
  

  

Abstract— We propose an extension to the capabilities of the 
Intelligent Autopilot System (IAS) from our previous work, to be 
able to learn handling emergencies by observing and imitating 
human pilots. The IAS is a potential solution to the current 
problem of Automatic Flight Control Systems of being unable to 
handle flight uncertainties, and the need to construct control 
models manually. A robust Learning by Imitation approach is 
proposed which uses human pilots to demonstrate the task to be 
learned in a flight simulator while training datasets are captured 
from these demonstrations. The datasets are then used by Artificial 
Neural Networks to generate control models automatically. The 
control models imitate the skills of the human pilot when handling 
flight emergencies including engine(s) failure or fire, Rejected 
Take Off (RTO), and emergency landing, while a flight manager 
program decides which ANNs to be fired given the current 
condition. Experiments show that, even after being presented with 
limited examples, the IAS is able to handle such flight emergencies 
with high accuracy.  

I. INTRODUCTION 

Human pilots are trained to handle flight uncertainties or 
emergency situations such as severe weather conditions or 
system failure. For example, pilots are exposed to scenarios of 
forced or emergency landing which is performed by executing 
standard emergency procedures. Usually, the main phase of an 
emergency landing is known as gliding which is the reliance on 
the aerodynamics of the aircraft to glide for a given distance 
while altitude is lost gradually. This happens when the aircraft 
has lost thrust due to full engine failure in relatively high 
altitudes.  

In contrast, Automatic Flight Control Systems 
(AFCS/Autopilot) are highly limited, capable of performing 
minimal piloting tasks in non-emergency conditions. Autopilots 
are not capable of handling flight emergencies such as engine 
failure, fire, performing a Rejected Take Off, or a forced 
(emergency) landing. The limitations of autopilots require 
constant monitoring of the system and the flight status by the 
flight crew to react quickly to any undesired situation or 
emergencies. The reason for such limitations of conventional 
AFCS is that it is not feasible to anticipate everything that could 
go wrong with a flight, and incorporate all of that into the set of 
rules or control models “hardcoded” in an AFCS.  

This work aims to address this problem by expanding the 
capabilities of the Intelligent Autopilot System (IAS) [1] to be 

 
 

able to learn flight emergency procedures from human pilots by 
applying the Learning by Imitation concept with Artificial 
Neural Networks. By using this approach, we aim to extend the 
capabilities of modern autopilots and enable them to 
autonomously adapt their piloting to suit multiple scenarios 
ranging from normal to emergency situations. 

This paper is structured as follows: part (II) reviews related 
literature on fault/failure tolerant systems, and the application of 
multiple ANNs or Artificial Neural Circuits. Part (III) explains 
the Intelligent Autopilot System (IAS). Part (IV) describes the 
experiments, Part (V) describes the results by comparing the 
behaviour of the human pilot with the behaviour of the 
Intelligent Autopilot System, and part (VI) provides an analysis 
of the results. Finally, we provide conclusions and future work. 

II. BACKGROUND 

A review of the Autopilot problem, Artificial Neural 
Networks, and Learning by Imitation for Autonomous Flight 
Control is presented in our previous work [1]. 

A.  Fault/Failure Tolerant Systems for Flight Control 

Current operational autopilots fall under the domain of 
Control Theory. Classic and modern autopilots rely on 
controllers such as the Proportional Integral Derivative (PID) 
controller, and Finite-State automation [2]. Many recent 
research efforts focus on enhancing flight controllers by adding 
fault/failure tolerant capabilities. With respect to flight control 
systems, a fault is “an unpermitted deviation of at least one 
characteristic property of the system from the acceptable, usual, 
standard condition.” [3], while failure is “a permanent 
interruption of a system’s ability to perform a required function 
under specified operating conditions.” [3].  

To handle faults and failures, recent research efforts have been 
focusing on designing Fault Detection and Diagnosis (FDD) 
systems that can either stream information to ground crew 
members especially in the case of UAVs, or feed fault tolerant 
systems that are capable of handling system faults. The first type 
of such systems are known as the Passive Fault Tolerant 
Controllers which can handle moderate faults such as 
parameters deviations by using a robust feedback controller. 
However, if the faults are beyond the capabilities of such 
controllers, another type of fault tolerant systems becomes a 
necessity. This type is known as an Active Fault Tolerant control 
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system which includes a separate FDD system that adds an 
extended and enhanced level of fault tolerance capabilities [4].  

In case of emergency situations, mainly engine failure, engine 
fire, flight instruments failure, or control surface damage or 
failure, continuing to fly becomes either impossible or can poses 
a serious threat to the safety of the flight. In such circumstances, 
a forced or emergency landing on a suitable surface such as a 
flat field becomes a must especially if it is not possible to return 
safely to the runway [5]. In [6], an emergency landing controller 
is proposed for an Unmanned Aerial Vehicle by segmenting the 
emergency landing period into four sub-levels known as 
slipping guiding, straight line down, exponential pulling up, and 
shallow sliding. Each level uses different control strategies 
aimed at insuring the safe execution of the complete emergency 
landing. For example, during the exponential pulling up level, 
the system maintains a certain pitch without causing the UAV 
to stall. Using a simulator, the proposed approach showed its 
ability to handle emergency landing [6].   

B. Multiple ANNs or Artificial Neural Circuits  

The problem of coordinating multiple sensor-motor 
architectures found in complex robotic systems is challenging. 
This is due to the simultaneous and dynamic operation of these 
motors while insuring rapid and adaptive behaviour, and due to 
the need to properly handle the fusion of data from disparate 
sources. In nature, animals manage this problem by the large 
number of neural circuits in the animals’ brains. For example, 
neural circuits which are responsible for motion are connected 
to the muscles (motor systems), and operate simultaneously and 
dynamically while handling changes in the environment [7]. 
This has inspired the field of complex robotics to develop 
multiple neural-based controllers and integrate them together to 
tackle larger problems such as long-endurance locomotion 
under uncertainties. For example, the problem of coordinating 
multiple sensor-motor architectures is addressed in the context 
of walking by developing a neural circuit which generates 
multiple gaits adaptively, and coordinates the process of 
walking with different behavioural-based processes in a 
hexapod robot. The results showed the ability of the biology-
inspired system to detect and stabilize multiple instability 
scenarios, and to determine what needs to be controlled at each 
moment which allows the system to handle changes in the 
environment [7].  

Multiple Artificial Neural Networks were applied to the 
problem of detecting roads visually. In [8], different inputs are 
fed into multiple ANNs to handle multiple segments of the 
image. The proposed approach allows the system to detect and 
classify multiple factors of the environment ahead which leads 
to an enhanced performance compared to other computer-vision 
solutions [8]. In [9], Multiple ANNs were applied to tackle the 
limitations problem of traffic light control systems that are based 
on conventional mathematical methods. In simulation, the 
results showed that the approach of using multiple ANNs to 
address this problem presented an improvement in performance 
compared to other methods [9]. Another proposed system 
inspired by biology; is presented in [10] which is designed to 
handle the challenging problem of gesture recognition. The 
system shares similarities with the human visual system by 

developing multiple spiking ANNs. The outputs of the spiking 
ANNs are used to generate a fusion of multiple data from 
different segments of the gesture. The results proved the 
system’s ability to handle dynamic visual recognition with the 
presence of complex backgrounds [10].  

The approach of segmenting or breaking down the problem, 
and using multiple ANNs to handle multiple segment shows the 
potential to enhance the properties of ANNs as explained in 
[11]. A large ANN is split into parallel circuits that resemble the 
circuits of the human retina. During training, the 
Backpropagation algorithm runs in each circuit separately. This 
approach does not only decrease training time, but it also 
enhances generalization [11].  

III.  THE INTELLIGENT AUTOPILOT SYSTEM 

The proposed Intelligent Autopilot System (IAS) in this 
paper can be viewed as an apprentice that observes the 
demonstration of a new task by the experienced teacher, and 
then performs the same task autonomously. A successful 
generalization of Learning by Imitation should take into 
consideration the capturing of low-level models and high-level 
models, which can be viewed as rapid and dynamic sub-actions 
that occur in fractions of a second, and actions governing the 
whole process and how it should be performed strategically. It 
is important to capture and imitate both levels in order to handle 
flight uncertainties successfully. 

The IAS is made of the following components: a flight 
simulator, an interface, a database, a flight manager program, 
and Artificial Neural Networks. The IAS implementation 
method has three steps: A. Pilot Data Collection, B. Training, 
and C. Autonomous Control. In each step, different IAS 
components are used. The following sections describe each step 
and the components used in turn. 

A. Pilot Data Collection 

Fig. 1 illustrates the IAS components used during the pilot 
data collection step. 

1) Flight Simulator 
Before the IAS can be trained or can take control, we must 

collect data from a pilot. This is performed using X-Plane which 
is an advanced flight simulator that has been used as the 
simulator of choice in many research papers such as [12] [13] 
[14]. 

 
 

Fig.  1. Block diagram illustrating the IAS components used during the pilot 
data collection step. 



  

X-Plane is used by multiple organizations and industries 
such as NASA, Boeing, Cirrus, Cessna, Piper, Precession Flight 
Controls Incorporated, Japan Airlines, and the American 
Federal Aviation Administration.1 X-Plane can communicate 
with external applications by sending and receiving flight status 
and control commands data over a network through User 
Datagram Protocol (UDP) packets. For this work, the simulator 
is set up to send and receive packets comprising desired data 
every 0.1 second. In X-Plane, it is possible to simulate a number 
of flight emergencies for the purpose of training pilots. 
Emergencies range from severe weather conditions to system 
failure such as engine failure or fire.   

2) The IAS Interface   
The IAS Interface is responsible for data flow between the 

flight simulator and the system in both directions. The Interface 
contains control command buttons that provide a simplified yet 
sufficient aircraft control interface which can be used to perform 
basic tasks of piloting an aircraft such as take-off and landing in 
the simulator while being able to control other systems such as 
fuel and fire systems. It also displays flight data received from 
the simulator.  

Data collection is started immediately before demonstration, 
then; the pilot uses the Interface to perform the piloting task to 
be learned. The Interface collects flight data from X-Plane over 
the network using UDP packets, and collects the pilot’s actions 
while performing the task, which are also sent back to the 
simulator as manual control commands. The Interface organizes 
the collected flight data received from the simulator (inputs), 
and the pilot’s actions (outputs) into vectors of inputs and 
outputs, which are sent to the database every 1 second. 

3) Database   
An SQL Server database stores all data captured from the 

pilot demonstrator and X-Plane, which are received from the 
Interface. The database contains tables designed to store: 1. 
Flight data as inputs, and 2. Pilot’s actions as outputs. These 
tables are then used as training datasets to train the Artificial 
Neural Networks of the IAS.    

B. Training 

1) Artificial Neural Networks 
After the human pilot data collection step is completed, 

Artificial Neural Networks are used to generate learning models 
from the captured datasets through offline training. Fig. 2 
illustrates the training step.  

 

 
 

Fig.  2. Block diagram illustrating the IAS components used during training. 
 

 
1 "X-Plane 10 Global  
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Ten feedforward Artificial Neural Networks comprise the 
core of the IAS. Each ANN is designed and trained to handle 
specific controls and tasks. The ANNs are: Taxi Speed Gain 
ANN, Take Off ANN, Rejected Take Off ANN, Aileron ANN, 
Rudder ANN, Cruise Altitude ANN, Cruise Pitch ANN, Fire 
Situation ANN, Emergency Landing Pitch ANN, and 
Emergency Landing Altitude ANN. The inputs and outputs 
which represent the gathered data and relevant actions, and the 
topologies of the ten ANNs are illustrated in Fig. 3.  

The method for choosing ANN topologies in this work is 
based on a rule-of-thumb [15] which indicates that problems 
requiring more than one hidden layer are rarely encountered.   
This rule follows an approach that tries to avoid under-fitting 
caused by too few neurons in the hidden layer, or over-fitting 
caused by too many neurons, by having the number of hidden 
neurons less than or equal to twice the size of the input layer. 

Before training, the datasets are normalized, and retrieved 
from the database. Then, the datasets are fed to the ANNs. Next, 
Sigmoid (1) [15] and Hyperbolic Tangent (Tanh) (2) [15] 
functions are applied for the neuron activation step, where ����  
is the activation function for each neuron, and �  is the relevant 
input value:        
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Fig.  3. Inputs, outputs, and the topologies of the ten ANNs representing the 
core of the Intelligent Autopilot System. Each ANN is designed and trained to 

handle a specific task. 

 



  

The Sigmoid activation function (1) is used by the Taxi 
Speed Gain ANN, Take Off ANN, Emergency Landing Altitude 
ANN, Rejected Take Off ANN, and the Fire Situation ANN, 
while (2) is used by the rest since their datasets contain negative 
values. 

Next, Backpropagation is applied. Based on the activation 
function, (3) [16], or (4) [16] are applied to calculate the error 
signal (� ) where � �  is the desired target value and � �  is the actual 
activation value:    

 
             � � � �� � � � � � �� � �� � � � � �                              (3) 
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Finally, coefficients of models (weights and biases) are 

updated using (5) [17] where �� ���  is the change in the weight 
between nodes j and k.  
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When training is completed, the learning models are 

generated, and the free parameters or coefficients represented by 
weights and biases of the models are stored in the database.  

C. Autonomous Control  

Once trained, the IAS can now be used for autonomous 
control. Fig. 4 illustrates the components used during the 
autonomous control step.  

1) The IAS Interface 
Here, the Interface retrieves the coefficients of the models 

from the database for each trained ANN, and receives flight data 
from the flight simulator every 0.1 second. The Interface 
organizes the coefficients into sets of weights and biases, and 
organizes data received from the simulator into sets of inputs for 
each ANN. The relevant coefficients, and flight data input sets 
are then fed to the Flight Manager and the ANNs of the IAS to 
produce outputs. The outputs of the ANNs are sent to the 
Interface which sends them to the flight simulator as 
autonomous control commands using UDP packets every 0.1 
second. 

2) The Flight Manager Program 
The Flight Manager is a program which resembles a 

Behaviour Tree [18]. The purpose of the Flight Manager is to 
manage the ten ANNs of the IAS by deciding which ANNs are 
to be used simultaneously at each moment. The Flight Manager 
starts by receiving flight data from the flight simulator through 
the interface of the IAS, then it detects the flight condition and 
phase by examining the received flight data, and decides which 
ANNs are required to be used given the flight condition 
(normal/emergency/fire situation) and phase (taxi speed 
gain/take off/cruise/emergency landing). Fig.  5 illustrates the 
process which the Flight Manager follows.   

3) Artificial Neural Networks 
The relevant set of flight data inputs received through the 

Interface is used by the ANNs’ input neurons along with the 
relevant coefficients to predict control commands given the 
flight status by applying (1) and (2). The values of the output 

layers are sent to the Interface which sends them to the flight 
simulator as autonomous control commands. Taxi Speed Gain 
ANN is used while on the runway just before take off to predict 
the suitable brakes and throttle command values. Take Off ANN 
is used after a certain take off speed is achieved to predict gear, 
elevator, and throttle command values. Rejected Take Off ANN 
is used to abort take off if necessary by predicting brakes, 
throttle, and reverse throttle command values. Aileron ANN is 
used to control the aircraft’s roll immediately after take off. 
Rudder ANN is used to control the aircraft’s heading before take 
off, and yaw when airborne in case one engine fails and creates 
drag. Cruise Altitude ANN is used to control the aircraft’s 
desired cruising altitude by predicting the throttle command 
value. Cruise Pitch ANN controls the pitch while cruising by 
predicting the elevator command value. Fire Situation ANN is 
used in case of fire by predicting fuel valve and fire 
extinguishing control commands. Emergency Landing Pitch 
ANN maintains a certain pitch during emergency landing to lose 
speed without stalling and to prevent a nose first crash. 
Emergency Landing Altitude ANN controls the throttle in case 
of a single engine failure.     

 
 

Fig.  4. Block diagram illustrating the IAS components used during 
autonomous control. 

 

 
 

Fig.  5. A Flowchart illustrating the process which the Flight Manager 
program follows to decided which ANNs are to be used. 



  

IV. EXPERIMENTS 

Our previous work [1] provides detailed explanations of the 
experiments of autonomous taxi speed gain, take off, climb, and 
applying rudder and aileron to correct heading and roll 
deviations under normal and severe weather conditions. The 
new approach in this paper is to segment the training dataset of 
taxi speed gain, take off, and climb into three different sets that 
are handled separately by three ANNs (Taxi Speed Gain ANN, 
Take Off ANN, and Cruise ANN) instead of just one ANN. This 
work also introduces four new ANNs in order to learn flight 
emergency procedures for the first time. 

In order to assess the effectiveness of the proposed approach 
in this paper, the Intelligent Autopilot System was tested in four 
experiments: A. Rejecting take off, B. Emergency landing, C. 
Maintaining a cruising altitude, and D.  Handling single engine 
failure/fire while airborne. Each experiment is composed of 20 
attempts by the IAS to perform autonomously under the given 
conditions. 

The human pilot who provided the demonstrations is the 
first author. The simulated aircraft used for the experiments is a 
Boeing 777 as we want to experiment using a more complex 
model with more than one engine rather than a light single-
engine model. The experiments are as follows:  

A. Rejecting Take Off  

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot when a 
Rejected Take Off (RTO) is required. 

1) Data Collection  
In this experiment, the human pilot used the IAS Interface to 

perform the following in the flight simulator: reject take off 
when one engine fails or catches fire, and when two engines fail 
or catch fire (one demonstration for each scenario). The flight 
simulator was set to simulate the failure or fire conditions for 
one or two engines immediately after the user presses a hot key 
on the keyboard. Rejecting take off is performed by going to full 
reverse thrust and engaging brakes. In case of fire, the human 
pilot turned off the fuel valve, turned on the fire extinguishing 
system, and went to full throttle to burn the fuel left in the 
engine(s). While the pilot performed the demonstration, the 
Interface collected speed and engine status as inputs, and brakes, 
throttle, and reverse thrust control data as outputs. The Interface 
stored the collected data in the database as the training dataset 
for the Rejected Take Off ANN. The Interface also collected fire 
sensor readings as input, and fire extinguisher, throttle, and fuel 
valve control data as outputs. The Interface stored the collected 
data in the database as the training dataset for the Fire Situation 
ANN. 

2) Training 
For this experiment, the Rejected Takeoff ANN, and the Fire 

Situation ANN were trained until low Mean Squared Error 
(MSE) values were achieved (below 0.001).  

3) Autonomous Control 
After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test 
autonomous RTO multiple times under different scenarios (one 
and two engine(s) failure and fire), the simulator was set to 

simulate the desired emergency scenario, and the IAS was 
engaged. When the flight manager detects the emergency, it 
stops the Taxi Speed Gain ANN, and runs the Rejected Takeoff 
ANN and the Fire Situation ANN simultaneously to reject take 
off and handle fire autonomously. Through the Interface, ANNs 
receive: 1. Relevant flight data from the flight simulator as 
inputs, and 2. Coefficients of the relevant models from the 
database to predict and output command controls that are sent to 
the flight simulator. This process allows the IAS to 
autonomously perform the learned task: rejecting take off if 
necessary. This was repeated 20 times for each scenario to 
assess performance consistency.    

B. Emergency Landing  

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot when a 
forced or emergency landing is required. 

1) Data Collection  
 In this experiment, the human pilot used the IAS Interface 

to perform the following in the flight simulator: emergency 
landing when two engines fail or catch fire (one demonstration 
for each scenario). The flight simulator was set to simulate the 
failure or fire conditions for two engines immediately after the 
user presses a hot key on the keyboard. Emergency landing is 
performed by maintaining a controlled glide using the elevators 
to insure a gradual loss of speed and altitude without stalling the 
aircraft, by maintaining a slight positive pitch. If there is any 
power left in the engines, the throttle is used to aid the gliding 
phase. In case of fire, the human pilot turned off the fuel valve, 
and turned on the fire extinguishing system. In this scenario 
going to full throttle to burn the fuel left in the engines is not 
possible since both engines do not have sufficient power. While 
the pilot performed the demonstration, the Interface collected 
pitch as input, and elevator control data as output. The Interface 
stored the collected data in the database as the training dataset 
for the Emergency Landing Pitch ANN. The Interface also 
collected altitude as input, and throttle control data as output. 
The Interface stored the collected data in the database as the 
training dataset for the Emergency Landing Altitude ANN. 

2) Training 
For this experiment, the Emergency Landing Pitch ANN, 

and the Emergency Landing Altitude ANN were trained until 
low Mean Squared Error (MSE) values were achieved (below 
0.001 for the Emergency Landing Pitch ANN and below 0.2 for 
the Emergency Landing Altitude ANN).  

3) Control 
After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test 
autonomous emergency landing multiple times under different 
scenarios (both engines failure or fire), the simulator was set to 
simulate the desired emergency scenario, and the IAS was 
engaged. After the IAS took the aircraft airborne, and when the 
flight manager detects the emergency, it stops the Take Off 
ANN (during climb), or the cruise ANNs, and runs the 
Emergency Landing Pitch ANN, and the Emergency Landing 
Altitude ANN simultaneously to maintain a controlled glide 
while descending to the ground. Through the Interface, the 



  

ANNs receive: 1. Relevant flight data from the flight simulator 
as inputs, and 2. Coefficients of the relevant models from the 
database to predict and output command controls that are sent to 
the flight simulator. This process allows the IAS to 
autonomously perform learned task: emergency landing by 
maintaining a controlled glide. This was repeated 20 times for 
each scenario to assess performance consistency. 

C. Maintaining a Cruising Altitude  

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot while 
maintaining a desired cruising altitude. 

1) Data Collection  
In this experiment, the human pilot used the IAS Interface to 

maintain a cruising altitude in the flight simulator by increasing 
and decreasing the throttle, and by using the elevator to maintain 
a fairly leveled pitch (one demonstration). While the pilot 
performed the demonstration, the Interface collected altitude as 
input, and throttle control data as output. The Interface stored 
the collected data in the database as the training dataset for the 
Cruise Altitude ANN. The Interface also collected pitch as 
input, and elevator control data as output. The Interface stored 
the collected data in the database as the training dataset for the 
Cruise Pitch ANN. 

2) Training 
For this experiment, the Cruise Altitude ANN, and the 

Cruise Pitch ANN were trained until low Mean Squared Error 
(MSE) values were achieved (below 0.02 and 0.001 
respectively).  

3) Autonomous Control 
After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test the 
ability of maintaining a desired cruise altitude autonomously, 
and the IAS was engaged. After the IAS took the aircraft 
airborne, continued to climb, and reached the proximity of the 
desired altitude, the system’s ability to maintain the given 
altitude was observed. Through the Interface, the ANNs receive: 
1. Relevant flight data from the flight simulator as inputs, and 2. 
Coefficients of the relevant models from the database to predict 
and output command controls that are sent to the flight 
simulator. This process allows the IAS to autonomously perform 
learned task: maintain a desired cruising altitude. This was 
repeated 20 times for each scenario to assess performance 
consistency. 

D. Handling Single Engine Failure/Fire while Airborne   

The purpose of this experiment is to assess the behaviour of 
the IAS in case of an engine failure or fire while airborne. 

1) Data Collection  
In this experiment, the human pilot did not provide an 

explicit demonstration for the single engine failure. Instead, it 
was intended to test the already trained ANNs, and determine 
whether their models are able to generalize well in this new 
scenario where the failed engine creates a drag, and forces the 
aircraft to descend, and creates a yaw deviation towards the 
failed engine’s side. 

2) Training 
For this experiment, the previously trained models of the 

Cruise Altitude ANN, the Cruise Pitch ANN, and the rudder 
ANN from our previous work [1] were used. 

3) Autonomous Control 
After setting the simulator to simulate the desired emergency 

scenario (single engine failure or fire), and after the IAS took 
the aircraft airborne, when the flight manager detects the 
emergency, it continues to use the same ANNs (Take Off ANN, 
or cruise ANNs), and runs the Fire Situation ANN if fire is 
detected, to fly autonomously using the power left from the 
engine that operates normally. Through the Interface, the ANNs 
receive: 1. Relevant flight data from the flight simulator as 
inputs, and 2. Coefficients of the relevant models from the 
database to predict and output command controls that are sent to 
the flight simulator. This was repeated 20 times for each 
scenario to assess performance consistency. 

Throughout all the experiments, the Rudder and Aileron 
ANNs from our previous work [1] are used normally during the 
different phases. 

V. RESULTS 

The following section describes the results of the conducted 
tests. The 20 attempts by the IAS to handle each scenario 
autonomously were averaged and compared with the 
performance of the human pilot when applicable. 

A. Rejecting Take Off 

Two models were generated with the MSE values as table I 
shows. Fig.  6 illustrates the behaviour of the IAS when 
controlling the transition of flight modes under normal 
conditions, while Fig.  7 illustrates the behaviour of the IAS 
when engine(s) failure or fire is detected and a Rejected Take 
Off (RTO) is performed. The results of the 20 experiments 
showed strong consistency by following the correct procedure 
in each experiment with a 100% accuracy rate. 

B. Emergency Landing 

Two models were generated with the MSE values as table I 
shows. Fig. 8 and 9 illustrate a comparison between the human 
pilot and the IAS while maintaining a positive pitch during 
emergency landing, and their altitude (sink rate). The pitch 
Mean Absolute Deviation (MAD) results (0.024 for the IAS and 
0.196 for the human pilot) show less deviation and a steady 
behaviour of the IAS due to the good model fit as can be seen in 
Fig.  8. Fig.  10 illustrates the behaviour of the IAS when both 
engines failure or fire is detected and a forced or emergency 
landing is performed. The results of the 20 experiments showed 
strong consistency by following the correct procedure in each 
experiment with a 100% accuracy rate. 
 

TABLE I 
MSE VALUES OF THE MODELS GENERATED FOR THE REJECTED 

TAKE OFF AND THR EMERGENCY LANDING EXPERIMENTS. 
ANN MSE 

Rejected Takeoff ANN 0.000999 
Fire Situation ANN 0.000999 

Emergency Landing Pitch ANN 0.000997 
Emergency Landing Altitude ANN 0.196117 



  

 
Fig.  6. The behaviour of the IAS when controlling the transition of flight 

modes under normal conditions. Different ANNs are used in each flight mode. 
 

 

 
Fig.  8. (Emergency landing experiment) A comparison between the human 

pilot and the Intelligent Autopilot System’s pitch during emergency landing. In 
this case the human pilot struggled to generate perfect training data so our 
training approach was designed to prevent overfitting, instead creating a 

general model (good fit) which provided the desired performance. 
 

 
Fig.  10. (Emergency landing experiment) The behaviour of the IAS when both 

engines failure or fire is detected during either take off or cruise, and an 
emergency landing is performed. The Fire Situation ANN is used only when 

fire is detected. 

 
Fig.  7. (Rejected Take Off experiment) The behaviour of the IAS when 
engine(s) failure or fire is detected and a Rejected Take Off (RTO) is 
performed. The Fire Situation ANN is used only when fire is detected.  

 

 
Fig.  9. (Emergency landing experiment) A comparison between the human 

pilot and the Intelligent Autopilot System’s altitude during emergency landing. 
The results show a significantly close sink rate of about 1500 ftagl per minute. 
 
 

C. Maintaining a Cruise Altitude  

Two models were generated with the MSE values as table II 
shows. Fig.  11 and 12 illustrate a comparison between the 
human pilot and the IAS while maintaining a desired cruising 
altitude. The altitude Mean Absolute Deviation (MAD) results 
(85.8 for the IAS and 204.58 for the human pilot) shows less 
deviation of altitude and a steady behaviour of the IAS due to 
the good model fit as can be seen in Fig.  11. 
 
 

TABLE II 
MSE VALUES OF THE MODELS GENERATED FOR THE CRUISE 

EXPERIMENT. 
ANN MSE 

Cruise Altitude ANN 0.017574 
Cruise Pitch ANN 0.000835 



  

 
Fig.  11. (Maintaining a cruise altitude experiment) A comparison between the 

human pilot and the Intelligent Autopilot System’s altitude during cruising. 
While the human pilot demonstrator struggled to maintain a desired cruise 
altitude of 20,000 ftagl, the IAS performed better due to the good fit of the 

generated learning model. 
 

D. Handling Single Engine Failure/Fire while Airborne 

As mentioned in part (IV) the human pilot did not provide an 
explicit demonstration for the single engine failure scenario. 
Instead, it was intended to test the already trained ANNs, and 
determine whether their models are able to generalize well in 
this new scenario’s experiment. Fig.  13 illustrates the behaviour 
of the IAS when a single engine fails or catches fire during take 
off or cruise. The system was intended to carry on flying, apply 
the rudder ANN from our previous work [1], and run the Fire 
Situation ANN in case of fire. The results of the 20 experiments 
showed strong consistency by following the correct procedure 
in each experiment accurately. Fig. 14 illustrates how the IAS 
continues to fly while losing altitude gradually compared to the 
aircraft’s autopilot under the same situation. 
 
 
 

 
 
 
Fig.  13. (Handling single engine failure/fire experiment) The behaviour of the 

IAS when a single engine failure or fire is detected during either take off or 
cruise. The Fire Situation ANN is used only when fire is detected. The ANNs 
used during Take Off or Cruise perform the same tasks as Fig.  6 shows, while 

the Aileron ANN continues to correct roll. 

 
Fig.  12. (Maintaining a cruise altitude experiment) The IAS manipulation of 
throttle to maintain a desired cruise altitude of 20,000 ftagl compared with the 

human pilot. The IAS manipulated the throttle smoothly compared to the 
human pilot due to the good fit of the generated learning model. 

VI. ANALYSIS 

As can be seen in Fig.  7, the rejected take off experiment 
presented excellent results. The IAS was capable of imitating 
the human pilot’s actions and behaviour with excellent 
accuracy, and strong consistency by following the correct 
procedure in each experiment accurately.  

Fig.  8 to 10 (the emergency landing experiment) show very 
desirable results of the ability of the IAS to imitate the human 
pilot’s demonstration of controlling an emergency landing. 
They show the ability of the IAS to perform the learned sink rate 
which enabled the aircraft to hit the ground smoothly without 
being severely wrecked. The flight simulator measures the G 
force effect on the aircraft’s frame, and informs the user in case 
of an unsurvivable crash. It should be mentioned that selecting 
a suitable landing surface is not within the scope of this work.  
 

 

 
 
 

Fig.  14. (Handling single engine failure/fire experiment) Comparing the 
altitude loss rate of the IAS and the aircraft’s AFCS. Since the AFCS is not 
aware of the single engine failure situation, it compensates by increasing the 

throttle aggressively, which results in a smaller altitude loss rate, but puts 
excessive stress on the single operating engine. 



  

Fig.  11 and 12 (maintaining a cruise altitude experiment) 
show very desirable results of the ability of the IAS to learn how 
to use throttle and elevator to maintain a given altitude. They 
illustrate the ability of the IAS to perform better than the human 
pilot teacher due to the achieved good fit of the learning models. 
This can also be seen in Fig.  8 (the emergency landing 
experiment). 

As can be seen in Fig.  13 and 14, the single engine failure/fire 
experiment presented excellent results. The IAS was capable of 
using the already learned models to continue flying while 
gradually losing altitude. Although the aircraft’s standard 
autopilot maintained a better altitude in the short term, by 
aggressively increasing engine thrust it increases the likelihood 
of engine failure in the remaining engine, with potentially 
catastrophic results. 

The system was able to imitate multiple human pilot’s skills 
and behaviour after being presented with very limited examples. 
This is due to the approach of segmenting the problem of 
autonomous piloting while handling uncertainties into small 
blocks of tasks, and assigning multiple ANNs specially designed 
and trained for each task, which resulted in the generation of 
highly accurate models as tables I, and II show. 

VII.  CONCLUSION &  FUTURE WORK 

In this work, a robust approach is proposed to “teach” 
autopilots how to handle uncertainties and emergencies with 
minimum effort by exploiting Learning by Imitation also known 
as Learning from Demonstration.  

The experiments were strong indicators towards the ability 
of Supervised Learning with Artificial Neural Networks to 
capture low-level piloting tasks such as the rapid manipulation 
of the elevator and throttle to maintain a certain pitch or a given 
altitude. The experiments showed the ability of the IAS to 
capture high-level tasks such as coordinating the necessary 
actions to reject take off and extinguish fire. 

Breaking down the piloting tasks, and adding more Artificial 
Neural Networks enhanced performance and accuracy, and 
allowed the coverage of a wider spectrum of tasks. 

The aviation industry is currently working on solutions 
which should lead to decreasing the dependence on crew 
members. The reason behind this is to lower workload, human 
error, stress, and emergency situations where the captain or the 
first officer becomes incapable, by developing autopilots 
capable of handling multiple scenarios without human 
intervention. We anticipate that future Autopilot systems which 
make of methods proposed here could improve safety and save 
lives. 

Future effort will focus on giving the IAS the ability to learn 
how to fly a pre-selected course, and land safely in an airport. 
The IAS should be capable of avoiding no-fly zones that are 
either pre-identified, or detected during the flight such as severe 
weather systems detected by the aircraft’s radar. 

The Flight Manager program should be redesigned to utilize 
Artificial Neural Networks to classify the situation (normal or 
emergency), and predict the suitable flight control law or mode 
given the situation.  

The problem of sensor fault and denial should be 
investigated to test the feasibility of teaching the IAS how to 
handle such scenarios.    
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