

Abstract— We propose an extension to the capabilities of the
Intelligent Autopilot System (IAS) from our previous work, to be
able to learn handling emergencies by observing and imitating
human pilots. The IAS is a potential solution to the current
problem of Automatic Flight Control Systems of being unable to
handle flight uncertainties, and the need to construct control
models manually. A robust Learning by Imitation approach is
proposed which uses human pilots to demonstrate the task to be
learned in a flight simulator while training datasets are captured
from these demonstrations. The datasets are then used by Artificial
Neural Networks to generate control models automatically. The
control models imitate the skills of the human pilot when handling
flight emergencies including engine(s) failure or fire, Rejected
Take Off (RTO), and emergency landing, while a flight manager
program decides which ANNs to be fired given the current
condition. Experiments show that, even after being presented with
limited examples, the IAS is able to handle such flight emergencies
with high accuracy.

I. INTRODUCTION

Human pilots are trained to handle flight uncertainties or
emergency situations such as severe weather conditions or
system failure. For example, pilots are exposed to scenarios of
forced or emergency landing which is performed by executing
standard emergency procedures. Usually, the main phase of an
emergency landing is known as gliding which is the reliance on
the aerodynamics of the aircraft to glide for a given distance
while altitude is lost gradually. This happens when the aircraft
has lost thrust due to full engine failure in relatively high
altitudes.

In contrast, Automatic Flight Control Systems
(AFCS/Autopilot) are highly limited, capable of performing
minimal piloting tasks in non-emergency conditions. Autopilots
are not capable of handling flight emergencies such as engine
failure, fire, performing a Rejected Take Off, or a forced
(emergency) landing. The limitations of autopilots require
constant monitoring of the system and the flight status by the
flight crew to react quickly to any undesired situation or
emergencies. The reason for such limitations of conventional
AFCS is that it is not feasible to anticipate everything that could
go wrong with a flight, and incorporate all of that into the set of
rules or control models “hardcoded” in an AFCS.

This work aims to address this problem by expanding the
capabilities of the Intelligent Autopilot System (IAS) [1] to be

able to learn flight emergency procedures from human pilots by
applying the Learning by Imitation concept with Artificial
Neural Networks. By using this approach, we aim to extend the
capabilities of modern autopilots and enable them to
autonomously adapt their piloting to suit multiple scenarios
ranging from normal to emergency situations.

This paper is structured as follows: part (II) reviews related
literature on fault/failure tolerant systems, and the application of
multiple ANNs or Artificial Neural Circuits. Part (III) explains
the Intelligent Autopilot System (IAS). Part (IV) describes the
experiments, Part (V) describes the results by comparing the
behaviour of the human pilot with the behaviour of the
Intelligent Autopilot System, and part (VI) provides an analysis
of the results. Finally, we provide conclusions and future work.

II. BACKGROUND

A review of the Autopilot problem, Artificial Neural
Networks, and Learning by Imitation for Autonomous Flight
Control is presented in our previous work [1].

A. Fault/Failure Tolerant Systems for Flight Control

Current operational autopilots fall under the domain of
Control Theory. Classic and modern autopilots rely on
controllers such as the Proportional Integral Derivative (PID)
controller, and Finite-State automation [2]. Many recent
research efforts focus on enhancing flight controllers by adding
fault/failure tolerant capabilities. With respect to flight control
systems, a fault is “an unpermitted deviation of at least one
characteristic property of the system from the acceptable, usual,
standard condition.” [3], while failure is “a permanent
interruption of a system’s ability to perform a required function
under specified operating conditions.” [3].

To handle faults and failures, recent research efforts have been
focusing on designing Fault Detection and Diagnosis (FDD)
systems that can either stream information to ground crew
members especially in the case of UAVs, or feed fault tolerant
systems that are capable of handling system faults. The first type
of such systems are known as the Passive Fault Tolerant
Controllers which can handle moderate faults such as
parameters deviations by using a robust feedback controller.
However, if the faults are beyond the capabilities of such
controllers, another type of fault tolerant systems becomes a
necessity. This type is known as an Active Fault Tolerant control

An Intelligent Autopilot System that Learns Flight Emergency
Procedures by Imitating Human Pilots

Haitham Baomar, Peter J. Bentley

Dept. of Computer Science, University College London, Gower Street, London, WClE 6BT, U.K.
Email: {h.baomar, p.bentley} @ cs.ucl.ac.uk

system which includes a separate FDD system that adds an
extended and enhanced level of fault tolerance capabilities [4].

In case of emergency situations, mainly engine failure, engine
fire, flight instruments failure, or control surface damage or
failure, continuing to fly becomes either impossible or can poses
a serious threat to the safety of the flight. In such circumstances,
a forced or emergency landing on a suitable surface such as a
flat field becomes a must especially if it is not possible to return
safely to the runway [5]. In [6], an emergency landing controller
is proposed for an Unmanned Aerial Vehicle by segmenting the
emergency landing period into four sub-levels known as
slipping guiding, straight line down, exponential pulling up, and
shallow sliding. Each level uses different control strategies
aimed at insuring the safe execution of the complete emergency
landing. For example, during the exponential pulling up level,
the system maintains a certain pitch without causing the UAV
to stall. Using a simulator, the proposed approach showed its
ability to handle emergency landing [6].

B. Multiple ANNs or Artificial Neural Circuits

The problem of coordinating multiple sensor-motor
architectures found in complex robotic systems is challenging.
This is due to the simultaneous and dynamic operation of these
motors while insuring rapid and adaptive behaviour, and due to
the need to properly handle the fusion of data from disparate
sources. In nature, animals manage this problem by the large
number of neural circuits in the animals’ brains. For example,
neural circuits which are responsible for motion are connected
to the muscles (motor systems), and operate simultaneously and
dynamically while handling changes in the environment [7].
This has inspired the field of complex robotics to develop
multiple neural-based controllers and integrate them together to
tackle larger problems such as long-endurance locomotion
under uncertainties. For example, the problem of coordinating
multiple sensor-motor architectures is addressed in the context
of walking by developing a neural circuit which generates
multiple gaits adaptively, and coordinates the process of
walking with different behavioural-based processes in a
hexapod robot. The results showed the ability of the biology-
inspired system to detect and stabilize multiple instability
scenarios, and to determine what needs to be controlled at each
moment which allows the system to handle changes in the
environment [7].

Multiple Artificial Neural Networks were applied to the
problem of detecting roads visually. In [8], different inputs are
fed into multiple ANNs to handle multiple segments of the
image. The proposed approach allows the system to detect and
classify multiple factors of the environment ahead which leads
to an enhanced performance compared to other computer-vision
solutions [8]. In [9], Multiple ANNs were applied to tackle the
limitations problem of traffic light control systems that are based
on conventional mathematical methods. In simulation, the
results showed that the approach of using multiple ANNs to
address this problem presented an improvement in performance
compared to other methods [9]. Another proposed system
inspired by biology; is presented in [10] which is designed to
handle the challenging problem of gesture recognition. The
system shares similarities with the human visual system by

developing multiple spiking ANNs. The outputs of the spiking
ANNs are used to generate a fusion of multiple data from
different segments of the gesture. The results proved the
system’s ability to handle dynamic visual recognition with the
presence of complex backgrounds [10].

The approach of segmenting or breaking down the problem,
and using multiple ANNs to handle multiple segment shows the
potential to enhance the properties of ANNs as explained in
[11]. A large ANN is split into parallel circuits that resemble the
circuits of the human retina. During training, the
Backpropagation algorithm runs in each circuit separately. This
approach does not only decrease training time, but it also
enhances generalization [11].

III. THE INTELLIGENT AUTOPILOT SYSTEM

The proposed Intelligent Autopilot System (IAS) in this
paper can be viewed as an apprentice that observes the
demonstration of a new task by the experienced teacher, and
then performs the same task autonomously. A successful
generalization of Learning by Imitation should take into
consideration the capturing of low-level models and high-level
models, which can be viewed as rapid and dynamic sub-actions
that occur in fractions of a second, and actions governing the
whole process and how it should be performed strategically. It
is important to capture and imitate both levels in order to handle
flight uncertainties successfully.

The IAS is made of the following components: a flight
simulator, an interface, a database, a flight manager program,
and Artificial Neural Networks. The IAS implementation
method has three steps: A. Pilot Data Collection, B. Training,
and C. Autonomous Control. In each step, different IAS
components are used. The following sections describe each step
and the components used in turn.

A. Pilot Data Collection

Fig. 1 illustrates the IAS components used during the pilot
data collection step.

1) Flight Simulator
Before the IAS can be trained or can take control, we must

collect data from a pilot. This is performed using X-Plane which
is an advanced flight simulator that has been used as the
simulator of choice in many research papers such as [12] [13]
[14].

Fig. 1. Block diagram illustrating the IAS components used during the pilot
data collection step.

X-Plane is used by multiple organizations and industries
such as NASA, Boeing, Cirrus, Cessna, Piper, Precession Flight
Controls Incorporated, Japan Airlines, and the American
Federal Aviation Administration.1 X-Plane can communicate
with external applications by sending and receiving flight status
and control commands data over a network through User
Datagram Protocol (UDP) packets. For this work, the simulator
is set up to send and receive packets comprising desired data
every 0.1 second. In X-Plane, it is possible to simulate a number
of flight emergencies for the purpose of training pilots.
Emergencies range from severe weather conditions to system
failure such as engine failure or fire.

2) The IAS Interface
The IAS Interface is responsible for data flow between the

flight simulator and the system in both directions. The Interface
contains control command buttons that provide a simplified yet
sufficient aircraft control interface which can be used to perform
basic tasks of piloting an aircraft such as take-off and landing in
the simulator while being able to control other systems such as
fuel and fire systems. It also displays flight data received from
the simulator.

Data collection is started immediately before demonstration,
then; the pilot uses the Interface to perform the piloting task to
be learned. The Interface collects flight data from X-Plane over
the network using UDP packets, and collects the pilot’s actions
while performing the task, which are also sent back to the
simulator as manual control commands. The Interface organizes
the collected flight data received from the simulator (inputs),
and the pilot’s actions (outputs) into vectors of inputs and
outputs, which are sent to the database every 1 second.

3) Database
An SQL Server database stores all data captured from the

pilot demonstrator and X-Plane, which are received from the
Interface. The database contains tables designed to store: 1.
Flight data as inputs, and 2. Pilot’s actions as outputs. These
tables are then used as training datasets to train the Artificial
Neural Networks of the IAS.

B. Training

1) Artificial Neural Networks
After the human pilot data collection step is completed,

Artificial Neural Networks are used to generate learning models
from the captured datasets through offline training. Fig. 2
illustrates the training step.

Fig. 2. Block diagram illustrating the IAS components used during training.

1 "X-Plane 10 Global
http://www.x-plane.com

Ten feedforward Artificial Neural Networks comprise the
core of the IAS. Each ANN is designed and trained to handle
specific controls and tasks. The ANNs are: Taxi Speed Gain
ANN, Take Off ANN, Rejected Take Off ANN, Aileron ANN,
Rudder ANN, Cruise Altitude ANN, Cruise Pitch ANN, Fire
Situation ANN, Emergency Landing Pitch ANN, and
Emergency Landing Altitude ANN. The inputs and outputs
which represent the gathered data and relevant actions, and the
topologies of the ten ANNs are illustrated in Fig. 3.

The method for choosing ANN topologies in this work is
based on a rule-of-thumb [15] which indicates that problems
requiring more than one hidden layer are rarely encountered.
This rule follows an approach that tries to avoid under-fitting
caused by too few neurons in the hidden layer, or over-fitting
caused by too many neurons, by having the number of hidden
neurons less than or equal to twice the size of the input layer.

Before training, the datasets are normalized, and retrieved
from the database. Then, the datasets are fed to the ANNs. Next,
Sigmoid (1) [15] and Hyperbolic Tangent (Tanh) (2) [15]
functions are applied for the neuron activation step, where ����
is the activation function for each neuron, and � is the relevant
input value:

 ���� � �

�

��� 	
� (1)

 ���� � �
	 �� ���

	 �� ����
�� (2)

Fig. 3. Inputs, outputs, and the topologies of the ten ANNs representing the
core of the Intelligent Autopilot System. Each ANN is designed and trained to

handle a specific task.

The Sigmoid activation function (1) is used by the Taxi
Speed Gain ANN, Take Off ANN, Emergency Landing Altitude
ANN, Rejected Take Off ANN, and the Fire Situation ANN,
while (2) is used by the rest since their datasets contain negative
values.

Next, Backpropagation is applied. Based on the activation
function, (3) [16], or (4) [16] are applied to calculate the error
signal (�) where � � is the desired target value and � � is the actual
activation value:

 � � � �� � � � � � �� � �� � � � � � (3)

 � � � �� � � � � � ��� � � � � ��� � � � � � (4)

Finally, coefficients of models (weights and biases) are

updated using (5) [17] where �� ��� is the change in the weight
between nodes j and k.

 ��������������� � �� � � � � �� � � � � � �� (5)

When training is completed, the learning models are

generated, and the free parameters or coefficients represented by
weights and biases of the models are stored in the database.

C. Autonomous Control

Once trained, the IAS can now be used for autonomous
control. Fig. 4 illustrates the components used during the
autonomous control step.

1) The IAS Interface
Here, the Interface retrieves the coefficients of the models

from the database for each trained ANN, and receives flight data
from the flight simulator every 0.1 second. The Interface
organizes the coefficients into sets of weights and biases, and
organizes data received from the simulator into sets of inputs for
each ANN. The relevant coefficients, and flight data input sets
are then fed to the Flight Manager and the ANNs of the IAS to
produce outputs. The outputs of the ANNs are sent to the
Interface which sends them to the flight simulator as
autonomous control commands using UDP packets every 0.1
second.

2) The Flight Manager Program
The Flight Manager is a program which resembles a

Behaviour Tree [18]. The purpose of the Flight Manager is to
manage the ten ANNs of the IAS by deciding which ANNs are
to be used simultaneously at each moment. The Flight Manager
starts by receiving flight data from the flight simulator through
the interface of the IAS, then it detects the flight condition and
phase by examining the received flight data, and decides which
ANNs are required to be used given the flight condition
(normal/emergency/fire situation) and phase (taxi speed
gain/take off/cruise/emergency landing). Fig. 5 illustrates the
process which the Flight Manager follows.

3) Artificial Neural Networks
The relevant set of flight data inputs received through the

Interface is used by the ANNs’ input neurons along with the
relevant coefficients to predict control commands given the
flight status by applying (1) and (2). The values of the output

layers are sent to the Interface which sends them to the flight
simulator as autonomous control commands. Taxi Speed Gain
ANN is used while on the runway just before take off to predict
the suitable brakes and throttle command values. Take Off ANN
is used after a certain take off speed is achieved to predict gear,
elevator, and throttle command values. Rejected Take Off ANN
is used to abort take off if necessary by predicting brakes,
throttle, and reverse throttle command values. Aileron ANN is
used to control the aircraft’s roll immediately after take off.
Rudder ANN is used to control the aircraft’s heading before take
off, and yaw when airborne in case one engine fails and creates
drag. Cruise Altitude ANN is used to control the aircraft’s
desired cruising altitude by predicting the throttle command
value. Cruise Pitch ANN controls the pitch while cruising by
predicting the elevator command value. Fire Situation ANN is
used in case of fire by predicting fuel valve and fire
extinguishing control commands. Emergency Landing Pitch
ANN maintains a certain pitch during emergency landing to lose
speed without stalling and to prevent a nose first crash.
Emergency Landing Altitude ANN controls the throttle in case
of a single engine failure.

Fig. 4. Block diagram illustrating the IAS components used during
autonomous control.

Fig. 5. A Flowchart illustrating the process which the Flight Manager
program follows to decided which ANNs are to be used.

IV. EXPERIMENTS

Our previous work [1] provides detailed explanations of the
experiments of autonomous taxi speed gain, take off, climb, and
applying rudder and aileron to correct heading and roll
deviations under normal and severe weather conditions. The
new approach in this paper is to segment the training dataset of
taxi speed gain, take off, and climb into three different sets that
are handled separately by three ANNs (Taxi Speed Gain ANN,
Take Off ANN, and Cruise ANN) instead of just one ANN. This
work also introduces four new ANNs in order to learn flight
emergency procedures for the first time.

In order to assess the effectiveness of the proposed approach
in this paper, the Intelligent Autopilot System was tested in four
experiments: A. Rejecting take off, B. Emergency landing, C.
Maintaining a cruising altitude, and D. Handling single engine
failure/fire while airborne. Each experiment is composed of 20
attempts by the IAS to perform autonomously under the given
conditions.

The human pilot who provided the demonstrations is the
first author. The simulated aircraft used for the experiments is a
Boeing 777 as we want to experiment using a more complex
model with more than one engine rather than a light single-
engine model. The experiments are as follows:

A. Rejecting Take Off

The purpose of this experiment is to assess the behaviour of
the IAS compared to the behaviour of the human pilot when a
Rejected Take Off (RTO) is required.

1) Data Collection
In this experiment, the human pilot used the IAS Interface to

perform the following in the flight simulator: reject take off
when one engine fails or catches fire, and when two engines fail
or catch fire (one demonstration for each scenario). The flight
simulator was set to simulate the failure or fire conditions for
one or two engines immediately after the user presses a hot key
on the keyboard. Rejecting take off is performed by going to full
reverse thrust and engaging brakes. In case of fire, the human
pilot turned off the fuel valve, turned on the fire extinguishing
system, and went to full throttle to burn the fuel left in the
engine(s). While the pilot performed the demonstration, the
Interface collected speed and engine status as inputs, and brakes,
throttle, and reverse thrust control data as outputs. The Interface
stored the collected data in the database as the training dataset
for the Rejected Take Off ANN. The Interface also collected fire
sensor readings as input, and fire extinguisher, throttle, and fuel
valve control data as outputs. The Interface stored the collected
data in the database as the training dataset for the Fire Situation
ANN.

2) Training
For this experiment, the Rejected Takeoff ANN, and the Fire

Situation ANN were trained until low Mean Squared Error
(MSE) values were achieved (below 0.001).

3) Autonomous Control
After training the ANNs on the relevant training datasets, the

aircraft was reset to the runway in the flight simulator to test
autonomous RTO multiple times under different scenarios (one
and two engine(s) failure and fire), the simulator was set to

simulate the desired emergency scenario, and the IAS was
engaged. When the flight manager detects the emergency, it
stops the Taxi Speed Gain ANN, and runs the Rejected Takeoff
ANN and the Fire Situation ANN simultaneously to reject take
off and handle fire autonomously. Through the Interface, ANNs
receive: 1. Relevant flight data from the flight simulator as
inputs, and 2. Coefficients of the relevant models from the
database to predict and output command controls that are sent to
the flight simulator. This process allows the IAS to
autonomously perform the learned task: rejecting take off if
necessary. This was repeated 20 times for each scenario to
assess performance consistency.

B. Emergency Landing

The purpose of this experiment is to assess the behaviour of
the IAS compared to the behaviour of the human pilot when a
forced or emergency landing is required.

1) Data Collection
 In this experiment, the human pilot used the IAS Interface

to perform the following in the flight simulator: emergency
landing when two engines fail or catch fire (one demonstration
for each scenario). The flight simulator was set to simulate the
failure or fire conditions for two engines immediately after the
user presses a hot key on the keyboard. Emergency landing is
performed by maintaining a controlled glide using the elevators
to insure a gradual loss of speed and altitude without stalling the
aircraft, by maintaining a slight positive pitch. If there is any
power left in the engines, the throttle is used to aid the gliding
phase. In case of fire, the human pilot turned off the fuel valve,
and turned on the fire extinguishing system. In this scenario
going to full throttle to burn the fuel left in the engines is not
possible since both engines do not have sufficient power. While
the pilot performed the demonstration, the Interface collected
pitch as input, and elevator control data as output. The Interface
stored the collected data in the database as the training dataset
for the Emergency Landing Pitch ANN. The Interface also
collected altitude as input, and throttle control data as output.
The Interface stored the collected data in the database as the
training dataset for the Emergency Landing Altitude ANN.

2) Training
For this experiment, the Emergency Landing Pitch ANN,

and the Emergency Landing Altitude ANN were trained until
low Mean Squared Error (MSE) values were achieved (below
0.001 for the Emergency Landing Pitch ANN and below 0.2 for
the Emergency Landing Altitude ANN).

3) Control
After training the ANNs on the relevant training datasets, the

aircraft was reset to the runway in the flight simulator to test
autonomous emergency landing multiple times under different
scenarios (both engines failure or fire), the simulator was set to
simulate the desired emergency scenario, and the IAS was
engaged. After the IAS took the aircraft airborne, and when the
flight manager detects the emergency, it stops the Take Off
ANN (during climb), or the cruise ANNs, and runs the
Emergency Landing Pitch ANN, and the Emergency Landing
Altitude ANN simultaneously to maintain a controlled glide
while descending to the ground. Through the Interface, the

ANNs receive: 1. Relevant flight data from the flight simulator
as inputs, and 2. Coefficients of the relevant models from the
database to predict and output command controls that are sent to
the flight simulator. This process allows the IAS to
autonomously perform learned task: emergency landing by
maintaining a controlled glide. This was repeated 20 times for
each scenario to assess performance consistency.

C. Maintaining a Cruising Altitude

The purpose of this experiment is to assess the behaviour of
the IAS compared to the behaviour of the human pilot while
maintaining a desired cruising altitude.

1) Data Collection
In this experiment, the human pilot used the IAS Interface to

maintain a cruising altitude in the flight simulator by increasing
and decreasing the throttle, and by using the elevator to maintain
a fairly leveled pitch (one demonstration). While the pilot
performed the demonstration, the Interface collected altitude as
input, and throttle control data as output. The Interface stored
the collected data in the database as the training dataset for the
Cruise Altitude ANN. The Interface also collected pitch as
input, and elevator control data as output. The Interface stored
the collected data in the database as the training dataset for the
Cruise Pitch ANN.

2) Training
For this experiment, the Cruise Altitude ANN, and the

Cruise Pitch ANN were trained until low Mean Squared Error
(MSE) values were achieved (below 0.02 and 0.001
respectively).

3) Autonomous Control
After training the ANNs on the relevant training datasets, the

aircraft was reset to the runway in the flight simulator to test the
ability of maintaining a desired cruise altitude autonomously,
and the IAS was engaged. After the IAS took the aircraft
airborne, continued to climb, and reached the proximity of the
desired altitude, the system’s ability to maintain the given
altitude was observed. Through the Interface, the ANNs receive:
1. Relevant flight data from the flight simulator as inputs, and 2.
Coefficients of the relevant models from the database to predict
and output command controls that are sent to the flight
simulator. This process allows the IAS to autonomously perform
learned task: maintain a desired cruising altitude. This was
repeated 20 times for each scenario to assess performance
consistency.

D. Handling Single Engine Failure/Fire while Airborne

The purpose of this experiment is to assess the behaviour of
the IAS in case of an engine failure or fire while airborne.

1) Data Collection
In this experiment, the human pilot did not provide an

explicit demonstration for the single engine failure. Instead, it
was intended to test the already trained ANNs, and determine
whether their models are able to generalize well in this new
scenario where the failed engine creates a drag, and forces the
aircraft to descend, and creates a yaw deviation towards the
failed engine’s side.

2) Training
For this experiment, the previously trained models of the

Cruise Altitude ANN, the Cruise Pitch ANN, and the rudder
ANN from our previous work [1] were used.

3) Autonomous Control
After setting the simulator to simulate the desired emergency

scenario (single engine failure or fire), and after the IAS took
the aircraft airborne, when the flight manager detects the
emergency, it continues to use the same ANNs (Take Off ANN,
or cruise ANNs), and runs the Fire Situation ANN if fire is
detected, to fly autonomously using the power left from the
engine that operates normally. Through the Interface, the ANNs
receive: 1. Relevant flight data from the flight simulator as
inputs, and 2. Coefficients of the relevant models from the
database to predict and output command controls that are sent to
the flight simulator. This was repeated 20 times for each
scenario to assess performance consistency.

Throughout all the experiments, the Rudder and Aileron
ANNs from our previous work [1] are used normally during the
different phases.

V. RESULTS

The following section describes the results of the conducted
tests. The 20 attempts by the IAS to handle each scenario
autonomously were averaged and compared with the
performance of the human pilot when applicable.

A. Rejecting Take Off

Two models were generated with the MSE values as table I
shows. Fig. 6 illustrates the behaviour of the IAS when
controlling the transition of flight modes under normal
conditions, while Fig. 7 illustrates the behaviour of the IAS
when engine(s) failure or fire is detected and a Rejected Take
Off (RTO) is performed. The results of the 20 experiments
showed strong consistency by following the correct procedure
in each experiment with a 100% accuracy rate.

B. Emergency Landing

Two models were generated with the MSE values as table I
shows. Fig. 8 and 9 illustrate a comparison between the human
pilot and the IAS while maintaining a positive pitch during
emergency landing, and their altitude (sink rate). The pitch
Mean Absolute Deviation (MAD) results (0.024 for the IAS and
0.196 for the human pilot) show less deviation and a steady
behaviour of the IAS due to the good model fit as can be seen in
Fig. 8. Fig. 10 illustrates the behaviour of the IAS when both
engines failure or fire is detected and a forced or emergency
landing is performed. The results of the 20 experiments showed
strong consistency by following the correct procedure in each
experiment with a 100% accuracy rate.

TABLE I
MSE VALUES OF THE MODELS GENERATED FOR THE REJECTED

TAKE OFF AND THR EMERGENCY LANDING EXPERIMENTS.
ANN MSE

Rejected Takeoff ANN 0.000999
Fire Situation ANN 0.000999

Emergency Landing Pitch ANN 0.000997
Emergency Landing Altitude ANN 0.196117

Fig. 6. The behaviour of the IAS when controlling the transition of flight

modes under normal conditions. Different ANNs are used in each flight mode.

Fig. 8. (Emergency landing experiment) A comparison between the human

pilot and the Intelligent Autopilot System’s pitch during emergency landing. In
this case the human pilot struggled to generate perfect training data so our
training approach was designed to prevent overfitting, instead creating a

general model (good fit) which provided the desired performance.

Fig. 10. (Emergency landing experiment) The behaviour of the IAS when both

engines failure or fire is detected during either take off or cruise, and an
emergency landing is performed. The Fire Situation ANN is used only when

fire is detected.

Fig. 7. (Rejected Take Off experiment) The behaviour of the IAS when
engine(s) failure or fire is detected and a Rejected Take Off (RTO) is
performed. The Fire Situation ANN is used only when fire is detected.

Fig. 9. (Emergency landing experiment) A comparison between the human

pilot and the Intelligent Autopilot System’s altitude during emergency landing.
The results show a significantly close sink rate of about 1500 ftagl per minute.

C. Maintaining a Cruise Altitude

Two models were generated with the MSE values as table II
shows. Fig. 11 and 12 illustrate a comparison between the
human pilot and the IAS while maintaining a desired cruising
altitude. The altitude Mean Absolute Deviation (MAD) results
(85.8 for the IAS and 204.58 for the human pilot) shows less
deviation of altitude and a steady behaviour of the IAS due to
the good model fit as can be seen in Fig. 11.

TABLE II
MSE VALUES OF THE MODELS GENERATED FOR THE CRUISE

EXPERIMENT.
ANN MSE

Cruise Altitude ANN 0.017574
Cruise Pitch ANN 0.000835

Fig. 11. (Maintaining a cruise altitude experiment) A comparison between the

human pilot and the Intelligent Autopilot System’s altitude during cruising.
While the human pilot demonstrator struggled to maintain a desired cruise
altitude of 20,000 ftagl, the IAS performed better due to the good fit of the

generated learning model.

D. Handling Single Engine Failure/Fire while Airborne

As mentioned in part (IV) the human pilot did not provide an
explicit demonstration for the single engine failure scenario.
Instead, it was intended to test the already trained ANNs, and
determine whether their models are able to generalize well in
this new scenario’s experiment. Fig. 13 illustrates the behaviour
of the IAS when a single engine fails or catches fire during take
off or cruise. The system was intended to carry on flying, apply
the rudder ANN from our previous work [1], and run the Fire
Situation ANN in case of fire. The results of the 20 experiments
showed strong consistency by following the correct procedure
in each experiment accurately. Fig. 14 illustrates how the IAS
continues to fly while losing altitude gradually compared to the
aircraft’s autopilot under the same situation.

Fig. 13. (Handling single engine failure/fire experiment) The behaviour of the

IAS when a single engine failure or fire is detected during either take off or
cruise. The Fire Situation ANN is used only when fire is detected. The ANNs
used during Take Off or Cruise perform the same tasks as Fig. 6 shows, while

the Aileron ANN continues to correct roll.

Fig. 12. (Maintaining a cruise altitude experiment) The IAS manipulation of
throttle to maintain a desired cruise altitude of 20,000 ftagl compared with the

human pilot. The IAS manipulated the throttle smoothly compared to the
human pilot due to the good fit of the generated learning model.

VI. ANALYSIS

As can be seen in Fig. 7, the rejected take off experiment
presented excellent results. The IAS was capable of imitating
the human pilot’s actions and behaviour with excellent
accuracy, and strong consistency by following the correct
procedure in each experiment accurately.

Fig. 8 to 10 (the emergency landing experiment) show very
desirable results of the ability of the IAS to imitate the human
pilot’s demonstration of controlling an emergency landing.
They show the ability of the IAS to perform the learned sink rate
which enabled the aircraft to hit the ground smoothly without
being severely wrecked. The flight simulator measures the G
force effect on the aircraft’s frame, and informs the user in case
of an unsurvivable crash. It should be mentioned that selecting
a suitable landing surface is not within the scope of this work.

Fig. 14. (Handling single engine failure/fire experiment) Comparing the
altitude loss rate of the IAS and the aircraft’s AFCS. Since the AFCS is not
aware of the single engine failure situation, it compensates by increasing the

throttle aggressively, which results in a smaller altitude loss rate, but puts
excessive stress on the single operating engine.

Fig. 11 and 12 (maintaining a cruise altitude experiment)
show very desirable results of the ability of the IAS to learn how
to use throttle and elevator to maintain a given altitude. They
illustrate the ability of the IAS to perform better than the human
pilot teacher due to the achieved good fit of the learning models.
This can also be seen in Fig. 8 (the emergency landing
experiment).

As can be seen in Fig. 13 and 14, the single engine failure/fire
experiment presented excellent results. The IAS was capable of
using the already learned models to continue flying while
gradually losing altitude. Although the aircraft’s standard
autopilot maintained a better altitude in the short term, by
aggressively increasing engine thrust it increases the likelihood
of engine failure in the remaining engine, with potentially
catastrophic results.

The system was able to imitate multiple human pilot’s skills
and behaviour after being presented with very limited examples.
This is due to the approach of segmenting the problem of
autonomous piloting while handling uncertainties into small
blocks of tasks, and assigning multiple ANNs specially designed
and trained for each task, which resulted in the generation of
highly accurate models as tables I, and II show.

VII. CONCLUSION & FUTURE WORK

In this work, a robust approach is proposed to “teach”
autopilots how to handle uncertainties and emergencies with
minimum effort by exploiting Learning by Imitation also known
as Learning from Demonstration.

The experiments were strong indicators towards the ability
of Supervised Learning with Artificial Neural Networks to
capture low-level piloting tasks such as the rapid manipulation
of the elevator and throttle to maintain a certain pitch or a given
altitude. The experiments showed the ability of the IAS to
capture high-level tasks such as coordinating the necessary
actions to reject take off and extinguish fire.

Breaking down the piloting tasks, and adding more Artificial
Neural Networks enhanced performance and accuracy, and
allowed the coverage of a wider spectrum of tasks.

The aviation industry is currently working on solutions
which should lead to decreasing the dependence on crew
members. The reason behind this is to lower workload, human
error, stress, and emergency situations where the captain or the
first officer becomes incapable, by developing autopilots
capable of handling multiple scenarios without human
intervention. We anticipate that future Autopilot systems which
make of methods proposed here could improve safety and save
lives.

Future effort will focus on giving the IAS the ability to learn
how to fly a pre-selected course, and land safely in an airport.
The IAS should be capable of avoiding no-fly zones that are
either pre-identified, or detected during the flight such as severe
weather systems detected by the aircraft’s radar.

The Flight Manager program should be redesigned to utilize
Artificial Neural Networks to classify the situation (normal or
emergency), and predict the suitable flight control law or mode
given the situation.

The problem of sensor fault and denial should be
investigated to test the feasibility of teaching the IAS how to
handle such scenarios.

REFERENCES
[1] H. Baomar and P. J. Bentley, "An Intelligent Autopilot System that learns

piloting skills from human pilots by imitation," 2016 International
Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA,
USA, 2016, pp. 1023-1031.
doi: 10.1109/ICUAS.2016.7502578

[2] Nelson, Robert C. Flight stability and automatic control. Vol. 2.
WCB/McGraw Hill, 1998.

[3] G. J. J. Ducard, “Fault-Tolerant Flight Control and Guidance Systems:
Practical Methods for Unmanned Aerial Vehicles,” Springer, 2009.

[4] Sadeghzadeh, I. & Zhang, Y. (2011). A Review on Fault-Tolerant Control
for Unmanned Aerial Vehicles (UAVs). St. Louis, Missouri, USA: The
American Institute of Aeronautics and Astronautics.

[5] Rao, Faheem Muhammad et al. "UAV Emergency Landing Site Selection
System Using Machine Vision". J MACH INTELL 1.1 (2016): n. pag.
Web.

[6] P. Li, X. Chen and C. Li, "Emergency landing control technology for
UAV," Guidance, Navigation and Control Conference (CGNCC), 2014
IEEE Chinese, Yantai, 2014, pp. 2359-2362.

[7] Steingrube, Silke et al. "Self-Organized Adaptation Of A Simple Neural
Circuit Enables Complex Robot Behaviour". Nat Phys 6.3 (2010): 224-
230. Web.

[8] P. Y. Shinzato, V. Grassi, F. S. Osorio and D. F. Wolf, "Fast visual road
recognition and horizon detection using multiple artificial neural
networks," Intelligent Vehicles Symposium (IV), 2012 IEEE, Alcala de
Henares, 2012, pp. 1090-1095.

[9] M. B. W. D. Oliveira and A. D. A. Neto, "Optimization of Traffic Lights
Timing Based on Multiple Neural Networks," 2013 IEEE 25th
International Conference on Tools with Artificial Intelligence, Herndon,
VA, 2013, pp. 825-832.

[10] L. Huang, Q. Wu, Y. Chen, S. Hong and X. Huang, "Gesture Recognition
Based on Fusion Features from Multiple Spiking Neural
Networks," Communication Systems and Network Technologies (CSNT),
2015 Fifth International Conference on, Gwalior, 2015, pp. 1167-1171.

[11] Kien Tuong Phan, T. H. Maul and Tuong Thuy Vu, "A parallel circuit
approach for improving the speed and generalization properties of neural
networks," Natural Computation (ICNC), 2015 11th International
Conference on, Zhangjiajie, 2015, pp. 1-7.

[12] Wei, F., Amaya-Bower, L., Gates, A., Rose, D. and Vasko, T. (2016). The
Full-Scale Helicopter Flight Simulator Design and Fabrication at CCSU.
57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference.

[13] Jirgl, M., Boril, J., Jalovecky, R. (2015). The identification possibilities of
the measured parameters of an aircraft model and pilot behavior model on
the flight simulator. International Conference on Military Technologies
(ICMT), vol., no., pp.1-5.

[14] Kaviyarasu, A. and Senthil Kumar, K. (2014). Simulation of Flapping-
wing Unmanned Aerial Vehicle using X-plane and Matlab/Simulink.
Defence Science Journal, 64(4), pp.327-331.

[15] Heaton, J. (2005). Introduction to neural networks with Java. St. Louis:
Heaton Research.

[16] McClelland, J. (2015). Explorations in Parallel Distributed Processing: A
Handbook of Models, Programs, and Exercises (2nd ed.). Stanford.

[17] Tveter, D. (1995). Chapter 2, The Backprop Algorithm.
[18] K. Winter, I. J. Hayes and R. Colvin, "Integrating Requirements: The

Behavior Tree Philosophy," 2010 8th IEEE International Conference on
Software Engineering and Formal Methods, Pisa, 2010, pp. 41-50.

