Genetic, Pathophysiological and Clinical Aspects of Nephrocalcinosis

Ben Oliveira¹, Robert Kleta¹, Detlef Bockenhauer¹, Stephen B Walsh¹

1. UCL Centre for Nephrology, London, UK

Correspondence to:

Robert Kleta, MD, PhD
Potter Chair of Nephrology
Head of Centre for Nephrology
University College London
Royal Free Hospital / Medical School
1. Floor, Room 1.7007, Rowland Hill Street
London NW3 2PF, United Kingdom

Phone +44-20-7317 7554
Fax +44-20-7472 6476
Email r.kleta@ucl.ac.uk

Running Head: Genetics of Nephrocalcinosis

Key Words: Nephrocalcinosis, Tubular Physiology, Genetics
Contents

Introduction

Genetics of Nephrocalcinosis

Renal genetic disease causing Nephrocalcinosis

- Proximal Tubule
- Loop of Henle
- Distal Convoluted Tubule
- Cortical Collecting Duct

Miscellaneous

Extra-renal genetic disease causing nephrocalcinosis

- Intestinal disease
- Bone disease
- Oxaluria

Acquired

Pathophysiology of Nephrocalcinosis

Clinical Features of Nephrocalcinosis

Conclusions

References
Abstract

Nephrocalcinosis describes the ectopic deposition of calcium salts in the kidney parenchyma. Nephrocalcinosis can result from a number of acquired causes, but also an even greater number of genetic diseases, predominantly renal, but also extra-renal. Here we provide a review of the genetic causes of nephrocalcinosis, along with putative mechanisms, illustrated by human and animal data.
Introduction

The term Nephrocalcinosis was first coined by the then physician’s assistant Fuller Albright in 1934 [2]. Albright was referring to calcium deposition into the kidney of patients with primary hyperparathyroidism usually associated with impaired kidney function. Currently the term is often used to describe calcium deposition that is seen in the kidneys radiologically which, as we will discover later, does not necessarily constitute nephrocalcinosis as Albright originally meant it. The calcium is in the form of either calcium phosphate or calcium oxalate; some have termed the latter oxalosis, but here we shall use the term nephrocalcinosis to cover both. In the majority of cases the underlying event leading to nephrocalcinosis is hypercalciuria. This may be the result of extra-renal conditions leading to an increased calcium load with subsequent hypercalciuria; for example enhanced absorption of calcium in the gut. Alternatively, hypercalciuria may be caused by impaired renal handing of calcium. Here, we explore the genetic, pathophysiological and clinical aspects of both renal and extra-renal diseases leading to nephrocalcinosis.

Types of Nephrocalcinosis

Oliver Wrong proposed dividing nephrocalcinosis into three different types [78]. The first was molecular nephrocalcinosis, in which there is an increase in renal intracellular calcium but no crystal formation; in essence reflecting the renal dysfunction of hypercalcemia. The second was microscopic nephrocalcinosis, in which calcium phosphate or oxalate crystals could be identified on light microscopy but not radiologically (as often happens in biopsies of renal tissue with acute tubular necrosis). The third was macroscopic nephrocalcinosis, where the calcium salt is visible
radiologically. It is this third type that is typically referred to by the term nephrocalcinosis, and is also the type that we will mainly consider here.

Sites of Nephrocalcinosis

Cortical nephrocalcinosis is rare (2.4% of the largest published series [116]) and usually results from severe destructive disease of the cortex. This has been described in chronic glomerulonephritis (although this is often in the presence of another factor, e.g. increased calcium ingestion) [4], acute cortical necrosis [22], chronic pyelonephritis (which may be focal and therefore asymmetric) [31] and trauma [16].

Medullary nephrocalcinosis is the usual distribution seen, perhaps unsurprising considering the location of the major homeostatic pathway of Ca²⁺ reabsorption (the thick ascending limb of the loop of Henle) and the segment involved with acid base regulation (the collecting duct).
Genetic Aspects of Nephrocalcinosis

A number of monogenetic conditions lead to nephrocalcinosis. Over the last few decades we have been able to classify the genetic basis of a number of conditions causing nephrocalcinosis and these will form the focus of this review.

Renal genetic disease causing Nephrocalcinosis

Proximal Tubule

Dent Disease and Lowe Syndrome

The term Dent disease was first coined by Wrong in 1994 based on the phenotype first described by Dent in the 1960s [26,117]. It is an X-linked recessive disorder characterized by the renal Fanconi syndrome (low-molecular weight proteinuria, aminoaciduria, phosphaturia, uricosuria, glycosuria) hypercalciuria, nephrocalcinosis and nephrolithiasis. It also causes progressive renal impairment with ESRF out of keeping with the degree of nephrocalcinosis, often in the 4th to 5th decade. Dent disease (Dent-1) is caused by mutations of *CLCN5* gene that encodes the chloride transporter CIC-5. CIC-5 is found in endosomes involved in the endocytic reabsorption of low molecular weight (LMW) proteins. 40% of patients with Dent disease do not have *CLCN5* mutations; of these, about a third have a mutation in *OCRL*, these patients are referred to as Dent-2 [45].

Lowe syndrome, which is caused by *OCRL* mutations, has the same renal phenotype as Dent disease in addition to congenital cataracts and mental impairment [10]. There is some overlap between Dent-2 and Lowe syndrome but Dent-2 sufferers tend to have mild or absent oculocerebral symptoms [11].
Loss of CLC-5 leads to impaired lysosomal trafficking to the lumen. As endocytosis is required for reabsorption of proteins in the proximal tubule this will interfere with normal function. ClC-5 is strongly expressed in proximal tubular cells, where it is collocated with vacuolar H\(^+\)ATPase in endosomes, which are involved in reabsorption of filtered albumin and low molecular weight proteins. Inactivation of ClC-5 in rodents leads to a severe endosomal trafficking defect, resulting in a loss of the multiligand cubulin and megalin proteins from the proximal tubular cell brush border, and shedding of these proteins into the urine as well as impaired lysosomal processing.

The pathophysiology of hypercalcuiuria in Dent/Lowe has not been clearly delineated. It has been suggested that decreased absorption of phosphate and vitamin D binding protein in the proximal tubule leads to secondary increases in Vitamin D3 synthesis resulting in hypercalcaemia and then hypercalcuiuria [27]. Another proposed mechanism is that decreased chloride reabsorption in the proximal tubule leads to reduced calcium absorption in downstream nephron segments (presumably by reducing the trans-tubular electrochemical gradient necessary for cation transport) [103]. Nephrocalcinosis may occur in Dent patients without hypercalcuiuria [66] and there is some evidence that defective ClC-5 in collecting duct cells may cause decreased clearing of calcium crystals from the apical cell surface [87]. Also, decreased proximal tubular endocytosis of parathyroid hormone (PTH), results in an increased luminal concentration of PTH, which stimulates increased 1-alfa hydroxylation and causes decreased expression of NaPi2 at the apical membrane and phosphaturia, favouring calcification [81].
Idiopathic infantile hypercalciuria (IIH) and hereditary hypophosphatemic rickets with hypercalciuria (HHRH)

Pathogenic NaPi2a variants, caused by mutations in \textit{SLC34A1} can cause autosomal recessive IIH, characterised by hypophosphatemia and nephrocalcinosis [89]. Some variants may have a full renal Fanconi syndrome [67].

Homozygous mutations of \textit{SLC34A3} which encode NaPi2c can cause HHRH, causing hypophosphatemia, secondary elevation of 1,25 OH vitamin D and hypercalciuria and osteomalacia. Heterozygous carriers get a similar but less severe phenotype; both homozygotes and heterozygotes are more likely than wild type to develop medullary nephrocalcinosis [25]. NaPi2a deletion in mice causes interstitial deposition of \textit{CaPi}, associated with phosphate wasting, a secondary elevation in 1,25 OH Vitamin D and subsequent hypercalcemia and hypercalciuria [19].

Fanconi Bickel syndrome

Fanconi Bickel syndrome is caused by mutations in \textit{SLC2A2} which encodes the glucose transporter GLUT2 [68]. This is responsible for transcellular glucose transport in enterocytes as well as proximal renal tubular cells. Pathogenic mutations in this gene cause a glycogen storage disorder resulting in generalized proximal tubular dysfunction. Hypercalciuria is present, as well as hyperphosphaturia; this is thought to be because pathogenic GLUT2 mutations may cause decreased expression of NaPi2c in proximal tubular cells [68].

\textbf{Loop of Henle}
Bartter Syndromes

The Bartter syndromes comprise a group of autosomal recessive disorders caused by mutations in a number of genes characterized by salt wasting in the thick ascending limb of the loop of Henle, resulting in low-normal blood pressure, hypokalemic metabolic alkalosis, and hypercalciuria. Hypercalciuria is responsible for the nephrocalcinosis often seen in this condition [88].

The genetic basis for the condition is well delineated and is due to mutations in different TAL transporter proteins. Bartter I is due to mutations of \textit{SLC12A1} that encodes the NKCC2 cotransporter itself [93]. Bartter II is due to mutations in \textit{KCNJ1} which encodes the apical ROMK potassium channel [94] and Bartter syndrome type III is due to mutations of \textit{CLCNKB} encoding the chloride channel ClC\textsubscript{Kb} on the basolateral membrane [92]. These channels are required for apical potassium and basolateral chloride efflux and for NKCC2 function. Mutations of \textit{BSND} which encodes Barttin, a chaperone protein that is necessary for the correct insertion of ClC\textsubscript{KA} and ClC\textsubscript{KB} in the basolateral membrane are responsible for Bartter IV [33]. Barttin also acts in the epithelium of the inner ear and patients with Bartter syndrome type IV have sensorineural deafness. Finally, there are rare gain of function mutations of the calcium sensing receptor (CaSR), that can lead to a Bartter-like phenotype [110]; this has also been termed Bartter V. Activation of the CaSR causes inactivation of NKCC2 probably via inhibition of ROMK [109]. This may also partly explain the diuresis commonly seen in hypercalcaemic states. Nephrocalcinosis has been reported in all five types of Bartter syndrome but is a prominent feature in types I, II, and V.

Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis (FHHNC)
This is a rare autosomal recessive condition characterized by severe nephrocalcinosis, nephrolithiasis and progressive renal failure. Defects in two genes have been found, \textit{CLDN16} [95] and \textit{CLDN19} [58] which encode Claudin-16 and Claudin-19 respectively. These proteins are tight junction components crucially involved in the paracellular absorption of calcium and magnesium in the TAL. The pathogenic mutations cause the tight junctions to lose cation selectivity, which allows leakage of anions into the lumen, diminishing the positive lumen potential required to drive the paracellular absorption of calcium and magnesium [48]. The resulting heavy hypercalciuria causes severe nephrocalcinosis and is associated with subsequent renal failure [73].

\textbf{Insulin Receptor Mutations}

Hypercalciuria and nephrocalcinosis has been reported in cases of insulin receptor mutations [96]. These autosomal recessive mutations of \textit{INSR} lead to severe insulin resistance with subsequent hyperinsulinism. The cause of the hypercalciuria has not been delineated, but mirrors the hypercalciuria that occurs with diabetes, which is reversible by insulin, suggesting a role of INSR activation in the regulation of urinary calcium excretion [85]. The patients were also found to have hypermagnesuria and hypokalemic metabolic alkalosis. INSR is expressed throughout the nephron, and the mechanism of INSR mutations in causing nephrocalcinosis is not clear; the association of hypercalciuria and hypermagnesuria suggests a lesion in the TAL or DCT.

\textbf{Distal Tubule}
Approximately 7-10% of the filtered calcium is reabsorbed in the distal convoluted tubule (DCT). Uniquely, this Ca2+ transport is transcellular and active. Surprisingly, there are no known monogenetic conditions arising from this segment causing nephrocalcinosis [101].

Familial Hyperkalemic Hypertension (FHHt)

FHHt causes hypertension, hyperkalemia, metabolic acidosis and hypercalciuria. It is caused by mutations of the kinases, WNK1 and WNK4 [111], as well as the ubiquitin ligase Cullin 3 [12] and its adaptor Kelch-like 3 [65]. These pathogenic mutations increase the phosphorylation and activity of the sodium chloride cotransporter. Hypercalciuria is a particular feature of FHHt due to WNK4 mutations; possibly as WNK4 appears to enhance TRPV5 Ca2+ transport, and this effect is attenuated with pathogenic WNK4 mutations [53]. Decreased proximal reabsorption in response to volume expansion is also likely, in contrast to the hypocalciuria of Gitelman syndrome or thiazide administration [75]. Although nephrolithiasis secondary to hypercalciuria has been reported in FHHt [100], to date nephrocalcinosis has not.

Cortical collecting duct

Distal Renal Tubular Acidosis (dRTA)

This condition has a high propensity to cause nephrocalcinosis (80% of individuals) and accounts for 19% of all cases in Wrong’s series [116]. The chronic metabolic acidosis leads to phosphate being liberated from the skeleton to buffer acid; the mobilized calcium causes hypercalciuria. As calcium phosphate precipitates at a
higher pH, the alkaline urine will tend to favor the formation of calcium phosphate stones and/or nephrocalcinosis [40]. There may also be a lesser effect from an overt metabolic acidosis, which may contribute to hypercalciuria by decreasing expression of TRPV5 in the DCT [74]. dRTA is caused by a failure of the alpha-intercalated cells to acidify the urine. In these cells, CO₂ is hydrated to form a bicarbonate ion and a proton in a reaction catalysed by carbonic anhydrase 2. The proton is extruded apically by the apical proton pump, vacuolar H⁺ATPase, while the bicarbonate is reclaimed to the systemic circulation by the chloride bicarbonate counter transporter anion exchanger 1 (AE1). Mutations of the gene SLC4A1, which encodes AE1 were proposed as a genetic cause of hereditary dRTA by Unwin and colleagues [103], and this was later proved correct [13]. Subsequently, mutations of ATP6V1B1 [54] or ATP6V0A4 [98] which encode the B1 and A4 subunits (respectively) of vH⁺ATPase were also shown to lead to dRTA. Deficiency of carbonic anhydrase 2 (CA2) was reported to cause an autosomal recessive syndrome of RTA, proximal bicarbonate wasting, osteopetrosis and cerebral calcification in 1983 [97]. Loss of function mutations of the CA2 have been subsequently described [37,91], and nephrocalcinosis is reported in these patients [51].

Miscellaneous

Amelogenesis Imperfecta with Nephrocalcinosis (AINC)

AINC is a rare autosomal recessive disorder characterized by dental defects and nephrocalcinosis due to mutations in FAM20A [52]. AINC patients are hypocalciuric rather than hypercalciuric. FAM20A is a putative kinase in the Golgi apparatus with a
proposed role in biomineralisation, hence it’s causality in Amelogenesis and nephrocalcinosis [108].

Medullary Sponge Kidney

Described by Lenaduzzi in 1939 [61], medullary sponge kidney (MSK) is characterized by ectatic precalyceal papillary collecting ducts [38] and causes nephrocalcinosis, nephrolithiasis, which may lead to recurrent urosepsis. The condition may be caused by disruption to the normal ureteric bed-metanephric interface, which can be demonstrated as ectatic precalyceal papillary collecting ducts on intravenous pyelography. It has been shown that up to 50% of those with the condition may have an affected family member and that a number of these kindreds have inherited MSK in an autosomal dominant fashion with variable penetrance [36].

During nephrogenesis the metanephric mesenchyme induces ureteric bud growth via glial cell-lined derived neurotrophic factor (GDNF) acting on receptor tyrosine kinase (RET). Mutations have been found in both of these genes in patients with MSK [29,102]. Impaired nephrogenesis may also explain the other tubular defects seen in MSK, namely; dRTA, proximal tubular dysfunction, hypercalciuria and hypocitraturia.

Calcification in MSK takes a number of forms. Apart from simple stones, there are ductal stones, ductal and inner medullary collecting duct plugs (which take the shape of the tubular segment in which they form, and destroy the epithelium, settling eventually on the basement membrane), plug overgrowths, stones growing on Randal’s plaques and pelvic stones [34]. The dilated collecting ducts and resultant low flow contributes to stone formation (especially ductal stones), nephrocalcinosis seems to result from ductal plugging and interstitial calcification (e.g. Randal plaques).
MSK was classically diagnosed via intravenous urography (IVU), in which the diagnosis could be made by the finding of cystic dilations associated with a calyceal ‘blush’ appearance, caused by pooling of contrast. This would often be in addition to the visualization of nephrocalcinosis and nephrolithiasis [38].

IVUs are no longer available in many centers; and although unenhanced CT scans can only confirm nephrocalcinosis, not MSK, more recently, multidetector CT urography has been shown to demonstrate the characteristic radiologic findings of MSK including medullary cysts, calyceal dilatation, nephrocalcinosis and nephrolithiasis [59,71].

Extra-renal genetic disease causing nephrocalcinosis

Intestinal disease

Williams’ syndrome

Williams syndrome (also Williams-Beuren syndrome) is a multisystem disorder resulting from the deletion of 26-28 genes from the long arm of chromosome 7[82]. The clinical phenotype is of intellectual impairment with a friendly ‘cocktail party’ personality, vascular stenosis, characteristic facies and variable hypercalcaemia, sometimes with nephrocalcinosis[83], but without either a raised PTH or vitamin D level. The specific gene responsible has not been identified; but there is evidence to suggest that the Ca$^{2+}$ channel TRPC3 is up regulated in intestine and kidney and that this may be regulated by TF2i, encoded by the transcription factor 2i (*GTF2i*) gene which is located within the deletion on chromosome 7 [62].
Nephrocalcinosis may occur in a number of other monogenic intestinal diseases associated with hypercalcaemia/hypercalciuria, such as congenital lactase deficiency [86], congenital sucrose/isomaltase deficiency [7], glucose/galactose malabsorption [79] and the blue diaper syndrome [30].

Bone disease

Primary hyperparathyroidism with Multiple Endocrine Neoplasia type 1 (MEN1)

MEN1 is an autosomal dominant condition consisting of the strong predisposition to form tumors of the parathyroid glands (in over 90% of MEN1 patients over 50), the anterior pituitary and the pancreas. The resulting hyperparathyroidism causes hypercalcaemia and thus hypercalciuria and subsequent nephrocalcinosis. The causative gene is *MEN1* [18], which encodes a protein, Menin, which is a putative tumor suppressor gene.

Idiopathic Infantile Hypercalcaemia and Hypercalciuric Nephrolithiasis and Nephrocalcinosis

Loss of function mutations of *CYP24A1*, which encodes the enzyme 1,25-dihydroxyvitamin D₃ 24-hydroxylase, cause infantile hypercalcaemia [89] (usually in infants who are given vitamin D supplements) and a syndrome of hypercalciuria, nephrolithiasis and nephrocalcinosis in patients presenting in later childhood or early adulthood [28]. 24-hydroxylase catalyzes the 24 and 23-hydroxylation of 25-(OH)D₃ and 1,25-(OH)₂D₃, probably in order to regulate and attenuate the action of 1,25-(OH)₂D₃ on its target tissues. These autosomal recessive loss of function mutations
therefore appear to amplify the effect of native 1,25-(OH)$_2$D$_3$, causing a suppressed PTH, hypercalciuria, stones and nephrocalcinosis.

Other monogenic diseases affecting bone may also cause nephrocalcinosis by increasing the urinary concentration of calcium; Neonatal self-limited primary hyperparathyroidism [76], Infantile hypophosphatasia [6] and McCune-Albright syndrome [56].

Oxaluria

Primary Hyperoxaluria types 1, 2 & 3

Primary hyperoxaluria (PH) is caused by autosomal recessive defects in hepatic enzymes involved in the metabolism of glyoxalate, resulting in enhanced oxalate production, and thus hyperoxaluria, with subsequent nephrocalcinosis which often leads to end-stage renal failure [46]. PH1 is caused by defects in AGXT, which encodes peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which converts glyoxylate to glycine [20].

PH2 is caused by inactivating mutations of GRHPR which encodes cytosolic enzyme glyoxylate reductase/hydroxypyruvate reductase (GR/HPR) [90]. The GR/HPR enzyme catalyzes the conversion of glyoxalate to glycolate. The increased load of glyoxalate is converted by lactate dehydrogenase to oxalate. Mammals cannot metabolize oxalate and it must be excreted in the urine. Oxalate is poorly soluble and urinary supersaturation leads to both nephrocalcinosis and nephrolithiasis.

PH3 is caused by genetic inactivation of HOGA1, which encodes the liver-specific mitochondrial 4-hydroxy-2-oxoglutarate (HOG) aldolase [8] involved in the final step
of hydroxyproline catabolism in mitochondria, catalyzing the cleavage of HOG to pyruvate and glyoxalate. The mechanisms by which this impaired catabolism leads to oxalate accumulation are, currently, not well understood. PH3 patients typically present at a young age with recurrent stone disease, hyperoxaluria and hypercalciuria. The disease usually becomes silent in later childhood and does not progress to end stage renal failure.

Most mutations in PH1 patients cause either a complete absence of AGT or abolish its function [24,112]. However about a third of patients have presence of functional AGT that is mistargeted to the mitochondria rather than peroxisomes. The mistargeting is caused by a specific mutation (Gly170Arg), if combined with a common polymorphism (Pro11Leu) [84]. Pro11Leu is one of the main allelic variants of the AGXT gene; the so-called minor allele with a frequency of about 15 – 20% in European and North American individuals. Even in the absence of the Gly170Arg mutation the minor allele causes about 5% of AGT to be directed to the mitochondria [84]. It has been proposed that this mutation may have arisen through selection pressures of particular diets. In carnivores the main precursor of glyoxylate is hydroxyproline, found mainly in mitochondria, while in herbivores the precursor is mainly glycolate. Found mainly in peroxisomes [50,77]. It is interesting to note that the population with the highest frequency of the mutation is the European arctic Sami people (27%), who have traditionally had a heavily carnivorous diet. This is in contrast to India, China, and Japan where the occurrence is 2-3% [15].

Acquired

Hypercalciuria
Any condition leading to hypercalciuria can in theory lead to nephrocalcinosis but the most common is primary hyperparathyroidism (32% of Wrong’s series [116]). Elevated 25-OH or 1,25-OH vitamin D levels (both iatrogenic and in granulomatous disease e.g. sarcoid) can lead to hypercalcaemia, hypercalciuria and subsequent nephrocalcinosis.

Oxaluria

Excess oxalate production and oxaluria will lead to a propensity to form calcium oxalate crystals. Enteric hyperoxaluria, due to pancreatic insufficiency, small bowel resection or calcium restriction may cause nephrocalcinosis [21] by increasing GI absorption of oxalate and thus causing hyperoxaluria. Ingestion of ethylene glycol, which is metabolized into oxalate, will also cause calcium oxalate precipitation in the kidney, either microscopically or macroscopically [99].

Phosphaturia

Oral sodium phosphate is sometimes given as bowel preparation before colonoscopy or bowel surgery, and may cause massive phosphaturia; renal failure and nephrocalcinosis are described [41].

Acquired tubular defects

In the loop of Henle, furosemide, a pharmacological inhibitor of NKCC2, can cause nephrocalcinosis in adults when taken chronically [55], and when administered to neonates and infants [49].
In the collecting duct dRTA causing nephrocalcinosis, may occur with acquired disease, notably Sjögren syndrome [42], other autoimmune conditions, (such as Lupus) and Wilson disease [47].
Pathophysiological Aspects of Nephrocalcinosis

Calcium deposition in nephrocalcinosis can take the form of intratubular deposits, interstitial deposition (or microliths in the dilated tubules of medullary sponge kidneys).

Intratubular nephrocalcinosis

Nephrocalcinosis may occur via calcium phosphate or calcium oxalate crystals precipitating in the distal nephron when the tubular fluid becomes supersaturated. It is likely that a degree of precipitation occurs in tubules of healthy kidneys, however healthy tubular epithelial cells present a non-crystal binding surface to the lumen [105,106] and a loss of epithelial integrity increases crystal adhesion [105]. Crystal nucleation and growth is also inhibited by the urinary environment which is enriched with inhibitors of aggregation such as magnesium and Tamm Horsfall protein [32,60]. Dedifferentiated or regenerating tubular cells express various molecules including annexin 2, phosphatidyl serine hyaluronan and osteopontin, that have been shown to bind crystals [5,9,17,104].

Thus a failure of these defense mechanisms, often as a consequence of tubular injury, results in epithelial crystal adhesion and possible tubular crystal obstruction if the crystal becomes large enough to block the tubular lumen. Tubular obstruction will cause a functional loss of the obstructed tubule, presumably with the same sequelae that accompany other forms of obstruction.

Therefore it may be that tubular injury and/or failure of epithelial or of solute defenses against crystal nucleation and crystal growth are necessary prerequisites to calcification and nephrocalcinosis; perhaps in some part explaining why
nephrocalcinosis occurs in some conditions with modest hypercalciuria, and not in others in which it is more pronounced.

Interstitial nephrocalcinosis

Interstitial calcium deposition can either be formed de-novo or can come from translocation of intratubular deposits [63].

Evidence on the initial site of deposition in nephrocalcinosis is lacking, but in stone formers with Randall’s plaques (which are exclusively formed of calcium phosphate), there is good evidence that the initial calcium phosphate deposition is at the basement membrane in the thin limb of the loop of Henle [35]; the basement membrane in the thin limb is unusually thick comprising collagen and a large amount of mucopolysaccharides [14], which could plausibly offer electrostatically charged sites to attract calcium and phosphate, offering a template for crystal formation. As these deposits expand by crystal growth, they invade the interstitium, the suburothelial space and eventually breach the urothelium [35]. Both inflammation and epithelial cell injury are notably absent from the Randall’s plaque type of calcium deposition.

Inflammation and oxalate deposition

There is growing evidence that oxalate crystals may be pro-inflammatory. This may be mediated via their activation of the inflammasome nucleotide-binding domain, leucine-rich repeat (NALP-3). An inflammasome is a complex that consists of a sensor protein that once stimulated is able to activate the protease caspase-1. Caspase-1 is able to then cleave biologically inactive IL-1β and IL-18 to activate them [43,70]. Rats
fed an oxalate rich diet develop an interstitial infiltrate associated with calcium oxalate crystals and up-regulation of NALP-3 and IL-1β gene expression and associated renal failure [57]. Furthermore, NALP-3 null mice had decreased levels on renal inflammation and did not develop renal failure despite the presence of calcium oxalate crystal deposition [57].

Thus, it may be the case that in primary hyperoxaluria, inflammation and subsequent tubular epithelial damage occurs after calcium oxalate deposition; oxalate supersaturation in the proximal tubule as a result of an increased filtered load of oxalate in conjunction with active oxalate secretion by proximal tubular cells may cause calcium oxalate crystal nucleation and deposition in the S3 segment of the proximal tubule. This indeed appeared to be the case in PH1 patients with early disease before the onset of renal impairment [114].

Calcium phosphate crystals do not seem to induce inflammation in the same way. In a biopsy series of patients with calcium oxalate stones associated with Randall’s plaques it was shown that even when there was extensive calcium phosphate deposition the cells of the associated collecting ducts appeared normal. In contrast, patients with crystal deposition directly in the collecting ducts in intestinal bypass patients (i.e. calcium oxalate crystals) there was associated fibrosis in the surrounding renal tissue [35]. However the same group demonstrated that there is inflammation surrounding crystal deposition within the tubules or dRTA patients where the crystals are likely to be calcium phosphate [34]. It has also been shown that calcium phosphate crystals can activate NALP-3 in vitro [80].

However, the inflammation associated with oxalate deposition may play an important part in the progressive renal failure of primary hyperoxaluria, and indeed the renal
dysfunction in other hyperoxaluric states.
Clinical Aspects of Nephrocalcinosis

Clinical features

Nephrocalcinosis is an insidious process that is usually detected on incidental radiological investigation. However, if nephrocalcinosis does cause symptoms, the most usual symptom is renal colic, either from associated nephrolithiasis, or possibly from the extrusion of an interstitial calcified nodule into a calyx [78].

Medullary nephrocalcinosis can cause defects in the function of the distal nephron, either distal renal tubular acidosis or diabetes insipidus. Distal renal tubular acidosis may be either a cause or a consequence of nephrocalcinosis, and was first described by Wrong in a patient who had nephrocalcinosis from vitamin D intoxication [116]. Diabetes insipidus leading to a defective urinary concentrating ability may cause polyuria and nocturia. These defects may occur due to medullary deposition of calcium disrupting the structure and function of the loop of Henle and the medullary collecting duct, and may also occur with hypercalcemia, if present [44,113].

As nephrocalcinosis develops within the medullary interstitium it causes relative hypoxia and inflammation. Polycythemia has been reported in nephrocalcinosis and it has been suggested that is in part driven by the hypoxic medulla [1].

Investigations

By definition, only macroscopic nephrocalcinosis is amenable to imaging diagnosis. Nephrocalcinosis can be diagnosed on plain radiographs, ultrasound and CT; magnetic resonance imaging is a poor modality to detect calcification [64].
Early medullary nephrocalcinosis may be demonstrated as echogenic pyramids sonographically before it is visible on a plain film [3,39]; however there may be alterations in renal parenchymal echogenicity in a number of different diseases [69].

Computed tomography (CT) is the most sensitive modality for imaging calcium, and is less operator dependent than ultrasonography. However, a study comparing ultrasound and CT in the diagnosis of nephrocalcinosis demonstrated a sensitivity of 85-91% with ultrasound, 86-92% with CT and only 66-82% with plain kidney-ureter-bladder (KUB) radiograph [20]. Specificity was best (89%) when ultrasound and CT were used together as there is occasionally a lack of concordance in the two modalities. Where calcium deposition is seen at papillary tips it is impossible to distinguish whether these are due to Randall's plaques, intra-tubular crystal deposition or if these are just calyceal stones [72]. Indeed it has been shown that even when there appears to be extensive degrees of nephrocalcinosis on radiological studies these may turn out to be nephrolithiasis in the collecting system [72].

Once the diagnosis of nephrocalcinosis is made, further investigation is warranted to determine the underlying cause; as this affects both the management and prognosis.

Laboratory investigations in a patient with diagnosed nephrocalcinosis are aimed at identifying an underlying cause.

These should include measurement of the serum and urine electrolytes, calcium, phosphate and creatinine. As two of the 3 leading causes of nephrocalcinosis are hyperparathyroidism and dRTA (the other being MSK) [78], a serum parathyroid hormone should be measured to exclude the first and a serum bicarbonate and an accurate urine pH to exclude the latter if there is a metabolic acidosis, or a urinary acidification test with ammonium chloride [115] or furosemide and fludrocortisone [107],

25
if the serum bicarbonate is in the normal range. Also, two 24-hour urine collections should be made to measure the 24-hour excretion of oxalate, citrate and creatinine.

Clinical course and treatment

In most cases of nephrocalcinosis the lesion is permanent once present, although in rare cases, lessening of medullary nephrocalcinosis has been reported after a metabolic defect has been corrected. In most patients, the underlying disease is not amenable to treatment and the best that can be achieved is to avoid the nephrocalcinosis getting worse. This might be disease specific therapy, such as oral alkali supplementation in dRTA (to reduce systemic acidosis, reduce hypercalciuria and increase urinary citrate) or liver transplantation in primary hyperoxaluria.

Generalized measures to reduce hypercalciuria should help slow the deposition of parenchymal calcium in most cases, although any evidence for this is conspicuously lacking; this could involve dietary restriction of sodium and the administration of thiazide diuretics.

Progressive renal failure is typical in mainly four of the diseases that cause nephrocalcinosis, primary hyperoxaluria, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, Dent disease and Lowe syndrome. These patients need counseling and appropriate monitoring.
Conclusion

Medullary nephrocalcinosis is a relatively frequent finding in nephrological practice. Although nephrocalcinosis can cause a number of clinical problems, progressive renal failure is an uncommon complication in the absence of obstructing stone disease. Pain and recurrent infection are more likely, if symptoms are present at all.

While nephrocalcinosis occurs within a wide spectrum of pathophysiology, the commonest three causes in adults are primary hyperparathyroidism, distal renal tubular acidosis and medullary sponge kidney, in that order [116]. Knowledge of the systemic and renal specific causes of nephrocalcinosis will help to identify the primary lesion, be it genetic, or acquired. As some may cause ESRF, and others may cause systemic disease, making a diagnosis is clinically important.

Our understanding of the pathophysiology behind many of the genetic conditions associated with nephrocalcinosis has advanced significantly over recent decades. There are however many unanswered questions: Why are some forms of nephrocalcinosis associated with progressive CKD and others not? Why do some patients with hypercalciuria consistently fail to develop nephrocalcinosis while others often with lower urinary calcium concentrations do? What is the mechanism of nephrocalcinosis in insulin receptor mutations? And what are the exact molecular players in proximal calcium reabsorption?

Further investigation into these questions concerning renal calcification may lead to greater understanding not only of the physiology of the kidney, but perhaps also to the phenomena of ectopic calcification elsewhere and, eventually, to better treatments.
Acknowledgments

DB and RK acknowledge support from the European Union, FP7 (grant agreement 2012-305608, “European Consortium for High-Throughput Research in Rare Kidney Diseases [EURenOmics]”).
References

Figure Legends

Figure 1.
A plain abdominal radiograph showing severe medullary nephrocalcinosis.

Figure 2.
Abdominal ultrasound examination showing a kidney in longitudinal view in a child with Bartter’s. The calcified areas of the medulla are echogenic and clearly visible.

Figure 3.
Diagram showing sites of calcium reabsorption through the nephron.
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Disease</th>
<th>Gene</th>
<th>Gene Product</th>
<th>Inheritance</th>
<th>Phenotype/Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEMIC DISEASES</td>
<td>William’s Syndrome</td>
<td>GTF2i</td>
<td>TF2i (regulates TRPC3 calcium channel in the intestine)</td>
<td>Sporadic</td>
<td>Hypercalciuria Multisystem condition; likely multiple genes involved</td>
</tr>
<tr>
<td></td>
<td>Multiple Endocrine Neoplasia Type 1</td>
<td>MEN1</td>
<td>Menin</td>
<td>Autosomal Dominant</td>
<td>Hypercalciuria</td>
</tr>
<tr>
<td></td>
<td>Idiopathic Infantile Hypercalcaemia</td>
<td>CYP24A1</td>
<td>1,25-dihydroxyvitamin D3-24-hydroxylase</td>
<td>Autosomal Recessive</td>
<td>Hypercalciuria</td>
</tr>
<tr>
<td></td>
<td>Primary Hyperoxaluria types 1, 2, 3</td>
<td>AGXT, GRHPR,</td>
<td>Alanine:glyoxylate aminotransferase, glyoxylate reductase/hydroxyproprionate reductase, mitochondrial 4-hydroxy-2-oxoglutarate aldolase respectively</td>
<td>Autosomal Recessive</td>
<td>Hyperoxaluria. Associated with ESRF</td>
</tr>
<tr>
<td>PROXIMAL TUBULE</td>
<td>Dent’s Disease</td>
<td>CLCN5</td>
<td>CIC-5</td>
<td>X-linked recessive</td>
<td>Hypercalciuria. Associated with cataracts and mental impairment</td>
</tr>
<tr>
<td></td>
<td>Lowe Syndrome</td>
<td>OCRL1</td>
<td>PIP>5-phosphatase</td>
<td>X-linked recessive</td>
<td>Hypercalciuria. Associated with ESRF</td>
</tr>
<tr>
<td></td>
<td>Idiopathic Infantile Hypercalciuria</td>
<td>SLC34A1</td>
<td>NaPi2a</td>
<td>Autosomal recessive</td>
<td>Hypercalciuria</td>
</tr>
<tr>
<td></td>
<td>Hereditary Hypophosphatemia and Nephrocalcinosis</td>
<td>SLC34A3</td>
<td>NaPi2c</td>
<td>Autosomal recessive</td>
<td>Hypercalciuria</td>
</tr>
<tr>
<td></td>
<td>Fanconi Bickel Syndrome</td>
<td>SLC2A2</td>
<td>GLUT2</td>
<td>Autosomal Recessive</td>
<td>Hypercalciuria</td>
</tr>
<tr>
<td>LOOP of HENLE</td>
<td>Bartter Syndromes (Types I-IV)</td>
<td>SLC12A1, KCNJ1, CLCNK1, BSND</td>
<td>NKCC2, ROMK, CLCKb, Barttin</td>
<td>Autosomal Recessive</td>
<td>Hypercalciuria Type IV associated with sensorineural deafness</td>
</tr>
<tr>
<td></td>
<td>Familial Hypermagnesemia with Hypercalciuria and Nephrocalcinosis</td>
<td>CLDN 14, CLDN16, CLDN19</td>
<td>Claudin-16, Claudin-19, Claudin-14</td>
<td>Autosomal Recessive</td>
<td>Hypercalciuria Associated with ESRF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hypercalciuria and kidney stones. Sensorineural deafness</td>
</tr>
<tr>
<td></td>
<td>Insulin Receptor Mutations</td>
<td>Insulin Receptor Gene</td>
<td>Insulin Receptor</td>
<td>Autosomal Recessive</td>
<td></td>
</tr>
<tr>
<td>CORTICAL COLLECTING DUCT</td>
<td>Distal Renal Tubular Acidosis</td>
<td>ATP6V1V1, ATP6V0A4</td>
<td>B-subtype unit and a-subtype unit respectively of H(+)-ATPase</td>
<td>Autosomal Recessive</td>
<td>Autosomal Dominant/Recessive</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>SLC4A1</td>
<td>AE1</td>
<td>Carbonic Anhydrase</td>
<td>Autosomal Recessive</td>
<td>Autosomal Recessive</td>
</tr>
<tr>
<td></td>
<td>CA2</td>
<td>Carbonic Anhydrase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISCELANEOUS</td>
<td>Medullary Sponge Kidney</td>
<td>RET and GDNF genes (speculated)</td>
<td>RET & GDNF</td>
<td>Autosomal dominant with variable penetrance</td>
<td>Hypercalciuria hypocitraturia</td>
</tr>
<tr>
<td></td>
<td>Amelogenesis Imperfecta with Nephrocalcinosis</td>
<td>FAM20A</td>
<td>Putative kinase in Golgi apparatus</td>
<td>Autosomal Recessive</td>
<td>Hypocalciuria Associated with dental defects</td>
</tr>
</tbody>
</table>
Table Legend

Table 1.

Familial diseases leading to nephrocalcinosis