the CO\textsubscript{2} pipeline transport (Goos et al., 2011). As such, several studies have attempted to quantify the effect of non-condensable gases on CO\textsubscript{2} compression. In particular, Li et al. (2009) have concluded that power demand in single-stage gas-phase compression increases with the concentration of N\textsubscript{2}, H\textsubscript{2}, O\textsubscript{2} and Ar found in oxy-fuel derived CO\textsubscript{2}. Similar conclusions have been made by Aspelund and Jordal (2007) who examined the variation in nitrogen content in a mixture on the compression power demand in direct gas-phase compression.

In order to minimise the compression costs associated with the presence of impurities in the CO\textsubscript{2} stream, several studies have focused on optimising the CO\textsubscript{2} separation and purification processes. In particular, Calado (2012) performed a model-based optimisation of the operation of compression trains for pre-combustion CO\textsubscript{2} streams, considering the pressure and temperature constraints imposed on the system due to material considerations and dehydration process requirements. Posch and Haider (2012) modelled the double-flash separation and distillation-type compression-purification systems for oxy-fuel derived CO\textsubscript{2} streams captured in coal- and gas-fired power plants and compared the systems’ power requirements with those employing conventional compression without purification. The study showed that using distillation allowed achieving CO\textsubscript{2} stream purity of \textit{ca} 99.99%; much higher than in double-flash separation (\textit{ca} 96%), but at a cost of significant increase (\textit{ca} 30%) in the compression power duty.
While existing CO₂ separation technologies are capable of producing high-purity CO₂, these technologies can be energy demanding, hence the cost of purification should be balanced against the costs of transportation and storage of impure CO₂. de Visser et al. (2008) have recommended that non-condensable gases, such as N₂ and Ar, which are not toxic and do not pose the risk of corrosion for the pipeline/storage tank steel, can form up to 5% of the transported CO₂ stream, while not compromising the safety of pipeline transportation. At the same time, in the case of relatively small CO₂ emission sources, compression and transportation of low-grade CO₂ carrying more than 5% of impurities, may be required prior to its further purification. However, to date, the compression requirements for industrial low-grade CO₂ streams have not been systematically assessed.

In this paper, a detailed thermodynamic model for the compression process is developed accounting for multistage compression including intermediate cooling/liquefaction. The variation of the physical properties of the CO₂ stream with pressure, temperature and composition are determined using a robust and accurate real fluid equation of state. The compression model is applied to compute and compare power consumption requirements for various multistage compression strategies for impure CO₂ streams typical of CCS operations. The range and concentration of the typical impurities originating from various CO₂ capture technologies, as well as the relevant pressure and temperature conditions for the capture processes, are summarised in Section 2. Section 3 presents the CO₂ compression strategies evaluated in the study. Section 4 describes the thermodynamic model applied for calculating the power consumption for multistage compression. This is followed by presentation and discussion of the results in Section 5. Conclusions and recommendations for future work are presented in Section 6.

2. Industrial grade CO₂ streams

As mentioned in the introduction, CO₂ captured from coal and biomass fired plants is expected to contain larger amount of impurities as compared to gas-fired plants. This section provides a brief overview of the impurities found in CO₂ streams originating from coal combustion technologies. Table 1 provides a listing and typical concentrations of main fluid components found in CO₂ streams captured in post-combustion, pre-combustion and oxy-fuel processes. Given that the thermodynamic state of the CO₂ stream leaving the capture process
is expected to have direct impact on the design and operation of the compression unit, conditions of CO\textsubscript{2} capture are briefly described for the three capture technologies following Porter et al. (2015).

2.1 Post-combustion capture
In post-combustion capture processes, CO\textsubscript{2} is separated from flue gas originating from air-fired combustion. Traditionally, amine-based absorption systems operating at close to ambient conditions [ca 1.5 bar and ca 40 °C (IEAGHG, 2011)] are used to capture the CO\textsubscript{2} from the flue gas, which typically contains only 5-15% v/v CO\textsubscript{2}, with the remaining major components being O\textsubscript{2}, N\textsubscript{2}, Ar, H\textsubscript{2}O, CO, NO\textsubscript{x} and SO\textsubscript{2} (Table 1). Using amine-based solvents CO\textsubscript{2} can be purified to above 99% v/v. Due to its relatively high purity, the impact of impurities on thermodynamic properties of post-combustion CO\textsubscript{2} streams is often neglected (Witkowski et al, 2013).

2.2 Pre-combustion capture
In pre-combustion capture, coal is partially oxidised to produce syngas containing CO\textsubscript{2} which is then converted in a gas-shift reaction to CO\textsubscript{2} and H\textsubscript{2}. CO\textsubscript{2} is next removed in an absorption process. After capture, the pre-combustion stream typically contains ca 98% v/v CO\textsubscript{2}, up to 1% v/v of N\textsubscript{2}, H\textsubscript{2}, CO, CH\textsubscript{4}, H\textsubscript{2}O and Ar, and ppm level of acid gases (SO\textsubscript{2} and H\textsubscript{2}S) (Table 1). In contrast to the post-combustion process, which starts from near-atmospheric pressure, in pre-combustion capture the flashing is achieved at pressures around 4.8 – 11.5 bar (IEA, 2011), whilst the Selexol absorption system operates at pressures from 20 to 130 bar (Oakey et al., 2010).

2.3 Oxy-fuel combustion capture
Among several capture processes, oxy-fuel combustion is considered as one of the most promising options which enables capturing the vast majority of CO\textsubscript{2} from coal-fired power plants and can be retrofitted to the existing fleet of modern pulverised coal-fired power plants (Tigges et al., 2009). In the oxy-fuel capture, the fuel is burned in a mixture of purified oxygen and recycled flue gas from the boiler containing mainly CO\textsubscript{2} and water vapour (Kownatzki and Kather, 2011). As a result, the oxy-fuel flue gas contains relatively high amounts of oxygen and water. Other major impurities include N\textsubscript{2} and Ar. Before dehumidification, the CO\textsubscript{2} concentration in oxy-fuel flue gas is around 70%. Water scrubbing
is commonly achieved at ambient pressure to condense water vapour and remove traces of ash. Similar to pre-combustion capture, further purification of oxy-fuel derived CO₂ is performed in a sequence of steps at progressively increasing pressures. Removal of some reactive and soluble gases such as SO₃ and HCl can be achieved at pressures below 15 bar (White et al., 2006). At this stage, the increasing CO₂ stream has purity of ca 75-85 % v/v (see Table 1). Also, the ‘sour compression’ process proposed by Air Products allows reducing the removal SOₓ and NOₓ impurities (Allam et al, 2005). To further reduce the amount of non-condensable components (such as O₂, N₂ and Ar) and achieve CO₂ purity of over 95 % v/v, flash-evaporation and distillation are applied at pressures of ca 15-30 bar (Dillon et al., 2005; White et al., 2006, Besong et al., 2013).

3. CO₂ compression technology options

In practice, the choice and design of compressors is tailored to the conditions and scale of the CO₂ capture and transport. Several types of multistage compression technologies utilising various types of compressors have recently been considered for CO₂ compression. Table 2 summarises the three main technology options recommended for compression of high-purity CO₂ (Witkowski et al, 2013), which are in turn considered in the present study. The main features are briefly described below.

3.1 Option A: Centrifugal compressors

Option A is a conventional choice for CO₂ compression in the power generation industry (Aspelund, 2010). Given that the pressure ratio in a single-step centrifugal compressor is limited to 1.7-2 : 1 (Pei et al., 2014), reaching pressures of ca 150 bar requires using either integrally-geared or centrifugal compressors or trains of single-stage compressors, combined with the inter-stage cooling. Current designs of integrally-geared compressors use 8 to 10 stages to achieve pressures up to 150-200 bar (IEA GHG, 2011). In a recent study by Witkowski et al. (2013), eight-stage centrifugal compressors were considered for compression of post-combustion CO₂ stream from 1.5 to 151 bar.
3.2 Option B: Supersonic shockwave compression

Option B, supersonic shockwave compression, is a novel technology uniquely suited for compression of large volumes of CO₂, offering isentropic compression efficiencies of more than 80% (Kidd and Miller, 2010). This option uses high pressure ratios, ca 10-12:1 per stage, and has more compact design and lower capital cost as compared to traditional centrifugal compression (option A). As an additional benefit, it provides the high discharge temperature of ca 279 °C, which can be utilised, for example for pre-heat of feed-water to the boiler or regenerating amine solutions in post-combustion capture applications (Witkowski et al., 2013). Recently, both two-stage and single-stage shock-wave compressors have been designed for processing of large amounts of CO₂ in CCS applications (Baldwin, 2009).

3.3 Option C: Compression combined with liquefaction and pumping

In compression combined with liquefaction and pumping, gas-phase centrifugal compressors are applied to raise the CO₂ pressure to an intermediate level, at which point, the CO₂ stream is liquefied and then pumped to a final pressure suitable for pipeline transportation. The underlying premise of the liquefaction approach is that liquid pumps require significantly less power to raise pressure and are considerably less expensive than gas compressors (Duan et al., 2013). As such, liquefying and pumping at lower pressures could reduce the overall power demand for compression (Pei et al., 2014).

In practice, since at high pressures the boiling point of the pure CO₂ is close to the ambient temperature (at 62 bar the CO₂ saturation temperature is 23°C), where applicable, conventional water cooling systems can be easily applied to liquefy CO₂. Depending on the cooling water temperature, using pumps to build up the fluid pressure from 62 to 150 bar allows saving of ca 10-20 % of the compression duty in conventional gas-phase compression (Aspelund, 2010; Witkowski and Majkut, 2012).
4. Methodology

4.1 Thermodynamic analysis

In the present study, a thermodynamic analysis method is applied to quantify the power consumption in multistage compression. The compression process is modelled as a sequence of idealised isentropic compression and isobaric cooling steps, ultimately converting the gas-phase CO\(_2\) stream to the final dense-phase state ready for pipeline transportation.

The total power required for \(N\)-stage compression is given by:

\[
W_{\text{comp}} = G \sum_{i=1}^{N} \frac{1}{\eta_{\text{comp},i}} \int_{p_i^\text{in}}^{p_i^\text{out}} \left(\frac{dp}{\rho} \right)_s
\]

(1)

where, \(G\) and \(\rho\) are respectively the mass flowrate and the density of CO\(_2\) stream, while \(p_i^\text{in}\), \(p_i^\text{out}\) and \(\eta_{\text{comp},i}\) are respectively the inlet and outlet pressures and isentropic efficiency of the \(i\)-th stage. The subscript, \(s\) denotes isentropic compression.

Using the first law of thermodynamics, \(dh = Tds + \frac{dp}{\rho}\) and assuming isentropic compression, equation (1) may be written as:

\[
W_{\text{comp}} = G \sum_{i=1}^{N} \frac{1}{\eta_{\text{comp},i}} \left(h_i^\text{out} - h_i^\text{in} \right)
\]

(2)

where \(h_i^\text{out}\) and \(h_i^\text{in}\) are enthalpies of the stream at the suction (\(in\)) and discharge (\(out\)) of the \(i\)-th compression stage.

The total cooling duty associated with removing the heat of compression and possibly liquefying the CO\(_2\) stream is given by:
In the present study the compression power and cooling duty are calculated as specific values per tonne of CO\(_2\) captured, as commonly considered when estimating ‘costs of CO\(_2\) avoided’ (Rubin et al., 2003). The corresponding specific compression power and cooling duty are defined as:

\[
Q_{\text{cool}} = G \sum_{i=2}^{N} \left(h_{i-1}^{\text{out}} - h_{i}^{\text{in}} \right) \quad (3)
\]

\[
w_{\text{comp}} = \frac{W_{\text{comp}}}{G_{\text{CO}_2}} = \frac{1}{\varphi_{\text{CO}_2}} \frac{M_{\text{m}}}{M_{\text{CO}_2}} \sum_{i=2}^{N} \frac{1}{\eta_{\text{comp},i}} \left(h_{i}^{\text{out}} - h_{i}^{\text{in}} \right) \quad (4)
\]

\[
q_{\text{cool}} = \frac{Q_{\text{cool}}}{G_{\text{CO}_2}} = \frac{1}{\varphi_{\text{CO}_2}} \frac{M_{\text{m}}}{M_{\text{CO}_2}} \sum_{i=2}^{N} \left(h_{i-1}^{\text{out}} - h_{i}^{\text{in}} \right) \quad (5)
\]

where \(G_{\text{CO}_2}\) and \(\varphi_{\text{CO}_2}\) are respectively the mass flowrate and mole fraction of CO\(_2\) component in a mixture, while \(M_{\text{m}}\) and \(M_{\text{CO}_2}\) are molecular weights of the mixture and CO\(_2\) respectively.

While in the previous studies the power demand for inter-stage cooling was generally assumed to be small with the demand for liquefaction characterised in terms of the cooling duty (Li and Yan, 2007; Witkowski, et al., 2012; Posch and Haider, 2012), the present analysis uses a simple and effective thermodynamic model based on Carnot refrigeration cycle for estimation of the power demand for cooling/ liquefaction of the CO\(_2\) stream. In this model the CO\(_2\) cooling power demand is associated with the work spent in an ideal compression refrigeration cycle when moving the heat from a coolant evaporation temperature, \(T_{\text{ev}}\) to a condensation temperature, \(T_{\text{cond}}\) (Jobson, 2014):

\[
w_{\text{cool}} = \frac{q_{\text{cool}}}{\eta_{\text{cool}}} \left(\frac{T_{\text{cond}} - T_{\text{ev}}}{T_{\text{ev}}} \right) \quad (6)
\]

where \(\eta_{\text{cool}}\) is the efficiency of refrigeration process. In the present study, the coolant evaporation temperature \(T_{\text{ev}}\) is set to be 5 \(^{\circ}\)C less than the CO\(_2\) stream cooling temperature,
while the condensation temperature, T_{cond}, is assumed to be 38 °C. This model, advantageously, does not involve specification of the type of refrigerant, hence enabling the comparison of the cooling and liquefaction power consumption for various multistage compression strategies.

4.2 Properties of CO$_2$ mixtures with impurities

In the present study to determine pertinent CO$_2$ mixture properties required for calculation of the fluid enthalpies in equations (1) to (5), the Peng-Robinson Equation of State (PR EoS) (Peng and Robinson, 1976) is employed. The PR EoS is widely used in the engineering practice and has recently been compared with other EoS including various cubic EoS, GERG EoS and models derived from Statistical Associating Fluid Theory (SAFT) (Li and Yan, 2009; Wilhelmsen et al., 2012; Diamantonis et al., 2013) with application to CO$_2$ and its binary and multi-component mixtures with impurities. These studies have shown that the PR EoS enables very accurate estimations of density and heat capacity of gas-phase CO$_2$ and its mixtures with impurities. However, careful calibration of the binary interaction parameters is needed to obtain reliable predictions in the dense-phase region.

In particular, to determine the fluid enthalpy, h, and temperature at a given pressure and entropy, s, pressure-entropy flash calculations are performed by solving simultaneously the following two equations (Sandler, 1999):

$$ h = h^I_G + RT(Z - 1) + \frac{1}{2\sqrt{2}b} \left[T \left(\frac{d\alpha}{dT} \right) - a \right] \ln \left[\frac{ZRT + \left(1 + \sqrt{2} \right) pb}{ZRT + \left(1 - \sqrt{2} \right) pb} \right] $$

(7)

$$ s = s^I_G + R \ln \left(Z - \frac{pb}{RT} \right) + \frac{1}{2\sqrt{2}b} \frac{d\alpha}{dT} \ln \left[\frac{ZRT + \left(1 + \sqrt{2} \right) pb}{ZRT + \left(1 - \sqrt{2} \right) pb} \right] $$

(8)
where, h^{IG} and s^{IG} are respectively the fluid enthalpy and entropy in ideal gas state. a and b are the fluid-specific parameters, while $Z = \frac{p}{\rho RT}$ is the fluid compressibility. The derivative $\frac{da}{dT}$ is defined as:

$$\frac{da}{dT} = -0.45724 \frac{R^2 T_c^2}{P_c} K \sqrt{\frac{\alpha}{T T_c}},$$

where p_c and T_c are respectively the fluid critical pressure and temperature.

In the present study, in order to determine parameters a and b for multicomponent CO$_2$ mixtures, the Van der Waals mixing rules are applied (Peng and Robinson, 1976):

$$a = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j (1 - \delta_{ij}) \sqrt{a_i a_j},$$

$$b = \sum_{i=1}^{n} x_i b_i,$$

where x_i and x_j are molar fractions of components i and j in the n-component mixture, a_i, a_j and b_i are the individual parameters of the components, and δ_{ij} are the binary interaction parameters. The latter are estimated using correlations proposed by Nishiumi et al. (1988) and Valderrama and Reyes (1983) for binary mixtures involving hydrocarbons, inert gases, polar components and hydrogen. Table 3 lists the binary interaction parameters δ_{ij} calculated for the CO$_2$ and various impurities relevant to the study.

In the present study, the above fluid properties are calculated using PR EoS implemented in REFPROP v.9.1 (Lemmon et al., 2013).

5. Results and discussion

The impurities present in the CO$_2$ stream directly impact the fluid phase thereby constraining the operating envelops of the compression and pumping units. Accordingly, the VLE
behaviour for the typical industrial-grade CO\textsubscript{2} streams captured in post-combustion, pre-combustion and oxy-fuel capture processes as presented in Table 1 are examined first. Following this, the thermodynamic conditions matching the fluid phase requirements for the compression, liquefaction and pumping of various purity CO\textsubscript{2} streams are determined and the corresponding thermodynamic compression paths are constructed. This is then preceded by evaluation of the power requirements for multistage compression of the CO\textsubscript{2} streams to a dense-phase state suitable for the pipeline transportation and storage.

5.1 VLE of impure CO\textsubscript{2} streams

To illustrate the variations in the phase equilibria of CO\textsubscript{2} streams of various purities, the liquid-vapour phase boundary is calculated for the mixture compositions from Table 1 using the PR EoS. Figure 1 shows the pressure-temperature phase diagram with the saturation line for pure CO\textsubscript{2} and the bubble-point and dew-point lines for the various CO\textsubscript{2} mixtures. As can be seen from Figure 1, the small amount of impurities in CO\textsubscript{2} mixtures produced in post-combustion CO\textsubscript{2} and distillation-grade oxy-fuel stream (99.3% v/v purity) has very little impact on the bubble-point and dew-point curves, which remain close to the saturation curve for pure CO\textsubscript{2}. Notably, relatively small amount of hydrogen in the pre-combustion CO\textsubscript{2} stream (1.5% v/v) has nearly as strong impact on the phase equilibrium as that for 3.2% v/v of volatiles (N\textsubscript{2}, O\textsubscript{2} and Ar) in oxy-fuel double-flash stream. In the case of raw oxy-fuel mixtures, which carry relatively large amounts of impurities (15% v/v), the bubble-point and dew-point pressures are remarkably different from the vapour pressure of pure CO\textsubscript{2}. As can be seen from Table 1, the bubble-point temperature of post-combustion CO\textsubscript{2} stream at 62 bar is ca 23 °C, which reduces in the presence of impurities. In particular, the bubble-point temperature for the oxy-fuel derived 85% v/v CO\textsubscript{2} purity is ca – 55.4 °C, which is much lower than that for the other CO\textsubscript{2} streams (Table 1).

As the presence of impurities in oxy-fuel CO\textsubscript{2} stream shifts the VLE boundaries to higher pressures, it can be expected that higher pipeline operating pressures will be required to maintain the CO\textsubscript{2} in the dense phase. Also, the changes in the bubble point caused by the presence of impurities would affect the operating conditions for CO\textsubscript{2} stream liquefaction and pumping. As such, the knowledge of the VLE for the CO\textsubscript{2} stream is prerequisite for the
design of compression strategies and should be considered when deciding on the compressor operating conditions as discussed in the following.

5.2 Multistage compression of CO\textsubscript{2} streams containing impurities

In the following, the impact of CO\textsubscript{2} impurities on the power demand for multistage compression is determined based for relevant pressure and temperature conditions and prescribed number of stages for the differed types of compressors presented in Table 2. Given relatively little impact of impurities on properties of post-combustion and distillation-grade oxy-fuel CO\textsubscript{2} streams carrying less than 15% v/v of impurities, these two streams are not considered further in the study, where the focus is made on the 96.7% v/v and 85% v/v CO\textsubscript{2} purity oxy-fuel streams and CO\textsubscript{2} mixture from pre-combustion capture.

Following Witkowski et al., (2013) the CO\textsubscript{2} stream temperature entering the compressor is set at 38 °C, which is higher than the cri-condentherm temperature of CO\textsubscript{2}-rich mixtures, ensuring the gaseous state of the fluid. Furthermore, following Witkowski and Majkut (2012), it is assumed that each compression stage is followed by inter-stage cooling bringing the CO\textsubscript{2} stream back to 38 °C. It is also assumed that the CO\textsubscript{2} stream leaves the compression unit at 151 bar and 38 °C (except when combining compression with liquefaction and pumping as in the option C, as will be explained later). As discussed in Section 2, the oxy-fuel and pre-combustion CO\textsubscript{2} capture become most efficient at elevated pressures around 10-20 bar, which is achieved by coupling the compression and purification processes. Since this coupling complicates the analysis of the impact of impurities on compression, the present study is focused on the high-pressure compression phase starting from an intermediate pressure of 15 bar, which is chosen from the operating pressure range of oxy-fuel and pre-combustion capture technologies.

For the purpose of the present study, the pressure ratios for the individual stages of compression of the impure CO\textsubscript{2} streams is chosen based on the previous recommendations for the high-purity CO\textsubscript{2} (Witkowski et al, 2013). In particular, for multistage centrifugal compressors (option A), the pressure ratio is set to 1.78:1, while for the supersonic shock-wave compressors (option B), the pressure ratio is chosen to be 10:1. In the case of multistage compression (option C), following the strategy employed by Witkowski et al. (2013), a 2-
stage centrifugal compressor is utilised to raise the pressure in the gas stream from 15 to 62 bar, which is followed by subsequent liquefaction and pumping to 151 bar. As mentioned in Section 3.3, the advantage of the above compression strategy stems from the fact that using pumps is cheaper than operating compressors. However, in order to benefit from this advantage, the liquefaction should be achieved without significant rise in capital and operating costs. Also, in order to avoid formation of dry ice in a condensing gas, its temperature should remain above the triple point temperature of fluid, which in case of pure CO₂ is –56.6 °C. Table 2 shows that for all the CO₂ streams considered the liquefaction can be performed at 62 bar pressure and temperatures above –56.6 °C. As such, in the present study the liquefaction is assumed to be performed at 62 bar pressure which is only slightly above 60 bar pressure recommended for high-purity CO₂ (Witkowski and Majkut, 2012; Aspelund, 2010).

Figures 2, 3 and 4 respectively represent the fluid pressure-enthalpy p-h diagrams showing compression paths for the different compressor types A, B and C (Table 2) based on the above pressure ratios, inlet/outlet conditions and four CO₂ streams representative of the various capture technologies. The latter include 96.7% v/v and 85% v/v CO₂ purity oxy-fuel streams, pre-combustion stream carrying 98.07% v/v of CO₂, and pure CO₂, which practically represents high-grade post-combustion and distillation-grade CO₂ (Table 1).

Figure 2a for pure CO₂ provides a reference for analysis of compression of impure CO₂ streams in Figures 2b, c and d. Returning to Figure 2a, the CO₂ p-h compression path corresponds to the 4-stage compression from the inlet 38 °C and 15 bar (point 0) to 38 °C and 151 bar final state (point 4). During each compression stage (0-1, 1’-2, 2’-3, etc), at the constant pressure ratio of 1.78:1, the exit fluid temperature reaches ca 90 °C. This temperature is then reduced to 38 °C in isobaric cooling processes (1-1’, 2-2’, 3-3’, etc) before entry into the next compressor stage.

Figures 2b-d show the phase diagrams and the fluid p-h compression paths for the three CO₂ mixture streams representative of the various capture technologies (Table 1). In each case, the 4 stage compression starts from 15 bar and 38 °C. In practice, the 4-stage compression is performed using either a specially designed high-pressure integrally geared compressor, or
using the more conventional, though less compact, train of 4 single-stage compressors (IEAGHG, 2011).

Figures 3 a-d present the fluid phase boundaries and the corresponding p-h paths for the supersonic shock-wave compression of pure CO₂ (Figure 3 a) and the various CO₂ mixtures (Figures 3 b-d). In all the cases the inlet temperature and pressure are taken as 38 °C and 15 bar with a pressure ratio of 10:1 resulting in the final delivery pressure of 151 bar. Intercooling at each stage reduces the compressed fluid temperature from ca 279 °C back to the feed temperature of 38 °C. As discussed previously by Witkowski et al. (2013), the shock-wave compressors consume more power than conventional centrifugal compressors, but offer more compact design, have lower capital cost and generate compression heat of sufficient quality to be utilised elsewhere in the plant.

Figures 4 a-d show the corresponding data as in Figures 3 a-d but for multistage compression with pumping following liquefaction of the CO₂ at subcritical pressures (option C, Table 2). As shown in Figure 4 a for pure CO₂, the feed is first compressed in 2 stages (0-2) from 1.5 bar to 62 bar, followed by isobaric liquefaction (2-2’), isothermal pumping to 151 bar (2’-3’) and heating back to the inlet temperature of 38°C (3’-4). Similarly, in Figures 4 b-d, the three-stage compression of impure oxy-fuel and pre-combustion streams from 15 bar (0-1-1’-2) is followed by liquefaction (2-2’), pumping (2’-3’) and heating (3’-4).

5.3 Compression power requirements

Figure 5 shows the compression power demands, the inter-stage cooling duties and the cooling power demands per tonne of CO₂ captured, calculated using equations (4), (5) and (6) respectively, for the cases presented in Figures 2 - 4. Following the study by Witkowski et al. (2013), the compressor isentropic efficiency is set to 0.75 for multistage centrifugal compressor (Option A), 0.85 for the shock-wave compression (Option B), and 0.8 for the compression combined with pumping (Option C), while the cooling system efficiency is set to 0.6 (Jobson, 2014.). To account for high pressures of CO₂ streams in pre-combustion and oxy-fuel capture (as discussed in Section 2), the analysis is performed for the high-pressure compression phase starting from 15 bar and 38 °C.
Figure 5a shows the variation of the calculated compression power demands for the different compressors against the CO₂ purity. The corresponding cooling duty requirements are presented in Figure 5b, while Figures 5c shows the estimated power demands for the cooling system operation.

As can be seen from Figures 5a and b, the presence of impurities in the CO₂ stream affects both the compression power and the inter-stage cooling duty. In agreement with previous studies (Witkowski et al, 2013; IEAGHG 2011), the power demand for compression of pure CO₂ using supersonic compressors (option B) is estimated to be ca 50% higher than that for the centrifugal compression (option A). On the other hand using liquefaction and pumping (option C) reduces the compression power demand by ca 15% when compared to multistage centrifugal compressors (option A).

Also, the results in Figure 5a show nearly equal power demands for compression of the double-flash 96.7% v/v purity oxy-fuel and the 98.07% v/v purity pre-combustion streams. This can be attributed to the fact that the pre-combustion CO₂ stream contains 1.5% v/v of hydrogen (Table 1), which is relatively small compared to 3.2% v/v of volatiles (N₂, O₂ and Ar) found in oxy-fuel double-flash stream, but has stronger effect on the physical properties of the fluid, particularly the density and, hence, the compression power.

Remarkably, the results in Figure 5 indicate that multistage compression is characterised by a large cooling duty. In particular, when using compression options A, B and C to compress CO₂ streams carrying less than ca 5% (v/v) of impurities, the inter-stage cooling duty is predicted to be ca 3, 2 and 4 times bigger than the compression power (cf the data in Figures 5a and b). This primarily can be attributed to non-ideal behaviour of the CO₂ fluid and significant decrease in the fluid enthalpy with pressure, impacting the compression power and cooling duty in equations (4) and (5).

In the case of dehumidified oxy-fuel stream of 85% (v/v) purity, the cooling duty becomes particularly large, reaching ca 145 kWh/tCO₂, which can be attributed to relatively low temperature (-54.5 °C) considered for liquefaction of the 85% (v/v) purity oxy-fuel CO₂ stream. Possible strategies for removing such large amounts of heat from the CO₂
compression, may include optimising the heat integration between the \(\text{CO}_2 \) compression and other processes in the CCS plant.

The relatively large cooling duty in comparison with the compression power can be primarily attributed to a fact that at pressures above \(ca \) 15 bar the enthalpy of gas-phase \(\text{CO}_2 \) depends not only on temperature but becomes a strong function of pressure. As a result, the enthalpy increase in isentropic compression becomes less than the enthalpy decrease in the subsequent cooling to the original temperature. The latter can be illustrated by e.g. Figure 3 \(a \), where the enthalpy changes in the compression (\(0-1 \)) and cooling (\(1-1' \)) processes can be compared directly. It is important to note that actual power demand for operating the cooling system is not equivalent to the cooling duty and may be significantly reduced by integrating the cooling system operation with other processes in the CCS capture and \(\text{CO}_2 \) emission plant. Figures 5 \(c \) shows the estimates of power consumptions for operation of the cooling system as part of multistage compression process. From comparison of the data in Figure 5 \(a \) and 5c it can be seen that the cooling system is expected to consume less than \(ca \) 7\% of power spend on compression in options A and B, while using compression option C (compression combined with liquefaction and pumping) results in significant increase in the cooling system power demand, which reaches \(ca \) 50\% and 250\% of the compression power when applied to oxy-fuel double-flash and the oxy-fuel dehumidified \(\text{CO}_2 \) streams respectively.

While the minimum acceptable levels of impurities are dictated by specific transportation and storage conditions, the cost of \(\text{CO}_2 \) purification should be traded off against the costs of compression, transportation and storage of impure \(\text{CO}_2 \) stream. The results in Figure 5 \(a \) and \(c \) provide estimates for the power demand in compression per tonne of \(\text{CO}_2 \) avoided, which is relevant for analysis of the relative costs of mitigation of \(\text{CO}_2 \) emissions (Rubin, Rao and Chen, 2003).

Additionally, the relative changes in the compression power demand and cooling duties associated with the presence of impurities in \(\text{CO}_2 \) streams, are calculated as:

\[
\delta w_{\text{comp}} = \frac{w_{\text{comp}}^{\text{CO}_2} - w_{\text{comp}}^{\text{CO}_2}}{w_{\text{comp}}^{\text{CO}_2}} \cdot 100\%
\]

(12)
\[\delta q_{\text{cool}} = \frac{q_{\text{cool}} - q_{\text{cool}}^{\text{CO}_2}}{q_{\text{cool}}^{\text{CO}_2}} \cdot 100\% \]

(13)

where \(w_{\text{comp}} \) and \(q_{\text{cool}} \) are respectively the specific compression power and cooling duty of impure \(\text{CO}_2 \) streams, while \(w_{\text{comp}}^{\text{CO}_2} \) and \(q_{\text{cool}}^{\text{CO}_2} \) are those corresponding to the pure \(\text{CO}_2 \).

Figures 6 a and b show respectively the relative changes \(\delta w_{\text{comp}} \) and \(\delta q_{\text{cool}} \), calculated using equations (12) and (13) based on the data presented in Figure 5 for the \(\text{CO}_2 \) streams of various purity. As can be seen from Figure 6 a, the compression power generally increases with the decrease in \(\text{CO}_2 \) purity. This can be explained by the fact that compression power (see equation (2)) is inversely proportional to the fluid density which progressively decreases with the increase in the amount of the impurities. In the case of oxy-fuel stream carrying 85% v/v impurities, the multistage compression (Figure 6 a) demands \(\text{ca} \) 12-30% more power than compression of pure \(\text{CO}_2 \). Remarkably, the impact of \(\text{CO}_2 \) stream purity on the intercooling duty (Figure 6 b) is non-monotonic. In particular, when using compression options A and B, the impact of impurities on the cooling duty becomes notable only for the oxy-fuel \(\text{CO}_2 \) stream of 85% purity, where the cooling is reduced by less than \(\text{ca} \) 2% when compared to the pure \(\text{CO}_2 \). In the case of the compression option C, the cooling duty is slightly increased (by \(\text{ca} \) 5%) for pre-combustion and oxy-fuel double-flash streams, and becomes by \(\text{ca} \) 50% larger than for the pure \(\text{CO}_2 \) when applied to oxy-fuel dehumidified \(\text{CO}_2 \) stream. The latter increase in the cooling duty can be attributed to the decrease in the bubble point temperature of the \(\text{CO}_2 \) mixture with the impurities as discussed earlier and as can be seen from the data in Table 1.

As can be seen from equations (1)-(3), the compression work and the cooling duty are subject to uncertainties in the fluid density and enthalpy predictions by the thermodynamic model. While there is a lack of experimental data for validation of the properties models for multicomponent \(\text{CO}_2 \) mixtures relevant to CCS, the accuracy of the PR EoS predictions of the fluid density can be judged to some extent by available studies assessing the PR EoS validity against data for pure \(\text{CO}_2 \) and its binary and ternary mixtures (see e.g., Valderrama and Alfaro, 2000; Li and Yan, 2009; Mazzoccoli et al, 2012; Wilhelmsen et al., 2012; Nazeri et al, 2006). These studies have shown that the PR EoS can provide reliable estimates for
properties of CO\textsubscript{2} in gas phase, though it tends to under-estimate the liquid density, on average by \textit{ca} 4\% for pure CO\textsubscript{2} and by \textit{ca} ±2.5\% for binary and ternary mixtures of CO\textsubscript{2} with CH\textsubscript{4} and N\textsubscript{2} (Wilhelmsen et al., 2012). Applying the error propagation analysis to equation (1) it can be shown that the above ±4\% inaccuracy in the CO\textsubscript{2} fluid density would results in a corresponding ±4\% error in the estimated compression power.

6. Conclusions and recommendations

The results of a thermodynamic analysis performed for determining the power requirements for the compression of CO\textsubscript{2} streams for pipeline transportation and subsequent geological sequestration were presented. The CO\textsubscript{2} streams considered included those captured from oxy-fuel and pre-combustion coal-fired power plants. Several industrial compression schemes as previously recommended for high-purity CO\textsubscript{2} streams captured in a post-combustion plant (Witkowski et al., 2013) were considered. The three strategies examined included gas-phase compression using multistage centrifugal compressors, multistage compression of CO\textsubscript{2} gas followed by liquefaction and pumping, and gas-phase compression using supersonic shock-wave two-stage and single-stage compressors. Given the relatively high pressures of CO\textsubscript{2} streams captured in oxy-fuel and pre-combustion processes, the analysis was performed for the high-pressure compression phase starting at 15 bar.

It was found that for oxy-fuel and pre-combustion CO\textsubscript{2} streams of purity higher than \textit{ca} 96\%, the compression power for the three compression strategies examined was not significantly affected by the presence of impurities. In case of the oxy-fuel stream with 85\% CO\textsubscript{2} purity, the compression power requirement for the three compression schemes considered was found to increase by \textit{ca} 12-30 \% more than that for the compression of pure CO\textsubscript{2}. Given that the power demand for compression increases with the amount of CO\textsubscript{2} stream impurities which removal would raise the capture costs, there is a potential trade-off between the costs of compression and purification. By combining the present methodology with a cost-benefit analysis model for the compression and purification, an optimal CO\textsubscript{2} stream purity for a given CCS plant may be determined.

The power demand for operating the inter-stage coolers is estimated to be relatively small in comparison with the compression power demand (less than \textit{ca} 7\%) when using the
centrifugal and shock-wave compressors. However, when using compression combined with liquefaction and pumping, the cooling system operation can take up about 50% of the compression power when applied to the oxy-fuel double-flash and pre-combustion CO₂ streams, and becomes nearly 2.5 times higher than the compression power demand when applied to an oxy-fuel dehumidified stream of 85% CO₂ purity.

The relatively high estimated power demand for the operation of the compressor cooling system can be attributed to large cooling duties for the liquefaction of impure CO₂ streams. In particular, the cooling duty was shown to increase by up to 50% when compressing oxy-fuel CO₂ with 85% v/v purity as compared to that for pure CO₂.

Remarkably, for CO₂ streams of higher than 95 % v/v purity, compression combined with liquefaction and pumping can result in as much as ca 15% increase in efficiency as compared to conventional centrifugal compression. The liquefaction can be achieved at subcritical pressures around 62 bar using conventional water cooling systems at temperatures in the range 10 to 20 °C. At the same time, the study shows that operating such a system becomes less feasible for lower grade CO₂ streams due to incomplete liquefaction of the CO₂ stream. In particular, given the low bubble-point temperatures of oxy-fuel streams of ca 85% CO₂ purity, liquefaction at 62 bar would require using coolant temperatures as low as –54.5 °C which would not be economically viable. This temperature may be increased by applying CO₂ liquefaction at higher pressures, however, to determine the optimal conditions for the liquefaction, the trade-off between the costs for operating compressors and cooling/pumping system should be carefully considered.

Acknowledgements

The financial support from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102 (CO2QUEST), the UK Engineering and Physical Science Research Council (UKCCSRC grant number UKCCSRC-C2-183) and from Ministry of Education, Malaysia is gratefully acknowledged.
References

White, V., Allam, R. & Miller, E. 2006. Purification of oxyfuel-derived CO₂ for Sequestration or EOR.

Figure 1: Boundaries of VLE region in pressure-temperature phase diagram for pure CO₂, pre-combustion, post-combustion and oxy-fuel streams (85 and 96.7 % v/v CO₂) calculated using PR EoS.
Figure 2: Phase envelope boundaries and thermodynamic paths for the ‘option A’ compression of pure CO2 (a), oxy-fuel CO2 of 85 % v/v purity (b), oxy-fuel CO2 of 96.70 % v/v purity (c), and pre-combustion CO2 stream (d).
Figure 3: Phase envelope boundaries and thermodynamic paths for the ‘option B’ compression of pure CO\textsubscript{2} (a), oxy-fuel CO\textsubscript{2} of 85 % v/v purity (b), oxy-fuel CO\textsubscript{2} of 96.70 % v/v purity (c), and pre-combustion CO\textsubscript{2} stream (d).
Figure 4: Phase envelope boundaries and thermodynamic paths for the ‘option C’ compression of pure CO$_2$ (a), oxy-fuel CO$_2$ of 85% v/v purity (b), oxy-fuel CO$_2$ of 96.70% v/v purity (c), and pre-combustion CO$_2$ stream (d).
Figure 5: Power consumption in multistage compression (options A, B and C) of pure CO$_2$ and the CO$_2$ mixtures of various purity (Table 1). (a) – compression duty, (b) – inter-stage cooling duty, (c) – cooling power demand.
Figure 6: The relative variation in the compression power (a) and inter-stage cooling duty (b) caused by the presence of impurities in the CO\textsubscript{2} streams (options A, B and C).
Table 1: Average compositions of CO₂ mixtures captured in oxy-fuel, pre-combustion and post-combustion technologies (Porter et al., 2015).

<table>
<thead>
<tr>
<th></th>
<th>Oxy-fuel</th>
<th>Pre-combustion</th>
<th>Post-combustion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw/dehumidified</td>
<td>Double flashing</td>
<td>Distillation</td>
</tr>
<tr>
<td>CO₂ (% v/v)</td>
<td>85.0</td>
<td>96.78</td>
<td>99.30</td>
</tr>
<tr>
<td>O₂ (% v/v)</td>
<td>4.70</td>
<td>1.20</td>
<td>0.40</td>
</tr>
<tr>
<td>N₂ (% v/v)</td>
<td>5.80</td>
<td>1.60</td>
<td>0.20</td>
</tr>
<tr>
<td>Ar (% v/v)</td>
<td>4.47</td>
<td>0.40</td>
<td>0.10</td>
</tr>
<tr>
<td>NOₓ (ppm)</td>
<td>100</td>
<td>150</td>
<td>33</td>
</tr>
<tr>
<td>SO₂ (ppm)</td>
<td>50</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>SO₃ (ppm)</td>
<td>20°</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O (ppm)</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO (ppm)</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂S (ppm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂ (ppm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CH₄ (ppm)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bubble-point temperature (°C) at 62 bar:
-54.5 14.8 23 16 23

Sources: [a] (Kather and Kownatzki, 2011), [b] (Pipitone and Bolland, 2009), [c] (EC-2011), [d] (Kather et al, 2013).

* In the present study SO₃ concentration is considered to be negligibly small.

Table 2: Multistage compression options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Type of compression machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Multistage centrifugal compressors</td>
</tr>
<tr>
<td>B</td>
<td>Single- or two-stage supersonic shock-wave compressors</td>
</tr>
<tr>
<td>C</td>
<td>Multistage centrifugal compressors combined with the liquefaction and pumping units</td>
</tr>
</tbody>
</table>
Table 3: Values of the interaction parameter δ_{ij} for the various binary mixtures.

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>N₂</th>
<th>H₂</th>
<th>O₂</th>
<th>CO</th>
<th>H₂S</th>
<th>SO₂</th>
<th>H₂O</th>
<th>CH₄</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0</td>
<td>-0.02</td>
<td>0.34</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
<td>0</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>N₂</td>
<td>-0.02</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>H₂</td>
<td>0.34</td>
<td>0.05</td>
<td>0</td>
<td>0.00</td>
<td>0.07</td>
<td>0.14</td>
<td>0.33</td>
<td>0.28</td>
<td>-0.02</td>
<td>-0.05</td>
</tr>
<tr>
<td>O₂</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CO</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H₂S</td>
<td>0.11</td>
<td>0.15</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>SO₂</td>
<td>0</td>
<td>0</td>
<td>0.33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H₂O</td>
<td>0</td>
<td>0</td>
<td>0.28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.51</td>
<td>0</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.11</td>
<td>0.04</td>
<td>-0.02</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0.51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ar</td>
<td>0</td>
<td>0</td>
<td>-0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>