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Abstract

How biological order emerges in a robust manner during development is

an important question, as the functionality of many tissues depends on the

correct spatial arrangement of cells. In this thesis, I consider two examples

of ordering, cell sorting and hexagonal packing.

In several developing tissues, cells of different type spontaneously self-

assemble into domains that are homogenous with respect to cell type both

in vitro and in vivo. Current models of sorting assume asymmetry in the

physical properties of cell types - either in adhesion, cortical tension or

motility. I present a minimal model demonstrating that segregation does not

require such asymmetry, but can arise solely from cell motility when this is

modelled as a dynamic quantity that changes in response to the composition

of the local environment of a cell.

Over the course of pupal development, cells in the Drosophila notum rear-

range to form a hexagonally packed tissue. How does the tissue transition

from disorder to order in an effective and robust way? In particular, how do

stochastic fluctuations in junction length contribute to the ordering process?

I address these questions by analysing data from live-imaging of the notum

using a custom software package I developed. I demonstrate that neighbour

exchange events are a consequence of junction fluctuations, rather than being

an explicitly regulated and stereotyped process, and I present a mathematical

model for how such fluctuations are generated by the stochastic turnover of

myosin. I quantify the frequency of neighbour exchange events in embryos

with a reduction/overexpression of Myosin II activity and establish that

actomyosin is not required for neighbour exchange. In fact, the frequency of

neighbour exchange events is inversely proportional to Myosin II levels. The

results suggest that the gradual increase in actomyosin during development

drives a process akin to annealing that aids tissue ordering.
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Chapter 1

Kinetics of Cell Sorting

1.1 Introduction

An essential part of embryonic development is the sorting of different cell types

into distinct domains to form tissues and organs [1]. Cell sorting processes in vivo

can be reproduced in vitro using cells from dissociated embryonic tissue. When

neural retinal and pigmented epithelial cells from chick embryos are thoroughly

intermingled and allowed to reaggregate, they spontaneously self-assemble into

homotypic domains [2]. The same phenomenon occurs in heterotypic mixtures of

ectoderm, mesoderm and endoderm progenitor cells from zebrafish embryos [3].

In addition, cell sorting has been observed for dissociated Hydra cells, co-cultures

of cells not in contact during normal development, and mixtures of cells extracted

from different species [4, 5, 6, 7, 8].

Understanding how segregation emerges and is maintained, is also important

for studying tissue homeostasis and cancer invasion. When cancer becomes

metastatic, tumor cells invade adjacent tissue. As cancer cells become miscible

with healthy cells, the tissue is no longer able to maintain sharp compartment

boundaries. Consequently, it has been argued that malignant invasion may be

regarded as a process of cell sorting in reverse [9].

In this part of the thesis, I study the kinetics of cell sorting. I use mathematical

modelling to investigate the role of cell motility in sorting and suggest a novel

mechanism for how segregation can emerge in a population of motile cells. The

work in this part of the thesis has been published in the paper “A kinetic mecha-

nism for cell sorting based on local variations in cell motility” [10]. Additional

work, not described here, was published in the paper “Schelling model of cell

segregation based only on local information” [11].

4



Kinetics of Cell Sorting 5

1.1.1 Computational models of cell sorting

The segregation of cells into homotypic domains is phenomenologically similar

to the phase separation of fluids [12, 2]. This analogy underlies the differential

adhesion hypothesis (DAH), developed by Steinberg in the 1960s, which posits

that the adhesive interactions between cells give rise to surface tension and that

the equilibrium configurations of the tissue are those that minimize the surface

energy [13, 14, 12, 15]. The differential adhesion hypothesis has since been

studied extensively using the cellular Potts model, also known as the Graner and

Glazier model [16, 17]. It has been succesful in reproducing a range of cell sorting

phenomena [18, 19, 20, 21, 22], including the envelopment of more adhesive cells

by less adhesive ones observed in sorting experiments with embryonic tissue

from chicks [6] and zebrafish [23].

However, the cellular Potts model is principally an equilibrium model. The

equilibrium configuration of the system is given by the minimum of the Hamilto-

nian, which contains terms that capture different aspects of tissue mechanics. The

kinetics, on the other hand, are determined by an auxiliary dynamics - typically a

Markov chain Monte Carlo method - used to relax the system to the equilibrium

configuration [24]. Indeed differences in the choice of Monte Carlo algorithm

could account for the discrepancies in the scaling behaviour reported for different

computational implementations of the DAH. Specifically, the paper by Nakajima

et al. [22] reported that the average domain size grows according to a power law,

whereas previous studies [17, 18] observe slow logarithmic growth.1 Recent work

has demonstrated that the cellular Potts model can be applied as a kinetic model

if the Hamiltonian and Monte Carlo algorithm are modified appropriately [24,

20].

Other computational models have been developed to investigate the time

course of segregation and, in particular, the role of cell motility in sorting. The

models by Belmonte et al. [25] and Beatrici et al. [26] both describe a binary

system of self-propelled particles that have a tendency to align their motion

with that of neighbouring cells. Belmonte et al. simulate the effect of differential

1Nakajima et al. [22] use a standard Metropolis algorithm for their dynamics, whereas the
Monte Carlo simulations in [17] employ a modified Metropolis algorithm resembling that of the
Voter model.
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adhesion in a motile population of cells. The two cell types have the same intrinsic

motility properties, but the interaction strengths differ between cells of the same

type and cells of different type. They argue that even weak coherent motility

speeds up segregation relative to what has been reported for cellular Potts model

implementations of the DAH. By contrast, Beatrici et al. consider a system of

cells with homogenous adhesion forces, but with speeds of constant modulus

υ0 and υ1. They demonstrate that differences in the intrinsic motility properties

of cells, along with a tendency for cells to align their motion, can drive cell

sorting. Spontaneous segregation has also been demonstrated for dense mixtures

of self-propelled and passive particles using Brownian dynamics simulations

[27]. Including motility properties in the cellular Potts model, with motile and

non-motile cells in equal proportion, also leads to segregation with large clusters

of non-motile cells surrounded by streams of motile cells [28].

What these models have in common is their focus on intrinsic motility prop-

erties. Motility is assumed to be an inherent property of the cell, rather than a

function of the local environment. By contrast, experimental work has shown that

in tissues or compact aggregates of cells, each cell interacts strongly with its neigh-

bours and factors including adhesion, cortical tension, the viscoelastic properties

of cells, and collective motion all affect motility [29, 30, 31]. In particular, Rieu

et al. studied the two-dimensional trajectories of single endodermal Hydra cells

in aggregates comprised of either endodermal or ectodermal cells. In both envi-

ronments, endodermal cells perform a persistent random walk, with persistence

dominating at small time scales. Interestingly, diffusion is more than two times

faster for endodermal cells in an ectodermal environment, with reported diffusion

constants of Dendo−ecto = 1.05± 0.4µm2/min and Dendo−endo = 0.45± 0.2µm2/min.

Despite these experimental observations, it is not known to what extent local

variation in cell motility contributes to sorting.

In this chapter, I present a minimal model where the diffusion of cells depends

on the composition of the local environment. A key property of the model is that

the two cell types are symmetric with respect to their intrinsic motility properties.

Instead, differences in motility arise solely from the interaction between a cell

and its neighbours. This allows us to test whether asymmetry is a prerequisite
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for cell sorting.

1.1.2 The Schelling model

Around the same time that Steinberg was developing the differential adhesion

hypothesis [13, 14, 12, 15], Schelling was investigating segregation phenomena at

the at the scale of societies [32, 33, 34]. Schelling showed how slight preferences

in neighbourhood composition can lead to residential separation of ethnic groups

within cities. The Schelling model describes a system in which interacting agents,

belonging to one of two groups, move on a square grid according to a utility

function defined by their current environment and the environment they have the

option of moving to. For each agent, the utility of a site on the grid is determined

by the fraction of agents of their own group within the local neighbourhood. If

an agent is surrounded by agents of the other group, utility is low and relocation

is desirable. Strikingly, Schelling found that even weak individual preferences for

homophily, resulted in strong segregation.

This type of model has since been studied on networks, in continous-space

models, and analytically [35, 36, 37, 38]. In addition, it has been applied in the

context of phase separation kinetics in physics and efforts have been made to map

it to the Ising spin model [39, 40]. However, its relevance for biological systems

has not previously been explored.

Conceptually, the model presented here is related to the Schelling model

and was in fact inspired by it. The key assumption of our model is that the

diffusion of cells depends on the fraction of cells of the same type in the local

environment, which is analogous to the utility function for agents in the Schelling

model. However, to apply the Schelling idea to the study of cell sorting, it has

to be modified to make the dynamics entirely local. Previous versions of the

Schelling model are non-local in the sense that agents have information about,

and access to, non-adjacent residence sites when evaluting whether to move. This

is a reasonable assumption for people in cities, but not for populations of cells.
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1.2 The model

The aim of this chapter is to investigate whether intrinsic differences in motility

are necessary for cell sorting. To do this, we consider a model of sorting where

differences in cell motility arise solely from how cells interact with their surround-

ings. The model is inherently a kinetic model and the steady state configurations

emerge from the local interactions of cells rather than being specified a priori.

The model describes the diffusion of a binary mixture of cells that are symmet-

ric with respect to their motility properties. For each cell, the effective diffusion

depends on the composition of the local environment, specifically the propor-

tion of neighbouring cells of the opposite type. The cells diffuse on a square

continuous-space plane with side lengths L and periodic boundary conditions.

Each cell has a position ~xi, and moves according to

~xi(t + ∆t) = ~xi(t) +~vi∆t, (1.1)

where we without loss of generality set ∆t = 1. The total number of cells

is N = L2, which in the case of hexagonal packing would give an equilibrium

distance between neighbouring cells of Re =
√

2/
√

3 ≈ 1.07. To account for

volume exclusion, we introduce a radial contact force fij between cells, as given

by 1.2. The contact force is nonzero when the separation rij between two cells i

and j is smaller than the threshold r0, at which cells can sense their neighbours.

It is repelling if cells are closer than their equilibrium distance re and attractive

otherwise.

fij =

 1− rij
Re

for rij < r0

0 for rij ≥ r0

(1.2)

The radial contact force ensures that cells are evenly distributed within the

plane. Note that volume exclusion is not necessary for the segregation behaviour

observed in the model, as we will see in Figure 1.5.

In the model, the motion of each cell is random. Except for contact forces,

motion is purely diffusive with no orientational bias. However, the speed of
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diffusion changes depending on the local environment of the cell, which we

characterize by the fraction γi of neighbouring cells of the opposite type.

γi =
n 6=

n= + n 6=
. (1.3)

Here n= is the number of cells of the same type as i and n 6= is the number of

cells of opposite type, within a distance r0. A common measure for the degree of

segregation in a system is the interface index γ [25, 26, 22, 8], which is given by

the average of γi for all cells in the system. When γ ≈ 0 the two cell types are

completely segregated.

How the diffusive component of the velocity depends on γi can be formulated

in two distinct ways, which I will refer to as the differential velocity model and

the differential persistence model, respectively. The two models are summarized

in Figure 1.1. In the following, I describe both models and show analytically that

for any spatial arrangement of cells, the two models yield the same diffusion

constants.

A B

Figure 1.1: Schematic for cell sorting models

Illustration of the two cell sorting models. a) In the velocity model all cells perform
random walks with a step length that depends on the local environment; cells that are
surrounded by cells of the opposite type diffuse fast. The step length is given by equation
1.7 b) In the persistence model the step length of the random walk is equal for all cells.
However, cells continue in the same direction during a persistence time given by equation
1.5. These two models yield the same diffusion coeffcients for any distribution of cells,
when the effect of volume exlusion is ignored.

In the differential persistence model, the step length is the the same for all

cells, but how frequently a cell changes direction depends on the composition of
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its local environment. As stated, the velocity of a cell contains two components -

random motion and contact inhibition. The velocity of a cell i is given by

~vi =
α√
k
~ui + β ∑

j
fij~uij, (1.4)

where ~ui is a unit vector of random orientation, ~uij is a unit vector pointing

from cell j to cell i, β is the strength of the contact force, α is the diffusion speed of

a cell that is surrounded only by cells of opposite type (γi = 1), and k determines

how much faster cells diffuse when they are surrounded by cells of opposite

type as opposed to the same type. This form of the velocity was chosen in order

for the parameters to be straightforward to interpret in terms of experimentally

measurable quantities. In particular, as we will see in equation 1.9, the parameter

k may be related directly to the experiments of Rieu et al. [29] and the prefactor

for the random motion was chosen to to that end.

Between each random change in orientation, cells continue with the same

direction and velocity for a number of time steps Ti. This persistence time is

given by

Ti = 1 + γi(k− 1). (1.5)

Hence, when a cell is surrrounded entirely by its own type (γi = 0), it has

Ti = 1 and only continues in the same direction for a single time step. By contrast,

when all neighbouring cells are of the opposite type (γi = 1), the cell has Ti = k.

A longer persistence time corresponds to less frequent changes in direction and

gives a higher speed of diffusion. Effectively, the motion of a cell can be described

as a random walk where each step is of length viTi and takes a duration Ti (see

Fig. 1.1). Using this observation and equation 1.4, we can derive the diffusion

coefficent of a cell as a function of γi, when the effect of volume exclusion is

omitted. Note that ~ui · ~ui = |~ui|2 = 1, since it is a unit vector.

D(γi) ≡
(∆x)2

∆t
= 〈v2

i Ti〉 =
α2

k
(1 + γi(k− 1)) . (1.6)
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In the differential velocity model, the persistence time is constant, but the step

length depends on the local environment of the cell. The velocity of a cell i is

given by

~vi = α

√
γi +

1− γi

k
~ui + β ∑

j
fij~uij, (1.7)

where ~ui, ~uij, α, β, and k are the same as in the differential persistence model.

From (1.7) we can find the diffusion coefficient of a cell as a function of γi, again

omitting the term for the radial contact force. Unlike in the differential persistence

model, the persistence time is constant Ti = 1

D(γi) ≡
(∆x)2

∆t
= 〈v2

i Ti〉 = α2
(

γi +
1− γi

k

)
. (1.8)

Note that equation 1.6 and 1.8 are equivalent, demonstrating that the differen-

tial velocity and differential persistence model give the same diffusion coefficients

for cells in the same environment. They can therefore also be expected to have

the same dynamical properties.

We can calculate the ratio between the diffusion contants of cells that are

surrounded by opposite or like cells, respectively, to verify the definition of the

parameter k.

D(γi = 1)
D(γi = 0)

=
α2

α2/k
= k. (1.9)

In the following, I quantify the segregation behaviour in terms of the parameter

k, as this may be directly related to the cell sorting experiments of Rieu et al. [29].

A distinguishing feature of the model is that there are no differences in the

intrinsic motility properties of cells. The physical properties of the two cell

types are completely symmetric and differences in motility arise only from the

heterogeneity of the local environment they find themselves in.
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1.3 Differential velocity and differential persistence both

give rise to segregation

Figure 1.2 shows how a binary system of cells evolves when motility is given

by differential persistence and differential velocity, respectively. The system is

initiated from a completely mixed state γ = 0.5 and spontaneously orders over

time. Ordering proceeds, via the formation of homotypic domains, to a steady

state where the two cell types are largely segregated with γ ' 0.1. Interestingly,

the steady state is a dynamic equilibrium where the macroscopic configuration

changes continually even though the value of γ remains stable.

The simulations demonstrate that segregation can emerge in a binary system

where the two cell types are symmetric with respect to their intrinsic motility

properties. Hence, asymmetry is not a prerequisite for cell sorting.

1.4 Segregation increases according to a power law until

a steady state level is reached

We are interested in the time course of the segregation process. From published

experimental data, the temporal dynamics of cell sorting follow a power law

[8, 41]. I quantify the degree of segregation in the system using the interface

index γ. Figure 1.3 shows that γ decreases according to a power law before

saturating. The time course shown is for the differential persistence model. In the

differential velocity model γ also follows an exponential decay before levelling

off, but sorting proceeds more slowly.

There are a few things to note. First, the scaling exponent for the part of the

curve that follows a power law, depends on k, and takes the values of 0.025 for

k = 8 and 0.17 for k = 64, for the differential persistence model. We defined k

as the ratio of the diffusion constants for a cell surrounded by opposite (γi = 1)

and like (γi = 0) cells, respectively. The scaling exponent defines the speed of

segregation and is therefore expected to increase when the relative difference

between diffusion coefficients is larger. For k = 64, the exponent is similar to the

values reported in other computational studies of cell sorting kinetics [25, 26], but
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t = 0; γ = 0.500 t = 20,000; γ = 0.186 t = 2,000,000; γ = 0.0901

t = 0; γ = 0.500 t = 40,000; γ = 0.322 t = 4,000,000; γ = 0.0829

a)

b)

Figure 1.2: Time course of segregation

a) Time course of the segregation process for 2500 cells in the differential persistence
model. As the cells gradually gather in larger clusters, the interface index γ decreases.
The ratio of the diffusion constants is k = 64. b) Time course of the segregation process in
the differential velocity model. Parameters are the same as for the differential persistence
model. Sorting proceeds more slowly in the differential velocity model than in the
differential persistence model. For this reason, the segregation process is shown for
different time points in a) and b).

lower than those reported experimentally [8]. Belmonte et al. [25] also quantify

segregation using the interface index γ and report an exponent of around 0.18 for

a binary system of cells with a mixture ratio of 1:3 (see their Figure 2). For sorting

of mixtures of primary fish keratocytes and EPC keratocytes in vitro, Méhes et al.

[8] report a scaling exponent of 0.32 for the decrease of the interface index and

0.74 for the growth of homotypic clusters2.

Second, the degree of segregation at steady state also depends on the pa-
2If clusters are uniform with respect to their shape and size, the relationship between the

interface index and the cluster size should be linear and their scaling behaviour should be
characterized by the same exponent. However, in vitro clusters are not uniform, resulting in
different exponent values [8].
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Figure 1.3: Time course of segregation as quantified by the interface index γ

a)-b) Development of the interface index γ as a function of time for k = 8 in the
differential persistence model. The results are the average of 10 simulations and are
shown on a linear and log–log scale. c)-d) The interface index γ over time for k = 64
on a linear and log-log scale. For high k, a more pronounced segregation is observed.
The interface index is seen to decrease according to a power law until it saturates at
an equilibrium value. The exponent, found as the slope of the straight line fit (green),
increases with increasing k, and takes the values 0.025 for k = 8 and 0.17 for k = 64.

rameter k, with more pronounced segregation occuring for high values. Hence,

fast diffusion in unalike and slow diffusion in like environments improves seg-

regation. Figure 1.4 shows the steady state value of γ as a function of k. For

k = 1, the diffusion constant of a cell is the same in an environment of opposite

and like cells. The system therefore remains in a completely mixed state with

γ = 0.5. Interestingly, for k = 2, which is the value reported by Rieu et al. [29]

for endodermal and ectodermal Hydra cells, very little segregation occurs. In

addition, the interface index plateaus at γ ∼ 0.1 and complete segregation is not

achieved even for high values of k. This is in fact in agreement with the work by
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Méhes et al. [8], where they report that the interface index tends not to decrease

below 0.1 as segregation slows to a halt. However, other in vitro experiments do

observe that sorting proceeds until complete segregation is reached [2, 3].
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Figure 1.4: Steady state level of segregation

Value of the interface index γ, at which the system saturates, as a function of k. The
parameter k is the ratio of the diffusion constant of cells surrounded by opposite or like
cell types, respectively. For large k, the system reaches a more segregated configuration.
The equilibrium interface indices are calculated as averages over 105 time steps after
the equilibrium is reached, and averaged over 10 simulations. The errorbars indicate
the standard error of the mean across simulations. (red) Differential persistence model.
(blue) Differential velocity model.

1.5 Volume exclusion effects, system size, and initial

conditions do not affect the results

Having established the segregation behaviour of the two models, I want to briefly

touch upon potential sources of artifacts in the results.

First, I included a radial contact force in the model to account for volume

exclusion and ensure that cells are evenly distributed within the plane. However,

the specific form of the contact force does not affect whether cells segregate. In

fact, even when volume exclusion effects are omitted (β = 0), the model gives

segregation, just with cells unevenly dispersed. In addition, the time course of

the segregation process still follows a power law. This is shown in Figure 1.5.

Second, the simulations were carried out for a system size of N = 2500 cells

with periodic boundary conditions. Figure 1.5 shows how the segregation be-



16 Kinetics of Cell Sorting

haviour depends on system size. When the domain size (cluster correlation

length) is much smaller than the system, finite size effects are negligible. There-

fore, the scaling behaviour for the initial part of the curve, when the system is

mixed and heterotypic domains are small, does not depend on system size, except

for very small systems. As sorting proceeds towards segregation, domains grow

and finite size effects start to play a role. Consequently, the value of γ at which

the system saturates depends on N. However, for system sizes of N > 1000, the

effect is insignificant. The size dependence is qualitatively the same as what was

reported by Belmonte et al. [25] (Fig. 3). That paper also showed that the time

course of segregation may be rescaled to remove the effect of system size.

Third, throughout this chapter, the system has been initiated from a random

mixed configuration with γ = 0.5. However, the eventual steady state configura-

tion does not depend on this initial condition. Figure 1.5 shows how the system

evolves over time when iniated from a random and ordered configuration, respec-

tively. When the two cell types are initially separated, the border between them

is not maintained. Instead, the cells slowly mix, and the value of γ increases until

it reaches the same equilibrium value as if starting from a random configuration.

In summary, the results presented in the previous sections are robust to omit-

ting the effect of volume exclusion and changing the size and initial configuration

of the system.
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Figure 1.5: Finite size effects and initial conditions

a) Development of the interface index as a function of time for k = 64 for the differential
persistence model with β = 0, on (left) a linear scale and (right) a log-log scale. As when
volume exclusion effects are included, the segregation process follows a power-law. b)
The figure shows how the interface index, γ, evolves over time for systems with different
number of cells, N. All simulations are for k = 64. The results are shown on a log-log
plot. When the domain size (cluster correlation length) is much smaller than the system,
finite size effects are negligible. Hence, the initial scaling behaviour will not depend on
system size. As sorting proceeds towards maximum segregation, finite size effects start
to play a role and the value of γ at which the system saturates depends on N. The size
dependence shown here is qualitatively the same as that in Figure 3 in [25]. c) The figure
shows how γ evolves over time for random and ordered initial conditions, respectively,
with k = 16. This demonstrates that the steady state value of γ is the same whether the
system is initialized from a random or a segregated initial configuration.
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1.6 Discussion

The aim of this chapter was to investigate the role of motility in cell sorting. The

results demonstrate that asymmetry in the physical properties of cells is not a

prerequisite for sorting. In fact, segregation can emerge just from cell motility

being a dynamic property that changes in response to the local environment of a

cell.

In the model, the time course of segregation follows a power law before

reaching a steady state level. This is consistent with the scaling reported by

Méhes et al. [8, 41] for cell sorting in mixtures of keratocytes from different

species. They report that for mixtures of primary fish keratocytes and EPC

keratocytes, the decrease of the interface index γ and the growth of homotypic

clusters are approximately linear on a log-log scale. It should be noted that they

only show one decade of data, making it difficult to determine whether the data

actually display power law scaling.

Despite displaying the correct scaling behaviour, a closer comparison of the

results of the model with in vitro experimental data shows that it cannot be the

only ordering mechanism driving cell sorting.

First, the value for k reported by Rieu et al. [29] for endodermal and ectodermal

Hydra cells is around 2. In the model, the level of segregation increases with k

and for k = 2 the system shows very little segregation. I tried implementing other

functional forms for how the diffusion coefficient depends on the interface index,

including a threshold instead of the linear dependence given by Eq. 1.6, and these

did not significantly affect the segregation behaviour for low values of k.

Second, the model does not generate complete segregation, even for high

values of k. By contrast, cell sorting in vitro often proceeds until the two cell types

are completely segregated, with one phase enveloping the other. Computational

implementations of the differential adhesion hypothesis are able to successfully

reproduce this envelopment. In addition, it provides an explanation for the

inside/outside order of the phases in terms of their relative surface tensions [6,

42]. The model presented here has no inbuilt asymmetry and would, therefore,

not be expected to reproduce the enveloping behaviour without a mechanism for
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breaking the symmetry.

The model could be expanded to include other aspects of cell dynamics to

better reproduce the experimental observations. As measured by Rieu et al.

[43], endodermal and ectodermal cells do in fact differ in their intrinsic motility

properties and this would likely to promote segregation for lower values of k. In

addition, collective motion has been shown to contribute to segregation [25, 26],

with even a moderate tendency for cells to align their movement considerably

speeding up the segregation process.

It is worth noting that, within the model, we have not specified the molecular

mechanism(s) that determine the speed of diffusion of cells. In particular, we

have not specified how the interaction between a cell and its local environment

affects motility. It could be a response to external cues, such as morphogens or

chemotactic substances, or result from cell-cell interactions, including the adhesive

properties of cells [44, 31]. It has been shown experimentally, using human

kidney cells transfected to express a protein that regulates cell-cell adhesion,

that cell motility is anticorrelated with the strength of adhesion [31]. Strong

adhesive interactions increase the effective viscosity of the local environment of

the cell, which decreases overall cell motion. This suggests a possible molecular

mechanism for the model presented here, where differences in the strength of

cell-cell adhesion leads to local variation in cell motility, which in turn gives rise

to the segregation behaviour observed macroscopically.

1.7 Conclusion

In embryonic development of several species, the segregation of cells into diverse

tissues and organs is a fast process. Even though cell sorting has been studied

extensively and many mechanisms have been proposed, the speed with which

segregation occurs in vitro and in vivo is still not fully understood, suggesting

that several mechanisms could be acting in concert to accelerate the process [8].

The model presented here describes a mechanism for segregation, based on local

variation in the cell motility, that could contribute to cell sorting.

In the model, the two cell types are symmetric with respect to their intrinsic
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motility properties, demonstrating that asymmetry is not a prerequisite for cell

sorting. In fact, segregation can arise solely from cell motility being modelled as

a dynamic quantity that changes depending on the local environment of the cell.

The model is able to reproduce the scaling behaviour for the time course

of segregation observed experimentally, but not the envelopment behaviour

observed in vitro. In addition, the parameter values reported from experiment do

not lead to significant segregation within the model. Further work is needed to

understand the relative contributions of locally varying cell motility, differences

in intrinsic motility properties, and collective motion to the kinetics of cell sorting.



Chapter 2

Introduction

In several mature epithelia, cells are arranged in an ordered hexagonal array.

This order emerges from an initially disordered state, without explicit genetic

instruction [45, 46]. How does the tissue transition from disorder to order in

an effective and robust way? To address this question, I examine the process of

ordering in the Drosophila notum - a tissue that develops hexagonal order without

undergoing substantial growth or directed morphogenesis.

2.1 Examples of epithelial ordering

Recent studies of patterning in Drosophila, demonstrate that a variety of mecha-

nisms facilitate the ordering of epithelial tissue. In the Drosophila wing, epithelial

cells rearrange from irregular to hexagonal packing shortly before hair formation

[47]. At this point in development, the fraction of hexagons increases from around

45% to nearly 80% as a result of cell neighbour exchange. Classen et al. [47]

showed that this hexagonal packing depends on the activity of the planar cell

polarity proteins, which polarize along the proximal-distal axis in the prepupal

wing prior to packing. They propose that these proteins polarize the trafficking of

Cadherin during junction remodelling and that this regulates neighbour exchange

events to move the system towards hexagonal packing.

The Drosophila retinal epithelium is made up of a hexagonal array of units

called ommatidia that contain a cluster of photoreceptor cells surrounded by

accessory cells, including four lens secreting cone cells. The quartet of cone

cells express N-cadherin adhesion molecules and form an ellipsoid structure

surrounded by cells not expressing N-cadherin. Work by Hayashi et al. [48],

showed that this patterned expression of N-cadherin effectively selects for cell

arrangements that minimize surface energy and precisely correlate with soap

21
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bubble configurations.

Cohen et al. [49, 50] investigated the role of structured noise in the patterning

of microchaete bristle cells on the Drosophila notum. They showed that bristle

patterning depends on a population of filopodia that establish transient signalling

contact between non-neighbouring cells. Interestingly, noise in filopodial sig-

nalling contributes to ordering and provides a self-organizing mechanism for the

gradual refinement of bristle patterning.

Other studies have highlighted how stochastic fluctuations in processes at the

molecular and cellular level are important in single cells [51, 52], but less is known

about the role of noise in developing tissues. In this thesis, I quantify stochastic

fluctuations in junction length and investigate to what extent they contribute to

the emergence of hexagonal cell packing in the tissue. As in the Drosophila wing,

ordering is driven by junction remodelling and largely occurs in the absence of

cell division, apoptosis and delamination. The next section outlines our what

is currently known about neighbour exchange events and their role in tissue

ordering.

2.2 Junction remodelling

Several cellular events contribute to the shaping of a developing embryo. These in-

clude cell division, cell apoptosis and delamination, and cell neighbour exchange.

Neighbour exchange events proceed with a junction contracting until four cells

meet at a four-way vertex. This is followed by loss of contact between one pair of

adjacent cells and the formation of a new junction between cells not previously in

contact, thereby changing the cell-cell connectivity (see Figure 2.1). This process

allows cells to gain or lose an edge and changes the polygon distribution in the

tissue.

Whilst neighbour exchange is critical for hexagonal ordering of cell shapes,

much of what we know about it comes from markedly different process: germ-

band extension (GBE) in Drosophila. During germ-band extension, the length

of the embryo more than doubles along the anterior-posterior (A-P) and the

width along the dorsal-ventral (D-V) axis narrows accordingly. The process takes
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approximately 1 h and is driven by a process of coordinated cell intercalation and

neighbour exchange [53, 54].

Figure 2.1: Example of a neighbour exchange event

Example of junction remodelling during a neighbour exchange event. A junction shrinks
until four cells share a point of contact (a configuration referred to as a four-way vertex),
followed by the formation of a new junction. Before the event, cells 1 and 4 were
neighbours and cells 2 and 3 did not share a domain of contact. After the event, cells 1
and 4 are no longer in contact and cells 2 and 3 have become neighbours. Neighbour
exchange events are also known as T1 transitions. From [Curran 2015].

Figure 2.2: Junction remodelling in germ-band extension

a) Position of the germband within the developing embryo, before and after cell inter-
calation. Cell intercalation causes the germband to elongate and the increase in length
is accomodated by dorsal extension. b) Example of a T1 event. c) Schematic of cell
intercalation causing the tissue to elongate. Myosin-II is specifically enriched at junctions
oriented along the D-V axis. These junctions shrink, followed by the formation of a new
junction along the A-P axis. Adapted from [53]

Junctions parallel to the D-V axis shrink, leading to a four-way vertex configu-
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ration, followed by the formation of a new junction oriented along the A-P axis.

The result is a rearrangement of cell neighbours, with cells along the D-V axis

intercalating between cells adjacent along the A-P axis, and an overall elongation

of the tissue.

This planar remodelling of junctions is driven by local forces at cell interfaces

[53]. Myosin II is specifically enriched at shrinking junctions oriented along the

D-V axis and causes these junctions to shrink by increasing junctional tension [53,

55, 56].

It has been shown that this shrinkage is in fact caused by pulses of medial

actomyosin flowing towards junctions, rather than the steady state distribution

of Myosin II at these junctions [54]. Myosin II forms small clusters, which coa-

lesce with actin in the medial region of the cell and flow towards D-V junctions

[54]. Laser ablation and cross-correlation analysis of junction length and Myosin

II intensity in the medial regions and at junctions indicated separate mechan-

ical functions for the medial and junctional pools of myosin. Pulsed flow of

medial Myosin II towards D-V junctions causes shrinkage and the subsequent

accumulation of junctional Myosin II stabilizes the junction length.

The polarized localization and activity of Myosin II is critical for cell interca-

lation and tissue elongation. A reduction in Myosin II activity or a loss of the

planar polarized localization in the tissue, disrupts junction remodelling and

results in incomplete elongation of the germband [53, 54, 57]

In summary, during germ-band extension, neighbour exchange events are

highly stereotyped and tightly coordinated to execute large-scale tissue morpho-

genesis. This is a very different process from the emergence of hexagonal order

in epithelial tissue. In fact, it was shown by Zallen et al. [58] that cell intercalation

in GBE is associated with an increase in epithelial disorder, as measured by the

fraction of nonhexagonal cells and the variance of the polygon distribution.

However, homeostatic epithelia are ubiquitous in nature and understanding

how such tissues are able to respond to local pertubations while maintaining

tissue integrity is important for models of wound healing and cancer metastasis

[59, 60]. In this thesis, we will develop an understanding of how neighbour
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exchange events occur in static tissue and identify how this differs from what has

been reported in GBE.

2.3 Models of epithial ordering

Various models have been developed to explain the hexagonal packing geometry

observed in epithelial tissue, dating back to the early 1900s when D’Arcy Went-

worth Thompson published “On Growth and Form” [61] advocating for the role

of physical principles in determining the structure of living systems. Thompson

remarked on the prevalence of hexagonal structures in the natural world - from

epithelial cells in dragonfly wings, to soap bubbles, to the honeycomb of bees (see

also [62] for more examples). He presented a detailed argument for how surface

tensions, which tend to minimize the area of contact, can result in hexagonal

packing of epithelial cells1.

More recently, computational models have been used to study order in ep-

ithelial tissue. The cellular Potts model [16, 17] was first developed to simulate

cell sorting based on differential adhesion, as mentioned in Chapter 1. It has

subsequently been extended to address numerous questions relating to tissue

mechanics, including cell patterning in the Drosophila retina [64] and tumour

progression [65]. The model consists of a lattice, where each site (i, j) has a spin

σ(i, j). A cell is made up of a connected domain of sites with the same spin σ. A

collection of N cells are described by a set of N degenerate spins σ(i, j) = 1, 2..., N.

In addition, each cell has a cell type τ(σ), e.g. endodermal or ectodermal. The

Hamiltonian for the system is given by Eq. 2.2 and includes terms accounting for

cell-cell interactions and cell area elasticity.

H = ∑
(i,j),(i′,j′) neighbours

J[τ(σ(i, j)), τ(σ(i′, j′))](1− δσ(i,j),σ(i′,j′)) (2.1)

+λ ∑
spin types σ

(a(σ)− Aτ(σ))
2θAτ(σ) (2.2)

1The fascination with the geometric patterns observed in nature, of course, predates Thomp-
son’s modelling efforts. In "The Garden of Cyrus" (first published in 1658), Sir Thomas Browne
recounts ’the sexangular cels in the honeycombs of bees’ and the ’order in the egges of some
butterflies and moths’ which ’doth neatly declare how nature geometrizeth, and observeth order in
all things’ [63].
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In the first term, the sum is over neighbouring sites (i, j) and (i′, j′) in the

lattice, and J is the surface energy between spins of type τ and τ′. For the second

term, λ is a Lagrange multiplier specifying the strength of the area constraint, a(σ)

is the area of the cell, and Aτ(σ) is the target area. The equilibrium configuration

for the system is given by the minimum of the Hamiltonian and this configuration

is found by relaxing the system using a Monte Carlo method.

An alternative modelling framework was developed by Farhardifar et al. [66].

In the vertex model, epithelial cells are described by a network of polygons, with

the edges of the network representing interfaces between cells. Vertices in the

network are subject to mechanical forces that can be derived from the energy

function for the system.

E(Ri) = ∑α
Kα
2

(
Aα − A(0)

α

)2
+ ∑<i,j> Λijlij + ∑α

Γα
2 L2

α

Fi = − ∂E
∂Ri

The first term represents an area elasticity with elastic coefficents Kα, where

cells have an area Aα and a target area A(0)
α . The second term represents the line

tension Λij at an interface of length lij between two cells. This term incorporates

both cell-cell adhesion, which reduces line tension, and actomyosin contractility,

which increases it. The last term describes the contractility of the cell perimeter

Lα with coefficent Γα. Equilibrium configurations of the network are those that

minimize the energy functional. For such configurations, the total force Fi at

each vertex vanishes. As in the cellular Potts model, the minima of the energy

function are determined by relaxing the network using an auxiliary algorithm,

in this case a conjugate gradient method. A key advantage of vertex models is

that they include neighbour exchange events explicitly, making them suitable for

studying epithelial morphogenesis. The same year as the paper by Farhardifar

et al. came out, Hufnagel et al. [67] published a similar model to investigate

mechanical feedback as a potential mechanism for controlling organ size. Vertex

models have since been used to study germ-band extension [68], ventral furrow

formation [69], and cell geometry in the retina [70], all in Drosophila (see also [71]

for an exhuastive summary of applications).
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The problem of computing the global minimum of an energy function is

interesting and nontrivial, and is a field of research in itself. Depending on the

shape of the energy landscape and the optimization method used, the system can

become trapped in a local minimum. Farhadifar et al. [66] showed that certain

disordered configurations, in proliferating epithelia, are local minima of the

energy function and that this can prevent the tissue from reaching the hexagonal

ground state. They suggest that annealing could be an effective mechanism

for facilitating hexagonal packing in the tissue. In particular, they show that

introducing fluctuations in line tension, in their simulations, is sufficient to drive

ordering of the tissue.

In metallurgy and materials science, annealing is a heat process that removes

defects in a material. When forging a sword, the steel is heated to a specific

temperature and then allowed to cool slowly. This allows defects in the steel to be

resolved and yields a more ordered crystalline structure. This concept is the basis

for the simulated annealing heuristic, which is an effective technique for finding

the global minimum of an energy function. In each step of simulated annealing,

the system transitions from its current state e to a neighbouring state e′ depending

on a probability function P(e, e′, T). Changes in configuration that lower the

energy of the system are always accepted, whereas the probability of accepting

a worse configuration depends on the temperature T. The original formulation

was an adaptation of the Metropolis-Hastings algorithm (a Monte Carlo method)

[72]. In this implementation, the probability function is exp (−∆E/T), where ∆E

is the difference in energy between states e′ and e. Annealing is implemented

by gradually lowering the temperature T. The algorithm starts with T set to a

high value, which allows the system to explore a large search space and avoid

getting trapped in local minima, and ends with T = 0 to restrict the system to

the lowest energy configuation. More rigorously, it has been proved that, under

suitable conditions, the simulated annealing algorithm converges to the global

minimum of the system [73].

In summary, several models have been proposed to explain the configuration

of a hexagonally packed tissue as the minimum of an energy functional that

captures the main aspects of tissue mechanics. In simulations, there are many
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different algorithms for performing this minimization, simulated annealing being

one of these. What is not currently known, however, is what ‘algorithm’ is used

in vivo to reach hexagonal order. What heuristic does epithelial tissue implement

to evolve from a disordered to an ordered state? I address this question by

examining the dynamics ordering in the Drosophila notum.

Unlike soap bubbles and foams, epithelial tissues are active systems. They

are characterized by continual turnover of proteins and dissipation of energy.

In particular, remodelling of the interfaces between epithelial cells requires the

construction and disassembly of multiprotein complexes in a controlled fashion

[47]. Hence, it is not clear to what extent the premise that ordering proceeds by

relaxing the tissue to its equilibrium configuration is valid in vivo and we will

keep this in mind when interpreting the data.

2.4 Thesis outline

In this second part of the thesis, I take a purely data-driven model-agnostic

approach to investigate how ordering proceeds in the Drosophila notum. I use

data from live imaging of wildtype and transgenic Drosophila strains expressing

altered levels of active Myosin II. I developed a software package to process and

analyse the live imaging data, as described in the next chapter. I characterize

the properties of neighbour exchange events in the notum and contrast this

with what has been reported in germ-band elongation. I then investigate how

stochastic fluctuations in junction length contribute to neighbour exchange and

the ordering process in the tissue. Based on an analysis of the dynamics of

junction fluctuations and Myosin II intensity, I present a mathematical model

for how fluctuations are generated by the stochastic turnover of myosin. Finally,

I examine junction fluctuations and junction remodelling in embryos with a

reduction/overexpression of Myosin II activity. Taken together, the results suggest

a heuristic for how the Drosophila notum evolves from a disordered configuration

to a hexagonally packed tissue. The work demonstrates how dynamics at the cell

level can drive large scale changes in the organisation of the tissue. Furthermore,

it provides an experimental grounding for the implementation of dynamics in

current and future models of the epithelium.
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Methods

The work on ordering in epithelial tissue was done in collaboration with Scott

Curran, another PhD student in the Baum lab. All the experimental work was

done by Scott and is described in his PhD thesis [74]. To make it clear when I am

refering to his thesis, it will be referenced as [Curran 2015] from now on. The

work was an iterative process, with the results of data analysis informing the

plan for subsequent experiments.

Here, I include a brief description of the experimental methods used to collect

the data this part of the thesis is based on. However, most of the chapter is focused

the software package I developed to extract and analyse data from time-lapse

images of the notum.

3.1 Experimental methods

We use the Drosophila notum as our model system. The pupal case is removed

and the pupae is set up for live imaging. Imaging was done at 11.5-13.5 hours

and 20-30 hours after pupal (AP) formation. Time-lapse images were collected

at either 5 s or 30 s intervals with a microscope resolution of 0.0896 µm/pixel.

From the z-stacks, maximum projections of the most apical planes were selected

for analysis.

Adherens junctions were labelled using endogenous expression of DE-cadherin-

GFP [75]. In addition, reduction and overexpression of myosin were acheived

using the UAS/GAL4 system [76]. Flies expressing the following constructs were

used:

• UAS-RokRNAi. RNA-mediated interference was used to inhibit Drosophila

Rho-kinase (Rok). Rok regulates the phosphorylation of the myosin regula-

29
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tory light chain (MLRC) and therefore the activity of Myosin II in the tissue

[77].

• UAS-RokCAT. A constitutively active version of Rok was expressed to in-

crease Myosin II activity [78].

• UAS-SqhAA. The Drosophila spaghetti squash (sqh) gene encodes the myosin

regulatory light chain (MLRC). Expression of a non-phosphorylatable, and

therefore inactive, form of MLRC was used to reduce Myosin II activity

[79].

• UAS-SqhEE. Expression of a phosphomimetic form of MRLC that is consti-

tutively active was used to increase Myosin II activity [80].

For more details on fly stocks and experimental methods, please refer to

[Curran 2015].

3.2 Image Processing and Data Analysis

In order to extract data for the behaviour of junctions and cells in a format

amenable to the type of analysis I wanted to do, I developed a custom software

package. The code is written in Matlab using class-based object oriented pro-

gramming. It detects junctions and cells from the segmented images, corrects

for drift, tracks junctions and cells between frames, and calculates connectivity

within the tissue. This makes it possible to extract time series data for various

properties, analyse spatial correlations, and detect when cells change neighbours.

The flow of data within the code is as follows:

• Input segmented time-lapse images.

• In case of microscope drift, generate set of stabilized images by subtracting

net translation.

• Identify individual junctions in each image and store these as objects.

• Track junctions between frames and assign a unique ID to each junction.
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• For each junction, find the IDs of neighbouring junctions.

• Detect individual cells in each image and store these as objects.

• Track cells between frames and assign a unique ID to each cell.

The input for the code are segmented time-lapse images of the Drosophila

notum. Segmentation was performed using Packing Analyzer [81]; this was

done by Scott Curran and is described in [Curran 2015]. As seen in Figure 3.1,

segmentation results in skeletonized images where the width of junctions is 1

pixel.

a) b)

Figure 3.1: Segmentation of time-lapse images

a) Section of the notum with adherens junctions labelled with DE-cadherin:GFP. b) The
skeletonized image following segmentation in Packing Analyzer. The width of junctions
is 1 pixel.

In some cases, the microscope drifts relative to the tissue during imaging. The

algorithm for tracking junctions and cells cannot deal with large-scale deformation

or significant displacement of the tissue between frames. To deal with this, I used

Optical Flow Analysis1 to calculate the flow field for each consecutive pair of

frames. Taking the average of the flow field gives the direction and magnitude

of the net translation of the tissue. Mapping the images into a larger space, by

subtracting the cumulative net translation for each time point, yields a set of

stabilized images that can be input into the code.

The first part of the code identifies individual junctions in each image. Specifi-

cally, the code initiates a junction and ’walks’ along the bright pixels in the image,

storing the coordinates along the way, then terminating the junction when a

1Modified from the OFA algorithm available at: http://cs.brown.edu/people/black/code.html
and described in [82]
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vertex is reached. This is then repeated until all pixels in the image have been

visited. Within the code, each junction is an object with associated properties.

The properties of the ’junction’ class is shown in Figure 3.2. At this stage, only

the fields for the vertex coordinates and junction coordinates are filled.

Figure 3.2: Class definition for ’junction’ objects

The ’junction’ object class the code is based on. The class properties include the junction
and vertex coordinates, the length, midpoint, angle, a unique ID used to track the junction
across frames, and the IDs of the 1st neighbour junctions.

The code then calculates various properties of junctions, as listed in the

class definition. Since junctions can be curved, the vertex-vertex distance is

not an accurate measure of junction length. In addition, discretization has the

consequence that calculating the length by summing the distance between pixels

along the segmented junction would slightly overestimate the length. Instead,

junction length is calculated as the diagonal distance connecting consecutive

blocks of pixels, as illustrated in Figure 3.3.

Figure 3.3: Junction length calculation

Illustration of how the length of junctions is calculated in the code. Because of discretiza-
tion, taking the distance between each neighbouring pixel would slightly overestimate the
actual length. Instead junction length is calculated as the diagonal distance connecting
consecutive blocks of pixels.

The next step involves tracking junctions between frames and assigning a

unique ID to each junction, to make it possible to extract time series for various

properties and detect changes in connectivity. The tracking of junctions is done
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by finding the midpoints of junctions and using these coordinates as the input for

a particle tracking algorithm2. The tracking algorithm takes the coordinates of the

midpoints at time t and considers all possible matches with the midpoints at time

t + 1 to choose the pairings that minimize the total squared displacement. This

is then used to assign each junction a unique ID that identifies it across frames.

The results were validated by visual inspection of the assigned IDs - specifically

by creating a movie of junctions coloured according to their ID, making errors

in continuity easy to spot. Having assigned a unique ID to each junction, the

connectivity of the tissue is found and the IDs of neighbouring junctions are

stored.

In addition to junctions, the code also detects and tracks cells in the time-lapse

images and stores each as an object. The ’epicell’ class3 properties are shown in

Figure 3.4 and include vertex coordinates and junction IDs. Cells are detected

using the junction objects. Specifically, the code starts at one junction and moves

to neighbouring junctions in a clockwise fashion until getting back to the first

one, thereby identifying the junctions that make up a cell. This is repeated in a

counterclockwise fashion for the same junction. To avoid storing the same cell

multiple times, the code loops over junctions starting from j = 1 and requires

that only neighbouring junctions with larger values of j can be traversed - if that

is not available, the code breaks and starts from a different junction instead. Next,

the area, perimeter length and midpoint of each cell is calculated. The midpoints

are used to track cells between frames and assign unique IDs in the same way as

described for junctions.

3.2.1 Detecting neighbour exchange events

One of the aims of this thesis is to study neighbour exchange events. These are

difficult to detect manually. I therefore wrote an algorithm to detect neighbour

exchange events and make it possible to extract quantitative data related to the

junctions and cells involved. The code detects all junctions that contract to a four-

2The tracking algorithm is based on code available from the Mathworks repository, written by
John C. Crocker. It is described in "Methods of Digital Video Microscopy for Colloidal Studies",
John C. Crocker and David G. Grier, J. Colloid Interface Sci. 179, 298 (1996)

3’Cell’ is not a valid name for a class, as it is in itself a data structure, hence the use of ’epicell’,
for epithelial cell, instead.
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Figure 3.4: Class definition for ’cell’ objects

The ’epicell’ object class used in the code to quantify the properties of cells. The class
properties include cell area, perimeter, midpoint, internal angles, vertex coordinates, the
ID for junctions in the cell, and a unique ID used to track the cell across frames.

way vertex and expand back out, and determines whether they change neighbours

in the process. In the fluorescent images, the diameter of four-way vertices is

around 6 pixels, corresponding to 538 nm. Segmentation of very short junctions,

and especially four-way vertices, is difficult and error-prone. In the segmented

images short junctions tend to ’flip’, changing orientation and neighbours, even

though the fluorescent images show a stable configuration. If not corrected, such

false neighbour exchange events would bias subsequent analysis. In particular,

Drosophila tissues with overexpression of Myosin are harder to segment and

display a higher frequency of false neighbour exchanges. To ensure the quality of

the data that form the basis of a lot of the work in this thesis, I manually checked

every computationally detected event by looking at the corresponding junction

in the fluorescent time-lapse images. I used the criteria that the extension of a

junction, coming from a four-way vertex configuration, should be stable for at

least 5 min and the change in cell neighbours should be clearly visible in the

fluorescent images. I made the deliberate decision to set the parameters of the

detection algorithm to capture all events that might be neighbour exchanges,

i.e. overdetecting events and excluding false positives by manual checking. This

approach did result in a high rate of false positives, on average 55 % for wildtype

tissue, but gave the highest data fidelity for subsequent analysis. It is worth

noting that the fully manual detection carried out by Scott Curran gave the same

qualitative results but with fewer events detected. In addition, I checked that the

time point for the event, as identified by the algorithm, was consistent with when

a four-way vertex was reached in the fluorescent images.
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3.3 Fluorescence Intensity Measurements

We imaged myosin and junction dynamics using transgenic fly stocks expressing

both Bazooka-mCherry and Sqh-GFP. Bazooka is a scaffold protein that localises

to the apical junction and was used as an adherens juntion marker, instead of

DE-cadherin [83]. Spaghetti-Squash (Sqh) encodes the myosin regulatory light

chain (MRLC); it was fused to GFP and expressed in a Sqh null background

in order to visualise total Myosin in the tissue [84]. It is possible to looks at

phosporylated (active) Myosin II using fixed stains. However, the data included

here is based on live-imaging of Sqh-GFP and we use this as a proxy for active

Myosin II. As with the other experimental work, this was done by Scott Curran

and is described in [Curran 2015].

To correlate Myosin II intensities with junction dynamics, I developed code to

extract time series data for myosin on individual junctions. For each junction, I

used the pixel coordinates from the segmented images to identify the junction

in the fluorescent images. To include the fluorescence intensity across the width

of the junction, I performed a morphological dilation to give each junction an

average width of 5 pixels. This corresponds to a width of 500 nm, for the time-

lapse imaging taken at 30 s intervals with a resolution of 0.1 µm/pixel, and a

width of 430 nm for the time-lapse imaging taken at 5s intervals with a resolution

of 0.086 µm/pixel. For comparison, Rauzi et al. used a width of 500 nm to

quantify myosin intensity [54] [Supplementary material]. The fluorescent images,

segmented images, and morpological dilation are shown for a single time point

in Figure 3.5. The vertices tend to be the brightest regions in the image and

including them would give rise to artefacts in the correlation functions - e.g. as

junctions contract the vertices would make up a larger proportion of the junction

resulting in an increase in the average intensity per pixel.

For each junction, I sum over the intensity of pixels within the region covered

by the morphological dilation. There is a slight bleaching of the tissue over time,

leading to a gradual decrease in intensity. I remove the trend associated with

bleaching in the following way: for each time frame, I sum the total intensity

for all pixels within the dilated junctions (Itot) and calculate the total number of

pixels ptot. For each junction, the total intensity Ij, is normalized by Itot/ptot, such
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a) b)

c) d)

Figure 3.5: Fluorescence intensity for Myosin II and Bazooka

a) Notum imaged with Bazooka-mCherry, b) Notum imaged with Sqh-GFP to visualise
the localisation of Myosin II in the tissue, c) Segmentated image, d) Morphological
dilation of segmented junctions with vertices exclude. The resolution of the image is
0.085979 µm per pixel and the scale bar shown in panel a) is 5 µm long. Border junctions
are excluded from the analysis of fluorescence intensities.

that the average intensity per pixel is one for every time frame ∑j Ij/ ∑j pj = 1.

For each junction, I calculate the ’normalized average intensity’ by taking the

total intensity for a junction, normalizing it as described, then dividing by the

number of pixels in the junction. Qualitatively, dividing by the number of pixels

gives the same results as dividing by junction length.

For the analysis, myosin intensity is used as a proxy for myosin concentration.

The relation between fluorescence intensity and concentration might be nonlinear

and could depend on the properties of the microscope, including the resolution

and light source. The 30 s interval Bazooka-mCherry and Sqh-GFP movie was

imaged on a Zeiss 780 with a resolution of 0.1 µm/pixel, whereas the 5 s inter-

val movie was imaged on a Carl Zeiss Axiovert 200 with a Yokogawa CSU-X

confocal spinning disk unit and a resolution of 0.086 µm/pixel. The temporal

dynamics of myosin (and bazooka) were consistent for the two movies, but the
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mean and variance of the fluorescence intensity (prior to normalization) were

significantly different. Hence, the absolute value of the fluorescence intensity is

not a meaningful quantity in this context.
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Properties of neighbour

exchange events in the notum

During development, cells in the Drosophila notum rearrange to form an ordered

hexagonal array. We are interested in understanding how this order emerges from

an initially disordered state in an effective and robust manner. Cell rearrangment

in the notum is driven by junction remodelling and largely occurs in the absence

of cell division, apoptosis and delamination. In this chapter, I characterize various

properties of neighbour exhange events in order to investigate their role in the

ordering process.

In the notum, there are two types of junction changes that contribute to

ordering. First, the length of junctions fluctuate and gradually equalize, leading

to cells with sides of equal length. Second, junction remodelling facilitates

changes in cell neighbour configurations in the tissue. These neighbour exchange

events proceed with a junction contracting to a four-way vertex, causing the

contact between two neighbouring cells to be lost, followed by the formation of a

new junction connecting two cells that were not previously adjacent [85, 86]. This

allows cells to gain or lose an edge, which is essential for transitioning from a

distribution of polygon shapes to a stereotyped set of hexagons. Our aim is to

understand how these junctional changes are regulated and how they contribute

to ordering in the tissue.

The current paradigm for studying junction remodelling and neighbour ex-

change events is germ-band extension, where neighbour exchange events are

tightly coordinated to execute large-scale tissue morphogenesis [53, 56, 87, 88,

54]. By contrast the notum is static at the tissue level, but undergoes internal

rearrangments as cell geometry and topology becomes more regular. We study

38
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the notum at a point in developmental time, 12 h after pupariation (AP), where

we do not observe cell divisions, cell delaminations or apoptosis - processes

that may also contribute to ordering [89]. This allows us to isolate the effect of

junction changes and investigate the stochastic nature of the tissue in the absence

of force-generating events that bias the system. In this chapter, we demonstrate

that neighbour exchange events are not associated with large-scale morphogene-

sis, unlike in germ-band extension. We observe that the junctions involved do

not appear to be regulated in a stereotyped spatial or temporal manner. In fact,

junction remodelling is frequenctly reversible. Taken together, the results give a

detailed description of the properties of neighbour exchange events and sets the

stage for exploring the role of stochastic fluctuations in the tissue.

4.1 Neighbour exchange events are not associated with

large-scale morphogenetic changes

Firstly, we establish the premis that the region of the Drosophila notum we are

studying is in fact static with respect to the size and shape of the tissue. Figure

4.1 shows a virtual clone at 12.0 h AP and again at 13.5 h AP. I tracked all cells

within the clone to quantify changes in the total area and aspect ratio of that

region of the tissue. The aspect ratio was found by calculating the horizontal

distance between every point on the perimeter (excluding points less than one

junction length from the bottom/top of the clone) and taking the mean to get a

value for the length of the tissue (L), doing the same for the vertical distance to

get the width (W), and then calculating the ratio of the length and width. The

total area of the cells and the aspect ratio of the virtual clone are unchanged over

a 90 min period. The data shown is for a single tissue, but the same analysis was

carried out on four different nota and the observed behaviour was the same. In

summary, our data show that no large-scale morphogenetic changes are occuring

in the tissue.

However, from visual inspection of the tissue it is clear that junctions are

dynamic and that remodelling of cell-cell connectivity occurs frequently. In the

embryonic germ band, such junction remodelling drives tissue elongation in a
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highly stereotyped manner. Why, then, does junction remodelling in the notum

not give rise to tissue morphogenesis? In the following sections, we consider two

hypotheses: (i) Neighbour exchange events cause local deformation of the tissue,

but lack the spatial and orientational bias required for global morphogenesis; and

(ii) Neighbour exchange events do not cause local deformation of the tissue.
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Figure 4.1: Tissue area and aspect ratio

a) Images of the fly notum at 12.0 h AP and 13.5 h AP. Red outlines show virtual clones of
cells that remain in the frame over the 90 min period. No cell divisions, cell delaminations
or apoptosis events occur. b) Total area for the cells within the red outline. The coefficient
of variation (standard deviation over mean) is 0.00201. c) Aspect ratio, length divided by
width, of the virtual clone. The data shown is for a single tissue, but is representative of
the behaviour observed in four separate nota.
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4.2 Neighbour exchange events vary in orientation and

occur with no apparent spatial pattern

During germ-band elongation, junction remodelling is polarized and proceeds

with junctions shrinking along the D-V axis and expanding along the A-P axis,

causing the tissue to approximately double in length [53]. We are interested in

whether such orientational bias is present for neighbour exhange events in the

notum. The results are shown in Figure 4.2. Note that the number of T1 events

included in each figure panel varies; some measurements require the junction to

be observed before/after the event, thereby excluding events that occur at the

start/end of the imaging period or in a part of the tissue that does not stay in the

frame throughout.

I measured the angle of junctions undergoing neighbour exchange, defining

the angle relative to the midline in the anti-clockwise direction. As junctions

shrink down to a four-way vertex, angle measurements, whether taken from

fluorescent images or segmented images, become unreliable and I therefore

exclude the 5 min just before and after the neighbour exchange event from the

analysis. Instead the mean angle is calculated for t = [−15 −5] min and t = [5

15] min. The change in angle during a neighbour exchange event is narrowly

distributed around 90 degrees (the mean is 87.9± 11.6 degrees), as expected.

For the histogram showing the orientation of junctions prior to neighbour

exchange, the polarized junction remodelling in germ-band elongation would

correspond to a peak around 90 degrees. Interestingly, in the notum, shrinking

junctions appear to be predominantly oriented along one of the diagonals rather

than the D-V axis. It is worth noting that for the tissue as a whole, the distribution

of junction angles is not even and this is to be expected for polygon packing.

In fact, in the case of hexagonal packing, only three junction angles would be

represented: [30, 90, 150] or [0 60 120] depending on which of two possible

packing configurations the cells are in. It is not clear what causes the observed

distribution of the angle of T1 junctions (Fig. 4.2 d). Nonetheless, the results

show that, in contrast to germ-band elongation, neighbour exchange events in

the Drosophila notum are not polarized along a single orientation.
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We also looked at how neighbour exchange events are spatially distributed

in the tissue. Figure 4.2 a) shows an image of the tissue with all junctions that

go through a neighbour exchange event (within a 90 min period) labelled by

yellow arrows. The figure is representative of the four pupae imaged and shows

that there is no apparent spatial pattern to the occurence of neighbour exchange

events.

The lack of distinct orientational or spatial bias could explain why neighbour

exchange events in the notum do not contribute to morphogenesis, as the cumu-

lative effect of small local deformations could cancel out at the tissue level. It is

also possible that neighbour exchange events do not actually cause local tissue

deformation and we test this in the following sections.
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Figure 4.2: Spatial properties of T1 events in the tissue

a) Fly nota at 12.0 h AP, yellow arrows indicate junctions that undergo one or more T1
transitions in the following 90 min. b) Schematic showing the orientation of the junction
undergoing a T1 event. The angle before the T1 event is α. The angle is measured
relative to the midline in the anti-clockwise direction, i.e. 90 degrees is perpendicular
to the midline. The change in angle for the junction shown in the schematic is |β− α|.
c) Histogram showing the change in angle during a T1 transition (n = 47 events). The
mean is 87.9± 11.6 degrees. For each junction the angle is calculated from 15 min before
the T1 event to 15 min after. The angle before is taken as the mean of the angle from
t = −15 min to t = −5 min, and the angle after is taken as the mean from t = 5 min to
t = 15 min, thereby excluding the 5 min before and after the junction shrinks to zero at
the four-way vertex configuration. d) Distribution of angles for junctions undergoing
a T1 transition (n = 64 events). The angle is taken as the mean from t = −15 min to
t = −5 min. e) For comparison, the distribution of junction angles for all junctions in the
tissue. The data is from four separate pupae.



44 Properties of neighbour exchange events in the notum

4.3 Neighbour exchange events do not cause local tissue

deformation

We want to directly test whether neighbour exchange events cause local deforma-

tion of the tissue. To do this, I measured the aspect ratio of the four-cell cluster

involved in each event (Fig. 4.3). I compute the center of area (CoA) of each cell

and define the internal aspect ratio as the distance between the CoA of cells losing

an edge divided by that of the cells gaining an edge. For the external aspect ratio,

I extend the axis between the CoAs to where it intersects with the perimeter.

Internal AR =
Distance between CoAs of cells losing an edge

Distance between CoAs of cells gaining an edge
(4.1)

External AR =
Distance between perimeters of cells losing an edge

Distance between perimeters of cells gaining an edge
(4.2)

This definition of the aspect ratio, means that an elongation of the four-cell

cluster along the same axis as the expansion of the T1 junction, gives an increase

in aspect ratio.

The internal aspect ratio shows the effect of junctional remodelling within

the four-cell cluster. As shown in the left panels of Figure 4.3, the mean internal

aspect ratio increases during a neighbour exchange event. The internal aspect

ratios for individual clusters are compared, at −15 min and 15 min, using a paired

t-test, giving p < 0.0001 (significant change). In fact, out of 33 clusters, only one

shows a decrease in the internal aspect ratio. By contrast, there is no statistically

significant change in the external aspect ratio (p = 0.0502). Hence, internal

junction remodelling does not affect the perimeter of the four-cell cluster and

does not induce local deformations in the tissue. Even if T1 events were oriented

along the same axis, as is the case in germ-band elongation, the cumulative effect

would not alter the shape of the tissue.

There are other methods for calculating the aspect ratio. Often one would fit

an ellipse to the four-cell cluster and give the aspect ratio as the ratio of the major

and minor axis. In our data, the proportion of clusters where the longest axis is

aligned with the T1 junction, before remodelling, is 55%. These correspond to the
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individual traces that start below 1 in the spaghetti plots in Figure 4.3. Therefore,

this method would result in around half the ellipses being aligned with the T1

junction and around half being approximately perpendicular to it. Even if all

clusters elongated along the axis of the T1 junction expansion, the change in

aspect ratio could average to zero (it would be like inverting all the individual

traces that start below zero in the spaghetti plot).
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Figure 4.3: Internal and external aspect ratio of four-cell clusters in T1 events

a) Each T1 transition involves a four-cell cluster. The center of area of each cell (CoA, marked
with a dot) is calculated. The internal aspect ratio is the distance between the CoAs of the
cells losing a junction (red) divided by the distance between the CoAs of the cells gaining a
junction (green). For the external aspect ratio, the axis between the CoAs is extended out and
the distance between the perimeter intersections is calculated. For figures b)-d), panels on the
left are for the internal aspect ratio and panels on the right are for the external aspect ratio. b)
Plots for the aspect ratio (left: internal, right: external) of each four-cell cluster undergoing a
neighbour exchange event. c) Mean aspect ratio for 33 four-cell clusters. The errorbars shown
are the standard error of the mean. d) Change in aspect ratio from t = −15 to t = +15. A
paired t-test was used to compare the aspect ratios at t = −15 and t = +15. Internally, the
aspect ratio changes during a T1 event (p < 0.0001). Externally, the change is not statistically
significant (p = 0.0502). The data is from four separate pupae.
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4.4 Neighbour exchange events are associated with a

redistribution of apical area

Next, we investigate whether other geometrical properties of the cells involved

in neighbour exchange events change in a stereotyped manner. Each neighbour

exchange event involves a cluster of four cells and, for the analysis in Figure 4.4,

the cells are grouped according to whether they gain or lose an edge during the

event.

Following cells from 15 min before to 15 min after a neighbour exchange event,

we observe an increase in apical area for cells losing an edge and a corresponding

decrease for cells gaining an edge. However, the effect is small and it is worth

noting that the cells gaining an edge do not, on average, start out smaller than

the cells losing one. The redistribution of apical cell area observed during a

neighbour exchange event (Fig. 4.4) is consistent with the results for the aspect

ratio of four-cell clusters during the event. In order for the internal junction

remodelling to occur without a concomittant change in the outer perimeter of the

cluster, it must be associated with a redistribution of apical cell area.

For the polygon distributions of cells involved in neighbour exchange, we

found that cells gaining an edge have, on average, one edge fewer than the cells

losing one. In Chapter 6, I include a more detailed analysis of the ordering of

polygons in the tissue.
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Figure 4.4: Change in cell area and number of edges during T1 events

a) Cells gaining an edge (Cell 1 and 2) are shown in red in the schematic and throughout
the figure, cells losing and edge (Cell 3 and 4) are shown in blue throughout the figure.
b) Mean cell area for cells gaining an edge (n = 77 cells) from 15 min before to 15 min
after a T1 event. At t = 0, the configuration is that of a four-way vertex. For each cell, the
mean cell area has been subtracted from the time series before the population mean was
calculated. The errorbars shown are the standard deviations. c) As in b), but for cells
losing an edge (n = 77 cells). d) Polygon distributions for cells gaining (red) and losing
(blue) an edge 15 min before a T1 transition. e) Corresponding polygon distributions
15 min after a T1 transition. Cells on the border of the frame are not included in the
analysis.
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4.5 Neighbour exchange events are temporally random

In the previous section, we established that neighbour exchange events do not

show any distinct spatial or orientational bias within the tissue, suggesting that

the events could be random processes. To explore this further, we consider the

temporal pattern of neighbour exchange events.

Figure 4.5 a) shows the cumulative T1 count, normalized by the number of

junctions in the tissue, for each of the four nota. Interestingly, the cumulative

count increases approximately linearly with time, indicating that the rate of

neighbour exchange events is constant in time. In addition, the rate at which

neighbour exchange events occur is consistent across different nota.

I extended this analysis to directly compare the temporal distribution of

neighbour exchange events to a Poisson process. A Poisson process is a random

process used to describe events that are stochastically independent and occur

continously in time. Systems that can be modelled as a poisson process include

the radioactive decay of atoms and the arrival of customers in a queue. The

process is described by the parameter λ, which is the average rate of events per

unit time (in t units of time, there are, on average, λt occurences). If λ is constant,

the process is refered to as a stationary Poisson process.

The Poisson distribution, P(n), gives the probability that n events occur in t

units of time. It follows that the probability of no events occuring in a time t is

P(n = 0) and that this is equivalent to the probability that the time T until the

first occurence is larger than t.

P(n) =
e−λt(λt)n

n!
(4.3)

P(T > t) = P(n = 0) = e−λt ⇒ (4.4)

P(T ≤ t) = 1− P(n = 0) = 1− e−λt (4.5)

To compare the temporal pattern of neighbour exchange events to a Poisson

process, I examined the time intervals between consecutive events in the tissue.

For a Poisson process, the inter-event times f (t) are exponentially distributed,



50 Properties of neighbour exchange events in the notum

specifically:

f (t) = λe−λt for t ≥ 0 (4.6)

Figure 4.5 b), shows the experimentally observed distribution of inter-event

times, together with a fitted exponential function. The parameter λ is 1/5.9

min−1, i.e. in a tissue similar in size to the four nota studied here, there is, on

average, one neighour exchange event every 5.9 min. Visually, the distribution of

intervals resembles the probability density function of the exponential distribution.

However, the Lilliefors statistical test gives p = 0.0127 when testing the hypothesis

that the data is consistent with an exponential distribution, indicating that we

cannot decisively accept or reject the hypothesis.

Overall, it appears that neighbour exchange events are occuring somewhat

randomly within the tissue, both in time and space. This raises the interesting

hypothesis that neighbour exchange events in the notum may not be highly

regulated processes, the way they are in germ-band elongation, but could result

from of an underlying stochastic process. We will return to this idea in the

following chapter.
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Figure 4.5: Temporal distribution of T1 events in the tissue

a) Cumulative T1 count, normalized by the number of junctions within the frame, for
four different nota. In total 74 T1s were detected and analyzed. b) Histogram showing
the relative frequency of the time interval between successive T1 events. An exponential
distribution of the form λ ∗ exp(−λt), with λ = 1/5.9 min−1, was fitted to the data - the
green line shows the exponential scaled by a factor 2.5 (the binsize) to fit the histogram.
The Lilliefors test returns p = 0.0127 for the hypothesis that the data for the interval
times comes from an exponential distribution.
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4.6 Neighbour exchange events are reversible

In germ-band elongation, neighbour exchange events have been found to be

strictly irreversible [53]. Since neighbour exchange events in the notum appear

to be stochastic, with no clear spatial or temporal pattern, we expect that they

they might also be reversible. To test this, I directly calculated the reversibility of

neighbour exchange event using our time-lapse imaging data.

When tracking junctions across frames, we assign a junction the same ID

before and after junction remodelling. One could argue that neighbour exchange

creates a new junction, yet this way of assigning IDs allows us to quantify to

what extent the events are reversible. In four wildtype nota we observed a total

of 74 neighbour exchange events. Out of 984 junctions, 61 went through at least

one transitions. For 11 of these junctions we observed two or more transitions

within the period of time we imaged for, demonstrating that in the Drosophila

notum neighbour exchange events are reversible.

In order to estimate the probability of reversing, I use the Kaplan-Meier

method to calculate survival functions for neighbour exchange events. In medical

research [90], the Kaplan-Meier estimator is a common tool for quantifying

survival times of patients following treatment. In this context, survival does not

have to refer to life/death, but can be any event of interest. The strength of the

method is that it takes into account if patients are lost to follow-up (e.g. if they

drop out) or if a study ends before the event being studied has occured. In these

cases, survival times are described as ’censored’. If no censoring is present in

the data, the Kaplan-Meier curve is the complement of the empirical cumulative

distribution function.

The Kaplan-Meier method is the right tool for analysing the reversibility of

neighbour exchange events since it allows us to combine data from movies of

different lengths and to take into account that a neighbour exchange event at

the start of a movie is observed for longer than one occuring towards the end.

Here, neighbour exchange events that have not reversed by the end of the movie

are ’censored’, as it is not possible to determine how long the cell neighbour

configuration would have persisted if we had continued imaging. The survival
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curve S(t) is shown in Figure 4.6 b) and is defined as the probability that a

neighbour exchange configuration persists, without reverting back, for at least a

time t. In the figure, the time points at which events are censored are marked

by black crosses. From the survival curve, the probability that a configuration

persists for at least 150 min following junction remodelling, is 69%, and this

number would likely be even lower if we imaged for longer. Hence, neighbour

exchange events in the notum are highly reversible.
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Figure 4.6: Reversibility of neighbour exchange events

a) Bar charts showing what proportion of junctions undergo unidirectional (one), bidirec-
tional (two), and multidirectional (three) neighbour exchange events. The data is from
time-lapse imaging of four wildtype nota over 115, 75, 80, and 185 min, respectively.
b) Kaplan-Meier survival curve showing the probability that a neighbour exchange
configuration persists for a given length of time. Events are ’censored’ if the reverse
transition has not occurred by the end of the movie. The 95% confidence intervals are
estimated using Greenwood’s Formula. The probability of a configuration persisting for
at least 150 min, along with the 95% confidence interval, is: 0.687 [0.5175 0.8567].
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4.7 Total junction length is unchanged during neighbour

exchange events

We are interested in understanding the mechanics of junction remodelling, i.e.

what happens to junctional material as cells change neighbours. Figure 4.7 shows

that, on average, total junction length is constant during neighbour exchange.

As the T1 junction contracts, the four neighbouring junctions expand, leaving

the total length of the system unchanged. This leaves two possible models: (i)

Neighbour exchange occurs without turnover of junctional material. Instead,

contraction/expansion is acheived by vertices ’sliding’ relative to the junction. (ii)

Removal and addition of junctional material balances within the five junctions

such that total junction length is conserved. We tested these models using a

temperature sensitive shibire mutant line in which endocytosis of DE-cadherin

is blocked [91]. We found that blocking endocytosis does not prevent junction

remodelling, but does reduce the frequency of events. This shows that turnover

of junctional material is not required for neighbour exchange, but does facilitate

the junction remodelling involved (see [Curran 2015] for more details).
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Figure 4.7: Junction length changes during T1 events

a) Average change in junction length during a T1 event (n = 27 events, from 4 nota) for
wildtype tissue. The schematics on the right highlight which junctions are plotted in each
panel, (top) all five junctions involved, (middle) the four neighbouring junctions, (bottom)
the T1 junction. For each event, the junction length time series have been aligned with
the four-way vertex configuration occuring at t = 0.
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4.8 Discussion

Taken together, the results in this section demonstrate that neighbour exchange

events in the Drosophila notum - a tissue that is not undergoing growth and

directed morphogenesis - differ in several qualitative ways from what has been

observed in germ-band elongation.

In germ-band elongation, neighbour exchange events are strictly irreversible

[53] and proceed with a definite orientation, shrinking along the D-V axis and

expanding along the A-P axis. By contrast, we observed that junction remodelling

in the notum is often bidirectional, with the same junction undergoing several

consecutive transitions. We also found that neighbour exchange events are

distributed in a spatially random pattern within the tissue and shrinking junctions

are not predominantly oriented along the D-V axis.

We investigated how neighbour exchange events can occur without giving rise

to any large-scale deformation of the tissue. Junction remodelling does change the

internal distances between centroids in the four cells involved and is associated

with a redistribution of apical area. However, this does not affect the aspect

ratio of the outer perimeter of the four-cell cluster. Hence, even if neighbour

exchange events were all oriented along the same axis, as is the case in germ-band

elongation, the cumulative effect would not reshape the tissue.

We also studied the temporal distribution of neighbour exchange events

and found that the cumulative T1 count increases linearly, indicating that the

rate of events is stable over time. The intervals between consecutive T1 events

resemble an exponential distribution and we cannot reject the hypothesis that

the data is consistent with an underlying Poisson process. This motivates a

further exploration of the stochastic nature of junction fluctuations in general and

junction remodelling in particular. And this will be our focus in the next section.

Studying junction remodelling in the absence of force-generating cellular

events, such as division and delamination events, allows us to investigate the

fundamental characteristics of neighbour exchange events. In that respect, junc-

tion remodelling in the presence of a polarized distribution of Myosin II may

be considered to be a special case. In fact, neighbour exchange events in the
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Drosophila notum has some similarities with the phenotype observed in the germ-

band when the activity of the gap gene Krüppel (Kr) has been eliminated by

RNA-mediated interference (RNAi). In Kr(RNAi) embryos, the planar polarized

localization of Myosin II is lost, junction remodelling is reduced and transitions

are no longer irreversible, resulting in incomplete elongation of the germ-band

[53, 54]. Kr mutant embryos display the same defective polarized cell intercalation

[92]. Hence, disruption of the polarized action of Myosin II results in neighbour

exchange dynamics more similar to what we observe in the notum.



Chapter 5

Stochastic Fluctuations of

Junctions

In the previous section we observed that the intervals between consecutive

neighbour exchange events are similar to what would be expected if the data were

generated by a Poisson process. This motivates a further study of the stochastic

nature of junction fluctuations and how they relate to neighbour exchange events.

Looking at the time series for junction lengths in the tissue, shown in Figure

5.1, two things are worth noting. Firstly, junctions are dynamic and display

stochastic fluctuations in length. Secondly, the magnitude of such fluctuations is

similar to the periods of contraction and expansion observed during neighbour

exchange events. This anecdotal observation, motivated us to look carefully at

junction fluctuations going into and coming out of the four-way vertex during

neighbour exchange. In this chapter, I examine the hypothesis that contraction

and expansion in junction remodelling is a consequence of the general stochastic

fluctuations of junctions in the tissue, as opposed to being an explicitly regulated

and stereotyped process.

5.1 Junction length fluctuations resemble a random walk

process

In one dimension, a random walk consists of a succesion of uncorrelated steps.

The direction of movement in each step is completely independent of the path

history and the process is consequently Markovian with respect to position [93,

94]. Note, that by analysing junction lengths, the two-dimensional motion of

vertices reduces down to one-dimensional length changes.

58
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One metric for describing a random walk is the distribution of persistence

lengths. Persistence length is defined as the distance travelled before switching

direction - i.e. the change in junction length during each period of contraction and

expansion. To extract this information from the data, the time series is filtered

using a moving average Hanning window. This is a low-pass digital filter, defined

by the window function w(n), where N is the width in terms of time points (Eq.

5.1).

w(n) = 0.5 (1− cos (2πn/(N − 1))) n ∈ [0, N − 1] (5.1)

Segment boundaries are placed where the first derivative of the filtered time

series changes sign or is zero and takes opposite signs on either side. This is

shown in the top panel in Figure 5.2. The calculation of the persistence lengths is

based on the raw time series - the filter is only used to establish the position of

segment boundaries.

In the case of a one-dimensional random walk, which is our starting hypothesis

for the behaviour of junctions on short time scales, the persistence lengths follow

an exponential distribution. Figure 5.2 shows the distribution of persistence

lengths, from 60737 segments, along with an exponential function of the form

1/τ exp(−t/τ). The parameter is τ = 0.197 µm. There is reasonable agreement

between the data and the fit. However, the distribution does skew left relative

to the exponential and, with p = 0.001, the Lilliefors test confirms that the data

is not consistent with a simple random walk. This suggest that the dynamics of

junction fluctuations might be better described by a constrained random walk.

Indeed, based on physical constraints (cells cannot become arbitrarily large),

some form of mean-reverting behaviour would be expected.
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Figure 5.1: Junction length time series for T1 and non-T1

a) Time series for a junction not undergoing neighbour exchange. The corresponding
fluorescent image of the junction is shown for three time points. Scale bar = 5 µm. b)
Time series for a junction undergoing neighbour exchange. The point where a four-way
vertex configuration is reached, is marked by a red star. The corresponding fluorescent
image of the junction is shown for three time points. Scale bar = 5 µm. The scale on the
y-axis is the same for both figures.
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Figure 5.2: Distribution for persistence length

a) Time series for a junction length. The data have been filtered using a moving average
Hanning window, with a filter setting of 5, and split into segments where the junction
is contracting or expanding. The persistence time (PT) and persistence length (PL) are
defined as the duration of a segment and the change in junction length, respectively. b)
Histogram showing the relative frequency of persistence lengths for a filter setting of 5.
N = 60737 segments, 4 nota. (green line) Best fit for an exponential function of the form
1/τ exp(−t/τ). The parameter is τ = 0.197 µm, with confidence bounds [0.1958 0.1989].
The function has been scaled by a factor 0.03 (the binsize) to fit the histogram. (inset)
Number of segments in each bin of the histogram plotted on semi-log along with the
exponetial fit.
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5.2 The mean squre displacement curve for junction

fluctuations shows subdiffusive behaviour

Another way of quantifying the dynamics of junction fluctuations is mean square

displacement (MSD) analysis. This is a common method for characterizing

stochastic processes, such as the diffusion of single molecules [95, 96, 97]. The

mean square displacement f (τ) is a two-point correlation function and is given

by:

f (τ) = 〈(l(t + τ)− l(t))2〉t. (5.2)

Here l(t + τ)− l(t) is the change in junction length (usually the displacement

of the particle) between time t and t + τ. The average is over the whole time

series. Figure 5.3 shows how the mean square displacement curve is calculated

for a single junction in the tissue.

In the case of pure diffusive motion, the mean square displacement scales

linearly with the lag time τ and the diffusion coefficient may be read off the

slope, with the prefactor depending on the dimensionality of the system. In one

dimension:

f (τ) = 2Dτ. (5.3)

For different diffusion regimes, the MSD curve may exhibit more compli-

cated behaviour. For subdiffusive and superdiffusive processes the MSD curves

downwards/upwards and can be described by a powerlaw ∼ τα.

Figure 5.4 shows the ensemble-averaged MSD curve, i.e. the average curve for

all junctions in the four embryos we have data for. The behaviour is subdiffusive,

in agreement with the results of the previous section. This suggests that junction

fluctuations are constrained and mean-reverting.
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Figure 5.3: Schematic for mean square displacement

a) Time series for the junction length of a single junction in the notum at 12h. b) Mean
square displacement for the junction shown above. The MSD for this junction saturates,
but that is not representative of the range of behaviours observed. c) Plot of the MSD,
in arbitrary units, for different diffusion regimes. For normal diffusion (blue), the MSD
is a linear function of time, ∼ D ∗ lag, and the diffusion coefficient may be read off the
slope (with a prefactor depending on dimensionality). For superdiffusive (green) and
subdiffusive (red) processes, the MSD curves upwards/downwards and is described by a
power-law ∼ lagα.
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Figure 5.4: Ensemble-averaged mean sqaure displacement curve for junction fluctua-
tions

Ensemble-averaged MSD curve (N = 4 nota). The ensemble-mean is calculated for each
notum separately, then the average for each tissue type is calculated. The errorbars shown
are the standard deviation of the ensemble-means for different nota.
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5.3 There is no significant difference between the

persistence length distributions of T1 and non-T1

junctions

Having established that junction fluctuations are stochastic, we are interested

in what role such fluctuations play in neighbour exchange events. Anecdotal

evidence, such as the time series of a T1 and non-T1 junction in Figure 5.1,

suggests that junction fluctuations in the tissue display contraction and expansion

events of a similar magnitude as those observed during junction remodelling.

Our hypothesis, then, is that neighbour exchange events are a consequence of

stochastic fluctuations that occasionally generate a four-way vertex configuration,

as oppose to the scenario where junctions undergo directed contraction and

expansion to perform neighbour exchange, even if they otherwise fluctuate

randomly. In this section, I develop a rigourous method for testing this hypothesis.

The approach I take is to separate the time series for junction length fluctua-

tions into segments where the junction is monotonically expanding or contracting,

using the method described in the previous section. I then identify the segments

associated with neighbour exchange events - these are the segments on either

side of the time point at which the junction is at a four-way vertex and will be

refered to as ’T1 segments’. This allows me to compare the properties of T1 and

non-T1 segments in a rigourous way using appropriate statistical tests.

Figure 5.5 shows the time series for a junction going through a neighbour

exchange event and reaching a four-way vertex around 40 min into the movie.

The T1 event is marked by a red star and the T1 segments are demarcated by red

dotted lines. Given the difficulty in determining a definite time for onset and

completion of a T1 event, it is necessary to carry out the analysis and statistical

tests for different levels of filtering. In Figure 5.2, the filter level was set such

that it removed segmentation errors, but otherwise followed the raw time series

closely. Applying that level of filtering for comparing T1 and non-T1 events,

would not be a fair test. Even if T1 transitions are distinct events, contraction and

expansion could occur in a stepwise fashion. In fact, in germ-band elongation

the length change for junctions oriented along the D-V axis has been shown to
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occur through successive steps of shrinkage and arrest [54]. Hence, a low level of

filtering could underestimate the duration of neighbour exchange events.

Figure 5.6 shows the persistence length distributions for T1 and non-T1 junc-

tions separately, using the same filter settings as shown in Figure 5.5. Note that,

increasing the filter settings and introducing a minimal threshold for the size of

segments, shifts the distribution of persistence lengths such that it displays a peak

at a non-zero value. The number of segments included in each distribution are

listed in Table 5.1. The first and last segment of each time series has been excluded

from the analysis, since the actual duration cannot be determined. Higher levels

of filtering results in longer, and therefore fewer, segments. Differences in the

number of T1 segments come from T1 events occuring in the first or last segment

and therefore being excluded from the analysis.

I use a two-sample Kolmogorov-Smirnov test to compare the distributions

for T1 and non-T1 segments. It is a nonparametric hypothesis test and it does

not assume that the data are from any particularly distribution (Gaussian or

otherwise). It is, however, not valid if the underlying distribution is discrete. The

test evaluates the difference between the cumulative distribution functions (CDFs)

of the two samples and hence tests for any difference, including median, variance

and shape of the distribution. The null hypothesis (H0) is that the samples are

drawn from the same underlying distribution and is rejected if p < 0.05. The

analysis was carried out for a total of seven different levels of filtering, between

10 and 40, and the results are presented in Table 8.1. In every case the statistical

test supports the null hypothesis, indicating that - at least in terms of persistence

length - there is no difference between the contraction/expansion giving rise to

neighbour exchange events and the ubiquitous stochastic fluctuations of junctions.

In addition to analyzing the persistence lengths, we can quantify the per-

sistence time of junction fluctuations. As shown in Figure 5.2, the persistence

time is given by the duration of each period of contraction or expansion. In the

case of a random walk with constant step size, the persistence length is simply

the persistence time multiplied by the step size. Note, that during neighbour

exchange events, we often observe pausing in the four-way vertex configuration.

The persistence length is robust to this phenomenon (since there is zero length
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change during pausing), but it would lead us to overestimate the persistence

time for these junctions. For this reason, the pause times have been detected

computationally and subtracted from the persistence times for T1 segments.
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Figure 5.5: Filtering of junction length time series

The figure shows the junction length over time for a junction that undergoes at T1
event around 40 min into the movie (marked by a red star). The time series has been
split into segments where the junction length is monotonically increasing or decreasing.
This was done by filtering the data using a moving average Hanning window - if the
first derivative changes sign or is zero with opposite signs on either side of that point,
a segment boundary is placed. Using a higher setting for the filter, results in fewer
segments. The filter settings used are a) 10, b) 20, c) 40. The analysis is done using the
raw data - the filter is only used to establish the position of the segment boundaries. The
segments on either side of the T1 event (marked with red dotted lines) are defined as
T1-segments.
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Figure 5.6: Persistence lengths

Persistence length distributions for (left) non-T1 and (right) T1 segments. The filter
settings used are a) 10, b) 20, c) 40, as shown in Figure 5.5. The number of segments
included in each histogram, are listed in Table 5.1. The distributions for T1 and non-T1
segments are compared used a two-sample Kolmogorov-Smirnov test. The p-values
are listed in Table 8.1 and in every case the statistical test, at the 0.05 significance level,
supports the null hypothesis that the samples are drawn from the same underlying
distribution.
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Filter level segments non-T1 segments T1
10 22819 122
20 11377 114
40 4895 92

Table 5.1: Number of segments included in each of the persistence length distributions
shown in Figure 5.6. Higher levels of filtering results in longer, and therefore fewer,
segments. The first and last segment of each time series is excluded from the analysis,
regardless of whether a T1 event occurs, therefore the number of T1 segments included
can vary with filter level.

Filter level p-value Hypothesis
10 p = 0.5142 H0

15 p = 0.2727 H0

20 p = 0.5294 H0

25 p = 0.2569 H0

30 p = 0.1081 H0

35 p = 0.1881 H0

40 p = 0.2572 H0

Table 5.2: The persistence length distributions for T1 and non-T1 segments are compared
using a two-sample Kolmogorov-Smirnov test. The null hypothesis, H0, is that the
samples are drawn from the same underlying distribution. The analysis was carried out
for seven different levels of filtering, between 10 and 40, and in every case the statistical
test supports the null hypothesis at the 0.05 significance level. Note that, since we are
testing a set of statistical inferences simultaneously, the appropriate significance level
for the individual hypothesis tests is lower than the significance level for the set as a
whole. Using the Bonferroni correction, we would get α̂ = α/k = 0.05/7 = 0.007. Since
the p-values are all above 0.05, this is not something we need to worry about.
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5.4 Contraction and expansion is symmetric in neighbour

exchange

We have established that junction length changes during neighbour exchange

events are indistinguishable from the general fluctuations of junctions in the

tissue. As an additional test, we separate the contraction and expansion phases

of junction remodelling. It is possible that, say, expansion is the result of junction

fluctuations, while contraction occurs in a directed manner, and that grouping

the processes together obscures this difference.

First, we consider the ballistic velocity of junction fluctuations - this is the

persistence length divided by persistence time and gives the average rate of

contraction/expansion for each segment. The results are presented as boxplots in

Figure 5.7. The median contraction rate for T1 junctions is 0.81± 0.097 µm/min.

Interestingly, this is consistent with the value of 0.83 µm/min reported for germ-

band elongation [57]. According to the Kolmogorov-Smirnov test, there is no

statistically significant difference between the ballistic velocities of T1 and non-T1

segments, in agreement with our results from the previous section.

I then repeated the analysis, but grouped segments according to whether the

junction is contracting or expanding and analysed these separately. Based on

the Kolmogorov-Smirnov test, there is no significant difference in the rate of

contraction and expansion, both for non-T1 fluctuations and T1 events. Similarly,

I found no significant difference in the persistence lengths of contracting and

expanding segments, both for non-T1 fluctuations and T1 events.

The results show that, at least phenomenologically, neighbour exchange events

are symmetric. In particular, the rate of contraction and expansion is the same,

going into and coming out of a four-way vertex. This is in agreement with our

previous result, in Figure 4.7, for the average change in junction length during

neighbour exchange.
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Figure 5.7: Persistence lengths, time, and ballistic velocity

a) Histograms for the persistence length of non-T1 (left) and T1 segments (right). Con-
tracting (blue) and expanding (red) segments are shown separately. The p-values for a
Kolmogorov-Smirnov test comparing the distributions are: contracting non-T1 vs expand-
ing non-T1 p = 0.5576 (ns), contracting T1 vs expanding T1 p = 0.7276 (ns), all non-T1 vs
all T1 p = 0.5294 (ns). b) Histograms for the persistence time of non-T1 and T1 segments.
The Kolmogorov-Smirnov test is not valid for discrete distributions. c) Boxplots for the
ballistic velocity (persistence length / persistence time) for non-T1 and T1 segments. The
The p-values for a Kolmogorov-Smirnov test comparing the distributions are: contracting
non-T1 vs expanding non-T1 p = 0.1613 (ns), contracting T1 vs expanding T1 p = 0.9594
(ns), all non-T1 vs all T1 p = 0.3243 (ns). The filter setting is 20. N = 11377 non-T1
segments and 114 T1 segments from 4 nota.
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5.5 Discussion

The aim of this chapter was to investigate the hypothesis that the contraction and

expansion events giving rise to neighbour exchange result from the ubiquitous

stochastic fluctuations of junctions in the tissue. Interestingly, T1 events do not

appear to have a well-defined time and length scale, which motivated carrying out

the analysis and statistical tests for a wide range of filter settings. For every level

of filtering, the statistical tests showed no difference between junction fluctuations

and neighbour exchange. This supports viewing neighbour exchange events as

an epiphenomenon of the stochastic fluctuations present in the tissue, rather than

as directed singular processes.

We also found that neighbour exchange events are symmetric with respect to

the rate of contraction and expansion, going into and coming out of a four-way

vertex configuration. Interestingly, the rate of contraction is very similar to what

has been reported for junction remodelling during germ-band elongation [57].

Two observations that will inform how we model junction dynamics later, are

(i) that the distribution of persistence lengths skew left relative to the expectation

for a simple random walk process, and (ii) that the mean square displacement

curve shows subdiffusive behaviour. This suggests that junction fluctuations

could be consistent with a constrained random walk and that will be our starting

point for the modelling in Chapter 7.

However, we first establish the phenomenology of tissue ordering. Specifically,

in the next chapter, we will consider different measures of order and quantify the

time course of the ordering process.



Chapter 6

Ordering over the course of

pupal development

The aim of this thesis is to understand how order emerges in the Drosophila notum

and how neighbour exchange events contribute to that process. In this section I

address the premise of this research question, namely that tissue packing does

in fact become more regular over the course of pupal development and that this

process is associated with neighbour exchange events. I quantify order in the

tissue at different points in development and track a time course of the ordering

process.

There are different measures of the degree of order in a tissue. From time-lapse

imaging of the notum, we visually perceive an increase in the regularity of the cell

array. In general, finding an objective proxy for our perception of spatial order, is

non-trivial [98]. Here I will focus on the distribution of polygons and junction

lengths. In the absence of cell division and cell extrusion, changes in polygon

number are caused solely by neighbour exchange events. By contrast, ordering in

terms of junction lengths is driven by tension in the system and does not rely on

neighbour exhange. Hence, these two measures of order are complementary and

are directly related to experimentally measurable quantities: neighbour exchange

frequency and junction tension.

In the previous sections we studied junction dynamics in the absence of per-

tubing cellular events, such as division and extrusion, using time-lapse imaging

at 12h AP. Around 13.5h AP there is an onset of cell division, with every cell in

this part of the notum1 dividing once. In addition, a small proportion of cells

(0.5± 0.3%) delaminate from the tissue through a stochastic process of live cell

1The scutum, mesonotum
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extrusion. [89]. This period of pupal development lasts until around 20h AP,

after which the tissue resumes the process of refinement. Therefore, to track the

ordering process over several hours, we image the notum post division.

6.1 Tissue order increases over the course of development

The distribution of polygons is an important measure of order in the tissue.

Without cell division or cell extrusion, the only way a cell can change its number

of edges is by going through a neighbour exchange event. Figure 6.1 shows his-

tograms for the polygons at different developmental time points. The proportion

of hexagons in the tissue increases over time and the standard deviation of the

distribution decreases. In particular, there is a reduction in the number of cells

with 4 or 8 edges. Hence cells in the tissue become more hexagonal over the

course of development. The figure also shows histograms for the junction lengths.

The first thing to notice is that post division, cells are smaller and junction lengths

are shorter. I therefore use the coefficient of variation (std/mean) to compare the

distributions. The coefficient of variation decreases over time, corresponding to

junction lengths becoming more even in the tissue.
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Figure 6.1: Ordering over the course of pupal development

a) Fluorescent images of Drosophila tissue at different developmental time points. The
bright spots in the images at 25 h AP and 30 h AP, are microchaete bristle cells. Scale
bar = 5 µm. b) Histogram of the polygon distribution at different developmental time
points. N = 236 cells from 4 nota (12.5 h), 296 cells from 3 nota (25 h), 250 cells from 3
nota (30 h). Errorbars indicate the variation between nota, i.e. the standard deviation
of the standard deviations for different nota. c) Standard deviation for the polygon
distributions shown in b). Errorbars indicate the standard deviation between nota. The
p-values for an F-test comparing the variances are: 12 h v 25 h p < 0.0001 (*), 12 h v
30 h p < 0.0001 (*), 25 h v 30 h p = 0.3346 (ns). d) Histogram of the junction length
distribution at different developmental time points. N = 828 junctions from 4 nota (12.5
h), 1059 junctions from 3 nota (25 h), 936 junctions from 3 nota (30 h) e) Coeffcients of
variation (σ/〈l〉) for the junction length distributions shown in d). Errorbars indicate the
standard deviation between nota. The p-values for an F-test comparing the variances are:
12 h v 25 h p < 0.0001 (*), 12 h v 30 h p < 0.0001 (*), 25 h v 30 h p = 0.2624 (ns). Bristle
cells and cells adjacent to bristle cells have been excluded from the analysis.



Ordering over the course of pupal development 77

6.2 Steady increase in order over several hours is driven

entirely by neighbour exchange

The results in Figure 6.1 show that, both in terms of polygon distribution and

junction lengths, tissue packing in the notum becomes more regular over de-

velopmental time. To investigate the time course of the ordering process, we

follow the tissue over a period of several hours. Since, the onset of cell division

around 13.5 h AP disrupts the ordering of the tissue, we study how packing

proceeds post division. We imaged the nota from 20 h AP, at 10 min intervals.

The tissue is stable in the sense that we do not observe cell division, delamination

or apoptosis events. However, during this window of pupal development, a

pattern of microchaete bristle cells emerges on the notum [50]. Bristle cells are

external mechanosensory organs and are part of the Drosophila peripheral nervous

system [99]. From around 25 h AP, the michochaetes grow in apical area and

number of edges, triggering a slew of neighbour exchange events that perturb the

surrounding tissue. As microchaetes grow, adjacent cells go through neighbour

exchange to accomodate the increase in apical area and this, in turn, affects the

neighbours of those cells.

Figure 6.2 shows the apical area and polygon number of michochaetes relative

to other cells for a single notum. The time point at which microchaete bristle cells

deviate by more than one standard deviation from non-bristle cells is marked,

as is the time point at which the growth phase ends and the area and polygon

number stabilizes.

During the growth phase, microchaetes perturb the surrounding tissue and

disrupts polygon ordering. Even though development of the microchaete bristle

pattern is an interesting problem (see [50, 100]), our focus here is the ordering

process that happens in the absence of this pertubation. For this reason, bristle

cells and cells adjacent to bristle cells are excluded from the analysis.

As shown in Figure 6.3, we observe a steady increase in order between 22h and

34h. The proportion of hexagons increases and the standard deviation of polygon

type decreases, moving the system towards hexagonal packing. Interestingly, this

increase in tissue order is driven entirely by neighbour exchange events.
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The other measure of order we are using is the variance of junction lengths.

Figure 6.4 shows that the coefficient of variation (std/mean) for junction lengths

decreases steadily over time, leading to a more regular tissue architecture. The fig-

ure also shows the average coefficient of variation for junctions within individual

cells and this follows a similar trajectory. Hence, both across the tissue and within

cells, junction lengths even out over time. Unlike for polygon distributions, this

ordering process is not necessarily driven by neighbour exchange, as networks

under tension generally exhibit this type of behaviour.
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Figure 6.2: Disruptive effect of bristle cells

a) Tissue at different developmental time points. (left) 22 h 30 min AP and (right) 33
h 50 min AP. Scale bar = 10 µm. b) Mean cell area for bristle cells (red, N = 8) and
non-bristle cells (blue, N = 312). The errorbars are the standard deviation for the cell
areas of non-bristle cells. The dashed line at t = 26.5 h indicates where the mean cell area
of bristle cells falls outside one σ of that of non-bristle cells. c) Mean polygon number
for bristle cells (red, N = 8) and non-bristle cells (blue, N = 312). The errorbars are
the standard deviation for the polygon distribution of non-bristle cells. The dashed
line at t = 27 h 10 min indicates where the mean polygon number of bristle cells falls
outside one σ of that of non-bristle cells. For b) and c), the dashed line at t = 31 h 40
min is placed by eye where the mean cell area and polygon number of the bristle cells
appear to stabilize. Cells adjacent to a bristle cell are excluded from the analysis. Not all
cells persist for the duration of the movie due to translation of the tissue relative to the
microscope.
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Figure 6.3: Ordering of polygons

a) Proportion of hexagonal cells in the tissue, tracked over a period of 12 hours. The figure
shows the mean for 5 nota, with a combined 395 cells. The errorbars are the standard
deviation on the mean. Bristle cells and cells adjacent to bristle cells are excluded from
the analysis. b) Standard deviation for the polygon distribution of cells in the tissue,
tracked over a period of 12 hours. The figure shows the mean for 5 nota, with a combined
395 cells. The errorbars show the variation between nota, i.e. they are the standard
deviation on the mean for the standard deviation of the polygon distribution for the 5
nota. Bristle cells and cells adjacent to bristle cells are excluded from the analysis.
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Figure 6.4: Ordering of junction variation, global and local

a) Schematic and plot for the coefficient of variation (σ/〈l〉) for junction lengths in the
tissue, tracked over a period of 12 hours. The figure shows the mean and standard
deviation for 5 nota, it includes data from a total of 2427 junctions. b) Schematic and
plot for the mean coefficient of variation (σ/〈l〉) within cells, tracked over a period of 12
hours. For each cell, the CoV is calculated for junctions in that cell and the average is
taken over all cells in the tissue. For the figure, the mean CoV has been calculated for
5 nota separately and the mean and standard deviation of these are taken. The figure
includes data from a total of 395 cells. Not all junctions or cells persist for the duration of
the movie. Bristle cells and cells adjacent to bristle cells are excluded from the analysis.

6.3 Discussion

The results in this section show that the notum orders over the course of pupal

development. The proportion of hexagonal cells in the tissue increases and the

variance in polygon type and junction length decreases, leading to a more regular

tissue packing.

Tracking a time course for the ordering process, over a period of 12 hours post

division, shows a steady increase in order driven entirely by neighbour exchange

events. The proportion of hexagons increases and the standard deviation of

polygon type decreases, moving the system towards hexagonal packing.
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I also calculated the coefficient of variation for junction lengths over time.

The variation in the length of junctions across the tissue and within cells are

very similar and both show a clear decrease over the course of development.

Interestingly, microchaete bristle cell growth appears to disrupt ordering in

terms of polygons but not junction lengths (the disruption was visible in the

graphs for individual nota, but averages out when data from several nota are

combined). This could be related to Lewis Law, which dates back to the 1920’s

and states that apical cell areas increase linearly with the number of edges [101,

102]. As described in [Curran 2015], this relation holds almost perfectly for cells

in the Drosophila notum, with the exception of microchaete bristle cells late in

development. When microchates grow it disrupts the cell area and polygon

ordering in the surrounding tissue. But, by Lewis Law, larger/smaller cells have

more/fewer junctions and, as such, junction lengths do not depend on cell size

and are therefore unaffected by the pertubation.

Taken together with the previous section, which showed that neighbour

exchange events are stochastic, the results give rise to the question of how

stochastic events can drive ordering. To answer this, we first investigate the

source of stochasticity in the tissue and this will be the focus of the next section.



Chapter 7

The role of myosin in

regulating junction fluctuations

Before attempting to answer how junction length fluctuations contribute to tissue

ordering, we consider how such fluctuations arise within the tissue. In particular,

we want to identify the underlying source of stochasticity in the tissue.

On a molecular level, junction tension is generated by the contractile action

of actomyosin. Linking of the actomyosin cytoskeleton to adherens junctions

converts the force generated, by the movement of Myosin II molecular motor

proteins along actin filaments, into junction tension. The localisation of Myosin

II changes over the course of pupal development. Around 12h AP, Myosin II is

observed both at junctions and in a medial pool. As the tissue matures, Myosin II

increases at junctions - forming dense cables - and is lost from the medial pool.

This relocalisation of Myosin II correlates with an increase in line tension, as

described in [Curran 2015]. In germ-band elongation, Myosin II is specifically

enriched at shrinking junction oriented along the D-V axis and this polarized

distribution has been shown to be necessary for successful elongation of the

tissue [53]. Hence, Myosin II is a prime candidate for how stochastic junction

fluctuations originate and are regulated within the tissue.

In this section, we describe the properties and dynamics of junctional Myosin

II in the Drosophila notum. In particular, we identify similarities and differences

with GBE to understand the components of stereotyped junction remodelling.

Using a combination of experiment and modelling, we investigate how Myosin II

contributes to stochasticity and what role it has in regulating junction dynamics.

83
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7.1 There is no polarization of junctional Myosin II

within the tissue

One aim of this section is to determine if there are any biases in how Myosin

II is localised within the tissue. To this end, we use single time-point images at

12h AP to study the static distribution of Myosin II and Bazooka. The results are

shown in Figure 7.1.

For Bazooka, the measured intensity is uncorrelated with junction length,

whereas there is a slight negative correlation for Myosin II. Hence, relative to

length, Myosin II intensity is higher for shorter junctions - the intensity per pixel1

for a 2 µm junction is approximately 15% higher than for a 10 µm junction. There

is no significant correlation between the intensity of Myosin II and Bazooka on

individual junctions.

As is evident from the fluorescent images in Figure 3.5, Myosin II intensity

varies more across the tissue than Bazooka. The figure shows the distribution

of Myosin II and Bazooka for junctions in the tissue - the standard deviations

are 0.11 and 0.077, respectively, demonstrating that Myosin II is more spatially

heterogeneous. The most important result for the localization of Myosin II is that

the intensity is uncorrelated with junction orientation, demonstrating that there

is no polarization of Myosin II within the tissue. This is in contrast with GBE,

where Myosin II is enriched in shrinking junctions oriented along the D-V axis.

1Normalizing by the number of pixels gives the same results as normalizing by junction length,
but is more accurate.
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Figure 7.1: Properties of Myosin and Bazooka in the tissue

a) Normalized (average intensity per pixel) Bazooka intensity plotted against junction
length. Each data point corresponds to one junction. b) Normalized Myosin intensity
plotted against junction length. c) Normalized Myosin intensity vs normalized Bazooka
intensity. The Pearson correlation coefficient is −0.097, indicating that there is no
significant relation between the quantities. d) Distribution of the normalized Bazooka
intensity of junctions, standard deviation = 0.077. e) Distribution of the normalized
Myosin intensity of junctions, standard deviation = 0.11. f) Normalized Myosin intensity
versus the angle of the corresponding junction. The angle is measured relative to the
midline so junctions parallel with the midline have angle = 0. Each of the figures contain
data from three movies, in total 809 junctions. In each case only the first time frame of
the movie is used.
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7.2 Myosin II on individual junctions fluctuates over time

The spatial heterogeneity of Myosin II in the tissue and the negative correlation

with junction length, suggests that Myosin II could be involved in regulating

junction dynamics. Combining the analysis of fluorescence intensity, described

in the Methods chapter, with the tracking of junctions over time, allows us to

compare the temporal behaviour of Myosin II with changes in junction length.

Figure 7.2 shows time traces for the intensity of Myosin II and Bazooka, along

with junction length. Imaging was done at 5s and 30s intervals (on separate

occasions), to both get a high temporal resolution and follow the dynamics

on longer time scales. The examples shown are representative. Two things

are worth noting. Firstly, Myosin II intensity varies significantly over time,

whereas Bazooka intensity remains relatively stable. The spatial uniformity and

temporal invariance of Bazooka, indicates that it is a suitable control in this

system. Secondly, it appears that Myosin II and junction length are anti-correlated

and this is corroborated by visual inspection of time traces for other junctions

in the tissue. To make this observation more rigourous, we turn to correlation

analysis.



The role of myosin in regulating junction fluctuations 87

0 2 4 6 8 10 12
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

3

3.5

4

4.5

5

Time (min)

 

 

L
en

g
th

 (
μ

m
)

N
o
rm

a
li

ze
d

 M
y
o

si
n

 I
n

te
n

si
ty

N
o

rm
a
li

ze
d

 B
a

zo
o
k

a
 I

n
te

n
si

ty

0.85

1

1.15

1.3

1.45

1.6

1.75

N
o

rm
a
li

ze
d

 M
y

o
si

n
 I

n
te

n
si

ty

N
o
rm

a
li

ze
d

 B
a
zo

o
k

a
 I

n
te

n
si

ty

Time (min)

0 10 20 30 40 50 60 70 80 90 100 110
10

11

12

13

14

 

 

L
en

g
th

 (
μ

m
)

a)

b)

Figure 7.2: Time traces for junction length and Bazooka and Myosin intensities.

Time traces for junction length and Bazooka and Myosin intensities for individual
junctions. a) Junction with ID 26 in the 5s SqhAx3-BazmCh 301014 movie. b) Junction
with ID 109 in the 30s SqhAx3-BazmCh 060813 movie. The examples are representative
of the dynamics observed for junctions in the tissue
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7.3 The autocorrelation for Myosin II fluorescence

intensity decays exponentially

The correlation function (unbiased) of two time series xn and yn of length N is

given by

Rxy(m) =
1

N − |m|
N−m−1

∑
n=0

xn+myn (7.1)

Here m is the number of lags. The autocorrelation is commonly normalized by

dividing by the variance σ2, resulting in a value of Rxy = 1 at m = 0. Similarly, the

crosscorrelation is normalized by the product of the standard deviation of each

of the two processes σxσy. I calculate the mean of the correlation function for all

junctions in the tissue as this captures the essential features of the process while

reducing the effect of spurious correlations in the time series. The correlation

function for each junction is normalized before the population mean is taken.

Rxy(m) =
1
J

J

∑
j=1

1

σ
j
xσ

j
y(N − |m|)

N−m−1

∑
n=0

xj
n+myj

n (7.2)

Figure 7.3 shows the mean autocorrelation for Myosin II intensity calculated

from 269 junctions in a tissue imaged at 30s intervals. The decay of the autocorre-

lation function is in good agreement with an exponential function of the form

exp−t/τ and this is consistent with the expectation for an Ornstein-Uhlenbeck

process. The turnover time for the process is τ = 3.48± 0.093 min, which is simi-

lar to the value of 108± 66 s reported in [103] for dorsal closure in the Drosophila

embryo.
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Figure 7.3: Myosin autocorrelation

(blue) The unnormalized autocorrelation for Myo-II intensity (N = 269 junctions, 1
notum). (red) The best fit for an exponential of the form y = a ∗ exp(−t/τ). The
coefficients are: a = 0.0103± 0.00017, τ = −3.48± 0.093 min. The standard deviation
on the turnover time is calculated from the variance-covariance matrix for the fitted
coefficients. (inset) A zoom of the first 10 min figure, showing the experimental data
points.

7.4 Changes in Myosin II precede changes in junction

length

To study the interaction between Myosin II and junction fluctuations, I calculate

the crosscorrelation. Figure 7.4 shows the crosscorrelation function for both

Myosin II and Bazooka intensity against junction length. The correlation function

for Bazooka is symmetric with a negative correlation at lag 0. This is what

you would see if the total Bazooka on a junction were conserved - as a junc-

tion contracts/expands the number of Bazooka molecules stays the same and

therefore the concentration increases/decreases. Note that if junction length

changes happened purely by vertices sliding, we would expect that the Bazooka

concentration would remain constant and the crosscorrelation function would

be flat. Combined with Figure 7.1 a), the result shows that Bazooka intensity

is independent of junction length, but when the junction length fluctuates the

Bazooka intensity transiently goes above or below its steady state level. Unlike

Bazooka, the crosscorrelation function for Myosin II is distinctly asymmetric

with a minimum at a lagtime of −35 s (7 frames), demonstrating that changes
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in Myosin II intensity preceede changes in junction length. This result is highly

non-trivial and suggests a causative role for Myosin in regulating junction length.

I first did this analysis using time-lapse imaging taken at 30 s intervals and

observed a minimum at a negative lag of 1 frame, which motivated collecting

data at a higher temporal resolution to be able to determine the position of the

minimum more accurately.

Interestingly, the timescale for the interaction between junction length and

Myosin II is in agreement with what has been reported in germband elongation.

Collinet et al. [104] studied cell intercalation focusing on the extension of new

junctions following neighbour exchange. They report that the crosscorrelation for

the extension rate and the rate of change of junctional Myosin II intensity has a

minimum at −40 s, with changes in junction length lagging2.

2In Collinet et al. [104], the crosscorrelation function is given in Figure 4 (j), but they do not
report the position of the minimum. This was instead found by taking a measurement from the
figure.
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Figure 7.4: Crosscorrelation functions for Myosin II and Bazooka intensity against
junction length

a) Mean crosscorrelation for Bazooka intensity and junction length (N = 269, 1 notum)
for a notum imaged at 30 s intervals. The minimum for the crosscorrelation function
occurs at lag = 0. b) Mean crosscorrelation for Myosin intensity and junction length,
same notum as in a). The minimum for the crosscorrelation function occurs at lag = −1,
corresponding to 30 s. c) Mean crosscorrelation for Bazooka intensity and junction length
(N = 747, 3 nota) for nota imaged at 5 s intervals. The minimum for the crosscorrelation
function occurs at lag = 0. d) Mean crosscorrelation for Myosin intensity and junction
length, same nota as in c). The minimum for the crosscorrelation function occurs at
lag = −7, corresponding to 35 s.
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7.5 Stochastic Model of Junction Fluctuations Driven by

Turnover of Myosin

To understand the role of Myosin II in regulating junction fluctuations, particularly

the causality suggested by the crosscorrelation function in Figure 7.4, we turn

to modelling. Our starting point is a recently published model for oscillatory

behaviour in an elastic contractile material with a turnover of force-producing

molecules [103]. In the paper, the model is applied to describe cellular oscillations

in the Drosophila embryo during dorsal closure. During dorsal closure, the lateral

epidermal sheets are pulled together, fusing along the midline, to close the

hole in the dorsal epithelium left by germ band retraction [105]. It is the last

major morphogenetic event before the window of pupal development that we are

imaging. At 12 h AP, cells in the midline region have an anisotropic geometry

and are under compression, but as the tissue matures - through a process of

neighbour exchange and delamination - cells become isotropic and the midline

becomes indistinguishable from the rest of the tissue [89].

The model, developed by Dierkes et al., consists of a set of coupled differential

equations describing the dynamics of myosin concentration c (Eq. 7.3) and

junction length l (Eq. 7.4).

dc
dt

= − 1
τ
(c− c0)−

c
l

dl
dt

(7.3)

µ
dl
dt

= Te − T(c)− K(l) (7.4)

Te = T(c0) + K(l0) (7.5)

T(c) = T(c0) + t1(c− c0) (7.6)

K(l) = K(l0) + k1(l − l0) + k3(l − l0)3 ⇒ (7.7)

µ
dl
dt

= −t1(c− c0)− k1(l − l0)− k3(l − l0)3 (7.8)

Here, c0 is the equilibrium concentration of myosin and l0 is the equilibrium

length. The first term in equation 7.3 comes from turnover of myosin with binding

and unbinding rates kon = c0/τ and ko f f = c/τ, respectively. The second term

is related to matter conservation and ensures that, in the absence of turnover,
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cl is constant. Hence, changes in length affect the concentration, but not the

total amount, of myosin on a junction.3 Note that the third order term does

not significantly affect the dynamics, but has been included here to maintain

agreement with the model of Dierkes et al.

Within the model, a junction consists of a spring and dashpot in parallel with

a contractile unit. The spring element has an elastic restoring force K(l), the

tension generated by the contractile unit is given by T(c) and depends on the

concentration of myosin, and the damping coefficient µ adds viscous dissipation

to the system. In addition, there is an external tension Te from neighbouring

junctions. Since the whole network is under tension, Te opposes contraction of

the junction. In the paper, Dierkes et al. assume that the system is at steady state

with the external and internal tension terms balancing. The terms T(c) and K(l)

can then be expanded around the steady state, to give equation 7.8. As described

in the paper, the system exhibits three types of behaviour, depending on the

combination of parameters.

• Stability. After the transient has decayed, both c and l are constant and

equal their equilibrium values c0 and l0.

• Oscillations. The system undergoes a Hopf bifurcation at (t1c0)/(k1l0) =

1 + µ/(k1τ). The resulting limit cycle is stable with sustained oscillations

around the equilibrium values c0 and l0.

• Collapse. A further increase of tension in the system causes the system to

collapse to l = 0.

For our purposes, we are interested in the behaviour of the system in the

presence of stochasticity and I therefore modify the model in Dierkes et al. to

study this. It is known that binding and unbinding of myosin is a stochastic

process [106, 107]. Although, we do see some evidence of binding cooperativ-

ity in how the variance of myosin intensity scales with the mean intensity on

individual junctions (data not shown), for now we ignore mechanical coupling

3A quick calculation shows how this term keeps cl constant. dc
dt = − c

l
dl
dt ⇔

1
c

dc
dt = − 1

l
dl
dt Use

integration by parts. 1 +
∫ 1

c dt = −1−
∫ 1

l dt ⇔ ln(c) + ln(l) = −2 ⇔ ln(cl) = −2. Hence cl is
constant.
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between myosin molecules and introduce stochasticity in myosin turnover via an

uncorrelated white noise term ξ(t).

〈ξ(t)〉 = 0 (7.9)

〈ξ(t)ξ(t′)〉 = δ(t− t′) (7.10)

First, we rewrite equations 7.3 and 7.8 in terms of the nondimensional variables

for myosin concentration (x), length (y), and time (z). The white noise term has a

prefactor 1/
√

z to make the equations invariant to changes in the size of the time

step δz in the simulations.

x ≡ c
c0

, y =
l
l0

, z ≡ t
µ

k1 (7.11)

k1c0

µ

dx
dz

= − c0

τ
(x− 1)− k1c0

µ

x
y

dy
dz

+
1√
z

ξ(z) ⇔ (7.12)

dx
dz

= − µ

k1τ
(x− 1)− x

y
dy
dz

+
1√
z

ξ(z) (7.13)

k1l0
dy
dz

= −t1c0(x− 1)− k1l0(y− 1)− k3l3
0(y− 1)3 (7.14)

dy
dz

= − t1c0

l0k1
(x− 1)− (y− 1)− k3l2

0
k1

(y− 1)3 (7.15)

The nondimensional parameters are given in 7.16, leaving us with the nondi-

mensional equations governing the dynamics of the system 7.17.

α ≡ µ

k1τ
, β ≡ t1c0

l0k1
, γ ≡ k3l2

0
k1

(7.16)

dx
dz

= −α(x− 1)− x
y

dy
dz

+
1√
z

ξ(z)

dy
dz

= −β(x− 1)− (y− 1)− γ(y− 1)3 (7.17)
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To study the behaviour of the system, I use a discrete-time numerical simula-

tion. The uncorrelated white noise is a random variable sampled from a uniform

distribution in the interval [−0.5, 0.5] scaled by the noise strength ξ. There are

two things to note about the system. Firstly, changing the noise strength does

not affect the parameter space of the model. However, noise blurs the border

between adjacent basins of attraction, occasionally leading to collapse in regions

of parameter space that are otherwise stable. Secondly, the parameter space does

in general depend on the initial conditions. The initial conditions determine

which basin of attraction the system starts in and therefore which solution it

converges towards. Here, we assume the system is at steady state and therefore

focus on fluctuations around equilibrium. Varying the initial conditions around

the equilibrum values c0 and l0 does not change the behaviour of the system (data

not shown).

Figure 7.5 shows simulated time traces for the fluctuations of myosin and

junction length. The simulations are carried out using the nondimensional

parameters and time. Fortuitously, the time is nondimensionalised in such a way

that we only require the value of τ to translate it into experimental time.

z =
t
µ

k1 ∧ α =
µ

k1τ
⇒ (7.18)

t = zατ (7.19)

This allows us to present the time traces and crosscorrelation function in

units of minutes using τ = 3.48 min from the autocorrelation in Figure 7.3. The

standard deviation of the myosin time series depends on the noise strength

and, for ξ = 0.3, is similar to the average experimental value. Our model

does not include the fluctuations in junction length arising from mechanical

coupling to other junctions and taking these into account would increase junction

length variation. From the simulated time traces we can calculate the mean

crosscorrelation in the same way as in Figure 7.4. Interestingly, this gives the

same asymmetry as observed for the experimental data, with changes in myosin

leading changes in junction length, at least for the set of parameters chosen here.

Several factors combine to cause the experimental crosscorrelation to be weaker
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than in the model. The experimental data is for the fluorescence intensity of

myosin rather than the actual concentration and the relation between those two

quantities may be nonlinear. Measurement errors from segmentation and the

finite resolution of the microscope would also weaken the correlation.
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Figure 7.5: Myosin model

a) Simulated data for the fluctuation of myosin intensity and junction length from the
system of equations in 7.17. b) Mean crosscorrelation for myosin intensity and junction
length for 100 realizations of the system of equations in 7.17 with nondimensional
parameters µ/(k1 ∗ τ) = 0.28 and t1 ∗ c0/(k1 ∗ l0) = 0.3. The noise level is set to ξ = 0.3.
The nondimensional time is translated into minutes using the experimental value of
τ = 3.48 min for the turnover time of myosin. The minimum for the crosscorrelation
function occurs at −37.5 min.
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As shown in Figure 7.5, for at least one combination of parameters, the model

is able to reproduce the Myosin II time traces and crosscorrelation function for

the experimental data. Rather than attempt to fit the model parameters, we

want to investigate which parameter regions give rise to the asymmetry in the

crosscorrelation function. This is done by scanning over combinations of the

nondimensional parameters α and β and calculate the position of the minimum

in the mean crosscorrelation function. In Figure 7.6, the results are presented

as a heatmap. The minimum is given in units of minutes using Eq. 7.19 and

τ = 3.48 min. The collapse of the system occurs for the same combination of

parameters as reported in Dierkes et al. [103]. The position of the minimum is

negative for all combinations of parameters, demonstrating that the asymmetry

in the crosscorrelation function is a general qualitative feature of the model.

This supports our interpretation of a causal role for Myosin II in regulating

junction dynamics. In addition, it demonstrates that the observed interaction

between Myosin II and junction length can be explained by stochastic turnover in

conjunction with tension. The region of parameter space, where the model has the

same position of the minimum as in experiment, is at µ/k1τ ∼ 0.5, corresponding

to the viscous damping and elastic restoring force having the same order of

magnitude.

As in Dierkes et al. [103], we observe oscillations in both myosin and junction

length in the region above the Hopf bifurcation at (t1c0)/(k1l0) = 1 + µ/(k1τ).

Whether these are visible as distinct oscillations or are obscured by the stochastic

fluctuations of the system, depends on the noise strength. Hence, the appearance

of oscillations in the system corresponds to high levels of myosin and low levels

of noise.
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Figure 7.6: Myosin model, crosscorrelation minimum

For the system of equations in 7.17, the nondimensional parameters µ/(k1 ∗ τ) and
t1 ∗ c0/(k1 ∗ l0) were varied and the mean crosscorrelation function (of 5 realizations)
was calculated. The heatmap shows the position of the minimum for each combination
of parameters. The noise level is set to ξ = 0.1. For the black region in parameter space
(upper left corner), the systems collapses. The position of the minimum is negative for the
range of parameters investigated. For the region of parameter space with µ/k1τ ∼ 0.5,
the position of the minimum in the crosscorrelation function in the model is the same as
in experiment.
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7.6 Discussion

Our analysis showed that, in the Drosophila notum, the spatial distribution of

Myosin II is unpolarized with respect to junction orientation. This is in contrast

to the embryonic germ band, where a planar polarized distribution of Myosin

II causes oriented cell intercalation, with junctions shrinking along the D-V axis

and expanding along the A-P axis, leading to an overall elongation of the tissue.

As discussed in section 4, disruption of the polarized action of Myosin II in

the germ band results in neighbour exchange dynamics that resemble what we

observe in the notum. In Kr mutant embryos and Kr(RNAi) embryos, neighbour

exchange events are not polarized in the plane of the epithelium and junction

remodelling is reversible[53, 54, 92]. This suggests that planar polarization of

Myosin II introduces a bias into the system and may be considered a special case

of a more general mechanism.

Tracking the fluorescence intensity on individual junctions over time allowed

us to extract temporal information about Myosin II dynamics. We found that

the decay of the fluorescence intensity autocorrelation is exponential, which is

consistent with simple first order binding kinetics for Myosin II molecules to the

actin network. So although we did see some evidence of binding cooperativity

in how the standard deviation of Myosin II fluctuations scales with the mean

amount of Myosin II on junctions, the results suggest that this can be ignored for

the purposes of modelling. The turnover time for Myosin II was measured to

be 3.48± 0.093 min, which is similar to the value of 108± 66 s reported in [103]

for dorsal closure in the Drosophila embryo. The crosscorrelation function for

Myosin II intensity and junction length is distinctly asymmetric with a minimum

at −35 s, which shows that changes in Myosin II intensity preceede changes

in junction length. Interestingly, the same asymmetry has been reported for

junctional Myosin II intensity during the extension phase of junction remodelling

in germ-band elongation with a lagtime of −40 s [104]. As a control, there was

no asymmetry in the crosscorrelation function for Bazooka intensity and junction

length. The result for Myosin II is non-trivial and suggests a causal role for

Myosin II in regulating junction length fluctuations.

Based on a stochastic model, we were able to show that the asymmetry in



100 The role of myosin in regulating junction fluctuations

the crosscorrelation can be explained by stochastic turnover of Myosin II in

conjunction with tension being a function of the concentration of Myosin II

on a junction. This supports our interpretation of a causal role for Myosin II.

Importantly, the asymmetry is a general qualitative feature of the system and

does not depend on the choice of parameters. Looking more specifically at the

position of the minimum points to a region of parameter space where µ/k1τ ∼ 0.5,

indicating that the viscous damping and elastic restoring force are of the same

order of magnitude.

Our question at the start of this chapter was: what is the source of stochasticity

and how do junction fluctuations arise in the tissue? The model suggests that

the stochastic behaviour of junctions, which we quantified in section 5, can be

explained by stochasticity in the turnover of Myosin II. This prompts us to ask

how changing the level of Myosin II in the tissue would affect junction fluctuations

and neighbour exchange events. This will be the focus of the next section.

Since the model in this chapter was based on published work by Dierkes et

al. describing dorsal closure [103] and the crosscorrelation timescale for our data

agrees with what has been reported in germband extension[104], our results show

that Myosin II dynamics in the notum are similar to what is observed in other

processes in the Drosophila embryo. As we will see in the next section, the same

behaviour of Myosin II on the molecular level can have very different effects at

the tissue level depending on whether the spatial distribution is polarized or not.



Chapter 8

The role of Myosin II in

neighbour exchange events

The previous section demonstrated that noisy junction length fluctuations can

be explained by stochasticity in the turnover of Myosin II. We now turn to how

Myosin II affects neighbour exchange events. The aim is that by perturbing

Myosin II, we are able to elucidate how it contributes to ordering of the tissue

over the course of pupal development. In particular we quantify the frequency

of neighbour exchange events in mutants with altered levels of Myosin II and

attempt to explain the differences we observe. In germ band elongation, planar

polarized Myosin II drives neighbour exchange and a decrease in the level of

Myosin II is associated with fewer neighbour exchange events [57]. It is unclear

how altering the level of Myosin II would affect the rate of neighbour exchange

in the notum given the isotropic spatial distribution of Myosin II.

Both reduction and overexpression of Myosin II were achieved in two different

ways (see [Curran 2015] for additional details).

• Drosophila Rho-kinase (Rok) regulates the phosphorylation of the myosin

regulatory light chain (MLRC) and thereby the activity of Myosin II. We

used RNA-mediated interference to inhibit Rok (UAS-RokRNAi) and reduce

Myosin II levels in the tissue. Conversely, a constitutively active version of

Rok (UAS-RokCAT) was expressed to increase Myosin II levels.

• The Drosophila spaghetti squash (sqh) gene encodes the myosin regulatory

light chain of Myosin II. Expression of a non-phosphorylatable, and there-

fore inactive, form of MRLC (UAS-sqhAA) results in a loss of Myosin II

101
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from the tissue. The opposite phenotype was acheived by expressing a

phosphomimetic form of MRLC that is constitutively active (UAS-sqhEE).

8.1 The frequency of neighbour exchange events is

inversely proportional to Myosin II levels

To quantify the frequency of neighbour exchange events, I use the software de-

scribed in Methods to detect every time a cell changes neighbours. To avoid

overcounting from segmentation errors, I manually checked every computation-

ally detected event by looking at the fluorescent time-lapse images and only

including clear neighbour exchange events. Figure 8.1 shows the frequency of

neighbour exchange events for both Control and mutant phenotypes. Interest-

ingly, the frequency scales inversely with the level of Myosin II in the tissue.

Loss of active Myosin II from the tissue, whether by RokRNAi or sqhAA, increases

neighbour exchange and a gain in Myosin II, through either RokCAT or sqhEE,

reduces neighbour exchange in the tissue. The differences are striking with

neighbour exchange events being 3.6 times as common in RokRNAi than RokCAT.

This is opposite to what is observed in germ band elongation, where a decrease in

Myosin II - by expression of sqhAA - results in fewer neighbour exchange events

[57].
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Figure 8.1: Frequency of neighbour exchange events

Frequency of neighbour exchange events. The neighbour exchange events have been
detected computationally, with the settings set to include all potential events. Each event
was then checked manually, by looking at the fluorescent images, using the criterion that
the extension of the junction, following a four-way vertex configuration, should be stable
and clearly visible from the images. To calculate the frequency, the number of neighbour
exchange events has been normalized by the total number of junctions in each tissue
(excluding border junctions) and the length of the movie in minutes. The figure includes
data from Control (N = 4 nota), Rok RNAi (N = 3 nota), Rok CAT (N = 5 nota), SqhEE
(N = 3 nota), and SqhAA (N = 3 nota). The errorbars indicate the standard deviation
among nota. The mean values are: 0.85± 0.150× 10−3 (Control), 1.18± 0.186× 10−3

(Rok RNAi), and 0.33± 0.146× 10−3 (Rok CAT).
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8.2 A reduction in Myosin II makes neighbour exchange

events more reversible

We are also interested in how Myosin II affects the reversibility of neighbour

exchange events. As in section 4, we calculate the Kaplan-Meier survival curves to

quantify the probability that the configuration created by a neighbour exchange

event persists, without reverting back, for at least a time t. The advantage of this

approach is that it allows us to combine data from movies of different lengths and

take into account that a neighbour exchange at the start of a movie is observed for

longer than one occuring towards the end. To help build intuition for what the

data looks like, Figure 8.2 includes bar charts showing the proportion of neighbour

exchange configurations that persists for the duration of each movie versus those

that reverse. We class neighbour exchange events where the configuration persists

as unidirectional. It is interesting that in Rok RNAi we occasionally observe the

same junction undergoing up to four consecutive neighbour exchange events.

The bar charts suggest that Myosin II reduces reversibility and this is borne out

by the Kaplan-Meier analysis.

From the survival curves, we can extract the probability that a neighbour

exchange configuration persists for at least 150 min in each tissue type. That

probability is 69% in Control, 26% in Rok RNAi embryos, where Myosin activity

is low, and 82% in Rok CAT embryos, where Myosin activity is high. The

appropriate statistical test for comparing the survival curves of two samples is

the log-rank test. It is a nonparametric hypothesis test that deals with censored

data and considers the null hypothesis that there is no difference between the

survival curves - i.e. at any time point the probability of reversing is the same

for each tissue type. The log-rank test shows that the difference is statistically

significant for Control and Rok RNAi (p = 0.00041), but not for Control and Rok

CAT (p = 0.27399). Although, with the frequency of neighbour exchange events

being lower in Rok CAT, there is considerably less data available for this analysis.

The results demonstrate that an increase in junctional levels of Myosin II makes

neighbour exchange events less reversible.
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Kaplan−Meier estimate of survival functions
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Figure 8.2: Reversibility of neighbour exchange events

a) Bar charts showing what proportion of junctions undergo unidirectional, bidirectional, and
multidirectional neighbour exchange events. For each tissue type, the longest available movie
was chosen. b) Same as in a), but in a stacked bar chart. Each movie has been truncated at 75
min to make a direct comparison possible. N = 48 junctions / 51 T1 events, 4 nota (Control).
N = 42 junctions / 53 T1 events, 3 nota (Rok RNAi). N = 25 junctions / 26 T1 events, 5 nota
(Rok CAT). c) Kaplan-Meier survival curves showing the probability that a neighbour exchange
event is unidirectional for a given length of time. From the survival curves, the probability of a
configuration persisting for at least 150 min, along with the 95% confidence interval, is: Control
0.687 [0.5175 0.8567], Rok RNAi 0.258 [0.1250 0.3915], Rok CAT 0.821 [0.6572 0.9841]. A log-rank
test is used to determine if differences between the survival curves are statistically significant.
Control vs Rok RNAi p = 0.00041 (*), Control vs Rok CAT p = 0.27399 (ns). In addition, for
Rok RNAi, there is sufficient data to calculate a median time for the persistence of a neighbour
exchange configuration: 64.8 min.
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8.3 Regulation of the frequency of neighbour exchange

events

There are two possible hypotheses for explaining the observed differences in

the frequency of neighbour exchange events. The requirements for a neighbour

exchange event to occur are that a junction contracts to a four-way vertex configu-

ration and that the four-way vertex is resolved to give a change in cell neighbours.

So either (i) Myosin II changes the fluctuation of junctions and affects how fre-

quently junctions reach a four-way vertex configuration or (ii) Myosin II affects

the probability of successfully going through a neighbour exchange once at a

four-way vertex.

We start by exploring the first hypothesis. As we established in section 5 and

7, neighbour exchange events are indistinguishable from stochastic junction fluc-

tuations and those fluctuations are regulated by Myosin II. Hence, a change in the

level of Myosin II in the tissue could alter junction fluctuations. In the following

sections I quantify junction fluctuations, using various statistical measures, and

compare Control and mutant phenotypes.

8.3.1 The variation of junction lengths is similar in Control, RokRNAi,

and RokCAT

To start with, we simply consider the variation of junction lengths, both within the

tissue and over time, as shown in Figure 8.3. The temporal variation is quantified

by calculating the standard deviation over the mean for individual junctions and

grouping the data by tissue type. The median value is slightly higher for Rok CAT.

However, two things are worth noting about the Rok CAT phenotype. Firstly,

increasing Myosin II levels induces discontinuities in the adherens junctions with

DE-cadherin missing, particularly at vertices. In addition, DE-cadherin was seen

to be lost from the four-way vertex during neighbour exchange events. The same

effect was observed in sqhEE and appears to be phenotypical of increased Myosin

II activity [Curran 2015]. The discontinuties makes segmentation more difficult

and, hence, the junction fluctuation analysis for Rok CAT is more impacted by

segmentation errors than either of the other tissue types. Secondly, in three of the



The role of Myosin II in neighbour exchange events 107

five Rok CAT embryos, we saw significant local deformations of the tissue1. Such

deformations cause junctions to undergo directed contraction and expansion,

making the fluctuations appear ballistic. This increases the standard deviation

of individual junctions and, as we shall see in the next section, affects the mean

square displacement. It is not clear what induces deformation of the tissue.

For the spatial variation, calculated as the standard deviation of junction

lengths divided by the population mean at a single time point, the difference

between tissue types is not statistically significant and there is no significant

change over a period of 75 min. The results demonstrate that the variation in

junction lengths are not able to explain differences in the frequency of neighbour

exchange events. Nonetheless, even if the overall variation is the same, differences

in junction dynamics might be important.
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Figure 8.3: Standard deviation of junctions

a) Boxplots of the standard deviation for the lengths of junctions over time. For each
junction, σ/〈l〉 is calculated from the junction length time series. Since the standard
deviation varies with the length of the movie, all time series are truncated at 75 min. The
data shown is for Control (N = 4 nota), Rok RNAi (N = 3 nota), Rok CAT (N = 5 nota).
b) Standard deviation over population mean for junction lengths within the tissue at two
different time points, 12h AP and 13h 15min AP. The errorbars indicate the standard
deviation among embryos.

8.3.2 The mean square displacement curves are similar for Control

and mutants

The dynamics of junction fluctuations can be quantified used mean square dis-

placement (MDS) analysis. The method is described in section 5. Our model

1The deformations within the tissue were quantified using Optical Flow Analysis. See Chapter
3
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for the dynamics of junction length changes, resembles an Ornstein-Uhlenbeck

process (with an additional coupling term from tension generated by Myosin).

The mean square displacement for an Ornstein-Uhlenbeck process is given by

f (∆t) = 2Dτ∗(1− exp(−
∆t
τ∗ )) (8.1)

where the time scale τ∗ is defined by the ratio of the viscous damping term

and the elastic restoring force α/K. The term D is the diffusion coefficent and

represents the magnitude of the stochastic input to the system. From this, the

mean square displacement saturates at a value of 2Dτ∗ and this value scales

inversely with the elastic restoring force, or stiffness, of the tissue. Hence, based

on tension measurements (see [Curran 2015]), we expect Rok RNAi to saturate at

a higher value than Control and Rok CAT to saturate at a lower value.

Figure 8.4 shows the ensemble-averaged mean square displacement curves for

Rok RNAi and Rok CAT, with Control on the same graph for comparison. The

initial jump at the first time point is from segmentation errors and is, as expected,

larger for Rok CAT. Both Control and Rok RNAi display subdiffusive behaviour,

with Rok RNAi approaching a higher saturation value. Surprisingly, the curve

for Rok CAT is almost linear and, contrary to our expectation, placed above

Control. Visual inspection of the MSD curves for individual junctions reveal that

they display a wide range of behaviours - some saturate, some are ballistic, and

some have other more complicated dynamics. It is therefore not the case that the

majority of junctions in Rok CAT tissue have linear mean square displacement

curves, but rather that a few ballistic junctions bias the ensemble-average. As

discussed in the previous section, this could be related to the local deformation

of the tissue observed in Rok CAT.

Separating the fluctuations caused by local deformations from the fluctuations

intrinsic to the junction has proved to be highly non-trivial. Documenting the

various approaches I have tried are beyond the scope of this thesis, but have

included subtracting the local deformation (using the velocity field extracted

from Optical Flow Analysis) before calculating the mean square displacement

and looking at the correlated and uncorrelated components of the time series of
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neighbouring junctions. Overall, there are indications that, without the pertubing

effect of local deformations, the mean square displacement curve for Rok CAT

might saturate at a lower value than Control. However, in the absence of either

data free from tissue deformations or a rigourous method for separating the

components of fluctuations, this will have to remain an open question.
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Figure 8.4: Mean square displacement curves

Ensemble-averaged MSD curves for a) Rok RNAi (N = 3 nota), b) Rok CAT (N = 5
nota). The ensemble-average is calculated for each notum separately, then the average for
each tissue type is calculated. The errorbars shown are the standard deviation for the
ensemble-averages for nota of the same type, and therefore reflects the embryo-to-embryo
variability rather then the within-embryo variability. The MSD curve for Control (N = 4
nota) is included in each figure for comparison.
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8.3.3 Myosin II slightly reduces the diffusion coefficient of junction

fluctuations

Even though the MSD curves for individual junctions display a complicated

range of behaviours, they all start out linear. This makes it possible to extract the

diffusion coefficient by fitting a straight line to the initial slope. The number of

datapoints used for the fit can affect the diffusion coefficient (see [95, 96]). I use

the first 5 min / 10 frames.

Figure 8.5 shows the diffusion coefficients for different tissue types. For each

junction, the MSD curve is calculated and the diffusion coefficient is extracted.

As shown in panel (a, right), a straight line provides a good fit to the data.

The resulting diffusion coefficients are then combined by tissue type to give the

distributions shown in panels (b-e). This approach provides stronger statistical

support than a single fit to the ensemble-averaged MSD curve. Particularly for

Control 25 h and Rok CAT, the distributions are heavily left-skewed, I therefore

use the median value to get a more representative estimate for the diffusion

coefficient. Figures 8.5(f) shows the median values with errorbars given by the 95

% confidence interval, which for every data set is larger than the standard error

on the median.
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Figure 8.5: Diffusion coefficients estimated from MSD curves

a) (left) Example of an MSD curve for a single junction. The diffusion coefficient is determined
by fitting a straight line - shown in red, to the first 10 frames / 5 min of the curve. (right)
Zoom on the first part of the MSD curve, showing the goodness of fit. b) - e) The resulting
distributions of diffusion coefficients, with the data grouped by tissue type for Control (N = 733
junctions, 4 nota.), Rok RNAi (N = 588 junctions, 3 nota.), Control 25 h (N = 913 junctions, 3
nota.), and Rok CAT (N = 1222 junctions, 5 nota.). f) Plot of the median diffusion coefficient,
from the distributions shown. The errorbars are the 95% confidence interval for the median.
All data is for the actual junction length, as oppose to the vertex-vertex distance.
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Errorbars on the median:

For large samples from normal distributions, the standard error of the

median is:

σmedian = 1.253 ∗ σmean√
N

(8.2)

However, this is not accurate for non-normal distributions. For such

distributions the standard error of the median is difficult to compute

[Sokal, 1995]. Instead, appropriate errorbars may be calculated from the

interquartile range (R) of the data, as this is a robust measure of the spread,

and the number of observations (N). The 95 % confidence interval for the

median is given by

±1.57 ∗ Q75−Q25√
N

(8.3)

where Q25 and Q75 are the 25th and 75th percentiles respectively. The

value of 1.57 was emperically selected as the appropriate value for non-

normal distributions [108].

We can test whether the differences between the medians are statistically

significant. The Wilcoxon rank-sum test is nonparametric and tests the null

hypothesis that data in, say, y1 and y2 are samples from continuous distributions

with equal medians, against the alternative that they are not. Table 8.1 shows

outcomes at the p = 0.01 significance level - H1 indicates that the null hypothesis

of equal medians has been rejected.

Table 8.1

Control Rok RNAi Rok CAT late
Control .. p = 0.0346 , H0 p < 0.00001 , H1 p = 0.0014 , H1

Rok RNAi .. .. p < 0.00001 , H1 p < 0.00001 , H1

Rok CAT .. .. .. p = 0.0014 , H1

late .. .. .. ..

The medians of Control and Rok RNAi are significantly different from Rok

CAT. For Control and Rok RNAi the difference is significant at 5% significance

level, but not 1%. However, the diffusion coefficient of Rok CAT is only around
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15% lower than Rok RNAi. While this could contribute to a decrease in the rate

of neighbour exchange events, it is not clear that it would be sufficient to give the

observed threefold reduction.

8.3.4 Junction fluctuations are mean-reverting, but the degree does

not depend on Myosin II

Another way we can attempt to capture differences in the dynamics of junctions,

is to look directly at mean reversion. If an increase in Myosin II causes junction

fluctuations to be more mean reverting it would reduce the likelihood of reaching

a four-way vertex configuration and could explain differences in the frequency of

neighbour exchange events.

Unlike a random walk, where the position is unbounded, a mean-reverting

process tends towards some equilibrium value. The Ornstein-Uhlenbeck process

is an example of such a process that consists of random fluctuations with a bias

that depends on its current value - above the (long term) mean the bias is negative

and below it is positive, causing the process to revert towards its (long term) mean.

Simply based on spatial constraints (cells cannot become arbitrarily large), we

would expect junctions to be mean-reverting. From the mean square displacement

curves it is not clear whether junctions in Rok RNAi and Rok CAT nota display

mean-reverting behaviour2. Instead, we can analyse the mean reverting behaviour

directly by looking at how the length change at a given point in time depends on

the current length of the junction, as shown in Figure 8.6. The figure is based on

the method described in section 5. The time series for each junction is split into

segments where the junction length is monotonically increasing/decreasing and

the persistence length is defined as the signed change in length for each segment

- i.e. contraction corresponds to a negative persistence length. The figure shows

a clear bias in the persistence length with longer junctions being more likely to

contract and shorter junctions being more likely to expand than predicted by

the baseline expection of a random walk3. Hence, junctions display clear mean
2For a random walk, the mean absolute displacement is 〈|δl|〉 =

√
2Dt. Given the measured

diffusion coefficient of 0.01 µm2/min and an average junction length of 4 µm, the expected time
for a junction to double in length is 800 min or around 13 hours. Hence, it is not unexpected that
the spatial constraints become evident in the mean square displacement curves only on time scales
longer than the duration of these movies.

3It would be interesting to use exact shape of the mean reversion to elucidate nature of the
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reverting behaviour. Interstingly, there does not appear to be a difference in the

degree of mean reversion for Control, Rok RNAi, and Rok CAT.
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Figure 8.6: Mean reversion of junction length fluctuations

The figure shows the persistence length as a function of junction length. The persistence
length is calculated, as described in section 5, by splitting the time series into segments
where the junction length is monotonically increasing/decreasing and taking the the
change in length for that segment. The corresponding junction length is the length at the
start of each segment. The filter is a moving average Hanning window with a width of
5. Carrying out the analysis for filters with width 10 and 20 gave the same dependence
on junction length, as did calculting the length change for a time window of set size.
Data from Control (N = 60737 segments, 1519 junctions, 4 nota), Rok RNAi (N = 83152
segments, 1187 junctions, 3 nota), and Rok CAT (N = 116439 segments, 1960 junctions, 5
nota), are shown. The data has been binned and errorbars are the standard error on the
mean. In addition, the result is shown for 300 realizations of a simulated random walk,
with a diffusion coefficient of D = 0.01 µm2/min and a time series length of 250 min.

’attractive force’. I.e. is it greater when the process is further away from the equilibrium value,
as would be the case for a spring, or is it uniform with a strong boundary effect at some value?
However, we will not be investigating this further in this thesis.
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8.4 The frequency of neighbour exchange events can be

explained by the probability of successful junction

remodelling once at a four-way vertex

The methods for quantifying junction fluctuations, described in the previous sec-

tion, show little difference between Control and the mutants with increased/decreased

p-Myosin II levels. We observed a small, but significant, difference in the diffusion

coefficients, indicating that - at least on short time scales - Myosin II inhibits

junction fluctuations. However, it is not clear whether such differences are func-

tionally important. Instead, we turn to the second hypothesis and investigate

the probability of successfully going through a neighbour exchange event once a

four-way vertex configuration has been reached.

We will refer to events where a junction shrinks to a four-way vertex, regardless

of the eventual outcome, as ’attempted’ neighbour exchange events. These events

are detected computationally and, as in section 5, I set the threshold at which a

four-way vertex is reached at 0.5 µm. When a junction shrinks down to a four-way

vertex it is counted as a single event regardless of how long the configuration

persists for. Figure 8.7 shows the ratio of successful and attempted neighbour

exchange events, as well as the frequency of attempted events, for each tissue

type. In addition, the total counts and frequencies are shown in Table 8.2.

Strikingly, the frequency with which junctions reach four-way vertex configu-

rations is the same in each of the three tissue types. Consequently, differences

in junction fluctuations cannot explain the observed differences in the rate of

neighbour exchange events. This is consistent with the previous section where we

found only small differences in the junction fluctuations of Control and mutant

embryos.

Instead, the frequency of neighbour exchange can be explained entirely by the

probability of successful junction remodelling at the four way vertex. Specifically,

in Control 28% of four-way vertex configurations are resolved by neighbour

exchange, whereas the numbers for Rok RNAi and Rok CAT are 42% and 12%,

respectively. So the probability of successfully going through a four-way vertex is

3.6 times higher in Rok RNAi than in Rok CAT - the same as the ratio of the rates
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of neighbour exchange in these tissues.
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Figure 8.7: Frequency of attempted neighbour exchange events

a) The percentage of four-way vertex configurations that result in a neighbour exchange
event. b) Frequency of all events where a junction shrinks to a four-way vertex, irrespec-
tive of whether the configuration is resolved by neighbour exchange. The frequency is
normalized by the total number of junctions in the tissue and the length of the movie,
giving units of events/(junction*min). Based on a two-sample t-test, there is no statistical
difference between the means: Control vs Rok RNAi p = 0.7525 (ns), Control vs Rok CAT
p = 0.5740 (ns), Rok RNAi vs Rok CAT p = 0.8450. The data is for N = 4 nota (Control),
N = 3 nota (Rok RNAi), and N = 5 nota (Rok CAT). The numbers from the figures are
shown in Table 8.2.

Control Rok RNAi Rok CAT
Full T1s 74 131 49

Attempted T1s 273 329 400
Ratio full/attempted 0.279± 0.0605 0.416± 0.0854 0.116± 0.0347

Full T1 frequency ×10−3 0.845± 0.1499 1.183± 0.1864 0.331± 0.1457
Attempted T1 frequency ×10−3 3.154± 0.9782 2.926± 0.7626 2.811± 0.7767

Table 8.2: Total counts and frequencies for full and attempted neigbhour exchange events
in Control, Rok RNAi and Rok CAT. The frequency is normalized by the total number of
junctions in the tissue and the length of the movie, giving units of events/(junction*min).
Note that the ratio, T1 frequency and attempted T1 frequency are calculated as the mean
of the values for the individual nota. Hence, the mean ratio differs slightly from taking
the ratio of the total number of full T1s and attempted T1s. Errorbars are the standard
deviation between individual nota. Since the data for each nota differs with respect to
the duration of imaging and the size of the tissue within the frame, the total numbers for
full T1s and attempted T1s cannot be directly compared.

8.5 Myosin II regulates neighbour exchange events late

in development

As we saw in Chapter 6, tissue packing in the notum becomes more regular over

the course of development. Post division, the proportion of hexagonal cells in the
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tissue increases and the variance of the polygon distribution decreases.

The previous results on neighbour exchange in mutant phenotypes, showed

that Myosin II significantly inhibits junction remodelling. This suggests the

hypothesis that the gradual increase in junctional Myosin II over developmental

time is regulated to drive the ordering of the tissue to its hexagonally packed

configuration. To address this, I analyzed unperturbed neighbour exchange

events and junction fluctuations in the notum at a later point in development.

Figure 8.8 compares junction remodelling at 12 h and 25 h AP. The frequency

of neighbour exchange events is reduced by a factor 2.7 and events are less

reversible; the probability that a neighbour exchange configuration persists for

at least 65 minutes increases from 0.82 [0.707 0.936] at 12h to 0.93 [6.807 1] at

25 h AP. We note that the results for the notum at 25h AP and Rok CAT at 12h

AP are similar. In fact, there is no statistical difference between the frequencies

(p = 0.8485) or Kaplan-Meier survival curves (p = 0.1765) for Control 25h and

Rok CAT. As shown in Figure 8.5, for both Rok CAT and the unperturbed notum

at 25 h AP, the distribution of diffusion coefficients is heavily left-skewed with a

median value that is significantly lower than Control 12 h.

The similarity in results was expected since overexpression of Myosin II

activity in Rok CAT mirrors the developmental increase Myosin II at junctions.

The correspondence between the Rok CAT phenotype at 12h and the notum at 25h

establishes that Myosin II has a primary role in regulating neighbour exchange.

I also quantified the frequency with which junctions shrink to a four-way

vertex and, based on a two-sample t-test, found no statistical difference between

the mean frequency early and late in development (p = 0.1024). In contrast,

the probability of successful junction remodelling once at a four way vertex is

significantly lower at 25 h AP (18%) compared to 12 h AP (28%). Again, the

results late in development mirror those seen in the Rok CAT mutant phenotype,

in which there is also a reduced probability of remodelling at four-way vertices

(12%).
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Figure 8.8: Results for Control 25h

a) Frequency of neighbour exchange events for Control 12 h (N = 4 embryos) and
Control 25 h (N = 3 embryos). The neighbour exchange events have been detected
computationally then checked manually. To calculate the frequency, the number of
neighbour exchange events has been normalized by the total number of junctions in each
tissue (excluding border junctions) and the length of the movie in minutes. The errorbars
indicate the standard deviation among embryos. The mean values are 0.85± 0.150× 10−3

(Control 12h) and 0.31± 0.11× 10−3 (Control 25 h). b) Frequency of all events where a
junction shrinks to a four-way vertex, irrespective of whether the configuration is resolved
by neighbour exchange. The frequency is normalized by the total number of junctions
in the tissue and the length of the movie, giving units of events/(junction*min). The
mean frequencies are: 3.2± 0.98× 10−3 (Control 12h) and 1.8± 0.72× 10−3 (Control 25
h). Based on a two-sample t-test, there is no statistical difference between the means,
p = 0.1024. The probability of successful junction remodelling once at a four way vertex,
i.e. the ratio of successful to attempted T1s, is 0.2793 ± 0.0605 for Control 12h and
0.1838± 0.0709 for control 25h. c) Kaplan-Meier survival curves showing the probability
that a neighbour exchange event is unidirectional for a given length of time. From the
survival curves, the probability of a configuration persisting for at least 65 min, along
with the 95 % confidence interval, is: Control 12 h 0.821 [0.7071 0.9356] and Control 25 h
0.933 [6.8071 1]. A log-rank test is used to determine if differences between the survival
curves are statistically significant, giving p = 0.044 (1-tailed test) and p = 0.088 (2-tailed
test).
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8.6 Discussion

We started this chapter with the observation that the frequency of neighbour

exchange events scales inversely with the level of Myosin II in the tissue. The

difference is significant with neighbour exchange events being more than three

times as common in Rok RNAi than Rok CAT. In addition to resulting in more

neighbour exchange events, we found that a reduction in Myosin II causes

neighbour exchange events to be more reversible, with the proportion of neighour

exchange configurations that persists for longer than 150 min dropping from

69% in Control to 26% in Rok RNAi. Both these results are opposite to what is

observed in the embryonic germ band. Kasza et al. (2014) report a decrease in

the frequency of neighbour exchange events in sqhAA embryos, where myosin

activity is reduced, with both a lower proportion of junctions contracting to a

four-way vertex and a higher rate of vertices failing to resolve by neighbour

exchange. For sqhEE embryos, where myosin activity is up, they see an increase

in unstable neighbour exchange events that either reverse completely or contract

back down to a four-way vertex. So unlike in the notum, in the germ band a

decrease in Myosin II leads to fewer neighbour exchanges and an increase in

Myosin II causes neighbour exchange events to be more reversible. It is very

interesting that the action of Myosin II has such opposite effects in these two

systems. A key difference is of course that the Myosin II is planar polarized in

the germ band and not in the notum.

Focusing on the difference in the frequency of neighbour exchange events, we

put forward two hypotheses. Either Myosin II changes junction fluctuations and

this affects how frequently junctions contract to a four-way vertex or Myosin II

changes the probability of acheiving neighbour exchange once at a vertex.

We did observe some differences in the junction fluctuations of Control com-

pared to the mutants with altered Myosin II levels. In particular, we saw a small

but significant difference in the diffusion coefficients, indicating that an increase

in Myosin II dampens junction fluctuations on short time scales. The presence of

local tissue deformations in Rok CAT mean that it is difficult to make any definite

conclusions about the behaviour on longer time scales. However, we also found

that the frequency with which junctions reach a four-way vertex configuration is



120 The role of Myosin II in neighbour exchange events

the same for Control, Rok RNAi and Rok CAT. Consequently, regardless of how

Myosin II affects junction fluctuations, the observed difference in the frequency

of neighbour exchange events can be explained entirely by the probability of

successful junction remodelling at the four-way vertex.

It is not clear what the molecular mechanism is regulating junction remod-

elling at the four-way vertex. In all treatments that increased Myosin II activity, we

saw a loss of DE-cadherin from the four-way vertex during neighbour exchange,

indicating that the flow of DE-cadherin to vertices is disrupted in this phenotype.

Since DE-cadherin is required for junction remodelling, this could cause neigh-

bour exchange events to be less permissible in the tissue. Interestingly we also

observed discontinuities at vertices, as well as lower rates of neighbour exchange,

in the shibire mutant line, where endocytosis of DE-cadherin is blocked [Curran

2015]. It has been shown that Myosin II is involved in supporting the integrity of

DE-cadherin contacts [109], suggesting a possible mechanism that explains how

increasing levels of Myosin II could inhibit junction remodelling. However, more

work needs to be done to understand the interaction of the various molecular

components involved.

I also examined neighbour exchange events in unperturbed nota later in

development. At 25h AP, the frequency of neighbour exchange events is reduced

and junction remodelling is less reversible. The correspondence between the

notum late in development and the Rok CAT mutant phenotype at 12h AP

suggests that the level of Myosin II in the tissue is indeed the key factor regulating

neighbour exchange. It follows that the gradual increase in Myosin II during

development could be functionally important for ordering in the tissue. Early in

development, Myosin II levels are low, junction fluctuations are ubiquitous, and

neighbour exchange events are frequent and reversible, allowing the tissue to

explore a large set of possible configurations. As ordering proceeds and junctional

Myosin II increases, neighbour exchange events are inhibited and cell-cell contacts

eventually become locked in place.

This narrowing of the space of accesible configurations over time is reminis-

cent of simulated annealing, as described in section 2.3. Recall that simulated

annealing is an algorithm for robustly finding the global minimum of an energy
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function. It does so by gradually lowering the temperature or noise in the system.

If the process of epithelial ordering can be cast as the minimization of some

energy function, as in most existing models [64, 66, 70], our results directly

propose that the tissue implements a form of simulated annealing to perform

this minimization. Here the increase in junctional Myosin II is analogous to the

reduction in temperature as it has the effect of restricting the configurations the

system can access. The decrease in the probability of going through a neighbour

exchange once at a four-way vertex corresponds to an increase in the energy

barrier for that transition. This annealing schedule could be implemented in any

of the equilibrum models described in section 2.3. We should note that epithelial

tissues are in fact active systems, characterized turnover of junctional material

and dissipation of energy, and as such the framework of energy minimization

might not be applicable. In this case the equivalence with simulated annealing

would not hold.

Irrespective of the modelling viewpoint, our results outline how the tissue

transitions from a disordered to an ordered state. Stochastic junction fluctuations

facilitate neighbour exchange events, but the primary regulation of these events

occurs at four-way vertices. Myosin II both generates junction fluctuations and

inhibits junction remodelling. We speculate that inhibition specifically at four-way

vertices could allow the tissue to accomodate mechanical pertubations without

disrupting tissue topology. How homeostatic tissues are able to respond to

local pertubations while maintaining tissue integrity is an important question.

Further work on the regulation of neighbour exchange in mature epithelia could

determine whether vertex-specific inhibition is a more general mechanism for

maintaining tissue integrity.



Chapter 9

Spatial correlations in the tissue

9.1 The effect of junction fluctuations does not spread

beyond first neighbours

A somewhat separate aspect of tissue mechanics is how junction fluctuations

are correlated between neighbouring junctions and how far such correlations

spread in the tissue. Figure 9.1 shows that changes in the length of neighbouring

junctions tend to be anti-correlated, whereas the correlation between junctions

separated by one or more junctions averages to zero. The minimum of the mean

crosscorrelation is at a lag of zero, indicating that there is no temporal delay in

the force transmission between neighbouring junctions.

Another way to visualize how the effect of fluctuations spread, is to generate

a spatial map of correlations in the tissue. For Figure 9.2, I calculated the cross-

correlation between a single junction and every other junction in the tissue. This

was then repeated for all junctions and the resulting spatial maps were aligned

and averaged. The map shows how the crosscorrelation varies with distance

and angle. In particular, the region corresponding to the typical position of 1st

neighbour junctions is negatively correlated and beyond that correlations average

to zero.

122
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Figure 9.1: Crosscorrelation for neighbouring junctions

a) Crosscorrelation for the junction length time series of neighbouring junctions (N = 1042
junction pairings, 4 nota). The mean and standard error at zero lag is = −0.22± 0.0087.
(inset) Histogram of the lag time where the crosscorrelation function for individual
junction pairs has its minimum (N = 905 pairings, 4 nota). Some junctions (137) are
positively correlated and the crosscorrelation function decreases to reach its minimum
value at the maximum lag. In this case it is not meaningful to talk about the minimum of
the crosscorrelation function and the junction pairings are not included in the histogram.b)
Boxplot of the crosscorrelation (at zero lag) for the junction lengths for 1st, 2nd, 3rd, and
4th neighbours.
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Figure 9.2: Crosscorrelations across the tissue

The figures contain data from time-lapse imaging of four wildtype pupae. a) The figure is
generated by considering each pair of junctions in the tissue and determining the distance
between their midpoints and their relative angle. This information is then used to generate a
spatial map of the density of junction midpoints. The position of nearest neighbour junctions is
restricted to a specific region, but beyond that there is very little structure in the distribution.
Note that information about the absolute orientation of junctions is removed and it is only
meaningful to consider relative angles between 0 and 90◦. Hence the analysis generates a plot
for the upper right quadrant with the junction midpoint in origo. For illustration purposes, this
plot has been mirrored, to create the four-fold symmetry seen in the figure. A schematic of five
junctions, of average length and with angles of 120◦ have added to the figure. b) Spatial map of
cross-correlations in the tissue. The map is generated by calculating cross-correlations for each
junction with every other junction in the tissue and binning this data according to relative angle
and distance. The region of 1st neighbour junctions are anti-correlated, in accordance with the
results in Figure 9.1, but correlations do not extend beyond this. The binsize is 5 pixels.
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9.2 The angle-dependence of cross-correlations can be

explained by a simple analytical model

Figure 9.2, suggests that the correlation between neighbouring junctions depends

on angle. In particular, junctions are most strongly anti-correlated if they are

close to being parallel and almost uncorrelated if they are perpendicular. We can

develop a simple model to get some intuition for this angle-dependence. Start by

considering a simple example of three junctions joined at a vertex (see figure 9.3).

Say we are interested in the cross-correlation between the length of junction J1

and J2, and denote the inner angle between these junctions by α.

In a), the junctions are almost parallel (α ∼ 180◦). Consequently, when the

length of junction J1 decreases by δ, the change in the length of junction J2 is also

of the order δ. By contrast, in b), the junctions are perpendicular (α ∼ 90◦). In

this case, there is no first order change in the length of J2. for small δ,

α ∼ 180◦ ⇒ ∆J2 ∼ δ (9.1)

α ∼ 90◦ ⇒ ∆J2 ∼ 0 (9.2)

If the change in length of J1 and J2 are of the same order of magnitude

(but opposite sign), the junctions are strongly anti-correlated (cross-correlation

is negative). From this ’geometric’ argument we would therefore expect the

cross-correlation to be zero at 90◦ and decrease monotonically with the angle α.

Now, let us construct an analytical model. With the arrangement of junctions

in figure 9.3, consider the movement of the vertex joining junctions J1 and J2

and assume that the movement all other vertices is uncorrelated (such that

contraction/expansion affects 1st neighbours only). We can find the new length

J
′
2, after a length change δ in junction J1, from the cosine rule.

J
′
2 =

√
J2
2 + δ2 − 2J2δ cos(α) (9.3)

This is exact. The quantity we are interested in is the length change J
′
2 − J2.

Since δ << J2, we can make a few simplifying approximations.
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Figure 9.3: Schematic for crosscorrelation as a function of angle

Schematic of three junctions showing the configuration and notation used to develop the
model. a) The junctions are almost parallel (α ∼ 180◦). When the length of junction J1
decreases by δ, the vertex shared between junction J1 and J2 moves δ, and the change
in the length of junction J2 is also of the order δ. b) The junctions are perpendicular
(α ∼ 90◦). In this case, there is no first order change in the length of J2. for small δ.

J
′
2 − J2 =

√
J2
2 + δ2 − 2J2δ cos(α)− J2 (9.4)

∼=
√

J2
2 − 2J2δ cos(α)− J2 (9.5)

= J2

√
1− 2δ cos(α)

J2
− J2 (9.6)

∼= J2(1−
δ cos(α)

J2
)− J2 (9.7)

= −δ cos(α) (9.8)

A length-change −δ in junction J1 thus corresponds to a change −δ cos(α) in

junction J2 (note that cos(α) is negative for α > 90 degrees). As a result the

unnormalized crosscorrelation (for lag zero) is given by:

Rxy(0) = ∑
t

J1(t) ∗ J2(t) = cos(α)〈δ(t)2〉t (9.9)

Using the assumption that the vertices at either end of a junction are moving
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independently of each other (say by amounts δ and ε), the variance of a junction

is given by:

σ2 = 〈(J1 − 〈J1〉)2〉 = 〈δ(t)2〉+ 〈ε(t)2〉 = 2〈δ(t)2〉 (9.10)

Consequently, the crosscorrelation goes as
(
σ2/2

)
cos(α)1. The junctions are

anti-correlated for α > 90◦ and is zero when the junctions are perpendicular to

each other. The model prediction of the angle-dependence of the cross-correlation

is shown in Figure 9.3 alongside the experimental result. In addition, a fit to

the data that includes a free parameter β is shown and this yields the function

3.26 cos(α), which is in good agreement with the prediction from the parameter-

free model.
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Figure 9.4: Crosscorrelation as a function of angle

(blue) Experimental data for the cross-correlation as a function of the angle between junc-
tions. (red) The prediction from the analytical model,

(
σ2/2

)
cos(α). The experimentally

measured variance for junction lengths is 6.70 µm2. (green) Best fit using β cos(α), where
β is a free parameter. The same calculation for Rok RNAi and Rok CAT yields values for
β of 3.87 and 3.61, respectively.

The key assumptions of the model are:

• Fluctuations are accommodated locally, i.e. the effect does not extend

1Note that including the uncorrelated movement of the second vertex would not change the
calculation of the crosscorrelation since the change in junction J1 would be δ + δ for half the time
points and δ− δ for the other half.
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beyond nearest-neighbour junctions. In particular, the movement of vertices

connected by a junction is uncorrelated.

• Fluctuations in the position of vertices cause the total length of junctions

to change. Even if most of this change comes from the exchange of length

between junctions by the sliding of a shared vertex, the model would require

that junctions have some degree of elasticity or that addition and removal

of junctional material is able to accommodate length changes.



Chapter 10

Conclusion

In this thesis we set out to examine how order emerges in epithelial tissue during

development in an effective and robust manner. Specifically, we wanted to

investigate what heuristic the tissue implements to evolve from a disordered to

an ordered state. I studied this using data from live imaging of the Drosophila

notum - a tissue that develops hexagonal order without undergoing substantial

growth or directed morphogenesis.

I developed a custom software package to process and analyse the live imaging

data. The code is written using class-based object oriented programming with

each junction and cell in the tissue stored as an object. In addition, the code

tracks junctions and cells over time, assigning each a unique ID, and determines

cell-cell connectivity within the tissue. The format makes it possible to query the

properties of any junction or cell. The code made the analysis in this part of the

thesis possible and will be of value for future projects in the lab.

I first characterized the properties of neighbour exchange events in the notum

and showed that they differ in several ways from junction remodelling during

germband elongation. In the notum, neighbour exchange events are often re-

versible, with the same junction undergoing several consecutive transitions. By

contrast, junction remodelling during germband elongation is strictly irreversible.

I then examined how neighbour exchange events in the notum can occur without

causing large-scale deformation of the tissue, when such events drive morphogen-

esis in the embryonic germband. I found that, even though junction remodelling

is associated with internal rearrangement and a resdistribution of apical area

in the four cells involved, the aspect ratio of the four-cell cluster is unchanged.

Hence, even if neighbour exchange events were oriented along the same axis,

the cumulative effect would not reshape the tissue. I also studied the temporal

129
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distribution of neighbour exchange events and found that they occur somewhat

randomly in time. In particular, I could not decisively reject the hypothesis that

the temporal distribution of events is consistent with a Poisson process. This

suggests that neighbour exchange events in the notum are not highly coordinated

and stereotyped processes, the way they are in germband elongation.

To investigate the hypothesis that neighbour exchange events are generated

by a stochastic process in the tissue, I examined junction fluctuations and how

they relate to neighbour exchange events. An analysis of the mean square

displacement curve and the distribution of persistence lengths demonstrated that,

on average, junction fluctuations are subdiffusive and resemble a constrained or

mean-reverting random walk. We had anecdotal evidence that the magnitude of

junction fluctuations are similar to the contraction and expansion observed during

neighbour exchange. This was borne out by statistical analysis demonstrating

that there is no difference in the persistence length of junction fluctuations and

neighbour exchange events. Furthermore, I found no significant difference in the

rate of contraction and expansion, going into and coming out of a four-way vertex

configuration. Hence, phenomenologically junction remodelling in the notum is

symmetric. The results suggest a model where neighbour exchange events are

an epiphenomenon of stochastic fluctuations present in the tissue, rather than

directed singular processes.

I then investigated how junction fluctuations originate and are regulated

within the tissue. I used data from live imaging of transgenic Drosophila strains

expressing Sqh-GFP to extract temporal information about Myosin II dynamics.

From this analysis, I found that Myosin II intensity and junction lengths are

anticorrelated, with changes in Myosin II preceeding changes in junction length

by 35s. This suggests that Myosin II has a causal role in regulating junction

fluctuations. To investigate this, I extended the mathematical model by Dierkes

et al. [103] to incorporate stochastic turnover of myosin. This model was able

to reproduce several features of Myosin II and junction dynamics, including the

asymmetry in the anticorrelation and lagtime.

Having established a role for Myosin II both in generating and regulating

junction fluctuations, I turned to how Myosin II affects neighbour exchange
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events. For this, I used data from transgenic Drosophila strains with altered levels

of Myosin II. I found that, across several mutant phenotypes, the frequency of

neighbour exchange events scales inversely with the level of active Myosin II in

the tissue. The effect was striking with neighbour exchange events being more

than three times as frequent in Rok RNAi than in Rok CAT. In addition, changes

in the level of Myosin II also affected the reversibility of neighbour exchange

events. In Control at 12h AP, the probability that a cell neighbour configuration

persists for longer than 150 min, following junction remodelling, is 69% and

this drops to 26% in Rok RNAi. Notably, the results for both the frequency and

reversibility of neighbour exchange events are opposite to what is reported in

germband elongation, where a reduction in Myosin II activity is associated with a

decrease in the frequency and overexpression of Myosin II increases reversibility

[57].

To attempt to explain the observed differences in the frequency of neighbour

exchange events across phenotypes, I quantified how frequently junctions reach a

four-way vertex configuration, regardless of the eventual outcome. Interestingly,

I found that the frequency is the same in Control 12h, Rok RNAi and Rok CAT.

Consequently, the frequency of neigbhour exchange events can be explained

by the likelihood of going through once at a four-way vertex. The molecular

mechanism for such vertex-specific regulation is not known. However, we did

observe that mutant phenotypes with increased Myosin activity displayed a loss

of DE-cadherin from four-way vertices during neighbour exchange. In addition,

we found that the frequency of neighbour exchange events is reduced in the

shibire mutant line, where endocytosis of DE-cadherin is blocked [Curran 2015].

Since DE-cadherin is required for junction remodelling and Myosin II is known to

affect the stability of DE-cadherin cell-cell contacts [109], this suggests a possible

mechanism. However, more work is needed to determine the role of the various

molecular components involved.

To investigate the role of neighbour exchange in ordering, I examined junction

remodelling and junction fluctuations in unperturbed nota later in development.

From 12h AP to 25h AP, the frequency of neighbour exchange events decreases

by a factor 2.7 and events become less reversible. The observed correspondence
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between the notum at 25h AP and the Rok CAT mutant phenotype at 12h AP

demonstrates that Myosin II has a primary role in regulating neighbour exchange

in the tissue.

Taken together, our results provide a heuristic for how the tissue transitions

from a disordered to and ordered state during development. The data supports

the hypothesis that the gradual developmental increase in Myosin II drives

ordering in the tissue by generating junction fluctuations and regulating junction

remodelling. Early in development, stochastic fluctuations of junctions allow the

tissue to explore different configurations. They also facilitate neighbour exchange

events, which are frequent and reversible at this stage. As the density of junctional

Myosin II increases, junction remodelling is inhibited and cell-cell contacts are

eventually locked in place.

Within the framework of equilibrium models this heuristic corresponds to

a form of simulated annealing. Specifically, one where the annealing schedule

involves an increase in the energy barrier at four-way vertices rather than a

lowering of the temperature for the entire system.

We speculate that inhibition of junction remodelling specifically at four-way

vertices could have advantages for the tissue. Such inhibition might enable

the tissue to retain a certain degree of fluidity and responsivity to mechanical

pertubations, while preventing changes in cell-cell connectivity. Further work is

needed to address whether vertex-specific inhibition is a more general mechanism.
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