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Abstract— We propose an extension to the capabildgs of the
Intelligent Autopilot System (IAS) from our previous work, to be
able to learn handling emergencies by observing antnitating

human pilots. The IAS is a potential solution to te current
problem of Automatic Flight Control Systems of beig unable to
handle flight uncertainties, and the need to constrct control

models manually. A robust Learning by Imitation approach is
proposed which uses human pilots to demonstrate theask to be
learned in a flight simulator while training datasets are captured
from these demonstrations. The datasets are thenes by Artificial

Neural Networks to generate control models automatially. The
control models imitate the skills of the human pilbwhen handling
flight emergencies including engine(s) failure orife, Rejected
Take Off (RTO), and emergency landing, while a fligt manager
program decides which ANNs to be fired given the auvent

condition. Experiments show that, even after beingresented with
limited examples, the IAS is able to handle suchifiht emergencies
with high accuracy.

|l. INTRODUCTION

Human pilots are trained to handle flight uncetias or
emergency situations such as severe weather comslitbr
system failure. For example, pilots are exposescemarios of
forced or emergency landing which is performed kgcating
standard emergency procedures. Usually, the maisepbf an
emergency landing is known as gliding which isrleance on
the aerodynamics of the aircraft to glide for aegiwdistance
while altitude is lost gradually. This happens wilea aircraft
has lost thrust due to full engine failure in refaly high
altitudes.

In contrast, Automatic Flight Control
(AFCS/Autopilot) are highly limited, capable of faming
minimal piloting tasks in non-emergency conditioAstopilots
are not capable of handling flight emergencies aglkengine
failure, fire, performing a Rejected Take Off, orfarced
(emergency) landing. The limitations of autopilatsquire
constant monitoring of the system and the flighatust by the
flight crew to react quickly to any undesired stioa or
emergencies. The reason for such limitations ofventional
AFCS is that it is not feasible to anticipate eviiryg that could
go wrong with a flight, and incorporate all of thatto the set of
rules or control models “hardcoded” in an AFCS.

This work aims to address this problem by expandimg
capabilities of the Intelligent Autopilot SystenA@8) [1] to be

Systems

able to learn flight emergency procedures from hupibots by
applying the Learning by Imitation concept with ifidial
Neural Networks. By using this approach, we aimxtend the
capabilities of modern autopilots and enable them
autonomously adapt their piloting to suit multipdeenarios
ranging from normal to emergency situations.

This paper is structured as follows: part (I1) ews related
literature on fault/failure tolerant systems, amel application of
multiple ANNs or Artificial Neural Circuits. Partl() explains
the Intelligent Autopilot System (IAS). Part (IVescribes the
experiments, Part (V) describes the results by @img the
behaviour of the human pilot with the behaviour the
Intelligent Autopilot System, and part (V1) proviglan analysis
of the results. Finally, we provide conclusions #&udre work.

IIl. BACKGROUND

A review of the Autopilot problem, Artificial Neura
Networks, and Learning by Imitation for Autonomofakght
Control is presented in our previous work [1].

A. Fault/Failure Tolerant Systems for Flight Control

Current operational autopilots fall under the damaif
Control Theory. Classic and modern autopilots re&lg
controllers such as the Proportional Integral Datixe (PID)
controller, and Finite-State automation [2]. Mangcent
research efforts focus on enhancing flight congrslby adding
fault/failure tolerant capabilities. With respeotftight control
systems, a fault is “an unpermitted deviation oflestst one
characteristic property of the system from the ptatgde, usual,
standard condition.” [3], while failure is “a perment
interruption of a system’s ability to perform a végd function
under specified operating conditions.” [3].

To handle faults and failures, recent researchtsffave been
focusing on designing Fault Detection and Diagn@sidD)
systems that can either stream information to giloarew
members especially in the case of UAVS, or feedt talerant
systems that are capable of handling system fathtsfirst type
of such systems are known as the Passive Faultrarle

Controllers which can handle moderate faults such a

parameters deviations by using a robust feedbackralter.
However, if the faults are beyond the capabilitassuch
controllers, another type of fault tolerant systelnegsomes a
necessity. This type is known as an Active Fauleflant control



system which includes a separate FDD system thd$ ad
extended and enhanced level of fault tolerancelztipes [4].

In case of emergency situations, mainly engineifajlengine
fire, flight instruments failure, or control surtaddamage or
failure, continuing to fly becomes either impossibf can poses
a serious threat to the safety of the flight. larsaircumstances,
a forced or emergency landing on a suitable surfaicd as a
flat field becomes a must especially if it is nospible to return
safely to the runway [5]. In [6], an emergency liagdcontroller
is proposed for an Unmanned Aerial Vehicle by saging the
emergency landing period into four sub-levels knoas
slipping guiding, straight line down, exponentialling up, and
shallow sliding. Each level uses different contetlategies
aimed at insuring the safe execution of the compdetergency
landing. For example, during the exponential pgllup level,
the system maintains a certain pitch without caysire UAV
to stall. Using a simulator, the proposed approstobwed its
ability to handle emergency landing [6].

B. Multiple ANNs or Artificial Neural Circuits

developing multiple spiking ANNs. The outputs oéthpiking
ANNs are used to generate a fusion of multiple dedm
different segments of the gesture. The results gatothe
system’s ability to handle dynamic visual recogmitiwvith the
presence of complex backgrounds [10].

The approach of segmenting or breaking down thélpno,
and using multiple ANNs to handle multiple segmshmaws the
potential to enhance the properties of ANNs asa®pt in
[11]. Alarge ANN is split into parallel circuithat resemble the
circuits of the human retina. During training, the
Backpropagation algorithm runs in each circuit sefgy. This
approach does not only decrease training time, ibaso
enhances generalization [11].

Ill. THE INTELLIGENT AUTOPILOT SYSTEM

The proposed Intelligent Autopilot System (IAS) timis
paper can be viewed as an apprentice that obsehes
demonstration of a new task by the experiencedhtra@nd
then performs the same task autonomously. A suitdess

The problem of coordinating multiple sensor-moto@eneralization of Learning by Imitation should taketo

architectures found in complex robotic systemshallenging.
This is due to the simultaneous and dynamic opmraif these
motors while insuring rapid and adaptive behaviand due to
the need to properly handle the fusion of data fidigparate
sources. In nature, animals manage this problerthéyarge
number of neural circuits in the animals’ brainer Example,
neural circuits which are responsible for motioa aonnected
to the muscles (motor systems), and operate sinmadizsly and
dynamically while handling changes in the environmg].

This has inspired the field of complex robotics develop
multiple neural-based controllers and integratenthegether to
tackle larger problems such as long-endurance lotiom
under uncertainties. For example, the problem ofdinating

multiple sensor-motor architectures is addressdtidrcontext
of walking by developing a neural circuit which geates
multiple gaits adaptively, and coordinates the pssc of
walking with different behavioural-based processes a

hexapod robot. The results showed the ability ef biology-

inspired system to detect and stabilize multiplstahility

scenarios, and to determine what needs to be dledtrat each
moment which allows the system to handle changethén
environment [7].

Multiple Artificial Neural Networks were applied tthe
problem of detecting roads visually. In [8], difext inputs are
fed into multiple ANNs to handle multiple segmermtfs the
image. The proposed approach allows the systeretertdand
classify multiple factors of the environment aheaddch leads
to an enhanced performance compared to other cempision
solutions [8]. In [9], Multiple ANNs were applied tackle the
limitations problem of traffic light control systexthat are based
on conventional mathematical methods. In simulatitre
results showed that the approach of using multhig\Ns to
address this problem presented an improvementrforp@ance
compared to other methods [9]. Another proposedesys
inspired by biology; is presented in [10] whichdsigned to
handle the challenging problem of gesture recogmitiThe
system shares similarities with the human visuatesy by

consideration the capturing of low-level models argh-level

models, which can be viewed as rapid and dynantieastions
that occur in fractions of a second, and actiongegtng the
whole process and how it should be performed gjicady. It

is important to capture and imitate both levelsiider to handle
flight uncertainties successfully.

The IAS is made of the following components: a Htig
simulator, an interface, a database, a flight managogram,
and Artificial Neural Networks. The IAS implemeritat
method has three steps: A. Pilot Data CollectionT Biining,
and C. Autonomous Control. In each step, differéhs
components are used. The following sections deseéth step
and the components used in turn.

A. Pilot Data Collection

Fig. 1 illustrates the IAS components used durhmeg pilot
data collection step.

1) Flight Simulator

Before the IAS can be trained or can take contwel must
collect data from a pilot. This is performed uskxlane which
is an advanced flight simulator that has been usedhe
simulator of choice in many research papers sudi2jq13]
[14].

Manual Control
Commands

ichi Flight Data Flight Data
Flight J »
e Interface Database
Simulator )
Manual Control Manual Control
Commands Commands

Fig. 1. Block diagram illustrating the IAS compaiteused during the pilot
data collection step.



X-Plane is used by multiple organizations and itdes Ten feedforward Artificial Neural Networks compritiee
such as NASA, Boeing, Cirrus, Cessna, Piper, Pseme&light core of the IAS. Each ANN is designed and trainedhandle
Controls Incorporated, Japan Airlines, and the Acaer specific controls and tasks. The ANNs are: Taxie€gp&ain
Federal Aviation Administratioh.X-Plane can communicate ANN, Take Off ANN, Rejected Take Off ANN, AileronMN,
with external applications by sending and receivligit status Rudder ANN, Cruise Altitude ANN, Cruise Pitch ANNjre
and control commands data over a network througbkr UsSituation ANN, Emergency Landing Pitch ANN, and

Datagram Protocol (UDP) packets. For this work,dimeulator
is set up to send and receive packets comprisisgededata
every 0.1 second. In X-Plane, it is possible touate a number
of flight emergencies for the purpose of trainingots.
Emergencies range from severe weather conditiorsystem
failure such as engine failure or fire.

2) The IAS Interface

The IAS Interface is responsible for data flow betw the
flight simulator and the system in both directiofke Interface
contains control command buttons that provide gbkified yet
sufficient aircraft control interface which canimged to perform
basic tasks of piloting an aircraft such as takeanfl landing in
the simulator while being able to control othertegss such as
fuel and fire systems. It also displays flight degaeived from
the simulator.

Data collection is started immediately before desttion,
then; the pilot uses the Interface to perform tihatipg task to
be learned. The Interface collects flight data fossRlane over
the network using UDP packets, and collects that'pibctions
while performing the task, which are also sent b&xkthe
simulator as manual control commands. The Interfegenizes
the collected flight data received from the simottatinputs),
and the pilot's actions (outputs) into vectors pputs and
outputs, which are sent to the database everydndec

3) Database

An SQL Server database stores all data captured fhe
pilot demonstrator and X-Plane, which are receifreth the
Interface. The database contains tables designediote: 1.
Flight data as inputs, and 2. Pilot’'s actions atpwis. These
tables are then used as training datasets to theairrtificial
Neural Networks of the IAS.

B. Training

1) Artificial Neural Networks

After the human pilot data collection step is costgd,
Artificial Neural Networks are used to generatemiag models
from the captured datasets through offline trainifgg. 2
illustrates the training step.

Atrtificial Neural Networks (Offline Training)

Flight Data & Manual

L ) r
Control Commands Mapping

Database

Coefficients of Models

Fig. 2. Block diagram illustrating the IAS compoteused during training.
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Emergency Landing Altitude ANN. The inputs and aui$p
which represent the gathered data and relevamractand the
topologies of the ten ANNs are illustrated in Rg.

The method for choosing ANN topologies in this wask
based on a rule-of-thumb [15] which indicates thaiblems
requiring more than one hidden layer are rarelyoantered.
This rule follows an approach that tries to avordier-fitting
caused by too few neurons in the hidden layer,ver-fitting
caused by too many neurons, by having the numbéidaien
neurons less than or equal to twice the size oinjpet layer.

Before training, the datasets are normalized, atdeved
from the database. Then, the datasets are fed t#NINs. Next,
Sigmoid (1) [15] and Hyperbolic Tangent (Tanh) (2p]
functions are applied for the neuron activatiomp stehere
is the activation function for each neuron, ani the relevant
input value:
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Fig. 3. Inputs, outputs, and the topologies oftdmreANNSs representing the
core of the Intelligent Autopilot System. Each AN\designed and trained to
handle a specific task.
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The Sigmoid activation function (1) is used by fhaxi layers are sent to the Interface which sends tlethe flight
Speed Gain ANN, Take Off ANN, Emergency Landingtétle  simulator as autonomous control commands. Taxi & f&ssn
ANN, Rejected Take Off ANN, and the Fire SituatiBhlN,  ANN is used while on the runway just before takietofpredict
while (2) is used by the rest since their datasetsain negative the suitable brakes and throttle command valudee Tdf ANN
values. is used after a certain take off speed is achiéwguledict gear,

Next, Backpropagation is applied. Based on thevaiitin  elevator, and throttle command values. Rejectec T2k ANN
function, (3) [16], or (4) [16] are applied to calate the error is used to abort take off if necessary by predictirakes,
signal () where is the desired target value andis the actual throttle, and reverse throttle command values.réileANN is
activation value: used to control the aircraft’'s roll immediately eafttake off.

Rudder ANN is used to control the aircraft's hegdiefore take
(38)  off, and yaw when airborne in case one engine &ait creates

drag. Cruise Altitude ANN is used to control theceft's
(4) desired cruising altitude by predicting the thmetdommand

value. Cruise Pitch ANN controls the pitch whilaiising by

Finally, coefficients of models (weights and bigsese Predicting the elevator command value. Fire Siarat\NN is

updated using (5) [17] where s the change in the weight US€d in case of fire by predicting fuel valve aride f
between nodes j and k. extinguishing control commands. Emergency LandiritghP

ANN maintains a certain pitch during emergency iagdo lose
) speed without stalling and to prevent a nose fisdsh.
Emergency Landing Altitude ANN controls the thretth case

- . . of a single engine failure.
When training is completed, the learning models are —

generated, and the free parameters or coefficieptesented by Simulator
weights and biases of the models are stored iddtabase.

C. Autonomous Control
Once trained, the IAS can now be used for auton@mou

Flight Data
Autonomous
Control
Commands

control. Fig. 4 illustrates the components usedindutthe .OA'“TiN'":'N”f“fo. . Flight Daa

autonomous control step. R o (| I .
1) The IAS Interface o, o °.° i el Database
Here, the Interface retrieves the coefficientshef tmodels :Ei::'sf:.:. | ot

from the database for each trained ANN, and resdiight data
from .the flight S'mu_lator _every 0.1 sec.ond. Thee”ﬂce Fig. 4. Block diagram illustrating the IAS compaoit®used during
organizes the coefficients into sets of weights hiages, and autonomous control.
organizes data received from the simulator inte s&inputs for
each ANN. The relevant coefficients, and flightadatput sets
are then fed to the Flight Manager and the ANN#eflAS to
produce outputs. The outputs of the ANNs are senthe .
Interface which sends them to the flight simulatas
autonomous control commands using UDP packets e¥dry
second.

2) The Flight Manager Program

The Flight Manager is a program which resembles a
Behaviour Tree [18]. The purpose of the Flight Mgerais to o
manage the ten ANNs of the IAS by deciding whichNsNare
to be used simultaneously at each moment. Thetfigimager
starts by receiving flight data from the flight sifator through <
the interface of the IAS, then it detects the flighndition and PyE——
phase by examining the received flight data, araidés which m
ANNs are required to be used given the flight ctadi
(normal/emergency/fire situation) and phase (tapees
gain/take off/cruise/emergency landing). Fig. lGsirates the

process which the Flight Manager follows. i
3) Atrtificial Neural Networks 41 Fun Emergery No 1 Engine?
The relevant set of flight data inputs receivedtigh the ve
Interface is used by the ANNS’ input neurons alavith the

relevant coefficients to predict control commandgeg the Fig. 5.AFIowcharti||ustratin_g the process whible Flight Manager
flight status by applying (1) and (2). The valudshe output program follows to decided which ANNSs are to beduse
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IV. EXPERIMENTS

Our previous work [1] provides detailed explanasiai the
experiments of autonomous taxi speed gain, takesliffib, and
applying rudder and aileron to correct heading and
deviations under normal and severe weather conditid he
new approach in this paper is to segment the trgidataset of
taxi speed gain, take off, and climb into thrededént sets that
are handled separately by three ANNs (Taxi Speed SisN,
Take Off ANN, and Cruise ANN) instead of just onHM. This
work also introduces four new ANNSs in order to fedlight
emergency procedures for the first time.

In order to assess the effectiveness of the prapagproach
in this paper, the Intelligent Autopilot System vtested in four
experiments: A. Rejecting take off, B. Emergenaydiag, C.
Maintaining a cruising altitude, and D. Handlinggle engine
failure/fire while airborne. Each experiment is qmsed of 20
attempts by the IAS to perform autonomously undierdiven
conditions.

The human pilot who provided the demonstrationghis
first author. The simulated aircraft used for tRperiments is a
Boeing 777 as we want to experiment using a morepbex
model with more than one engine rather than a lighgle-
engine model. The experiments are as follows:

A. Rejecting Take Off

The purpose of this experiment is to assess thaviomlr of
the IAS compared to the behaviour of the humart pioen a
Rejected Take Off (RTO) is required.

1) Data Collection

In this experiment, the human pilot used the |A®face to
perform the following in the flight simulator: rejetake off
when one engine fails or catches fire, and whenemgines fail
or catch fire (one demonstration for each scenafibg flight
simulator was set to simulate the failure or fimmditions for
one or two engines immediately after the user peashot key
on the keyboard. Rejecting take off is performedbing to full
reverse thrust and engaging brakes. In case qftfieehuman
pilot turned off the fuel valve, turned on the fertinguishing
system, and went to full throttle to burn the fleft in the
engine(s). While the pilot performed the demongimtthe
Interface collected speed and engine status atsirgmd brakes,
throttle, and reverse thrust control data as ostpithie Interface
stored the collected data in the database asdheniy dataset
for the Rejected Take Off ANN. The Interface aletierted fire
sensor readings as input, and fire extinguisheottie, and fuel
valve control data as outputs. The Interface sténedollected
data in the database as the training datasetddfitie Situation
ANN.

2) Training

For this experiment, the Rejected Takeoff ANN, #relFire
Situation ANN were trained until low Mean SquareddE
(MSE) values were achieved (below 0.001).

3) Autonomous Control

After training the ANNs on the relevant trainingakets, the
aircraft was reset to the runway in the flight siator to test
autonomous RTO multiple times under different scesaone
and two engine(s) failure and fire), the simulataas set to

simulate the desired emergency scenario, and ti& Wwas
engaged. When the flight manager detects the emeygét
stops the Taxi Speed Gain ANN, and runs the Rajetaéeoff
ANN and the Fire Situation ANN simultaneously tget take
off and handle fire autonomously. Through the liatee, ANNs
receive: 1. Relevant flight data from the flighimsilator as
inputs, and 2. Coefficients of the relevant modetsn the
database to predict and output command control@thaent to
the flight simulator. This process allows the [A® t
autonomously perform the learned task: rejectirg taff if
necessary. This was repeated 20 times for eachasoeto
assess performance consistency.

B. Emergency Landing

The purpose of this experiment is to assess thavialr of
the IAS compared to the behaviour of the humart pidoen a
forced or emergency landing is required.

1) Data Collection

In this experiment, the human pilot used the |Afiface
to perform the following in the flight simulatormergency
landing when two engines fail or catch fire (onendastration
for each scenario). The flight simulator was sesitoulate the
failure or fire conditions for two engines immedigt after the
user presses a hot key on the keyboard. Emergancyng is
performed by maintaining a controlled glide usihg elevators
to insure a gradual loss of speed and altitudeowitktalling the
aircraft, by maintaining a slight positive pitcti.there is any
power left in the engines, the throttle is useditbthe gliding
phase. In case of fire, the human pilot turnedtoéffuel valve,
and turned on the fire extinguishing system. Irs thienario
going to full throttle to burn the fuel left in trengines is not
possible since both engines do not have suffigemter. While
the pilot performed the demonstration, the Intexfaollected
pitch as input, and elevator control data as oufpl Interface
stored the collected data in the database asdheny dataset
for the Emergency Landing Pitch ANN. The Interfamiso
collected altitude as input, and throttle contratadas output.
The Interface stored the collected data in thelzeta as the
training dataset for the Emergency Landing AltitudeN.

2) Training

For this experiment, the Emergency Landing PitchNAN
and the Emergency Landing Altitude ANN were trainadil
low Mean Squared Error (MSE) values were achiemdofv
0.001 for the Emergency Landing Pitch ANN and bef®for
the Emergency Landing Altitude ANN).

3) Control

After training the ANNSs on the relevant trainingakets, the
aircraft was reset to the runway in the flight siator to test
autonomous emergency landing multiple times undfégrdnt
scenarios (both engines failure or fire), the satad was set to
simulate the desired emergency scenario, and ti& was
engaged. After the IAS took the aircraft airboraed when the
flight manager detects the emergency, it stopsTihke Off
ANN (during climb), or the cruise ANNs, and runseth
Emergency Landing Pitch ANN, and the Emergency liramd
Altitude ANN simultaneously to maintain a contrallglide
while descending to the ground. Through the Interfathe



ANNSs receive: 1. Relevant flight data from the liigsimulator
as inputs, and 2. Coefficients of the relevant neod®m the
database to predict and output command controlsthaent to
the flight simulator. This process allows the
autonomously perform learned task: emergency landig
maintaining a controlled glide. This was repeatédithes for
each scenario to assess performance consistency.

C. Maintaining a Cruising Altitude

The purpose of this experiment is to assess thaviomlr of
the IAS compared to the behaviour of the humant pilbile
maintaining a desired cruising altitude.

1) Data Collection

In this experiment, the human pilot used the |A®face to
maintain a cruising altitude in the flight simulatyy increasing
and decreasing the throttle, and by using the &det@ maintain
a fairly leveled pitch (one demonstration). Whilee tpilot
performed the demonstration, the Interface coltbel&itude as
input, and throttle control data as output. Thetfatce stored
the collected data in the database as the traotataset for the
Cruise Altitude ANN. The Interface also collectedcp as
input, and elevator control data as output. Therfate stored
the collected data in the database as the tratataset for the
Cruise Pitch ANN.

2) Training

For this experiment, the Cruise Altitude ANN, arftet
Cruise Pitch ANN were trained until low Mean SquhEaror

2) Training
For this experiment, the previously trained modzfighe
Cruise Altitude ANN, the Cruise Pitch ANN, and thedder

IA® t ANN from our previous work [1] were used.

3) Autonomous Control

After setting the simulator to simulate the desieatergency
scenario (single engine failure or fire), and aftex IAS took
the aircraft airborne, when the flight manager distethe
emergency, it continues to use the same ANNs (TikaNN,
or cruise ANNS), and runs the Fire Situation ANNfiie is
detected, to fly autonomously using the power fedim the
engine that operates normally. Through the Intexfétoe ANNs
receive: 1. Relevant flight data from the flightmsilator as
inputs, and 2. Coefficients of the relevant modetsn the
database to predict and output command controlsthaent to
the flight simulator. This was repeated 20 times é&ach
scenario to assess performance consistency.

Throughout all the experiments, the Rudder and réile
ANNSs from our previous work [1] are used normallyricig the
different phases.

V. RESULTS

The following section describes the results ofdbeducted
tests. The 20 attempts by the IAS to handle eaemas®
autonomously were averaged and compared with
performance of the human pilot when applicable.

(MSE) values were achieved (below 0.02 and 0.001A. Rejecting Take Off

respectively).
3) Autonomous Control

After training the ANNSs on the relevant trainingakets, the
aircraft was reset to the runway in the flight siator to test the
ability of maintaining a desired cruise altitudeanomously,
and the IAS was engaged. After the IAS took theraft
airborne, continued to climb, and reached the pnityi of the
desired altitude, the system’s ability to maintdie given
altitude was observed. Through the Interface, tN&l&receive:
1. Relevant flight data from the flight simulatariaputs, and 2.
Coefficients of the relevant models from the dasab@ predict
and output command controls that are sent to tightfl
simulator. This process allows the IAS to autonosiypperform
learned task: maintain a desired cruising altitu@lbis was
repeated 20 times for each scenario to assessrierioe
consistency.

D. Handling Single Engine Failure/Fire while Airborne

The purpose of this experiment is to assess thavialr of
the IAS in case of an engine failure or fire wialeborne.

1) Data Collection

In this experiment, the human pilot did not provide
explicit demonstration for the single engine fadlumstead, it
was intended to test the already trained ANNSs, detgrmine
whether their models are able to generalize welthis new
scenario where the failed engine creates a drayfanes the
aircraft to descend, and creates a yaw deviatiorards the
failed engine’s side.

Two models were generated with the MSE valueslas ta
shows. Fig. 6 illustrates the behaviour of the IAa®Ben
controlling the transition of flight modes under rmal
conditions, while Fig. 7 illustrates the behaviairthe 1AS
when engine(s) failure or fire is detected and ge&ted Take
Off (RTO) is performed. The results of the 20 expents
showed strong consistency by following the corpoicedure
in each experiment with a 100% accuracy rate.

B. Emergency Landing

Two models were generated with the MSE values ble ta
shows. Fig. 8 and 9 illustrate a comparison betwherhuman
pilot and the IAS while maintaining a positive pitcuring

emergency landing, and their altitude (sink rafe)e pitch

Mean Absolute Deviation (MAD) results (0.024 foettAS and

0.196 for the human pilot) show less deviation andteady
behaviour of the IAS due to the good model fitas be seen in
Fig. 8. Fig. 10 illustrates the behaviour of tA& when both

engines failure or fire is detected and a forcecmergency
landing is performed. The results of the 20 expenita showed
strong consistency by following the correct proaedin each
experiment with a 100% accuracy rate.

TABLE |
MSE VALUES OF THE MODELS GENERATED FOR THE REJECTED
TAKE OFF AND THR EMERGENCY LANDING EXPERIMENTS.

ANN MSE
Rejected Takeoff ANN 0.000999
Fire Situation ANN 0.000999
Emergency Landing Pitch ANN 0.000997
Emergency Landing Altitude ANN 0.196117

the
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W= Speed > 130 knots W = Aliitude > 4000 fiagl

Fig. 6. The behaviour of the IAS when controllthg transition of flight
modes under normal conditions. Different ANNs asediin each flight mode.
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Fig. 8. (Emergency landing experiment) A comparibetween the human

v = Single or both engine(s) failure / fire detected

Fig. 7. (Rejected Take Off experiment) The behawi the IAS when
engine(s) failure or fire is detected and a Reged@ke Off (RTO) is
performed. The Fire Situation ANN is used only wfiiem is detected.
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Fig. 9. (Emergency landing experiment) A comparibetween the human

pilot and the Intelligent Autopilot System’s pitdiaring emergency landing. In pilot and the Intelligent Autopilot System’s altite during emergency landing.

this case the human pilot struggled to generatiegtdraining data so our
training approach was designed to prevent overtjttinstead creating a
general model (good fit) which provided the despedormance.

Fig. 10. (Emergency landing experiment) The behavof the IAS when both
engines failure or fire is detected during eittedeet off or cruise, and an
emergency landing is performed. The Fire SituafibiN is used only when
fire is detected.

The results show a significantly close sink ratatdut 1500 ftagl per minute.

C. Maintaining a Cruise Altitude

Two models were generated with the MSE valueslas th
shows. Fig. 11 and 12 illustrate a comparison betwthe
human pilot and the IAS while maintaining a desicedising
altitude. The altitude Mean Absolute Deviation (MAEsults
(85.8 for the IAS and 204.58 for the human pildtpws less
deviation of altitude and a steady behaviour of & due to
the good model fit as can be seen in Fig. 11.

TABLE II
MSE VALUES OF THE MODELS GENERATED FOR THE CRUISE
EXPERIMENT.
ANN MSE
Cruise Altitude ANN 0.017574
Cruise Pitch ANN 0.000835




Fig. 11. (Maintaining a cruise altitude experim)ehtomparison between the
human pilot and the Intelligent Autopilot Systeral§itude during cruising.
While the human pilot demonstrator struggled tortan a desired cruise
altitude of 20,000 ftagl, the IAS performed bettee to the good fit of the

generated learning model.

D. Handling Single Engine Failure/Fire while Airborne

As mentioned in part (IV) the human pilot did nobyide an
explicit demonstration for the single engine faluscenario.
Instead, it was intended to test the already tchilINs, and
determine whether their models are able to genreraliell in
this new scenario’s experiment. Fig. 13 illustsatee behaviour
of the IAS when a single engine fails or catchesdiuring take
off or cruise. The system was intended to carr§lying, apply
the rudder ANN from our previous work [1], and rive Fire
Situation ANN in case of fire. The results of thieekperiments
showed strong consistency by following the corpoicedure
in each experiment accurately. Fig. 14 illustrdiess the IAS
continues to fly while losing altitude graduallyrapared to the
aircraft’'s autopilot under the same situation.

Fig. 13. (Handling single engine failure/fire expgent) The behaviour of the
IAS when a single engine failure or fire is deteati@ring either take off or
cruise. The Fire Situation ANN is used only whee fs detected. The ANNs
used during Take Off or Cruise perform the samiestas Fig. 6 shows, while
the Aileron ANN continues to correct roll.

Fig. 12. (Maintaining a cruise altitude experimeFtie IAS manipulation of
throttle to maintain a desired cruise altitude @f0P0 ftagl compared with the
human pilot. The IAS manipulated the throttle srhiyotompared to the
human pilot due to the good fit of the generatedrzg model.

VI. ANALYSIS

As can be seen in Fig. 7, the rejected take gfearment
presented excellent results. The IAS was capablenibting
the human pilot's actions and behaviour with exll
accuracy, and strong consistency by following tloerect
procedure in each experiment accurately.

Fig. 8 to 10 (the emergency landing experimenbwstiery
desirable results of the ability of the IAS to iaté the human
pilot's demonstration of controlling an emergen@nding.
They show the ability of the IAS to perform therlead sink rate
which enabled the aircraft to hit the ground smbothithout
being severely wrecked. The flight simulator measuhe G
force effect on the aircraft’s frame, and inforre tiser in case
of an unsurvivable crash. It should be mentioned $electing
a suitable landing surface is not within the scofpthis work.

Fig. 14. (Handling single engine failure/fire expgent) Comparing the
altitude loss rate of the IAS and the aircraft'sG8: Since the AFCS is not
aware of the single engine failure situation, inp@nsates by increasing the

throttle aggressively, which results in a smallétuale loss rate, but puts

excessive stress on the single operating engine.



Fig. 11 and 12 (maintaining a cruise altitude eixpent)
show very desirable results of the ability of tA&Ito learn how
to use throttle and elevator to maintain a giveituale. They
illustrate the ability of the IAS to perform bettéian the human
pilot teacher due to the achieved good fit of #erhing models.
This can also be seen in Fig. 8 (the emergencdirgn
experiment).

As can be seenin Fig. 13 and 14, the single erfgiture/fire
experiment presented excellent results. The IAScapsble of
using the already learned models to continue flyimgile
gradually losing altitude. Although the aircraftstandard
autopilot maintained a better altitude in the sherm, by
aggressively increasing engine thrust it incredéisedikelihood
of engine failure in the remaining engine, with gutally
catastrophic results.

The system was able to imitate multiple human silskills
and behaviour after being presented with very éohigexamples.
This is due to the approach of segmenting the probbf
autonomous piloting while handling uncertaintietoirsmall
blocks of tasks, and assigning multiple ANNs spcdesigned
and trained for each task, which resulted in theegation of
highly accurate models as tables I, and Il show.

VIl. CONCLUSION& FUTURE WORK

In this work, a robust approach is proposed to cltéa
autopilots how to handle uncertainties and emeligenwith
minimum effort by exploiting Learning by Imitati@so known
as Learning from Demonstration.

The experiments were strong indicators towardsathikty
of Supervised Learning with Artificial Neural Netvks to
capture low-level piloting tasks such as the rap#hipulation
of the elevator and throttle to maintain a certatoh or a given
altitude. The experiments showed the ability of thA& to
capture high-level tasks such as coordinating tbeessary
actions to reject take off and extinguish fire.

Breaking down the piloting tasks, and adding mont#igial
Neural Networks enhanced performance and accuracg,
allowed the coverage of a wider spectrum of tasks.

The aviation industry is currently working on sdabums
which should lead to decreasing the dependencerew c
members. The reason behind this is to lower worklbaman
error, stress, and emergency situations whereaptin or the
first officer becomes incapable, by developing aitds

The problem of sensor fault and denial should be
investigated to test the feasibility of teaching tAS how to
handle such scenarios.
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