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Abstract. Convolution quadrature (CQ) methods have enjoyed tremendous interest in recent
years as an efficient tool for solving time-domain wave problems in unbounded domains via bound-
ary integral equation techniques. In this paper we consider CQ type formulations for the parallel
space-time evaluation of multistep or stiffly accurate Runge–Kutta rules for the wave equation. In
particular, we decouple the number of Laplace domain solves from the number of time steps. This
allows us to overresolve in the Laplace domain by computing more Laplace domain solutions than
there are time steps. We use techniques from complex approximation theory to analyze the error of
the CQ approximation of the underlying time-stepping rule when overresolving in the Laplace do-
main and show that the performance is intimately linked to the location of the poles of the solution
operator. Several examples using boundary integral equation formulations in the Laplace domain
are presented to illustrate the main results.

Key words. boundary integral equations, convolution quadrature method, acoustic wave
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1. Introduction. Let Ω be a bounded domain with boundary Γ. We consider
the wave equation in the exterior Ω` :“ R3zΩ given by

(1.1)

$

’

’

’

&

’

’

’

%

B2u

Bt2
pt;xq ´ c2∆xupt;xq “ 0, x P Ω`,

up0;xq “
Bu

Bt
p0;xq “ 0, x P Ω`,

upt;xq “ gpt;xq, x P Γ.

With the rise in massively parallel computing in recent years it has become important
not only to achieve parallelism in space for the solution of (1.1) but also to exploit
parallelism in time. One way to achieve this is by a Fourier or Laplace transform
of the wave equation. This allows us to solve for a range of frequencies in parallel
and to reassemble the time-solution by an inverse transform. Closely related to this
approach are space-time parallel convolution quadrature (CQ) type schemes. Consider
a sequence of equally spaced discrete-time approximations

udpt0;xq, udpt1;xq, udpt2;xq, . . .

generated by, e.g., a multistep or Runge–Kutta scheme, such that udptn;xq « uptn;xq
for n “ 0, 1, . . . and tn “ n∆t. We now apply a Z-transform to this sequence and
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OVERRESOLVING IN THE LAPLACE DOMAIN FOR CQ METHODS A189

define the function

Udpz;xq :“
8
ÿ

n“0

udptn;xqzn.

It turns out (see section 2) that for each evaluation of Udpz;xq for a given value z,
we need to solve m modified Helmholtz problems with typically complex wavenumber
and known boundary data arising from a Z-transform of g. For multistep schemes we
have m “ 1. For Runge–Kutta schemes m is the number of stages of the scheme. The
time-stepping values udptn;xq can then be recovered by a simple Cauchy integral as

(1.2) udptn;xq “
1

2πi

ż

C

Udpz;xq

zn`1
dz.

(1.2) can be efficiently evaluated by a trapezoidal rule with Nf discretization points,
making necessary the solution of m ˆNf independent modified Helmholtz problems
to recover the time steps.

CQ methods were introduced by Lubich in [24, 25, 26]. In recent years they have
seen tremendous interest for the solution of exterior time-domain scattering problems
via boundary integral equation formulations; see, e.g. [7, 11, 2, 8, 12, 23]. The
application to Maxwell problems is discussed in [13, 1]. A recent excellent overview
of the literature on CQ type methods is also contained in [3], [17] and recently in [20].

In this paper we take a slightly different approach to CQ methods. We do not
consider the overall convergence of CQ methods to the continuous wave equation
but rather ask the question of how well CQ approximates the time steps udptn;xq
generated by the underlying time-stepping scheme. The crucial approximation here is
the evaluation of the Cauchy integral in (1.2) via a trapezoidal rule. Based on classical
analyticity results for the solution operator of the Helmholtz equation in the frequency
domain we will give precise error bounds for the approximation of (1.2) as the number
of evaluation frequencies Nf tends to infinity. Moreover, the analysis will show how
many frequency evaluations will be at least necessary to obtain an acceptable accuracy.
As a byproduct the analysis in this paper will give decay estimates of the time-stepping
values udptn;xq similar in flavor to classical energy decay estimates for the continuous
solution upt;xq of (1.1).

In order to turn this CQ approach into a numerical method, a solver for the
modified Helmholtz equation in the Laplace domain is needed. Here, we focus on
boundary integral formulations, as they are most frequently used in the context of
CQ methods, and we analyze how the spectral properties of different formulations
(e.g., integral equation of the first or second kind, combined formulations) influence
the rate of convergence of the trapezoidal rule for (1.2). Other types of solvers in the
Laplace domain are possible such as finite elements with a perfectly matched layers
(PML) condition [9, 22], and the type of analysis presented in this paper immediately
extends to these formulations.

The paper is structured as follows. In section 2 we give an overview of parallel CQ
methods with a particular focus on the role of the underlying Z-transform. In section
3 we discuss the analyticity of the solution operator in dependence of the exterior
resonances of a related Helmholtz problem. This is needed for the convergence analysis
in section 4. In section 5 we turn our attention to boundary integral formulations and
discuss the influence of the poles of the solution operators for various integral equation
formulations on the convergence results. In section 6 we present numerical results,
including a precise convergence estimate of the CQ approximation of the underlying

D
ow

nl
oa

de
d 

09
/2

6/
17

 to
 1

28
.4

1.
61

.5
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A190 T. BETCKE, N. SALLES, AND W. ŚMIGAJ

time-stepping rule in case of a three-dimensional trapping domain. We finish with
conclusions in section 7.

2. Convolution quadrature as a Z-transform method. In this section we
review the CQ method. The derivation is similar to those given in [7, 2] but focuses
explicitly on the representation in terms of a Z-transform and its inversion via Cauchy
integrals. To simplify the presentation we rewrite (1.1) as a first order system of the
form

$

’

’

&

’

’

%

1

c

BY pt;xq

Bt
“ LY pt;xq, x P Ω`,

Y p0;xq “ 0, x P Ω`,

BY pt;xq “ F pt;xq, x P Γ,

(2.1)

where Y pt;xq “ r
upt;xq

1
c
Bu
Bt pt;xq

s, L “
“

0 I
∆x 0

‰

, B “ r I 0
0 0 s, and F pt;xq “

“

gpt;xq
0

‰

.

We first write the frequency problems to be solved when applying a multistep
scheme, and then we will see how to apply an m-stage Runge–Kutta scheme [5, 6, 4].

2.1. Multistep BDF schemes. We start by applying a BDF-multistep rule
[29] to the first order system (2.1). The general form of the discrete scheme is then

(2.2)
1

c∆t

n
ÿ

j“0

γn´jYdptj ;xq “ LYdptn;xq.

Here, Ydptn;xq is the sequence of discrete approximations to Y ptn;xq generated by the
multistep rule, and the γn´j are the coefficients of the multistep rule. For example, in
the case of implicit Euler we have γ0 “ 1, γ1 “ ´1, and γj “ 0, j ą 1. For convenience
we will always assume that γ is an infinite sequence, where all but a finite number of
elements (corresponding to the multistep rule) are zero.

We want to apply the Z-transform to (2.2). We use the following definition for
the Z-transform ZtXu of a general sequence tXnu with n ě 0:

(2.3) ZtXupzq :“
8
ÿ

n“0

Xnz
n, z P C.

Hence, the elements of the sequence become the Taylor coefficients of the function
ZtXupzq. The inverse transform is given by a Cauchy integral as

(2.4) Xn :“
1

2πi

ż

C

ZtXupzq
zn`1

dz,

where C is a contour around 0 inside the domain of analyticity of ZtXupzq. Typically,
we use a circle of radius 0 ă λ ď 1. The following well-known result holds for the
existence of the Z-transform.

Proposition 2.1. Let tXnu be a sequence with |Xn| ď Ce´αn, C ą 0, α P R.
Then the Z-transform of tXnu exists and ZtXupzq is analytic inside every closed disk
around 0 with radius λ ă eα.

Proof. Let |z| “ λ. Then

|ZtXupxq| ď
8
ÿ

n“0

|Xnz
n| ď C

8
ÿ

n“0

`

λe´α
˘n
,

which converges if λ ă eα.
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OVERRESOLVING IN THE LAPLACE DOMAIN FOR CQ METHODS A191

Hence, if the sequence tXnu decays exponentially, then ZtXupzq is analytic within
a disk of radius λ ą 1. On the other hand, if the sequence is only bounded or grows
exponentially, we require λ ă 1.

The Z-transform of (2.2) is given by

(2.5)
1

c∆t

8
ÿ

n“0

«

n
ÿ

j“0

γn´jYdptj ;xq

ff

zn “ L
8
ÿ

n“0

Ydptn;xqzn.

Define γpzq “
ř8

n“0 γnz
n and Ydpz;xq “

ř8

n“0 Ydptn;xqzn. Then, the left-hand side
of (2.5) is a convolution of the Taylor coefficients of γpzq and Ydpz;xq. Equation (2.5)
is therefore equivalent to

1

c∆t
γpzqYdpz;xq “ LYdpz;xq.

Translating into a second order form, we obtain the modified Helmholtz problem
$

’

&

’

%

ˆ

γpzq

c∆t

˙2

Udpz;xq ´∆xUdpz;xq “ 0, x P Ω`,

Udpz;xq “ Gpz;xq, x P Γ,

(2.6)

where Udpz;xq “
ř8

n“0 udptn;xqzn and Gpz;xq “
ř8

n“0 gptn;xqzn. We still need to
define suitable boundary conditions toward infinity. Consider a sphere S of radius
r0 ą 0 surrounding the domain Ω. Then in the exterior of S the solution of (1.1) is
outgoing, and the appropriate boundary conditions for (2.6) are outgoing boundary
conditions. For a general Helmholtz problem of the form

(2.7) ∆vpxq ` k2vpxq “ 0, x P Ω`,

with possibly complex wavenumber k, outgoing boundary conditions can be defined
by requiring that v can be expanded into a series of the form

(2.8) vpxq “
8
ÿ

n“0

n
ÿ

m“´n

an,mh
p1q
n pkrqY

m
n px̂q for r “ |x| ą r0.

Here, x̂ “ x{|x|, h
p1q
n is a spherical Hankel function of the first kind, the Y mn are

spherical harmonics, and the an,m are expansion coefficients of the solution v [22].
In the case of a real wavenumber k (2.8) is equivalent to the Sommerfeld radiation
condition lim|x|Ñ8 |x|p

B
B|x| ´ ikqvpxq “ 0 uniformly and generalizes the Sommerfeld

radiation condition to arbitrary complex wavenumbers.
Hence, suitable conditions toward infinity of (2.6) are given by (2.8) with

wavenumber k :“ kz, where

(2.9) kz :“ i

ˆ

γpzq

c∆t

˙

.

For each given z we can now evaluate Udpz;xq by solving the boundary value
problem (2.6) together with outgoing boundary conditions specified above. Once we
have computed Udpz;xq, the time-stepping values udptn;xq are obtained by applying
the inverse Z-transform (2.4) as

udptn;xq “
1

2πi

ż

|z|“λ

Udpz;xq

zn`1
dz,(2.10)
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A192 T. BETCKE, N. SALLES, AND W. ŚMIGAJ

where we integrate over a circle around the origin with radius λ. In order to turn
this into a numerical method we need to approximate this contour integral. The
natural choice is the trapezoidal rule, since it converges exponentially in the number

Nf of integration points for periodic analytic functions. Let zk “ λe
2πi kNf with

k “ 1, . . . , Nf . The trapezoidal rule applied to the above contour integral gives

(2.11) udptn;xq « u
Nf
d ptn;xq :“

1

Nf

Nf
ÿ

k“1

Udpzk;xq

znk
.

Using the fact that Udpz;xq “ Udpz;xq, we do not need to solve problem (2.6) for
Nf different frequencies but only for half the frequencies (see [7, section 4.1]). Fur-
thermore, the Z-transform of the boundary data and the inverse Z-transform of the
solution Ud can be efficiently evaluated via FFT.

We can summarize the multistep CQ method in three steps:
1. Compute ωj “ γpzjq{pc∆tq for equally distributed points zj located on the

circle with radius λ used as contour for the inverse Z-transform to get the
wavenumbers for the modified Helmholtz problem.

2. For each wavenumber ωj , approximate the solution of problem (2.6) using a
boundary integral equation formulation or other method.

3. Perform the inverse Z-transform using (2.11) to evaluate the time-domain
solution.

2.2. Runge–Kutta schemes. In order to apply an m-stage Runge–Kutta
method to the first order system (2.1), we introduce the internal stages pViqi“1...m. A
Runge–Kutta method is defined by the matrix A “ pai,jq1ďi,jďm and the two vectors
b “ pbiq1ďjďm and c “ pcjq1ďjďm (see Appendix A). The general form of the discrete
scheme applied to (2.1) is then [5]

$

’

’

’

’

&

’

’

’

’

%

Viptn;xq “ Ydptn;xq ` c∆t
m
ÿ

j“1

ai,jLVjptn;xq for i P t1, . . . ,mu ,

Ydptn`1;xq “ Ydptn;xq ` c∆t
m
ÿ

j“1

bjLVjptn;xq,

(2.12)

where L is given before. The third vector, pcjqj“1...m, that characterizes the Runge–
Kutta scheme does not appear at this stage; it will appear later for the evaluation of
the right-hand side; see (2.21). In this paper we are only considering stiffly accurate
Runge–Kutta schemes, that is, am,j “ bj , j P t1, . . . ,mu.

By applying the Z-transform to (2.12), one has
$

’

’

’

’

&

’

’

’

’

%

Vipz;xq “ Ydpz;xq ` c∆t
m
ÿ

j“1

ai,jLVjpz;xq,

z´1Ydpz;xq “ Ydpz;xq ` c∆t
m
ÿ

j“1

bjLVjpz;xq.
(2.13)

By using a stiffly accurate Runge–Kutta scheme, from (2.13) we obtain the
equality

Vmpz;xq “ z´1Ydpz;xq.(2.14)

From the second expression of (2.13), we get
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OVERRESOLVING IN THE LAPLACE DOMAIN FOR CQ METHODS A193

Ydpz;xq “
z

1´ z
c∆t

m
ÿ

j“1

bjLVjpz;xq for |z| ă 1, z P C,(2.15)

which can be used in the first expression of (2.13),

Vipz;xq “ c∆t
m
ÿ

j“1

ˆ

z

1´ z
bj ` ai,j

˙

LVjpz;xq for |z| ă 1, i “ 1 . . .m.(2.16)

Taking into account the fact that Vj can be decomposed as Vjpz;xq “ rRjpz;xq,
Sjpz;xqs

t, we obtain a system of equations of the second order:

$

’

’

’

&

’

’

’

%

Ripz;xq “ c∆t
m
ÿ

j“1

ˆ

z

1´ z
bj ` ai,j

˙

Sjpz;xq,

Sjpz;xq “ c∆t
m
ÿ

`“1

ˆ

z

1´ z
b` ` aj,`

˙

∆xR`pz;xq.

By introducing Rpz;xq “ pR1pz;xq, R2pz;xq, . . . , Rmpz;xqq, we can write

ˆ

∆pzq

c∆t

˙2

Rpz;xq “ ∆xRpz;xq,(2.17)

where

∆pzq “

ˆ

A`
z

1´ z
1bt

˙´1

(2.18)

with 1 “ p1, . . . , 1q
t
P Rm.

We have to diagonalize ∆pzq in order to decouple the system of equations and
be able to apply a boundary element method. We assume for the radius λ of the
integration contour that λ ă 1. In this case ∆pzq always exists [2]. However, ∆pzq
may not be diagonalizable for certain values of z within the unit disk. For example, in
the case of Radau IIa this occurs for z “ 3

?
3´5 (see [2, Proposition 3.4] or Appendix

A). In section 3.2 we discuss this case in more detail.
Let Ppzq be the matrix of eigenvectors of ∆pzq and Dpzq the diagonal matrix

containing the associated eigenvalues such that

∆pzq “ PpzqDpzqP´1pzq and Dpzq “ diag pγ1pzq, . . . , γmpzqq .(2.19)

Then we get the independent equations

ˆ

γjpzq

c∆t

˙2

Wjpz;xq “ ∆xWjpz;xq(2.20)

with Wj “
řm
`“1

`

P´1pzq
˘

j,`
R`pz;xq.

We still need to define the boundary conditions for the frequency problems. Since
Viptn;xq in (2.12) is an internal stage, we have the boundary condition (see [30,
subsection 2.2] and [3, section 2], for example)

BVjptn;xq “ F ptn ` cj∆t, xq, x P Γ,(2.21)
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A194 T. BETCKE, N. SALLES, AND W. ŚMIGAJ

where cj is the jth coefficient of the vector c that defines the Runge–Kutta scheme
and F pt;xq “

“

gpt;xq
0

‰

with g the Dirichlet data of the acoustic problem.
Taking into account (2.21) and applying the Z-transform, one has the following

boundary condition for Rj :

Rjpz;xq “ Gjpz;xq :“
ÿ

ně0

gptn ` cj∆t;xqz
n, x P Γ.(2.22)

Finally, the boundary condition for (2.20) is written as

W`pz;xq “
m
ÿ

j“1

`

P´1pzq
˘

`,j
Gjpz;xq, x P Γ.(2.23)

The frequency problems to solve are

$

’

’

’

&

’

’

’

%

ˆ

γipzq

c∆t

˙2

Wjpz;xq “ ∆xWjpz;xq, x P Ω`,

Wjpz;xq “
m
ÿ

`“1

`

P´1pzq
˘

j,`
G`pz;xq, x P Γ,

(2.24)

with radiation conditions for Wj at infinity (see (2.8) and [22]). If we use a stiffly
accurate Runga–Kutta scheme (2.14), we now obtain

Udpz;xq “ zRmpz;xq “ z
m
ÿ

j“1

pPpzqqm,jWjpz;xq,(2.25)

and formulas (2.10) and (2.11) provide respectively the solution of our problem and
its approximation by trapezoidal rule.

3. Scattering poles and analyticity of the Laplace domain problem.
Crucial for the analysis of the CQ method presented in section 2 is the analyticity of
Udpz;xq with respect to z P C. Consider the Helmholtz equation (2.7) with outgoing
boundary data (2.8) and given Dirichlet boundary conditions v “ g on Γ.

Then one can define the solution operator Bpkq, which maps the boundary data g
into a solution v of the associated Helmholtz problem with Dirichlet boundary data.
The following result holds for the analyticity of B (see, e.g., [32, section 9.7, Corollary
7.5]).

Theorem 3.1. The solution operator B is a meromorphic operator-valued func-
tion of k. The poles pj, j “ 1, 2, . . . , of Bpkq are located in the lower half of the
complex plane, that is, Imtpju ă 0 for all j.

At the poles pj the solution operator B loses injectivity, and there exist exponen-
tially growing outgoing waves that satisfy zero Dirichlet boundary conditions on Γ.
These poles are also called scattering poles associated with the Helmholtz problem.

3.1. Analyticity of multistep schemes. Now consider the solution operator
BU pzq associated with the modified Helmholtz problem (2.6) that maps boundary
data Gpz;xq into the solution Udpz;xq. It follows that Udpz;xq “ BpkzqGpz;xq “
BU pzqGpz;xq with kz as defined in (2.9). Hence, BU pzq “ Bpkzq, and from the an-
alyticity of B with respect to kz it follows that BU pzq is analytic with respect to z,
since kz is a polynomial in z. We therefore obtain the following result.
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Theorem 3.2. The solution operator BU pzq is a meromorphic function of z. It

can only have singularities at values zj satisfying pj “ ip
γpzjq
c∆t q.

It follows that BU is an analytic function of z in the interior of the disk with
radius λB defined by

λB :“ min
j
t|zj |u.(3.1)

Analyticity of the solution operator BU alone does not guarantee analyticity of Udpz;xq.
Since Udpz;xq “ BU pzqGpz;xq the radius of analyticity of the boundary data G is
crucial. Remember that Gpz;xq “

ř8

n“0 gptnqz
n. Hence, the radius of analyticity G

depends on the rate of decay of the time data gptn;xq.
Consider boundary data given in the form

gptn;xq “ e´βt sin5
p2tqfpxq

for some sufficiently smooth function f on Γ and β ą 0 (see, e.g., [2, section 6.1]).
Then the radius λG of analyticity of Gpz;xq is determined by the requirement that

|Z tgp¨;xqu pzq| ď
8
ÿ

n“0

e´βn∆t|fpxq|λnG ă 8,

and therefore λG ă eβ∆t. Hence, as ∆t Ñ 0 the radius of analyticity becomes
effectively λG “ 1.

Another example is an incident wave ui defined by a Gaussian beam of the form

uipt;xq “ cos

ˆ

2π

ˆ

t´
d ¨ x

c

˙

f

˙

e´
pt´tp´ d¨xc q

2

2σ2 ,

and gpt;xq :“ ´uipt;xq. The values gptn;xq now decay superexponentially as nÑ8.
It follows that the associated function Gpz;xq is an entire function with λG “ 8.

We note that the above Gaussian beam does not satisfy the initial condition of
(1.1) for t “ 0, introducing a weak singularity in the solution. In practice this is
not relevant if the beam starts sufficiently far away from the obstacle, and therefore
the size of the boundary data at the obstacle at t “ 0 is effectively zero in machine
precision. A rigorous way to obtain smooth boundary data satisfying the initial
conditions is to define the modified data

g̃pt;xq :“

ˆ

1´ e
´ t2

2σ2w

˙

gpt;xq

with a suitably chosen σw. Then, if the beam is starting sufficiently far away from
the obstacle we have g̃pt;xq « gpt;xq with an exponentially small error, once the
beam arrives at the obstacle. However, g̃p0;xq “ Bg̃

Bt p0;xq “ 0, satisfying the initial
conditions. Furthermore, λG̃ “ 8 still holds.

Combining the analyticity results for BU pzq and Gpz;xq, we obtain the following
statement for the analyticity of Udpz;xq with respect to z.

Theorem 3.3. Let λU :“ mintλB, λGu. Then the function Udpz;xq is analytic
with respect to z for all |z| ă λU .

Proof. We have Ud “ BU pz;xqGpz;xq. Hence, Ud is analytic with respect to z if
both BU pzq and Gpz;xq are analytic with respect to z.
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3.2. A remark on analyticity for Runge–Kutta schemes. To compute the
radius of analyticity of Ud in the Runge–Kutta case we could exploit the diagonaliza-
tion (2.19) of ∆pzq and using formula (2.25) write the solution as

Udpz;xq “ zRmpz;xq “ z
m
ÿ

j“1

pPpzqqm,j

˜

BpjqW pzq
m
ÿ

`“1

`

P´1pzq
˘

j,`
G`pz;xq

¸

,(3.2)

where BpjqW pzq “ Bpkpjqz q is the solution operator related to the wavenumber k
pjq
z “

i
γjpzq
c∆t , j “ 1, . . . ,m. If ∆pzq is diagonalizable everywhere for |z| ă 1, then the only

singularities are those of the scalar solution operator (assuming the boundary data is
sufficiently smooth).

However, this diagonalization may break down at values of z for which ∆pzq has
a multiple eigenvalue, such as at z “ 3

?
3´ 5 for Radau IIa. Hence, in the particular

case of Radau IIa this would only give analyticity within the disk of radius 3
?

3´ 5.
In the case of Runge–Kutta methods, instead of a scalar solution operator for a

scalar PDE we need to consider the solution operator BRpzq for the vector modified
Helmholtz equation

$

&

%

∆xRpz;xq ´
´

∆pzq
c∆t

¯2

Rpz;xq “ 0, x P Ω`,

Rpz;xq “ Gpz;xq, x P Γ,
(3.3)

for |z| ă 1 with outgoing boundary condition

Rpz;xq “
8
ÿ

n“0

n
ÿ

`“´n

hp1qn

ˆ

i
∆pzq

z∆t
r

˙

an,`Y
`
npx̂q,

for sufficiently large r “ |x|. Here, an,` is a vector of m coefficients. The matrix

function h
p1q
n p

∆pzq
z∆t rq is well defined, since ∆pzq has no eigenvalue at 0.

If in a certain domain D Ă C the matrix valued function ∆pzq is diagonalizable
as ∆pzq “ PpzqDpzqPpzq´1 with Ppzq, Dpzq and P´1pzq analytic with respect to z P D
by diagonalization the solution operator BR is analytic if and only if the associated
scalar solution operator BU is analytic. However, the question about what happens in
a neighborhood of points z for which ∆pzq is not analytically diagonalizable remains
open. In section 6.4 we show numerical results that indicate that for Radau IIa the
singularity of ∆pzq at z “ 3

?
3´5 does not influence the rate of convergence and that

as in the scalar case the rate of convergence is dominated by the singularities of the
scalar solution operator.

4. Convergence of the convolution quadrature method. The convergence

results in this section describe how well the approximate solution u
Nf
d , obtained using

Nf frequencies in the Laplace domain, approximates ud, the exact solution of the
underlying time-stepping rule. We do not consider the question of convergence of ud
against the exact solution u, which depends on well-known properties of multistep or
Runge–Kutta schemes.

The discretization u
Nf
d is obtained by applying a trapezoidal rule to the contour

integral (2.10). The analysis presented in this section is therefore based on classical
convergence estimates for the trapezoidal rule (see, e.g., [33, Theorem 2.1]). However,
we have chosen to present the convergence analysis in detail as it highlights the con-
nections between the time-domain values udptn;xq and the analyticity of the Laplace
domain function Udpz;xq.
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The results in this section only require the analyticity radius λU of the Laplace
domain solution. While in principle the results could therefore also be applied to
Runge–Kutta methods, precise estimates of the analyticity radius are available only
for the multistep case.

Using the analyticity of the frequency solution, we can get the following exact
error representation.

Theorem 4.1. Let ud and u
Nf
d be defined by (2.10) and (2.11). Let 0 ă λ ă λU ,

where λU is the radius of analyticity of Ud as defined in Theorem 3.3. For the error

u
Nf
d ptn;xq ´ udptn;xq we have

u
Nf
d ptn;xq ´ udptn;xq “

8
ÿ

κ“1

λκNfudptn`κNf ;xq.(4.1)

Remark 4.2. This error representation is well known in the context of trapezoidal
rule approximations of analytic functions. However, it highlights immediately that a
CQ approximation is accurate either if λ is sufficiently small or if the wave at time
step udptn;xq and all subsequent time steps have already left the area of observation,
that is, the values of x we are interested in.

Proof. We choose 0 ă λ ă λU . Then Ud is analytic in the disc of radius λ, and it
can be expanded as a Taylor series

(4.2) Udpz;xq “
8
ÿ

n“0

cnz
n

with coefficients

cn “
1

2πi

ż

|z|“λ

Udpz;xq

zn`1
dz “ udptn;xq.(4.3)

Then, inserting (4.2) into (2.11), it follows that

u
Nf
d ptj ;xq “

1

Nf

Nf
ÿ

`“1

8
ÿ

n“0

udptn;xqzn´j` “

8
ÿ

κ“0

λκNfudptj`κNf ;xq(4.4)

“ udptj ;xq `
8
ÿ

κ“1

λκNfudptj`κNf ;xq,

since by aliasing

Nf
ÿ

`“1

zp´j` “

#

λκNfNf if p “ j ` κNf , κ P N,
0 otherwise.

In order to determine the asymptotic rate of convergence of this CQ method, we

have to bound the error |u
Nf
d ptn;xq ´ udptn;xq|. We first need to obtain a bound on

the time-domain values udptn;xq. We have the following lemma.

Lemma 4.3. Let the radius of analyticity λU of Udpz;xq be defined as in Theorem

3.3. Then for any 0 ă λ̂ ă λU we have

(4.5) |udptn;xq| ď max
|z|“λ̂

|Udpz;xq|λ̂
´n.
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It therefore follows that

|udptn;xq| “ O
`

pλU ´ εq
´n

˘

for any ε ą 0 arbitrarily small.

Proof. Since Udpz;xq is analytic with respect to z inside every closed disk of radius

λ̂ ă λU , the value of the integrand in (4.3) is independent of λ̂, and we can estimate

|udptn;xq| “ |cn| ď max
|z|“λ̂

|Udpz;xq|λ̂
´n.

The second statement follows by choosing λ̂ arbitrarily close to λU .

Remark 4.4. The result in Lemma 4.3 is reminiscent of classical energy decay
estimates for the wave equation with zero Dirichlet conditions and nonzero initial
conditions in the exterior of a nontrapping obstacle. Let S be a sphere of radius
R such that S surrounds Ω and the support of the initial data is contained in S.
Let }upt; ¨q}E,R :“ r

ş

SzΩ
|∇upt;xq|2 ` |utpt;xq|2s1{2 be the local energy in SzΩ and

}up0; ¨q}E the total energy of the initial data in S.
In [28] it is shown that

}upt; ¨q}E,R ď Ce´βt}upt; ¨q}E

for C, β ą 0.

The estimate in Lemma 4.3 is an asymptotic estimate as nÑ8 and does not de-
pend on whether Ω is trapping. It depends only on the location of the resonances and
the behavior of the Dirichlet boundary data. Note also that if λU ă 1, then Lemma
4.3 becomes a growth estimate. This is, for example, the case if g is exponentially
growing in time. We also note that the transient behavior of udptn;xq may look rather
different, for example, in multiple scattering configurations. The transient behaviour
depends on the geometry and the evaluation point x of the time-domain solution.

Combining Lemma 4.3 and Theorem 4.1, we can bound the error |u
Nf
d ptn;xq ´

udptn;xq| as nÑ8.

Theorem 4.5. Let 0 ă λ ă λU . Then

ˇ

ˇ

ˇ
u
Nf
d ptn;xq ´ udptn;xq

ˇ

ˇ

ˇ
“ O

˜

ˆ

λU
λ
´ ε

˙´Nf
¸

as Nf Ñ8.

Proof. Let 0 ă λ ă λ̂ ă λU . Inserting (4.5) into (4.1), we obtain

ˇ

ˇ

ˇ
u
Nf
d ptn;xq ´ udptn;xq

ˇ

ˇ

ˇ
ď

8
ÿ

κ“1

λκNf |udptn`κNf ;xq|

ď max
|z|“λ̂

|Udpz;xq|λ̂
´n

´

λ
λ̂

¯Nf

1´
´

λ
λ̂

¯Nf
“ O

˜

ˆ

λU
λ
´ ε

˙´Nf
¸

(4.6)

for any ε ą 0 as Nf Ñ8 since we can choose λ̂ arbitrarily close to λU .
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pole γpλ
U zqc∆
t

γpλzq
c∆t

CλU

Cλ

Fig. 1. Contour used for the contour integral with the backward Euler scheme in red with radius
λ and contour of radius λU encountering the closest pole in blue.

Remark 4.6. The analysis shows that we can increase the rate of convergence by
choosing λ small. However, while the rate of convergence indeed increases, choos-
ing λ too small creates numerical instabilities that limit the achievable accuracy, as
indicated in [2, subsection 4.2] and also demonstrated later in Figure 4(b).

Theorem 4.5 is depicted again in Figure 1 for the case of backward Euler, where
γpzq “ 1´ z. The rate of convergence depends on the relative distance of the closest
pole to Cλ the red circle with radius λ.

5. Boundary integral formulations of the frequency domain problem.
The frequency domain problem (2.6) is posed in an unbounded domain. In order to
solve it numerically, we need to formulate a problem on a bounded domain, either
by using boundary integral formulations or by discretizing a finite domain together
with an absorbing boundary condition such as PML [19] or Hardy space infinite
elements [21]. Both introduce additional poles in the solution operator. A PML layer
will lead to an additional continuous spectrum from zero to infinity [22]. Boundary
integral formulations have resonances, which are related to the corresponding interior
problems. Hence, the convergence results depicted in section 4 depend not only on the
scattering poles but also on the poles introduced by the formulation of the frequency
domain problem on a finite domain.

This section gives an overview of possible integral equation formulations for the
frequency domain problem and discusses how these formulations introduce addi-
tional poles into the solution operator. The frequency domain problem is a modified
Helmholtz problem of the form

#

ω2Upxq ´∆Upxq “ 0, x P Ω`,

Upxq “ Gpxq, x P Γ,
(5.1)

with ω P C and outgoing boundary conditions toward infinity as described in section 2.
The Green’s function associated with the modified Helmholtz problem is gωpx, yq :“
e´ω|x´y|

4π|x´y| .

We define the single and double layer potential operators for the modified
Helmholtz equation as

rSωφs pxq “
ż

Γ

gωpx, yqφpyqdspyq, rKωφs pxq “
ż

Γ

B

Bnpyq
gωpx, yqφpyqdspyq, x P Ω`.
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Both operators satisfy the modified Helmholtz equation in the exterior of the domain.
We also need the single layer boundary operator Sω and the double layer boundary
operator Kω defined by

rSωφs pxq “

ż

Γ

gωpx, yqφpyqdspyq, rKωφs pxq “

ż

Γ

B

Bnpyq
gωpx, yqφpyqdspyq, x P Γ.

Let γ0 be the exterior trace operator. Then Sω “ γ0Sω and 1
2I `Kω “ γ0Kω, where

I is the identity operator. Details of mapping properties for these operators can be
found in [16].

In this paper we consider only indirect boundary integral formulations. The
results for direct boundary integral formulations are very similar.

5.1. Indirect first kind integral formulation. An integral formulation of the
first kind to solve the modified Helmholtz equation (5.1) for a given parameter ω P C
is given by

(5.2) rSωφs pxq “ Gpxq, x P Γ.

The solution in the exterior Ω` is then obtained as U “ Sω ˝ S´1
ω G. This represen-

tation holds for all ω such that iω ‰ kj and iω ‰ pj , where the pj are the scattering
poles as defined in Theorem 3.1, and the kj are the eigenfrequencies of the interior
Dirichlet eigenvalue problem, satisfying

#

´∆vpxq “ k2
j vpxq, x P Ω,

vpxq “ 0, x P Γ,

for some nonzero v P H1pΩq (see [15]). The situation is depicted in Figure 2(a) for the
case of backward Euler and a unit sphere as domain. The red dots show the Dirichlet
eigenvalues closest to the contour given by the time-stepping rule.

5.2. Indirect second kind integral formulation. Using an indirect second
kind formulation, we obtain the integral equation

(5.3)

„ˆ

1

2
I `Kω

˙

φ



pxq “ Gpxq, x P Γ,

which gives the representation of the exterior solution in Ω` as U “Kωp 1
2I`Kωq

´1G.
Similar to the case of the indirect first kind formulation, this representation is

valid for all ω such that iω ‰ pj and iω ‰ µj , where the µj are the eigenfrequencies
of the interior Neumann eigenvalue problem, satisfying

$

&

%

´∆v “ µ2v in Ω,
Bv

Bn
“ 0 on Γ,

for some v P H1pΩq. We recall that n is the outgoing normal to Ω. However, since 0 is
always an eigenvalue of the interior Neumann eigenvalue problem, the value ω “ 0 is
always a pole for the representation as indirect second kind integral equation. Suppose
that we use backward Euler as a time-stepping rule. Then γpzq “ 1´ z, and if the Z-
transform of the boundary data has a sufficiently large radius of analyticity, it follows
that λU “ 1. Applying Theorem 4.5, we obtain the simple convergence estimate

(5.4)
ˇ

ˇ

ˇ
u
Nf
d ptn;xq ´ udptn;xq

ˇ

ˇ

ˇ
“ O

´

pλ` εq
Nf

¯
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4 2 0 2 4
Re

4

2

0

2

4

Im

(a) First kind integral formulation.

4 2 0 2 4
Re

4

2

0

2

4

Im

(b) Second kind integral formulation.

Fig. 2. Poles located near the contour for the indirect first and second kind integral formulations
for the scattering by the unit sphere. We point out that the second kind integral formulation has
a pole at the origin, but not the first kind integral formulation. It will explain a better rate of
convergence for the first kind integral formulation.

for any ε ą 0 and λ ă 1. Figure 2(b) shows the location of the poles with respect
to the contour given by the backward Euler rule for the case of the indirect second
kind formulation. The pole at zero is always closest to the contour and dominates the
convergence behavior.

5.3. Indirect combined integral formulation. The indirect formulation of
the second kind always has a pole at zero, while the indirect formulation of the first
kind has a pole related to the first eigenvalue of the interior Dirichlet problem. It is
therefore sensible to consider a combined formulation to try to push away the small-
est magnitude pole introduced by the boundary integral formulation. A combined
formulation to solve (5.1) takes the form

(5.5)

„

1

2
I `Kω ` ηSω



φpxq “ Gpxq, x P Γ.

The representation of the solution in Ω` is therefore given by

U “ rKω ` ηSωs
ˆ

1

2
I `Kω ` ηSω

˙´1

G.

The following result is a reformulation of [14, Theorem 3.33] for the modified Helmholtz
equation (5.1).

Theorem 5.1. Let η ‰ 0 with Retηu “ 0 and ImtηuImtωu ě 0. Then the com-
bined formulation (5.5) is uniquely solvable for all frequencies ω satisfying Retωu ě 0.

In addition to singularities at the scattering poles, the combined formulation has
resonances at the eigenfrequencies ν of the modified interior impedance eigenvalue
problem

#

´∆v “ ´ν2v in Ω,
Bv
Bn ` ηv “ 0 on Γ

(5.6)

for some v P H1pΩq. For real and nonnegative η it can be readily seen that all eigenfre-
quencies ν lie on the imaginary axis. Moreover, as η Ñ 0 the smallest eigenfrequency
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4 2 0 2 4
Re

4

2

0

2

4

Im

(a) Combined integral formulation with η “ i.

4 2 0 2 4
Re

4

2

0

2

4

Im

(b) Combined integral formulation with
η “ ω.

Fig. 3. Poles located near the contour for two different combined integral formulations for the
scattering by the unit sphere. There are poles located in the right half inferior space for η “ i then
a pole can be inside the contour when η P C. The combined formulation with η “ ω breaks the
symmetry but the origin is still a pole then the rate of convergence will be the same than for the
indirect second kind integral formulation.

ν approaches 0 since η “ 0 corresponds to the Neumann case. For η Ñ8 the smallest
eigenfrequency ν approaches the smallest eigenfrequency of the Dirichlet case.

If Imtηu ą 0, then by Theorem 5.1 and the fact that if ν is an eigenfrequency,
then also ´ν is an eigenfrequency, it follows that the interior impedance eigenvalues
can be located only in the lower right quadrant and in the upper left quadrant of the
complex plane. Hence, singularities can occur close to or in the interior of the contour

defined by the values γpzq
c∆t , |z| “ λ. This is demonstrated in Figure 3(a) for η “ i. We

now have a pole inside the contour given by the backward Euler rule, and we have to
modify the contour (e.g., by choosing λ ă 1) to remedy the situation.

To avoid this problem, one strategy is to choose η “ ω in (5.5). The map-
ping properties of the resulting combined field operator were analyzed in [27]. There
it is shown that the combined potential operator has a bounded L2 inverse for all
wavenumbers satisfying Retωu ą 0. The corresponding situation is depicted in Fig-
ure 3(b). The location of poles in this combined formulation is not symmetric any
more. However, as in the case of the second kind integral formulation, we still have a
pole at zero. Hence, for the asymptotic rate of convergence of the CQ approximation
for the backward Euler rule there is no difference between the second kind formulation
and the combined formulation with η “ ω.

6. Numerical results. In this section we demonstrate the numerical behavior
of the CQ method as the number of frequencies Nf is increased for fixed time Nt.
The model problem is the acoustic wave equation

$

’

’

’

&

’

’

’

%

B2u

Bt2
pt;xq ´ c2∆xupt;xq “ 0, x P Ω`,

up0;xq “
Bu

Bt
p0;xq “ 0, x P Ω`,

upt;xq “ gpt;xq, x P Γ,

(6.1)

with boundary condition

gpt;xq “ ´ cos

ˆ

2π

ˆ

t´
d ¨ x

c

˙

f

˙

e´
pt´tp´ d¨xc q

2

2σ2 .(6.2)
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Here, we use the parameters tp “ 10´3, σ “ 6
2000π , c “ 343, d “ p1, 0, 0q

t
. The final

time is Tf “ 20 ¨ 10´3 and the number of time steps is Nt “ 40. We recall that
gptn;xq decreases exponentially as nÑ8. Hence, for the radius of analyticity λG of
the Z-transform of the boundary data we obtain λG “ 8, and according to Theorem
3.3, λU “ λB with λB defined by (3.1). In the first part of this section Ω will be
the unit sphere in R3. Later, we will present results for a more challenging trapping
domain.

We evaluate the time-domain solution in the observation domain

Ωobs “

!

x P r´3, 3s, y P r´3, 3s, z “ 0;
a

x2 ` y2 ą 1
)

,

discretized using a cloud of Np points. The maximum pointwise error in Ωobs is
approximated as

AbsDiffpNf q :“ max
xi,i“1...Np

ˇ

ˇ

ˇ
u
Nf
d ptn;xiq ´ urefptn;xiq

ˇ

ˇ

ˇ
(6.3)

» max
nPr0,Nts

›

›

›
u
Nf
d ptn;xq ´ urefptn;xq

›

›

›

L8pΩobsq
.

Reference solutions are computed by using a very high number of frequencies Nf in
the Laplace domain. All numerical results in this section were computed using the
boundary element package BEM++ (www.bempp.org) [31].

6.1. Validation of the theoretical rate of convergence. We first compare
the predicted rate of convergence in Theorem 4.5 with the observed convergence in the
case of the indirect second kind integral formulation (5.3) and backward Euler time-
stepping rule. The location of the poles for this formulation was depicted in Figure
2(b). The pole at zero dominates the convergence. Comparisons of the theoretical
estimated rate of convergence and the measured decay of AbsDiffpNf q for various
λ are shown in Figure 4(a). There is a very close match between the theoretical
estimate and the achieved rate of convergence. It is interesting to consider the point
Nf “ Nt, where we have the same number of frequency domain solves as there are
time steps. This corresponds to previously proposed CQ methods. As expected, the
error becomes smaller at this point as λ decreases. However, for very small λ the
convergence soon starts to level off due to numerical instabilities with small λ. This is
further shown in Figure 4(b), where the maximum achievable accuracy in dependence
of λ is demonstrated for the second kind formulation.

We now demonstrate how the rate of convergence changes for different coupling
coefficients in the combined integral formulation (5.5). We fix λ “ 0.95. Figure 5(a)
shows the convergence for constant real η “ 1. In this case we have λU « 1.0346 and
therefore a convergence rate of p λλU q

Nf « 0.9182Nf , whereas for the standard second

kind formulation we would only expect a rate of convergence of 0.95Nf . The combined
formulation with η “ ω converges with a rate of 0.95Nf , the same rate as the second
kind formulation, as shown in Figure 5(b). However, comparing Figures 5(b) and
4(a) it becomes obvious that the combined formulation with η “ ω is significantly
more accurate than the second kind formulation for the same number of frequencies.
Indeed, at the point Nf “ Nt we have an error of 3.106 ¨ 10´1 for the second kind
formulation and an error of 8.572 ¨ 10´3 for the combined formulation. Hence, in
practice the combined formulation may be preferable.

When η “ i and λ “ 0.95, there is a pole inside the contour and so Theorem
4.5 is no longer usable, but the solution still seems to converge when Nf Ñ 8, as
demonstrated in Figure 6. However, the rate of convergence does not seem to be
exponential.
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(a) Theoretical and numerical results for the scattering by
the unit sphere using the indirect second kind integral for-
mulation. When λ is too small numerical instabilities start
occurring.
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(b) Limit of achievable accuracy when λ is small for the unit
sphere using the indirect second kind integral formulation.

Fig. 4. Convergence on the unit sphere for the indirect second kind integral equation. We see
that the theoretical rate of converge is well approximated by the numerical method and we can see
the influence of numerical instability when pλ{λU q

Nf becomes too small.

6.2. Comparison of the rate of convergence for backward Euler and
BDF-2. It is interesting to compare backward Euler with BDF-2 as Nf Ñ8. Figure
7(a) depicts the contour for backward Euler and BDF-2. We observe that the pole
is closer to the BDF-2 contour than to the backward Euler contour. Hence, the rate
of convergence of the CQ approximations to the exact time-stepping values will be
slower for BDF-2 than for backward Euler, unless the pole is at zero, in which case
both rates of convergence are identical.

Figure 7(b) confirms this by presenting the measured and the theoretical rate of
convergence for these two schemes using a combined integral formulation with η “ 20
and λ “ 0.9. In the case of backward Euler we have λU « 1.1318 and for BDF-2
λU « 1.0118. We note, however, that BDF-2 is still a significantly more accurate
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(a) Absolute difference for the unit sphere using the in-
direct combined integral formulation with real combining
coefficient η “ 1.
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(b) Absolute difference for the unit sphere using the in-
direct combined integral formulation with varying coeffi-
cient η “ ω.

Fig. 5. Two indirect combined integral formulations. When η “ 1, λ{λU “ 0.9182 compared to
η “ ω, λ{λU “ 0.95.

scheme for the solution of the underlying wave equation, as it is second order in time,
while backward Euler is only first order accurate.

6.3. Trapping domain. Until now, we were studying the solution of problem
(6.1) when Ω is the unit sphere. We now consider the elliptic cavity shown in Fig-
ure 8. It is a three-dimensional version of the elliptic cavity studied in [10]. For
the two-dimensional case it was shown in that paper that there exists a sequence
of wavenumbers along the real axis for which the norm of the combined potential
operator for the Helmholtz equation grows exponentially.

For the three-dimensional elliptic cavity it is not possible to evaluate explicitly the
poles of the solution operator. Denote by Apωq the matrix obtained from a Galerkin
discretization (using piecewise constant basis functions) of the combined potential
operator r 12I `Kω ` ηSωs on the boundary Γ of the trapping domain. Let M be the
associated mass matrix and M “ CCH its Cholesky decomposition. Then a simple
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Fig. 6. Convergence of the numerical solution when a pole is inside the contour (case η “ i
and λ “ 0.95). The convergence bounds do not apply in this case and the rate of convergence seems
not to be exponential any more.

(a) Contour used for backward Euler (black) and
BDF-2 (blue).
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Theory backward Euler
Theory BDF2

(b) Absolute difference of the backward Euler
and BDF-2 schemes.

Fig. 7. Comparisons between the backward Euler and BDF-2 schemes. Contours used by these
two methods are shown. The left figure shows the contours of the two schemes and the right figure
shows the resulting convergence plots. Although the convergence to the discrete solution is faster for
backward Euler, the BDF-2 scheme is second order accurate for the approximation of the continuous
solution, while backward Euler is only first order accurate.

way to have an idea of the location of the poles is to plot

ppωq “
›

›A´1pωq
›

›

L2pΓq
“
›

›C´1Apωq´1C´H
›

›

2
.

If z is a pole, then ppωq Ñ 8 when ω Ñ z. We used η “ 1 in order to have poles on
the imaginary axis. Figure 9(a) shows ppωq for ω P r0, 4is and allows us to find the
closest pole z1 « 1.7718i, giving an estimated rate of convergence of 0.90896Nf for
backward Euler. The observed rate of convergence in Figure 9(b) matches very closely
this predicted rate. Figure 10 provides snapshots of the corresponding time-domain
solution at four different time steps.
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Fig. 8. Geometry of the trapping domain.

(a) L2-norm of the inverse of the combined poten-
tial along the imaginary axis.
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(b) Convergence of the solution for the elliptic
cavity.

Fig. 9. Trapping domain: Location of the nearest pole and absolute difference using an indirect
combined formulation with η “ 1 and backward Euler. The closest pole is located at 1.7718i and
therefore λU « 1.045, giving a predicted rate of convergence of pλ{λU q

Nf « 0.90896Nf .

6.4. Convergence of Runge–Kutta methods. We solve problem (6.1) with
incident wave (6.2), but this time using the Radau IIa Runge–Kutta method. We use
a combined integral formulation with η “ ω. Hence, for the scalar problem zero is
the closest pole. The interesting question is how the vector Helmholtz problem (3.3)
underlying the Radau IIa formulation influences the rate of convergence, and in par-
ticular whether the singularity of the eigenvalue decomposition of ∆pzq at z “ 3

?
3´5

is reflected in the observed convergence rate. Figures 11(a) and 11(b) show the ab-
solute difference between the numerical solutions obtained for different numbers of
frequencies and a reference result computed with a large number of frequencies, re-
spectively, for λ “ 0.90 and λ “ 0.95. It is interesting to observe that the convergence
consists of two phases: an initial phase with a significantly faster rate of convergence
and then an asymptotic (at least to machine precision) behavior that shows the same
rate of convergence as we would expect for the corresponding scalar solution operator.
Hence, the singularity of the eigenvalue decomposition of ∆pzq at z “ 3

?
3 ´ 5 does

not seem to influence the convergence behavior. At a much smaller scale, the initial
superconvergence behavior can also be observed for the multistep case in Figure 6.
Our current asymptotic analysis does not explain these transient phenomena.
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(a) Time-domain solution at time 0.0045s. (b) Time-domain solution at time 0.0075s.

(c) Time-domain solution at time 0.01s. (d) Time-domain solution at time 0.0125s.

Fig. 10. Solution of the scattering by the sphere with the elliptic cavity with backward Euler
(Figure 8) in the plane z “ 0 for different time steps with η “ 1 using Nf “ 300, Nt “ 40, Tf “
20 ¨ 10´3s, and λ “ 0.95.

6.5. Stability of the solution. While previously we considered the rate of

convergence of the CQ approximation u
Nf
d to the exact time-stepping solution ud for

various boundary integral formulations, we want to conclude the numerical examples

with a comparison of u
Nf
d to the exact solution u for different boundary integral

formulations.
We use a boundary condition of the form

fptq “ bpatqme´pt(6.4)

to get the exact radiating solution

uepr, tq “ bH

ˆ

t`
1´ r

c

˙ˆ

a

ˆ

t`
1´ r

c

˙˙m

e´
ppt` 1´r

c q
r ,(6.5)

where H denotes the Heaviside function. We use the two-stage Runge–Kutta Radau
IIa scheme to discretize in time and four different integral formulations:

‚ an indirect first kind integral formulation (see (5.2)), denoted SL,
‚ a second kind integral formulation (see (5.3)), denoted DL,
‚ an indirect combined integral formulation (see (5.5)) with η “ 1,
‚ an indirect combined integral formulation (see (5.5)) with η “ ω, the

wavenumber.
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(a) Convergence for λ “ 0.90.

0 50 100 150 200 250 300 350 400
Nf

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

A
b
so

lu
te

 d
if
fe

re
n
ce

Nt =Nf

Absolute Difference

0.95Nf

2.86e−7 ∗0.95Nf

(b) Convergence for λ “ 0.95.

Fig. 11. Convergence of the solution obtained with a two-stage Radau IIa Runge–Kutta scheme
for the combined integral formulation with η “ ω for the scattering by the unit sphere for two
different radii of the contour. The numerical rates of convergence match the theoretical estimates.

The numerical comparison is performed using the boundary condition (6.4) with
a “ 25, b “ 300,m “ 10, and p “ 150 and evaluating the solution at points located
on a circle of radius 1.1. The final time is Tf “ 0.30. We use Nt “ 80 time steps
and λ “ 0.95. To demonstrate the influence of the number of frequency solves on the
number of time steps we performed the computation with Nf “ 100 and Nf “ 400
frequency solves.

In Figure 12 we compare the error of the numerically computed solution to the
exact solution for growing time t. It is remarkable that the two formulations with a
pole at the origin (DL and η “ w) deteriorate quickly while the two solutions with
poles away from 0 have a small relative error throughout the observed time interval.
This behavior is independent of whether we choose Nf “ 100 or Nf “ 400. The
bottom plot shows as a comparison the absolute error for Nf “ 400. It shows that
as the analytical solution converges to zero the DL and η “ ω cases remain bounded
away from zero.

Figure 12 also nicely demonstrates the influence of the error of the underlying
time-stepping scheme. For Nf “ 100 the error of the η “ 1 formulation is larger
than that of the SL formulation. However, for Nf “ 400 both errors are identical
and indeed there is no difference in error for the SL formulation between Nf “ 100
and Nf “ 400. This means that already for Nf “ 100 frequencies the best possible
error is achieved for the SL formulation, given the underlying time-stepping scheme.
In contrast, for the η “ 1 scheme the CQ approximation introduces errors that are
larger than the underlying time-stepping rule for Nf “ 100, while again for Nf “ 400
the error of the time-stepping scheme seems to dominate. The influence of parameters
for retarded potentials is studied in [18].

7. Conclusion. CQ methods have become a popular tool to solve wave prop-
agation problems in unbounded domains. In this paper we have shown how the
convergence of CQ methods depends on the location of the poles of the underlying so-
lution operator. It therefore makes a significant difference whether we use a first kind,
second kind, or combined integral equation formulation. The numerical convergence
results together with the comparison to the analytical solution in Figure 12 demon-
strate the importance of the location of the poles of the solution operator. Indeed, the
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Fig. 12. Top: Analytic solution for r “ 1.1 and various time steps. Second figure: Relative
error of various schemes for Nf “ 100 frequencies. Third figure: The same as before but with
Nf “ 400 frequencies. Bottom plot: Absolute error for Nf “ 400 frequencies. The indirect first
kind formulation is the most accurate. The combined integral formulation with η “ 1 can be accurate
when using enough time steps. Finally, the combined integral formulation with η “ ω and the second
kind integral formulation are less accurate.

results in this paper are only a first step to fully understanding the influence of the
poles of the frequency problems on the numerical approximation of the time-domain
solution.

An interesting aspect of these results is that although for a purely theoretical
analysis only the scattering poles of the solution operators are relevant, in practice
we need to reduce the exterior domain onto a problem on a finite domain, either by
using a boundary integral formulation or by introducing a PML layer. Both lead to
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additional poles that usually dominate the rate of convergence, as we have discussed
in the case of a boundary integral equation formulation.

An important practical conclusion from the results in this paper is that it may be
useful to overresolve in the frequency domain by computing more frequency solutions
than there are time steps. This is important if the overall error is dominated not by
the underlying time-stepping rule but by the CQ approximation as depicted in the
comparison of the error results for Nf “ 100 and Nf “ 400 in Figure 12.

Extensions of this current work to Maxwell problems are currently under investi-
gation. Finally, all results in this paper have been computed using the freely available
boundary element library BEM++ (www.bempp.org), which provides a Python based
interface to solve Laplace, Helmholtz, and Maxwell boundary integral formulations.
A time-domain toolbox for BEM++ is in planning.

Appendix A. The two-stage Runge–Kutta Radau IIa scheme. A Runge–
Kutta scheme can be described by its Butcher tableau of the form

c1 a1,1 a1,2 . . . a1,m

c2 a2,1 a2,2 . . . a2,m

...
...

...
. . .

...
cm am,1 am,2 . . . am,m

b1 b2 . . . bm

,(A.1)

where b, c P Rm and A P Rmˆm, with m the number of stages, and by

∆pzq “

ˆ

A`
z

1´ z
1bt

˙´1

(A.2)

with 1 “ p1, . . . , 1q
t
P Rm. The two-stage Radau IIa scheme of order three is defined

by the tableau of the form

1{3 5{12 ´1{12
1 3{4 1{4

3{4 1{4
.(A.3)

We can diagonalize ∆pzq explicitly when z ‰ 3
?

3´ 5:

∆pzq “ PpzqDpzqP´1pzq with Dpzq “ diag pγ1pzq, γ2pzqq

and

γ1pzq “ 2` z ´
a

´2` 10z ` z2,

γ2pzq “ 2` z `
a

´2` 10z ` z2.(A.4)

In case of higher order Radau IIa schemes it is not possible to obtain an explicit diag-
onalization for each z and the eigenvalues, and eigenvectors need to be approximated
numerically.
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