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Abstract

How biological order emerges in a robust manner during development is
an important question, as the functionality of many tissues depends on the
correct spatial arrangement of cells. In this thesis, I consider two examples
of ordering, cell sorting and hexagonal packing.

In several developing tissues, cells of different type spontaneously self-
assemble into domains that are homogenous with respect to cell type both
in vitro and in vivo. Current models of sorting assume asymmetry in the
physical properties of cell types - either in adhesion, cortical tension or
motility. I present a minimal model demonstrating that segregation does not
require such asymmetry, but can arise solely from cell motility when this is
modelled as a dynamic quantity that changes in response to the composition
of the local environment of a cell.

Over the course of pupal development, cells in the Drosophila notum rear-
range to form a hexagonally packed tissue. How does the tissue transition
from disorder to order in an effective and robust way? In particular, how do
stochastic fluctuations in junction length contribute to the ordering process?
I address these questions by analysing data from live-imaging of the notum
using a custom software package I developed. I demonstrate that neighbour
exchange events are a consequence of junction fluctuations, rather than being
an explicitly regulated and stereotyped process, and I present a mathematical
model for how such fluctuations are generated by the stochastic turnover of
myosin. I quantify the frequency of neighbour exchange events in embryos
with a reduction/overexpression of Myosin II activity and establish that
actomyosin is not required for neighbour exchange. In fact, the frequency of
neighbour exchange events is inversely proportional to Myosin II levels. The
results suggest that the gradual increase in actomyosin during development

drives a process akin to annealing that aids tissue ordering.
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CHAPTER ].

Kinetics of Cell Sorting

1.1 Introduction

An essential part of embryonic development is the sorting of different cell types
into distinct domains to form tissues and organs [[1]. Cell sorting processes in vivo
can be reproduced in vitro using cells from dissociated embryonic tissue. When
neural retinal and pigmented epithelial cells from chick embryos are thoroughly
intermingled and allowed to reaggregate, they spontaneously self-assemble into
homotypic domains [2]. The same phenomenon occurs in heterotypic mixtures of
ectoderm, mesoderm and endoderm progenitor cells from zebrafish embryos [3]].
In addition, cell sorting has been observed for dissociated Hydra cells, co-cultures
of cells not in contact during normal development, and mixtures of cells extracted

from different species [4, 5, 6, 7, 8]

Understanding how segregation emerges and is maintained, is also important
for studying tissue homeostasis and cancer invasion. When cancer becomes
metastatic, tumor cells invade adjacent tissue. As cancer cells become miscible
with healthy cells, the tissue is no longer able to maintain sharp compartment
boundaries. Consequently, it has been argued that malignant invasion may be

regarded as a process of cell sorting in reverse [9].

In this part of the thesis, I study the kinetics of cell sorting. I use mathematical
modelling to investigate the role of cell motility in sorting and suggest a novel
mechanism for how segregation can emerge in a population of motile cells. The
work in this part of the thesis has been published in the paper “A kinetic mecha-
nism for cell sorting based on local variations in cell motility” [10]. Additional
work, not described here, was published in the paper “Schelling model of cell

segregation based only on local information” [11]].



KinEeTICcs oF CELL SORTING 5

1.1.1 Computational models of cell sorting

The segregation of cells into homotypic domains is phenomenologically similar
to the phase separation of fluids [12, 2]. This analogy underlies the differential
adhesion hypothesis (DAH), developed by Steinberg in the 1960s, which posits
that the adhesive interactions between cells give rise to surface tension and that
the equilibrium configurations of the tissue are those that minimize the surface
energy [13, |14, 12, 15]. The differential adhesion hypothesis has since been
studied extensively using the cellular Potts model, also known as the Graner and
Glazier model [16| 17]. It has been succesful in reproducing a range of cell sorting
phenomena [18, |19, 20, 21, 22|, including the envelopment of more adhesive cells
by less adhesive ones observed in sorting experiments with embryonic tissue

from chicks [[6] and zebrafish [23].

However, the cellular Potts model is principally an equilibrium model. The
equilibrium configuration of the system is given by the minimum of the Hamilto-
nian, which contains terms that capture different aspects of tissue mechanics. The
kinetics, on the other hand, are determined by an auxiliary dynamics - typically a
Markov chain Monte Carlo method - used to relax the system to the equilibrium
configuration [24]. Indeed differences in the choice of Monte Carlo algorithm
could account for the discrepancies in the scaling behaviour reported for different
computational implementations of the DAH. Specifically, the paper by Nakajima
et al. [22] reported that the average domain size grows according to a power law,
whereas previous studies [17, 18] observe slow logarithmic growthE] Recent work
has demonstrated that the cellular Potts model can be applied as a kinetic model
if the Hamiltonian and Monte Carlo algorithm are modified appropriately [24,
20].

Other computational models have been developed to investigate the time
course of segregation and, in particular, the role of cell motility in sorting. The
models by Belmonte et al. [25] and Beatrici et al. [26] both describe a binary
system of self-propelled particles that have a tendency to align their motion

with that of neighbouring cells. Belmonte et al. simulate the effect of differential

Nakajima et al. [22] use a standard Metropolis algorithm for their dynamics, whereas the
Monte Carlo simulations in [17] employ a modified Metropolis algorithm resembling that of the
Voter model.
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adhesion in a motile population of cells. The two cell types have the same intrinsic
motility properties, but the interaction strengths differ between cells of the same
type and cells of different type. They argue that even weak coherent motility
speeds up segregation relative to what has been reported for cellular Potts model
implementations of the DAH. By contrast, Beatrici et al. consider a system of
cells with homogenous adhesion forces, but with speeds of constant modulus
vg and vy. They demonstrate that differences in the intrinsic motility properties
of cells, along with a tendency for cells to align their motion, can drive cell
sorting. Spontaneous segregation has also been demonstrated for dense mixtures
of self-propelled and passive particles using Brownian dynamics simulations
[27]. Including motility properties in the cellular Potts model, with motile and
non-motile cells in equal proportion, also leads to segregation with large clusters

of non-motile cells surrounded by streams of motile cells [28].

What these models have in common is their focus on intrinsic motility prop-
erties. Motility is assumed to be an inherent property of the cell, rather than a
function of the local environment. By contrast, experimental work has shown that
in tissues or compact aggregates of cells, each cell interacts strongly with its neigh-
bours and factors including adhesion, cortical tension, the viscoelastic properties
of cells, and collective motion all affect motility [29} 30, 31]. In particular, Rieu
et al. studied the two-dimensional trajectories of single endodermal Hydra cells
in aggregates comprised of either endodermal or ectodermal cells. In both envi-
ronments, endodermal cells perform a persistent random walk, with persistence
dominating at small time scales. Interestingly, diffusion is more than two times
faster for endodermal cells in an ectodermal environment, with reported diffusion
constants of Dpgo—ecto = 1.05 4= 0.4um? /min and Dpgo—endo = 0.45 & 0.2um? / min.
Despite these experimental observations, it is not known to what extent local

variation in cell motility contributes to sorting.

In this chapter, I present a minimal model where the diffusion of cells depends
on the composition of the local environment. A key property of the model is that
the two cell types are symmetric with respect to their intrinsic motility properties.
Instead, differences in motility arise solely from the interaction between a cell

and its neighbours. This allows us to test whether asymmetry is a prerequisite
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for cell sorting.

1.1.2 The Schelling model

Around the same time that Steinberg was developing the differential adhesion
hypothesis [13, |14, |12, [15], Schelling was investigating segregation phenomena at
the at the scale of societies [32, 33} 34]. Schelling showed how slight preferences
in neighbourhood composition can lead to residential separation of ethnic groups
within cities. The Schelling model describes a system in which interacting agents,
belonging to one of two groups, move on a square grid according to a utility
function defined by their current environment and the environment they have the
option of moving to. For each agent, the utility of a site on the grid is determined
by the fraction of agents of their own group within the local neighbourhood. If
an agent is surrounded by agents of the other group, utility is low and relocation
is desirable. Strikingly, Schelling found that even weak individual preferences for

homophily, resulted in strong segregation.

This type of model has since been studied on networks, in continous-space
models, and analytically [35, 36} 37, 38|]. In addition, it has been applied in the
context of phase separation kinetics in physics and efforts have been made to map
it to the Ising spin model [39, |40]. However, its relevance for biological systems

has not previously been explored.

Conceptually, the model presented here is related to the Schelling model
and was in fact inspired by it. The key assumption of our model is that the
diffusion of cells depends on the fraction of cells of the same type in the local
environment, which is analogous to the utility function for agents in the Schelling
model. However, to apply the Schelling idea to the study of cell sorting, it has
to be modified to make the dynamics entirely local. Previous versions of the
Schelling model are non-local in the sense that agents have information about,
and access to, non-adjacent residence sites when evaluting whether to move. This

is a reasonable assumption for people in cities, but not for populations of cells.
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1.2 The model

The aim of this chapter is to investigate whether intrinsic differences in motility
are necessary for cell sorting. To do this, we consider a model of sorting where
differences in cell motility arise solely from how cells interact with their surround-
ings. The model is inherently a kinetic model and the steady state configurations

emerge from the local interactions of cells rather than being specified a priori.

The model describes the diffusion of a binary mixture of cells that are symmet-
ric with respect to their motility properties. For each cell, the effective diffusion
depends on the composition of the local environment, specifically the propor-
tion of neighbouring cells of the opposite type. The cells diffuse on a square
continuous-space plane with side lengths L and periodic boundary conditions.

Each cell has a position ¥;, and moves according to

Xi(t+ At) = Xi(t) + 7;At, (1.1)

where we without loss of generality set At = 1. The total number of cells
is N = L2, which in the case of hexagonal packing would give an equilibrium
distance between neighbouring cells of R, = v/2/+/3 ~ 1.07. To account for
volume exclusion, we introduce a radial contact force f;; between cells, as given
by The contact force is nonzero when the separation r;; between two cells i
and j is smaller than the threshold rg, at which cells can sense their neighbours.
It is repelling if cells are closer than their equilibrium distance 7, and attractive

otherwise.

o
1_1% fOI‘?’l'j <79

fij = (1.2)

0 for rij > 1o
The radial contact force ensures that cells are evenly distributed within the
plane. Note that volume exclusion is not necessary for the segregation behaviour

observed in the model, as we will see in Figure

In the model, the motion of each cell is random. Except for contact forces,

motion is purely diffusive with no orientational bias. However, the speed of
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diffusion changes depending on the local environment of the cell, which we

characterize by the fraction v; of neighbouring cells of the opposite type.

My
- , L.
(i (1.3)

Here n_ is the number of cells of the same type as i and 7. is the number of
cells of opposite type, within a distance rp. A common measure for the degree of
segregation in a system is the interface index v [25, 26, 22, |8]], which is given by
the average of v; for all cells in the system. When <y ~ 0 the two cell types are

completely segregated.

How the diffusive component of the velocity depends on ; can be formulated
in two distinct ways, which I will refer to as the differential velocity model and
the differential persistence model, respectively. The two models are summarized
in Figure In the following, I describe both models and show analytically that
for any spatial arrangement of cells, the two models yield the same diffusion

constants.

A B

N\ N\ N
v b /\ J b // \\
\ AN
AN

AN
t
f
t

Figure 1.1: Schematic for cell sorting models

Ilustration of the two cell sorting models. a) In the velocity model all cells perform
random walks with a step length that depends on the local environment; cells that are
surrounded by cells of the opposite type diffuse fast. The step length is given by equation
b) In the persistence model the step length of the random walk is equal for all cells.
However, cells continue in the same direction during a persistence time given by equation
These two models yield the same diffusion coeffcients for any distribution of cells,
when the effect of volume exlusion is ignored.

In the differential persistence model, the step length is the the same for all

cells, but how frequently a cell changes direction depends on the composition of
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its local environment. As stated, the velocity of a cell contains two components -

random motion and contact inhibition. The velocity of a cell i is given by

o

U = —=ii; + i, (1.4)
\/% .B;f] ]

where i/; is a unit vector of random orientation, i;; is a unit vector pointing
from cell j to cell i, B is the strength of the contact force, « is the diffusion speed of
a cell that is surrounded only by cells of opposite type (7; = 1), and k determines
how much faster cells diffuse when they are surrounded by cells of opposite
type as opposed to the same type. This form of the velocity was chosen in order
for the parameters to be straightforward to interpret in terms of experimentally
measurable quantities. In particular, as we will see in equation the parameter
k may be related directly to the experiments of Rieu et al. [29] and the prefactor

for the random motion was chosen to to that end.

Between each random change in orientation, cells continue with the same
direction and velocity for a number of time steps T;. This persistence time is

given by

T =1+ i(k—-1). (1.5)

Hence, when a cell is surrrounded entirely by its own type (y; = 0), it has
T; = 1 and only continues in the same direction for a single time step. By contrast,
when all neighbouring cells are of the opposite type (7; = 1), the cell has T; = k.
A longer persistence time corresponds to less frequent changes in direction and
gives a higher speed of diffusion. Effectively, the motion of a cell can be described
as a random walk where each step is of length v;T; and takes a duration T; (see
Fig. [1.I). Using this observation and equation we can derive the diffusion
coefficent of a cell as a function of 7;, when the effect of volume exclusion is

omitted. Note that #; - if; = |il;|> = 1, since it is a unit vector.

O — ) =

1+ 7i(k—1)). (1.6)
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In the differential velocity model, the persistence time is constant, but the step
length depends on the local environment of the cell. The velocity of a cell i is

given by

L 11—, ~
Ui = o/ i+ k%ui +BY_ fijtlij, (1.7)
j

where ii;, il;j, «, B, and k are the same as in the differential persistence model.
From (1.7) we can find the diffusion coefficient of a cell as a function of 7;, again
omitting the term for the radial contact force. Unlike in the differential persistence

model, the persistence time is constant T; = 1

(ax)?

D(vi) = At

1 — -y
= (0?T)) = &® (’yi + k%> . (1.8)
Note that equation [1.6]and [1.8| are equivalent, demonstrating that the differen-
tial velocity and differential persistence model give the same diffusion coefficients
for cells in the same environment. They can therefore also be expected to have

the same dynamical properties.

We can calculate the ratio between the diffusion contants of cells that are
surrounded by opposite or like cells, respectively, to verify the definition of the

parameter k.

D(y;=1) o

D(y;=0) a?/k k

(1.9)

In the following, I quantify the segregation behaviour in terms of the parameter

k, as this may be directly related to the cell sorting experiments of Rieu et al. [29].

A distinguishing feature of the model is that there are no differences in the
intrinsic motility properties of cells. The physical properties of the two cell
types are completely symmetric and differences in motility arise only from the

heterogeneity of the local environment they find themselves in.
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1.3 Differential velocity and differential persistence both

give rise to segregation

Figure shows how a binary system of cells evolves when maotility is given
by differential persistence and differential velocity, respectively. The system is
initiated from a completely mixed state v = 0.5 and spontaneously orders over
time. Ordering proceeds, via the formation of homotypic domains, to a steady
state where the two cell types are largely segregated with 7 ~ 0.1. Interestingly,
the steady state is a dynamic equilibrium where the macroscopic configuration

changes continually even though the value of - remains stable.

The simulations demonstrate that segregation can emerge in a binary system
where the two cell types are symmetric with respect to their intrinsic motility

properties. Hence, asymmetry is not a prerequisite for cell sorting.

1.4 Segregation increases according to a power law until

a steady state level is reached

We are interested in the time course of the segregation process. From published
experimental data, the temporal dynamics of cell sorting follow a power law
[8, 41]]. I quantify the degree of segregation in the system using the interface
index . Figure shows that 7 decreases according to a power law before
saturating. The time course shown is for the differential persistence model. In the
differential velocity model < also follows an exponential decay before levelling

off, but sorting proceeds more slowly.

There are a few things to note. First, the scaling exponent for the part of the
curve that follows a power law, depends on k, and takes the values of 0.025 for
k = 8 and 0.17 for k = 64, for the differential persistence model. We defined k
as the ratio of the diffusion constants for a cell surrounded by opposite (y; = 1)
and like (; = 0) cells, respectively. The scaling exponent defines the speed of
segregation and is therefore expected to increase when the relative difference
between diffusion coefficients is larger. For k = 64, the exponent is similar to the

values reported in other computational studies of cell sorting kinetics [25, 26], but
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t=0;y=0.500

Figure 1.2: Time course of segregation

a) Time course of the segregation process for 2500 cells in the differential persistence
model. As the cells gradually gather in larger clusters, the interface index <y decreases.
The ratio of the diffusion constants is k = 64. b) Time course of the segregation process in
the differential velocity model. Parameters are the same as for the differential persistence
model. Sorting proceeds more slowly in the differential velocity model than in the
differential persistence model. For this reason, the segregation process is shown for
different time points in a) and b).

lower than those reported experimentally [8]. Belmonte et al. also quantify
segregation using the interface index y and report an exponent of around 0.18 for
a binary system of cells with a mixture ratio of 1:3 (see their Figure 2). For sorting
of mixtures of primary fish keratocytes and EPC keratocytes in vitro, Méhes et al.
report a scaling exponent of 0.32 for the decrease of the interface index and

0.74 for the growth of homotypic clustersﬂ

Second, the degree of segregation at steady state also depends on the pa-

2If clusters are uniform with respect to their shape and size, the relationship between the
interface index and the cluster size should be linear and their scaling behaviour should be
characterized by the same exponent. However, in vitro clusters are not uniform, resulting in
different exponent values [8].
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Figure 1.3: Time course of segregation as quantified by the interface index 7y

a)-b) Development of the interface index 7 as a function of time for k = 8 in the
differential persistence model. The results are the average of 10 simulations and are
shown on a linear and log-log scale. c¢)-d) The interface index < over time for k = 64
on a linear and log-log scale. For high k, a more pronounced segregation is observed.
The interface index is seen to decrease according to a power law until it saturates at
an equilibrium value. The exponent, found as the slope of the straight line fit (green),
increases with increasing k, and takes the values 0.025 for k = 8 and 0.17 for k = 64.

rameter k, with more pronounced segregation occuring for high values. Hence,
fast diffusion in unalike and slow diffusion in like environments improves seg-
regation. Figure shows the steady state value of 7 as a function of k. For
k =1, the diffusion constant of a cell is the same in an environment of opposite
and like cells. The system therefore remains in a completely mixed state with
v = 0.5. Interestingly, for k = 2, which is the value reported by Rieu et al. [29]
for endodermal and ectodermal Hydra cells, very little segregation occurs. In
addition, the interface index plateaus at v ~ 0.1 and complete segregation is not

achieved even for high values of k. This is in fact in agreement with the work by
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Méhes et al. [8], where they report that the interface index tends not to decrease
below 0.1 as segregation slows to a halt. However, other in vitro experiments do

observe that sorting proceeds until complete segregation is reached [2, 3]].

persistence model
velocity model

equilibriumy
o o o
N w N

o
-

0 10 20 30 k40 50 60 70

Figure 1.4: Steady state level of segregation

Value of the interface index 7, at which the system saturates, as a function of k. The
parameter k is the ratio of the diffusion constant of cells surrounded by opposite or like
cell types, respectively. For large k, the system reaches a more segregated configuration.
The equilibrium interface indices are calculated as averages over 105 time steps after
the equilibrium is reached, and averaged over 10 simulations. The errorbars indicate
the standard error of the mean across simulations. (red) Differential persistence model.
(blue) Differential velocity model.

1.5 Volume exclusion effects, system size, and initial

conditions do not affect the results

Having established the segregation behaviour of the two models, I want to briefly

touch upon potential sources of artifacts in the results.

First, I included a radial contact force in the model to account for volume
exclusion and ensure that cells are evenly distributed within the plane. However,
the specific form of the contact force does not affect whether cells segregate. In
fact, even when volume exclusion effects are omitted (8 = 0), the model gives
segregation, just with cells unevenly dispersed. In addition, the time course of

the segregation process still follows a power law. This is shown in Figure

Second, the simulations were carried out for a system size of N = 2500 cells

with periodic boundary conditions. Figure shows how the segregation be-
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haviour depends on system size. When the domain size (cluster correlation
length) is much smaller than the system, finite size effects are negligible. There-
fore, the scaling behaviour for the initial part of the curve, when the system is
mixed and heterotypic domains are small, does not depend on system size, except
for very small systems. As sorting proceeds towards segregation, domains grow
and finite size effects start to play a role. Consequently, the value of o at which
the system saturates depends on N. However, for system sizes of N > 1000, the
effect is insignificant. The size dependence is qualitatively the same as what was
reported by Belmonte et al. [25] (Fig. 3). That paper also showed that the time

course of segregation may be rescaled to remove the effect of system size.

Third, throughout this chapter, the system has been initiated from a random
mixed configuration with 7y = 0.5. However, the eventual steady state configura-
tion does not depend on this initial condition. Figure [1.5/shows how the system
evolves over time when iniated from a random and ordered configuration, respec-
tively. When the two cell types are initially separated, the border between them
is not maintained. Instead, the cells slowly mix, and the value of -y increases until

it reaches the same equilibrium value as if starting from a random configuration.

In summary, the results presented in the previous sections are robust to omit-
ting the effect of volume exclusion and changing the size and initial configuration

of the system.
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Figure 1.5: Finite size effects and initial conditions

a) Development of the interface index as a function of time for k = 64 for the differential
persistence model with 8 = 0, on (left) a linear scale and (right) a log-log scale. As when
volume exclusion effects are included, the segregation process follows a power-law. b)
The figure shows how the interface index, <y, evolves over time for systems with different
number of cells, N. All simulations are for k = 64. The results are shown on a log-log
plot. When the domain size (cluster correlation length) is much smaller than the system,
finite size effects are negligible. Hence, the initial scaling behaviour will not depend on
system size. As sorting proceeds towards maximum segregation, finite size effects start
to play a role and the value of «y at which the system saturates depends on N. The size
dependence shown here is qualitatively the same as that in Figure 3 in [25]. ) The figure
shows how < evolves over time for random and ordered initial conditions, respectively,
with k = 16. This demonstrates that the steady state value of <y is the same whether the
system is initialized from a random or a segregated initial configuration.
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1.6 Discussion

The aim of this chapter was to investigate the role of motility in cell sorting. The
results demonstrate that asymmetry in the physical properties of cells is not a
prerequisite for sorting. In fact, segregation can emerge just from cell motility
being a dynamic property that changes in response to the local environment of a

cell.

In the model, the time course of segregation follows a power law before
reaching a steady state level. This is consistent with the scaling reported by
Meéhes et al. [8, 41] for cell sorting in mixtures of keratocytes from different
species. They report that for mixtures of primary fish keratocytes and EPC
keratocytes, the decrease of the interface index y and the growth of homotypic
clusters are approximately linear on a log-log scale. It should be noted that they
only show one decade of data, making it difficult to determine whether the data

actually display power law scaling.

Despite displaying the correct scaling behaviour, a closer comparison of the
results of the model with in vitro experimental data shows that it cannot be the

only ordering mechanism driving cell sorting.

First, the value for k reported by Rieu et al. [29] for endodermal and ectodermal
Hydra cells is around 2. In the model, the level of segregation increases with k
and for k = 2 the system shows very little segregation. I tried implementing other
functional forms for how the diffusion coefficient depends on the interface index,
including a threshold instead of the linear dependence given by Eq. and these

did not significantly affect the segregation behaviour for low values of k.

Second, the model does not generate complete segregation, even for high
values of k. By contrast, cell sorting in vitro often proceeds until the two cell types
are completely segregated, with one phase enveloping the other. Computational
implementations of the differential adhesion hypothesis are able to successfully
reproduce this envelopment. In addition, it provides an explanation for the
inside/outside order of the phases in terms of their relative surface tensions [6,
42]]. The model presented here has no inbuilt asymmetry and would, therefore,

not be expected to reproduce the enveloping behaviour without a mechanism for
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breaking the symmetry.

The model could be expanded to include other aspects of cell dynamics to
better reproduce the experimental observations. As measured by Rieu et al.
[43], endodermal and ectodermal cells do in fact differ in their intrinsic motility
properties and this would likely to promote segregation for lower values of k. In
addition, collective motion has been shown to contribute to segregation [25, 26|,
with even a moderate tendency for cells to align their movement considerably

speeding up the segregation process.

It is worth noting that, within the model, we have not specified the molecular
mechanism(s) that determine the speed of diffusion of cells. In particular, we
have not specified how the interaction between a cell and its local environment
affects motility. It could be a response to external cues, such as morphogens or
chemotactic substances, or result from cell-cell interactions, including the adhesive
properties of cells [44, 31]. It has been shown experimentally, using human
kidney cells transfected to express a protein that regulates cell-cell adhesion,
that cell motility is anticorrelated with the strength of adhesion [31]. Strong
adhesive interactions increase the effective viscosity of the local environment of
the cell, which decreases overall cell motion. This suggests a possible molecular
mechanism for the model presented here, where differences in the strength of
cell-cell adhesion leads to local variation in cell motility, which in turn gives rise

to the segregation behaviour observed macroscopically.

1.7 Conclusion

In embryonic development of several species, the segregation of cells into diverse
tissues and organs is a fast process. Even though cell sorting has been studied
extensively and many mechanisms have been proposed, the speed with which
segregation occurs in vitro and in vivo is still not fully understood, suggesting
that several mechanisms could be acting in concert to accelerate the process [8]].
The model presented here describes a mechanism for segregation, based on local

variation in the cell motility, that could contribute to cell sorting.

In the model, the two cell types are symmetric with respect to their intrinsic
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motility properties, demonstrating that asymmetry is not a prerequisite for cell
sorting. In fact, segregation can arise solely from cell motility being modelled as

a dynamic quantity that changes depending on the local environment of the cell.

The model is able to reproduce the scaling behaviour for the time course
of segregation observed experimentally, but not the envelopment behaviour
observed in vitro. In addition, the parameter values reported from experiment do
not lead to significant segregation within the model. Further work is needed to
understand the relative contributions of locally varying cell motility, differences

in intrinsic motility properties, and collective motion to the kinetics of cell sorting.



CHAPTER 2

Introduction

In several mature epithelia, cells are arranged in an ordered hexagonal array.
This order emerges from an initially disordered state, without explicit genetic
instruction [45] |46]. How does the tissue transition from disorder to order in
an effective and robust way? To address this question, I examine the process of
ordering in the Drosophila notum - a tissue that develops hexagonal order without

undergoing substantial growth or directed morphogenesis.

2.1 Examples of epithelial ordering

Recent studies of patterning in Drosophila, demonstrate that a variety of mecha-
nisms facilitate the ordering of epithelial tissue. In the Drosophila wing, epithelial
cells rearrange from irregular to hexagonal packing shortly before hair formation
[47]. At this point in development, the fraction of hexagons increases from around
45% to nearly 80% as a result of cell neighbour exchange. Classen et al. [47]
showed that this hexagonal packing depends on the activity of the planar cell
polarity proteins, which polarize along the proximal-distal axis in the prepupal
wing prior to packing. They propose that these proteins polarize the trafficking of
Cadherin during junction remodelling and that this regulates neighbour exchange

events to move the system towards hexagonal packing.

The Drosophila retinal epithelium is made up of a hexagonal array of units
called ommatidia that contain a cluster of photoreceptor cells surrounded by
accessory cells, including four lens secreting cone cells. The quartet of cone
cells express N-cadherin adhesion molecules and form an ellipsoid structure
surrounded by cells not expressing N-cadherin. Work by Hayashi et al. [48]],
showed that this patterned expression of N-cadherin effectively selects for cell

arrangements that minimize surface energy and precisely correlate with soap

21
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bubble configurations.

Cohen et al. [49, 50] investigated the role of structured noise in the patterning
of microchaete bristle cells on the Drosophila notum. They showed that bristle
patterning depends on a population of filopodia that establish transient signalling
contact between non-neighbouring cells. Interestingly, noise in filopodial sig-
nalling contributes to ordering and provides a self-organizing mechanism for the

gradual refinement of bristle patterning.

Other studies have highlighted how stochastic fluctuations in processes at the
molecular and cellular level are important in single cells [51, 52], but less is known
about the role of noise in developing tissues. In this thesis, I quantify stochastic
fluctuations in junction length and investigate to what extent they contribute to
the emergence of hexagonal cell packing in the tissue. As in the Drosophila wing,
ordering is driven by junction remodelling and largely occurs in the absence of
cell division, apoptosis and delamination. The next section outlines our what
is currently known about neighbour exchange events and their role in tissue

ordering.

2.2 Junction remodelling

Several cellular events contribute to the shaping of a developing embryo. These in-
clude cell division, cell apoptosis and delamination, and cell neighbour exchange.
Neighbour exchange events proceed with a junction contracting until four cells
meet at a four-way vertex. This is followed by loss of contact between one pair of
adjacent cells and the formation of a new junction between cells not previously in
contact, thereby changing the cell-cell connectivity (see Figure [2.1). This process
allows cells to gain or lose an edge and changes the polygon distribution in the

tissue.

Whilst neighbour exchange is critical for hexagonal ordering of cell shapes,
much of what we know about it comes from markedly different process: germ-
band extension (GBE) in Drosophila. During germ-band extension, the length
of the embryo more than doubles along the anterior-posterior (A-P) and the

width along the dorsal-ventral (D-V) axis narrows accordingly. The process takes
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approximately 1 h and is driven by a process of coordinated cell intercalation and
neighbour exchange [53, 54].

+ 20 min +50.min

Figure 2.1: Example of a neighbour exchange event

Example of junction remodelling during a neighbour exchange event. A junction shrinks
until four cells share a point of contact (a configuration referred to as a four-way vertex),
followed by the formation of a new junction. Before the event, cells 1 and 4 were
neighbours and cells 2 and 3 did not share a domain of contact. After the event, cells 1
and 4 are no longer in contact and cells 2 and 3 have become neighbours. Neighbour
exchange events are also known as T1 transitions. From [Curran 2015].

Figure 2.2: Junction remodelling in germ-band extension

a) Position of the germband within the developing embryo, before and after cell inter-
calation. Cell intercalation causes the germband to elongate and the increase in length
is accomodated by dorsal extension. b) Example of a T1 event. ¢) Schematic of cell
intercalation causing the tissue to elongate. Myosin-II is specifically enriched at junctions
oriented along the D-V axis. These junctions shrink, followed by the formation of a new
junction along the A-P axis. Adapted from

Junctions parallel to the D-V axis shrink, leading to a four-way vertex configu-
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ration, followed by the formation of a new junction oriented along the A-P axis.
The result is a rearrangement of cell neighbours, with cells along the D-V axis
intercalating between cells adjacent along the A-P axis, and an overall elongation

of the tissue.

This planar remodelling of junctions is driven by local forces at cell interfaces
[53]. Myosin II is specifically enriched at shrinking junctions oriented along the
D-V axis and causes these junctions to shrink by increasing junctional tension [53,

55, 56].

It has been shown that this shrinkage is in fact caused by pulses of medial
actomyosin flowing towards junctions, rather than the steady state distribution
of Myosin II at these junctions [54]. Myosin II forms small clusters, which coa-
lesce with actin in the medial region of the cell and flow towards D-V junctions
[54]. Laser ablation and cross-correlation analysis of junction length and Myosin
IT intensity in the medial regions and at junctions indicated separate mechan-
ical functions for the medial and junctional pools of myosin. Pulsed flow of
medial Myosin II towards D-V junctions causes shrinkage and the subsequent

accumulation of junctional Myosin II stabilizes the junction length.

The polarized localization and activity of Myosin II is critical for cell interca-
lation and tissue elongation. A reduction in Myosin II activity or a loss of the
planar polarized localization in the tissue, disrupts junction remodelling and

results in incomplete elongation of the germband [53, 54} 57]

In summary, during germ-band extension, neighbour exchange events are
highly stereotyped and tightly coordinated to execute large-scale tissue morpho-
genesis. This is a very different process from the emergence of hexagonal order
in epithelial tissue. In fact, it was shown by Zallen et al. [58] that cell intercalation
in GBE is associated with an increase in epithelial disorder, as measured by the

fraction of nonhexagonal cells and the variance of the polygon distribution.

However, homeostatic epithelia are ubiquitous in nature and understanding
how such tissues are able to respond to local pertubations while maintaining
tissue integrity is important for models of wound healing and cancer metastasis

[59, 60]. In this thesis, we will develop an understanding of how neighbour
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exchange events occur in static tissue and identify how this differs from what has

been reported in GBE.

2.3 Models of epithial ordering

Various models have been developed to explain the hexagonal packing geometry
observed in epithelial tissue, dating back to the early 1900s when D’Arcy Went-
worth Thompson published “On Growth and Form” [61] advocating for the role
of physical principles in determining the structure of living systems. Thompson
remarked on the prevalence of hexagonal structures in the natural world - from
epithelial cells in dragonfly wings, to soap bubbles, to the honeycomb of bees (see
also [62] for more examples). He presented a detailed argument for how surface
tensions, which tend to minimize the area of contact, can result in hexagonal

packing of epithelial cellsﬂ

More recently, computational models have been used to study order in ep-
ithelial tissue. The cellular Potts model [16, 17] was first developed to simulate
cell sorting based on differential adhesion, as mentioned in Chapter 1. It has
subsequently been extended to address numerous questions relating to tissue
mechanics, including cell patterning in the Drosophila retina [64] and tumour
progression [65]. The model consists of a lattice, where each site (i, j) has a spin
o(i,j). A cell is made up of a connected domain of sites with the same spin ¢. A
collection of N cells are described by a set of N degenerate spins o (i,j) = 1,2...,N.
In addition, each cell has a cell type 7(¢), e.g. endodermal or ectodermal. The
Hamiltonian for the system is given by Eq. and includes terms accounting for

cell-cell interactions and cell area elasticity.

"= Y IR, @@ N =S pey) @D
(i,7),(#,j") neighbours
A Y (a(0) = Ar)?0Ar (2.2)
spin types o

IThe fascination with the geometric patterns observed in nature, of course, predates Thomp-
son’s modelling efforts. In "The Garden of Cyrus" (first published in 1658), Sir Thomas Browne
recounts ‘the sexangular cels in the honeycombs of bees” and the ‘order in the egges of some
butterflies and moths” which ‘doth neatly declare how nature geometrizeth, and observeth order in
all things” [63].
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In the first term, the sum is over neighbouring sites (7,j) and (i’,}') in the
lattice, and | is the surface energy between spins of type T and 7’. For the second
term, A is a Lagrange multiplier specifying the strength of the area constraint, a(c)
is the area of the cell, and A, is the target area. The equilibrium configuration
for the system is given by the minimum of the Hamiltonian and this configuration

is found by relaxing the system using a Monte Carlo method.

An alternative modelling framework was developed by Farhardifar et al. [66].
In the vertex model, epithelial cells are described by a network of polygons, with
the edges of the network representing interfaces between cells. Vertices in the
network are subject to mechanical forces that can be derived from the energy

function for the system.
0\ 2

The first term represents an area elasticity with elastic coefficents K,, where

cells have an area A, and a target area A&O)

. The second term represents the line
tension A;; at an interface of length /;; between two cells. This term incorporates
both cell-cell adhesion, which reduces line tension, and actomyosin contractility,
which increases it. The last term describes the contractility of the cell perimeter
L, with coefficent I;. Equilibrium configurations of the network are those that
minimize the energy functional. For such configurations, the total force F; at
each vertex vanishes. As in the cellular Potts model, the minima of the energy
function are determined by relaxing the network using an auxiliary algorithm,
in this case a conjugate gradient method. A key advantage of vertex models is
that they include neighbour exchange events explicitly, making them suitable for
studying epithelial morphogenesis. The same year as the paper by Farhardifar
et al. came out, Hufnagel et al. [67] published a similar model to investigate
mechanical feedback as a potential mechanism for controlling organ size. Vertex
models have since been used to study germ-band extension [68], ventral furrow
formation [69], and cell geometry in the retina [70], all in Drosophila (see also [71]

for an exhuastive summary of applications).
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The problem of computing the global minimum of an energy function is
interesting and nontrivial, and is a field of research in itself. Depending on the
shape of the energy landscape and the optimization method used, the system can
become trapped in a local minimum. Farhadifar et al. [66] showed that certain
disordered configurations, in proliferating epithelia, are local minima of the
energy function and that this can prevent the tissue from reaching the hexagonal
ground state. They suggest that annealing could be an effective mechanism
for facilitating hexagonal packing in the tissue. In particular, they show that
introducing fluctuations in line tension, in their simulations, is sufficient to drive

ordering of the tissue.

In metallurgy and materials science, annealing is a heat process that removes
defects in a material. When forging a sword, the steel is heated to a specific
temperature and then allowed to cool slowly. This allows defects in the steel to be
resolved and yields a more ordered crystalline structure. This concept is the basis
for the simulated annealing heuristic, which is an effective technique for finding
the global minimum of an energy function. In each step of simulated annealing,
the system transitions from its current state e to a neighbouring state ¢’ depending
on a probability function P(e, ¢/, T). Changes in configuration that lower the
energy of the system are always accepted, whereas the probability of accepting
a worse configuration depends on the temperature T. The original formulation
was an adaptation of the Metropolis-Hastings algorithm (a Monte Carlo method)
[72]. In this implementation, the probability function is exp (—AE/T), where AE
is the difference in energy between states ¢’ and e. Annealing is implemented
by gradually lowering the temperature T. The algorithm starts with T set to a
high value, which allows the system to explore a large search space and avoid
getting trapped in local minima, and ends with T' = 0 to restrict the system to
the lowest energy configuation. More rigorously, it has been proved that, under
suitable conditions, the simulated annealing algorithm converges to the global

minimum of the system [73].

In summary, several models have been proposed to explain the configuration
of a hexagonally packed tissue as the minimum of an energy functional that

captures the main aspects of tissue mechanics. In simulations, there are many
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different algorithms for performing this minimization, simulated annealing being
one of these. What is not currently known, however, is what ‘algorithm” is used
in vivo to reach hexagonal order. What heuristic does epithelial tissue implement
to evolve from a disordered to an ordered state? I address this question by

examining the dynamics ordering in the Drosophila notum.

Unlike soap bubbles and foams, epithelial tissues are active systems. They
are characterized by continual turnover of proteins and dissipation of energy.
In particular, remodelling of the interfaces between epithelial cells requires the
construction and disassembly of multiprotein complexes in a controlled fashion
[47]. Hence, it is not clear to what extent the premise that ordering proceeds by
relaxing the tissue to its equilibrium configuration is valid in vivo and we will

keep this in mind when interpreting the data.

2.4 Thesis outline

In this second part of the thesis, I take a purely data-driven model-agnostic
approach to investigate how ordering proceeds in the Drosophila notum. I use
data from live imaging of wildtype and transgenic Drosophila strains expressing
altered levels of active Myosin II. I developed a software package to process and
analyse the live imaging data, as described in the next chapter. I characterize
the properties of neighbour exchange events in the notum and contrast this
with what has been reported in germ-band elongation. I then investigate how
stochastic fluctuations in junction length contribute to neighbour exchange and
the ordering process in the tissue. Based on an analysis of the dynamics of
junction fluctuations and Myosin II intensity, I present a mathematical model
for how fluctuations are generated by the stochastic turnover of myosin. Finally,
I examine junction fluctuations and junction remodelling in embryos with a
reduction/overexpression of Myosin II activity. Taken together, the results suggest
a heuristic for how the Drosophila notum evolves from a disordered configuration
to a hexagonally packed tissue. The work demonstrates how dynamics at the cell
level can drive large scale changes in the organisation of the tissue. Furthermore,
it provides an experimental grounding for the implementation of dynamics in

current and future models of the epithelium.
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Methods

The work on ordering in epithelial tissue was done in collaboration with Scott
Curran, another PhD student in the Baum lab. All the experimental work was
done by Scott and is described in his PhD thesis [74]. To make it clear when I am
refering to his thesis, it will be referenced as [Curran 2015] from now on. The
work was an iterative process, with the results of data analysis informing the

plan for subsequent experiments.

Here, I include a brief description of the experimental methods used to collect
the data this part of the thesis is based on. However, most of the chapter is focused
the software package I developed to extract and analyse data from time-lapse

images of the notum.

3.1 Experimental methods

We use the Drosophila notum as our model system. The pupal case is removed
and the pupae is set up for live imaging. Imaging was done at 11.5-13.5 hours
and 20-30 hours after pupal (AP) formation. Time-lapse images were collected
at either 5 s or 30 s intervals with a microscope resolution of 0.0896 pum/pixel.
From the z-stacks, maximum projections of the most apical planes were selected

for analysis.

Adherens junctions were labelled using endogenous expression of DE-cadherin-
GFP [75]. In addition, reduction and overexpression of myosin were acheived
using the UAS/GAL4 system [76]. Flies expressing the following constructs were

used:

e UAS-RokRN4i. RNA-mediated interference was used to inhibit Drosophila

Rho-kinase (Rok). Rok regulates the phosphorylation of the myosin regula-

29
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tory light chain (MLRC) and therefore the activity of Myosin II in the tissue
[77].

o UAS-Rok“T. A constitutively active version of Rok was expressed to in-

crease Myosin II activity [78].

o UAS-Sqh”4. The Drosophila spaghetti squash (sqh) gene encodes the myosin
regulatory light chain (MLRC). Expression of a non-phosphorylatable, and
therefore inactive, form of MLRC was used to reduce Myosin II activity

[79].

e UAS-SqhtE. Expression of a phosphomimetic form of MRLC that is consti-

tutively active was used to increase Myosin II activity [80].

For more details on fly stocks and experimental methods, please refer to

[Curran 2015].

3.2 Image Processing and Data Analysis

In order to extract data for the behaviour of junctions and cells in a format
amenable to the type of analysis I wanted to do, I developed a custom software
package. The code is written in Matlab using class-based object oriented pro-
gramming. It detects junctions and cells from the segmented images, corrects
for drift, tracks junctions and cells between frames, and calculates connectivity
within the tissue. This makes it possible to extract time series data for various

properties, analyse spatial correlations, and detect when cells change neighbours.

The flow of data within the code is as follows:

Input segmented time-lapse images.

In case of microscope drift, generate set of stabilized images by subtracting

net translation.

Identify individual junctions in each image and store these as objects.

Track junctions between frames and assign a unique ID to each junction.
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e For each junction, find the IDs of neighbouring junctions.
e Detect individual cells in each image and store these as objects.

e Track cells between frames and assign a unique ID to each cell.

The input for the code are segmented time-lapse images of the Drosophila
notum. Segmentation was performed using Packing Analyzer [81]; this was
done by Scott Curran and is described in [Curran 2015]. As seen in Figure
segmentation results in skeletonized images where the width of junctions is 1

pixel.

Figure 3.1: Segmentation of time-lapse images

a) Section of the notum with adherens junctions labelled with DE-cadherin:GFP. b) The
skeletonized image following segmentation in Packing Analyzer. The width of junctions
is 1 pixel.

In some cases, the microscope drifts relative to the tissue during imaging. The
algorithm for tracking junctions and cells cannot deal with large-scale deformation
or significant displacement of the tissue between frames. To deal with this, I used
Optical Flow Analysiﬂ to calculate the flow field for each consecutive pair of
frames. Taking the average of the flow field gives the direction and magnitude
of the net translation of the tissue. Mapping the images into a larger space, by
subtracting the cumulative net translation for each time point, yields a set of

stabilized images that can be input into the code.

The first part of the code identifies individual junctions in each image. Specifi-
cally, the code initiates a junction and ‘walks” along the bright pixels in the image,

storing the coordinates along the way, then terminating the junction when a

IModified from the OFA algorithm available at: http://cs.brown.edu/people/black/code.html
and described in [82]
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vertex is reached. This is then repeated until all pixels in the image have been
visited. Within the code, each junction is an object with associated properties.
The properties of the ‘junction’ class is shown in Figure At this stage, only

the fields for the vertex coordinates and junction coordinates are filled.

junction

Properties:
junctionID:
vertexl:
vertex2:
junctionCoordinates:
junctionLength:
midpoint:
angle:
neighboursID:

—_ e - —
P -

Figure 3.2: Class definition for ’junction’ objects

The “junction’ object class the code is based on. The class properties include the junction
and vertex coordinates, the length, midpoint, angle, a unique ID used to track the junction
across frames, and the IDs of the 1st neighbour junctions.

The code then calculates various properties of junctions, as listed in the
class definition. Since junctions can be curved, the vertex-vertex distance is
not an accurate measure of junction length. In addition, discretization has the
consequence that calculating the length by summing the distance between pixels
along the segmented junction would slightly overestimate the length. Instead,
junction length is calculated as the diagonal distance connecting consecutive

blocks of pixels, as illustrated in Figure

Figure 3.3: Junction length calculation

Mustration of how the length of junctions is calculated in the code. Because of discretiza-
tion, taking the distance between each neighbouring pixel would slightly overestimate the
actual length. Instead junction length is calculated as the diagonal distance connecting
consecutive blocks of pixels.

The next step involves tracking junctions between frames and assigning a
unique ID to each junction, to make it possible to extract time series for various

properties and detect changes in connectivity. The tracking of junctions is done
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by finding the midpoints of junctions and using these coordinates as the input for
a particle tracking algorithmﬂ The tracking algorithm takes the coordinates of the
midpoints at time ¢ and considers all possible matches with the midpoints at time
t +1 to choose the pairings that minimize the total squared displacement. This
is then used to assign each junction a unique ID that identifies it across frames.
The results were validated by visual inspection of the assigned IDs - specifically
by creating a movie of junctions coloured according to their ID, making errors
in continuity easy to spot. Having assigned a unique ID to each junction, the
connectivity of the tissue is found and the IDs of neighbouring junctions are

stored.

In addition to junctions, the code also detects and tracks cells in the time-lapse
images and stores each as an object. The “epicell’ clasﬂ properties are shown in
Figure 3.4/ and include vertex coordinates and junction IDs. Cells are detected
using the junction objects. Specifically, the code starts at one junction and moves
to neighbouring junctions in a clockwise fashion until getting back to the first
one, thereby identifying the junctions that make up a cell. This is repeated in a
counterclockwise fashion for the same junction. To avoid storing the same cell
multiple times, the code loops over junctions starting from j = 1 and requires
that only neighbouring junctions with larger values of j can be traversed - if that
is not available, the code breaks and starts from a different junction instead. Next,
the area, perimeter length and midpoint of each cell is calculated. The midpoints
are used to track cells between frames and assign unique IDs in the same way as

described for junctions.

3.2.1 Detecting neighbour exchange events

One of the aims of this thesis is to study neighbour exchange events. These are
difficult to detect manually. I therefore wrote an algorithm to detect neighbour
exchange events and make it possible to extract quantitative data related to the

junctions and cells involved. The code detects all junctions that contract to a four-

2The tracking algorithm is based on code available from the Mathworks repository, written by
John C. Crocker. It is described in "Methods of Digital Video Microscopy for Colloidal Studies",
John C. Crocker and David G. Grier, J. Colloid Interface Sci. 179, 298 (1996)

3'Cell’ is not a valid name for a class, as it is in itself a data structure, hence the use of ‘epicell’,
for epithelial cell, instead.
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epicell

Properties:
celllD:
junctionIDs:
midpoint:
area:
perimeter:
vertices:
angles:

—_ e ———
[ A R S Y

Figure 3.4: Class definition for ‘cell’ objects

The "epicell’ object class used in the code to quantify the properties of cells. The class
properties include cell area, perimeter, midpoint, internal angles, vertex coordinates, the
ID for junctions in the cell, and a unique ID used to track the cell across frames.

way vertex and expand back out, and determines whether they change neighbours
in the process. In the fluorescent images, the diameter of four-way vertices is
around 6 pixels, corresponding to 538 nm. Segmentation of very short junctions,
and especially four-way vertices, is difficult and error-prone. In the segmented
images short junctions tend to “flip’, changing orientation and neighbours, even
though the fluorescent images show a stable configuration. If not corrected, such
false neighbour exchange events would bias subsequent analysis. In particular,
Drosophila tissues with overexpression of Myosin are harder to segment and
display a higher frequency of false neighbour exchanges. To ensure the quality of
the data that form the basis of a lot of the work in this thesis, I manually checked
every computationally detected event by looking at the corresponding junction
in the fluorescent time-lapse images. I used the criteria that the extension of a
junction, coming from a four-way vertex configuration, should be stable for at
least 5 min and the change in cell neighbours should be clearly visible in the
fluorescent images. I made the deliberate decision to set the parameters of the
detection algorithm to capture all events that might be neighbour exchanges,
i.e. overdetecting events and excluding false positives by manual checking. This
approach did result in a high rate of false positives, on average 55 % for wildtype
tissue, but gave the highest data fidelity for subsequent analysis. It is worth
noting that the fully manual detection carried out by Scott Curran gave the same
qualitative results but with fewer events detected. In addition, I checked that the
time point for the event, as identified by the algorithm, was consistent with when

a four-way vertex was reached in the fluorescent images.
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3.3 Fluorescence Intensity Measurements

We imaged myosin and junction dynamics using transgenic fly stocks expressing
both Bazooka-mCherry and Sqh-GFP. Bazooka is a scaffold protein that localises
to the apical junction and was used as an adherens juntion marker, instead of
DE-cadherin [83]]. Spaghetti-Squash (Sqh) encodes the myosin regulatory light
chain (MRLC); it was fused to GFP and expressed in a Sgh null background
in order to visualise total Myosin in the tissue [84]. It is possible to looks at
phosporylated (active) Myosin II using fixed stains. However, the data included
here is based on live-imaging of Sqh-GFP and we use this as a proxy for active
Myosin II. As with the other experimental work, this was done by Scott Curran

and is described in [Curran 2015].

To correlate Myosin II intensities with junction dynamics, I developed code to
extract time series data for myosin on individual junctions. For each junction, I
used the pixel coordinates from the segmented images to identify the junction
in the fluorescent images. To include the fluorescence intensity across the width
of the junction, I performed a morphological dilation to give each junction an
average width of 5 pixels. This corresponds to a width of 500 nm, for the time-
lapse imaging taken at 30 s intervals with a resolution of 0.1 um/pixel, and a
width of 430 nm for the time-lapse imaging taken at 5s intervals with a resolution
of 0.086 um/pixel. For comparison, Rauzi et al. used a width of 500 nm to
quantify myosin intensity [54] [Supplementary material]. The fluorescent images,
segmented images, and morpological dilation are shown for a single time point
in Figure The vertices tend to be the brightest regions in the image and
including them would give rise to artefacts in the correlation functions - e.g. as
junctions contract the vertices would make up a larger proportion of the junction

resulting in an increase in the average intensity per pixel.

For each junction, I sum over the intensity of pixels within the region covered
by the morphological dilation. There is a slight bleaching of the tissue over time,
leading to a gradual decrease in intensity. I remove the trend associated with
bleaching in the following way: for each time frame, I sum the total intensity
for all pixels within the dilated junctions (I;,;) and calculate the total number of

pixels pjor. For each junction, the total intensity Ij, is normalized by I;ot/ ptot, such
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Figure 3.5: Fluorescence intensity for Myosin II and Bazooka

a) Notum imaged with Bazooka-mCherry, b) Notum imaged with Sqh-GFP to visualise
the localisation of Myosin II in the tissue, ¢) Segmentated image, d) Morphological
dilation of segmented junctions with vertices exclude. The resolution of the image is
0.085979 um per pixel and the scale bar shown in panel a) is 5 pum long. Border junctions
are excluded from the analysis of fluorescence intensities.

that the average intensity per pixel is one for every time frame }; I;/}.; p; = 1.
For each junction, I calculate the 'normalized average intensity” by taking the
total intensity for a junction, normalizing it as described, then dividing by the
number of pixels in the junction. Qualitatively, dividing by the number of pixels

gives the same results as dividing by junction length.

For the analysis, myosin intensity is used as a proxy for myosin concentration.
The relation between fluorescence intensity and concentration might be nonlinear
and could depend on the properties of the microscope, including the resolution
and light source. The 30 s interval Bazooka-mCherry and Sqh-GFP movie was
imaged on a Zeiss 780 with a resolution of 0.1 um/pixel, whereas the 5 s inter-
val movie was imaged on a Carl Zeiss Axiovert 200 with a Yokogawa CSU-X
confocal spinning disk unit and a resolution of 0.086 pm/pixel. The temporal

dynamics of myosin (and bazooka) were consistent for the two movies, but the
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mean and variance of the fluorescence intensity (prior to normalization) were
significantly different. Hence, the absolute value of the fluorescence intensity is

not a meaningful quantity in this context.



CHAPTER 4

Properties of neighbour

exchange events in the notum

During development, cells in the Drosophila notum rearrange to form an ordered
hexagonal array. We are interested in understanding how this order emerges from
an initially disordered state in an effective and robust manner. Cell rearrangment
in the notum is driven by junction remodelling and largely occurs in the absence
of cell division, apoptosis and delamination. In this chapter, I characterize various
properties of neighbour exhange events in order to investigate their role in the

ordering process.

In the notum, there are two types of junction changes that contribute to
ordering. First, the length of junctions fluctuate and gradually equalize, leading
to cells with sides of equal length. Second, junction remodelling facilitates
changes in cell neighbour configurations in the tissue. These neighbour exchange
events proceed with a junction contracting to a four-way vertex, causing the
contact between two neighbouring cells to be lost, followed by the formation of a
new junction connecting two cells that were not previously adjacent [85, 86]]. This
allows cells to gain or lose an edge, which is essential for transitioning from a
distribution of polygon shapes to a stereotyped set of hexagons. Our aim is to
understand how these junctional changes are regulated and how they contribute

to ordering in the tissue.

The current paradigm for studying junction remodelling and neighbour ex-
change events is germ-band extension, where neighbour exchange events are
tightly coordinated to execute large-scale tissue morphogenesis [53| 56, 87, 88,
54]. By contrast the notum is static at the tissue level, but undergoes internal

rearrangments as cell geometry and topology becomes more regular. We study

38
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the notum at a point in developmental time, 12 h after pupariation (AP), where
we do not observe cell divisions, cell delaminations or apoptosis - processes
that may also contribute to ordering [89]. This allows us to isolate the effect of
junction changes and investigate the stochastic nature of the tissue in the absence
of force-generating events that bias the system. In this chapter, we demonstrate
that neighbour exchange events are not associated with large-scale morphogene-
sis, unlike in germ-band extension. We observe that the junctions involved do
not appear to be regulated in a stereotyped spatial or temporal manner. In fact,
junction remodelling is frequenctly reversible. Taken together, the results give a
detailed description of the properties of neighbour exchange events and sets the

stage for exploring the role of stochastic fluctuations in the tissue.

4.1 Neighbour exchange events are not associated with

large-scale morphogenetic changes

Firstly, we establish the premis that the region of the Drosophila notum we are
studying is in fact static with respect to the size and shape of the tissue. Figure
shows a virtual clone at 12.0 h AP and again at 13.5 h AP. I tracked all cells
within the clone to quantify changes in the total area and aspect ratio of that
region of the tissue. The aspect ratio was found by calculating the horizontal
distance between every point on the perimeter (excluding points less than one
junction length from the bottom/top of the clone) and taking the mean to get a
value for the length of the tissue (L), doing the same for the vertical distance to
get the width (W), and then calculating the ratio of the length and width. The
total area of the cells and the aspect ratio of the virtual clone are unchanged over
a 90 min period. The data shown is for a single tissue, but the same analysis was
carried out on four different nota and the observed behaviour was the same. In
summary, our data show that no large-scale morphogenetic changes are occuring

in the tissue.

However, from visual inspection of the tissue it is clear that junctions are
dynamic and that remodelling of cell-cell connectivity occurs frequently. In the

embryonic germ band, such junction remodelling drives tissue elongation in a
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highly stereotyped manner. Why, then, does junction remodelling in the notum
not give rise to tissue morphogenesis? In the following sections, we consider two
hypotheses: (i) Neighbour exchange events cause local deformation of the tissue,
but lack the spatial and orientational bias required for global morphogenesis; and

(ii) Neighbour exchange events do not cause local deformation of the tissue.

a)
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Figure 4.1: Tissue area and aspect ratio

a) Images of the fly notum at 12.0 h AP and 13.5 h AP. Red outlines show virtual clones of
cells that remain in the frame over the 90 min period. No cell divisions, cell delaminations
or apoptosis events occur. b) Total area for the cells within the red outline. The coefficient
of variation (standard deviation over mean) is 0.00201. ¢) Aspect ratio, length divided by
width, of the virtual clone. The data shown is for a single tissue, but is representative of
the behaviour observed in four separate nota.
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4.2 Neighbour exchange events vary in orientation and

occur with no apparent spatial pattern

During germ-band elongation, junction remodelling is polarized and proceeds
with junctions shrinking along the D-V axis and expanding along the A-P axis,
causing the tissue to approximately double in length [53]]. We are interested in
whether such orientational bias is present for neighbour exhange events in the
notum. The results are shown in Figure Note that the number of T1 events
included in each figure panel varies; some measurements require the junction to
be observed before/after the event, thereby excluding events that occur at the
start/end of the imaging period or in a part of the tissue that does not stay in the

frame throughout.

I measured the angle of junctions undergoing neighbour exchange, defining
the angle relative to the midline in the anti-clockwise direction. As junctions
shrink down to a four-way vertex, angle measurements, whether taken from
fluorescent images or segmented images, become unreliable and I therefore
exclude the 5 min just before and after the neighbour exchange event from the
analysis. Instead the mean angle is calculated for t = [-15 —5] min and t = [5
15] min. The change in angle during a neighbour exchange event is narrowly

distributed around 90 degrees (the mean is 87.9 £ 11.6 degrees), as expected.

For the histogram showing the orientation of junctions prior to neighbour
exchange, the polarized junction remodelling in germ-band elongation would
correspond to a peak around 90 degrees. Interestingly, in the notum, shrinking
junctions appear to be predominantly oriented along one of the diagonals rather
than the D-V axis. It is worth noting that for the tissue as a whole, the distribution
of junction angles is not even and this is to be expected for polygon packing.
In fact, in the case of hexagonal packing, only three junction angles would be
represented: [30, 90, 150] or [0 60 120] depending on which of two possible
packing configurations the cells are in. It is not clear what causes the observed
distribution of the angle of T1 junctions (Fig. d). Nonetheless, the results
show that, in contrast to germ-band elongation, neighbour exchange events in

the Drosophila notum are not polarized along a single orientation.
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We also looked at how neighbour exchange events are spatially distributed
in the tissue. Figure 4.2/ a) shows an image of the tissue with all junctions that
go through a neighbour exchange event (within a 90 min period) labelled by
yellow arrows. The figure is representative of the four pupae imaged and shows
that there is no apparent spatial pattern to the occurence of neighbour exchange

events.

The lack of distinct orientational or spatial bias could explain why neighbour
exchange events in the notum do not contribute to morphogenesis, as the cumu-
lative effect of small local deformations could cancel out at the tissue level. It is
also possible that neighbour exchange events do not actually cause local tissue

deformation and we test this in the following sections.
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Figure 4.2: Spatial properties of T1 events in the tissue

a) Fly nota at 12.0 h AP, yellow arrows indicate junctions that undergo one or more T1
transitions in the following 90 min. b) Schematic showing the orientation of the junction
undergoing a T1 event. The angle before the T1 event is . The angle is measured
relative to the midline in the anti-clockwise direction, i.e. 90 degrees is perpendicular
to the midline. The change in angle for the junction shown in the schematic is | — «|.
¢) Histogram showing the change in angle during a T1 transition (n = 47 events). The
mean is 87.9 &= 11.6 degrees. For each junction the angle is calculated from 15 min before
the T1 event to 15 min after. The angle before is taken as the mean of the angle from
t = —15 min to f = —5 min, and the angle after is taken as the mean from f = 5 min to
t = 15 min, thereby excluding the 5 min before and after the junction shrinks to zero at
the four-way vertex configuration. d) Distribution of angles for junctions undergoing
a T1 transition (n = 64 events). The angle is taken as the mean from t = —15 min to
t = —5 min. e) For comparison, the distribution of junction angles for all junctions in the
tissue. The data is from four separate pupae.
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4.3 Neighbour exchange events do not cause local tissue

deformation

We want to directly test whether neighbour exchange events cause local deforma-
tion of the tissue. To do this, I measured the aspect ratio of the four-cell cluster
involved in each event (Fig. 4.3). I compute the center of area (CoA) of each cell
and define the internal aspect ratio as the distance between the CoA of cells losing
an edge divided by that of the cells gaining an edge. For the external aspect ratio,

I extend the axis between the CoAs to where it intersects with the perimeter.

Dist bet As of cells losi d
Internal AR — _istance between CoAs of cells osing an edge @1
Distance between CoAs of cells gaining an edge

Distance between perimeters of cells losing an edge .

External AR =
Distance between perimeters of cells gaining an edge'

4.2)

This definition of the aspect ratio, means that an elongation of the four-cell
cluster along the same axis as the expansion of the T1 junction, gives an increase

in aspect ratio.

The internal aspect ratio shows the effect of junctional remodelling within
the four-cell cluster. As shown in the left panels of Figure the mean internal
aspect ratio increases during a neighbour exchange event. The internal aspect
ratios for individual clusters are compared, at —15 min and 15 min, using a paired
t-test, giving p < 0.0001 (significant change). In fact, out of 33 clusters, only one
shows a decrease in the internal aspect ratio. By contrast, there is no statistically
significant change in the external aspect ratio (p = 0.0502). Hence, internal
junction remodelling does not affect the perimeter of the four-cell cluster and
does not induce local deformations in the tissue. Even if T1 events were oriented
along the same axis, as is the case in germ-band elongation, the cumulative effect

would not alter the shape of the tissue.

There are other methods for calculating the aspect ratio. Often one would fit
an ellipse to the four-cell cluster and give the aspect ratio as the ratio of the major
and minor axis. In our data, the proportion of clusters where the longest axis is

aligned with the T1 junction, before remodelling, is 55%. These correspond to the
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individual traces that start below 1 in the spaghetti plots in Figure Therefore,
this method would result in around half the ellipses being aligned with the T1
junction and around half being approximately perpendicular to it. Even if all
clusters elongated along the axis of the T1 junction expansion, the change in
aspect ratio could average to zero (it would be like inverting all the individual

traces that start below zero in the spaghetti plot).



46 PROPERTIES OF NEIGHBOUR EXCHANGE EVENTS IN THE NOTUM

D

q
g

Internal ratio @—e@ External ratio <«<—>»
b)
1.6 1.6
£ 14 £ 14
£ 12§ £ 12
(] (]
= ! = !
< 08¢ < 038
0.6 0.6
-10 0 10 -10 0 10
Time relative to T1 [min] Time relative to T1 [min]
©)
13 13
I R I .
|12 | T1ls: 33 |12 | Tls: 33
£ 11 V_,««/JJL/J £ 11 :
;! ﬁ | —m—
z | N
0.9 I 09 |
] ]

0.8 0.8
-5 -10 -5 0 5 10 15 -5 -10 -5 0 5 10 15

Time relative to T1 [min] Time relative to T1 [min]
d)
g mean: 0.124 o mean: 0.017
504 " 5 04 —
= =
g 0.3 g 0.3
=
= 0.2 =02
2 Z
= 0.1 b= 0.1
) 5]
# 0 2 0
-0.2 0 0.2 04 -0.2 0 0.2 04
Change in ratio, -15 min to 15 min Change in ratio, -15 min to 15 min

Figure 4.3: Internal and external aspect ratio of four-cell clusters in T1 events

a) Each T1 transition involves a four-cell cluster. The center of area of each cell (CoA, marked
with a dot) is calculated. The internal aspect ratio is the distance between the CoAs of the
cells losing a junction (red) divided by the distance between the CoAs of the cells gaining a
junction (green). For the external aspect ratio, the axis between the CoAs is extended out and
the distance between the perimeter intersections is calculated. For figures b)-d), panels on the
left are for the internal aspect ratio and panels on the right are for the external aspect ratio. b)
Plots for the aspect ratio (left: internal, right: external) of each four-cell cluster undergoing a
neighbour exchange event. ¢) Mean aspect ratio for 33 four-cell clusters. The errorbars shown
are the standard error of the mean. d) Change in aspect ratio from f = —15to t = +15. A
paired t-test was used to compare the aspect ratios at t = —15 and t = +15. Internally, the
aspect ratio changes during a T1 event (p < 0.0001). Externally, the change is not statistically
significant (p = 0.0502). The data is from four separate pupae.
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4.4 Neighbour exchange events are associated with a

redistribution of apical area

Next, we investigate whether other geometrical properties of the cells involved
in neighbour exchange events change in a stereotyped manner. Each neighbour
exchange event involves a cluster of four cells and, for the analysis in Figure
the cells are grouped according to whether they gain or lose an edge during the

event.

Following cells from 15 min before to 15 min after a neighbour exchange event,
we observe an increase in apical area for cells losing an edge and a corresponding
decrease for cells gaining an edge. However, the effect is small and it is worth
noting that the cells gaining an edge do not, on average, start out smaller than
the cells losing one. The redistribution of apical cell area observed during a
neighbour exchange event (Fig. is consistent with the results for the aspect
ratio of four-cell clusters during the event. In order for the internal junction
remodelling to occur without a concomittant change in the outer perimeter of the

cluster, it must be associated with a redistribution of apical cell area.

For the polygon distributions of cells involved in neighbour exchange, we
found that cells gaining an edge have, on average, one edge fewer than the cells
losing one. In Chapter [p} I include a more detailed analysis of the ordering of

polygons in the tissue.



48 PROPERTIES OF NEIGHBOUR EXCHANGE EVENTS IN THE NOTUM

a)
b) 4
Cells gaining an edge
.E = 2 L
% E
= =
“ e
S5 0
5 =
= 8 -2
_ 4 L L 1 L L
-15 -10 -5 0 5 10 15
Time relative to T1 [min]
©) 4
Cells losing an edge
.E — 2
% E
= =
“ e
S g
g &
> =
=3 -2}
-4 L L 1 L L
-15 -10 -5 0 5 10 15
Time relative to T1 [min]
d) €)
;:f 05 B mean: 5.6 ;:f 05 Bl mean: 6.6
5 [l mean: 6.6 5} [l mean: 5.6
£ 04 2. 04
3] (3]
= 0.3 = 0.3
202 202
= 0.1 = 0.1
%] %]
2 0 & 0
4 5 6 7 8 9 4 5 6 7 8 9
Polygon distributions before T1 Polygon distributions after T1

Figure 4.4: Change in cell area and number of edges during T1 events

a) Cells gaining an edge (Cell 1 and 2) are shown in red in the schematic and throughout
the figure, cells losing and edge (Cell 3 and 4) are shown in blue throughout the figure.
b) Mean cell area for cells gaining an edge (n = 77 cells) from 15 min before to 15 min
after a T1 event. At t = 0, the configuration is that of a four-way vertex. For each cell, the
mean cell area has been subtracted from the time series before the population mean was
calculated. The errorbars shown are the standard deviations. ¢) As in b), but for cells
losing an edge (n = 77 cells). d) Polygon distributions for cells gaining (red) and losing
(blue) an edge 15 min before a T1 transition. e) Corresponding polygon distributions
15 min after a T1 transition. Cells on the border of the frame are not included in the

analysis.
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4.5 Neighbour exchange events are temporally random

In the previous section, we established that neighbour exchange events do not
show any distinct spatial or orientational bias within the tissue, suggesting that
the events could be random processes. To explore this further, we consider the

temporal pattern of neighbour exchange events.

Figure 4.5/ a) shows the cumulative T1 count, normalized by the number of
junctions in the tissue, for each of the four nota. Interestingly, the cumulative
count increases approximately linearly with time, indicating that the rate of
neighbour exchange events is constant in time. In addition, the rate at which

neighbour exchange events occur is consistent across different nota.

I extended this analysis to directly compare the temporal distribution of
neighbour exchange events to a Poisson process. A Poisson process is a random
process used to describe events that are stochastically independent and occur
continously in time. Systems that can be modelled as a poisson process include
the radioactive decay of atoms and the arrival of customers in a queue. The
process is described by the parameter A, which is the average rate of events per
unit time (in ¢ units of time, there are, on average, At occurences). If A is constant,

the process is refered to as a stationary Poisson process.

The Poisson distribution, P(n), gives the probability that n events occur in ¢
units of time. It follows that the probability of no events occuring in a time ¢ is
P(n = 0) and that this is equivalent to the probability that the time T until the

first occurence is larger than t.

—At n
P(n) = eéf‘t) (4.3)
P(T>t) = Pn=0)=e = (4.4)
P(T<t) = 1-P(n=0)=1—¢M (4.5)

To compare the temporal pattern of neighbour exchange events to a Poisson
process, I examined the time intervals between consecutive events in the tissue.

For a Poisson process, the inter-event times f(t) are exponentially distributed,
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specifically:

f(t)=Ae™™ for t>0 (4.6)

Figure [4.5|b), shows the experimentally observed distribution of inter-event
times, together with a fitted exponential function. The parameter A is 1/5.9
min~!, i.e. in a tissue similar in size to the four nota studied here, there is, on
average, one neighour exchange event every 5.9 min. Visually, the distribution of
intervals resembles the probability density function of the exponential distribution.
However, the Lilliefors statistical test gives p = 0.0127 when testing the hypothesis
that the data is consistent with an exponential distribution, indicating that we

cannot decisively accept or reject the hypothesis.

Overall, it appears that neighbour exchange events are occuring somewhat
randomly within the tissue, both in time and space. This raises the interesting
hypothesis that neighbour exchange events in the notum may not be highly
regulated processes, the way they are in germ-band elongation, but could result
from of an underlying stochastic process. We will return to this idea in the

following chapter.
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Figure 4.5: Temporal distribution of T1 events in the tissue

a) Cumulative T1 count, normalized by the number of junctions within the frame, for
four different nota. In total 74 T1s were detected and analyzed. b) Histogram showing
the relative frequency of the time interval between successive T1 events. An exponential
distribution of the form A * exp(—At), with A = 1/5.9 min~!, was fitted to the data - the
green line shows the exponential scaled by a factor 2.5 (the binsize) to fit the histogram.
The Lilliefors test returns p = 0.0127 for the hypothesis that the data for the interval
times comes from an exponential distribution.
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4.6 Neighbour exchange events are reversible

In germ-band elongation, neighbour exchange events have been found to be
strictly irreversible [53]. Since neighbour exchange events in the notum appear
to be stochastic, with no clear spatial or temporal pattern, we expect that they
they might also be reversible. To test this, I directly calculated the reversibility of

neighbour exchange event using our time-lapse imaging data.

When tracking junctions across frames, we assign a junction the same ID
before and after junction remodelling. One could argue that neighbour exchange
creates a new junction, yet this way of assigning IDs allows us to quantify to
what extent the events are reversible. In four wildtype nota we observed a total
of 74 neighbour exchange events. Out of 984 junctions, 61 went through at least
one transitions. For 11 of these junctions we observed two or more transitions
within the period of time we imaged for, demonstrating that in the Drosophila

notum neighbour exchange events are reversible.

In order to estimate the probability of reversing, I use the Kaplan-Meier
method to calculate survival functions for neighbour exchange events. In medical
research [90], the Kaplan-Meier estimator is a common tool for quantifying
survival times of patients following treatment. In this context, survival does not
have to refer to life/death, but can be any event of interest. The strength of the
method is that it takes into account if patients are lost to follow-up (e.g. if they
drop out) or if a study ends before the event being studied has occured. In these
cases, survival times are described as ‘censored’. If no censoring is present in
the data, the Kaplan-Meier curve is the complement of the empirical cumulative

distribution function.

The Kaplan-Meier method is the right tool for analysing the reversibility of
neighbour exchange events since it allows us to combine data from movies of
different lengths and to take into account that a neighbour exchange event at
the start of a movie is observed for longer than one occuring towards the end.
Here, neighbour exchange events that have not reversed by the end of the movie
are ‘censored’, as it is not possible to determine how long the cell neighbour

configuration would have persisted if we had continued imaging. The survival
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curve S(t) is shown in Figure b) and is defined as the probability that a
neighbour exchange configuration persists, without reverting back, for at least a
time t. In the figure, the time points at which events are censored are marked
by black crosses. From the survival curve, the probability that a configuration
persists for at least 150 min following junction remodelling, is 69%, and this
number would likely be even lower if we imaged for longer. Hence, neighbour

exchange events in the notum are highly reversible.
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Figure 4.6: Reversibility of neighbour exchange events

a) Bar charts showing what proportion of junctions undergo unidirectional (one), bidirec-
tional (two), and multidirectional (three) neighbour exchange events. The data is from
time-lapse imaging of four wildtype nota over 115, 75, 80, and 185 min, respectively.
b) Kaplan-Meier survival curve showing the probability that a neighbour exchange
configuration persists for a given length of time. Events are ‘censored’ if the reverse
transition has not occurred by the end of the movie. The 95% confidence intervals are
estimated using Greenwood’s Formula. The probability of a configuration persisting for
at least 150 min, along with the 95% confidence interval, is: 0.687 [0.5175 0.8567].
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4.7 Total junction length is unchanged during neighbour

exchange events

We are interested in understanding the mechanics of junction remodelling, i.e.
what happens to junctional material as cells change neighbours. Figure 4.7/ shows
that, on average, total junction length is constant during neighbour exchange.
As the T1 junction contracts, the four neighbouring junctions expand, leaving
the total length of the system unchanged. This leaves two possible models: (i)
Neighbour exchange occurs without turnover of junctional material. Instead,
contraction/expansion is acheived by vertices “sliding’ relative to the junction. (ii)
Removal and addition of junctional material balances within the five junctions
such that total junction length is conserved. We tested these models using a
temperature sensitive shibire mutant line in which endocytosis of DE-cadherin
is blocked [91]. We found that blocking endocytosis does not prevent junction
remodelling, but does reduce the frequency of events. This shows that turnover
of junctional material is not required for neighbour exchange, but does facilitate

the junction remodelling involved (see [Curran 2015] for more details).
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Figure 4.7: Junction length changes during T1 events

a) Average change in junction length during a T1 event (1 = 27 events, from 4 nota) for
wildtype tissue. The schematics on the right highlight which junctions are plotted in each
panel, (top) all five junctions involved, (middle) the four neighbouring junctions, (bottom)
the T1 junction. For each event, the junction length time series have been aligned with
the four-way vertex configuration occuring at t = 0.
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4.8 Discussion

Taken together, the results in this section demonstrate that neighbour exchange
events in the Drosophila notum - a tissue that is not undergoing growth and
directed morphogenesis - differ in several qualitative ways from what has been

observed in germ-band elongation.

In germ-band elongation, neighbour exchange events are strictly irreversible
[63] and proceed with a definite orientation, shrinking along the D-V axis and
expanding along the A-P axis. By contrast, we observed that junction remodelling
in the notum is often bidirectional, with the same junction undergoing several
consecutive transitions. We also found that neighbour exchange events are
distributed in a spatially random pattern within the tissue and shrinking junctions

are not predominantly oriented along the D-V axis.

We investigated how neighbour exchange events can occur without giving rise
to any large-scale deformation of the tissue. Junction remodelling does change the
internal distances between centroids in the four cells involved and is associated
with a redistribution of apical area. However, this does not affect the aspect
ratio of the outer perimeter of the four-cell cluster. Hence, even if neighbour
exchange events were all oriented along the same axis, as is the case in germ-band

elongation, the cumulative effect would not reshape the tissue.

We also studied the temporal distribution of neighbour exchange events
and found that the cumulative T1 count increases linearly, indicating that the
rate of events is stable over time. The intervals between consecutive T1 events
resemble an exponential distribution and we cannot reject the hypothesis that
the data is consistent with an underlying Poisson process. This motivates a
further exploration of the stochastic nature of junction fluctuations in general and

junction remodelling in particular. And this will be our focus in the next section.

Studying junction remodelling in the absence of force-generating cellular
events, such as division and delamination events, allows us to investigate the
fundamental characteristics of neighbour exchange events. In that respect, junc-
tion remodelling in the presence of a polarized distribution of Myosin II may

be considered to be a special case. In fact, neighbour exchange events in the
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Drosophila notum has some similarities with the phenotype observed in the germ-
band when the activity of the gap gene Kriippel (Kr) has been eliminated by
RNA-mediated interference (RNAi). In Kr(RNAi) embryos, the planar polarized
localization of Myosin II is lost, junction remodelling is reduced and transitions
are no longer irreversible, resulting in incomplete elongation of the germ-band
[53, 54]. Kr mutant embryos display the same defective polarized cell intercalation
[92]. Hence, disruption of the polarized action of Myosin II results in neighbour

exchange dynamics more similar to what we observe in the notum.



CHAPTER 5

Stochastic Fluctuations of

Junctions

In the previous section we observed that the intervals between consecutive
neighbour exchange events are similar to what would be expected if the data were
generated by a Poisson process. This motivates a further study of the stochastic
nature of junction fluctuations and how they relate to neighbour exchange events.
Looking at the time series for junction lengths in the tissue, shown in Figure
two things are worth noting. Firstly, junctions are dynamic and display
stochastic fluctuations in length. Secondly, the magnitude of such fluctuations is
similar to the periods of contraction and expansion observed during neighbour
exchange events. This anecdotal observation, motivated us to look carefully at
junction fluctuations going into and coming out of the four-way vertex during
neighbour exchange. In this chapter, I examine the hypothesis that contraction
and expansion in junction remodelling is a consequence of the general stochastic
fluctuations of junctions in the tissue, as opposed to being an explicitly regulated

and stereotyped process.

5.1 Junction length fluctuations resemble a random walk

process

In one dimension, a random walk consists of a succesion of uncorrelated steps.
The direction of movement in each step is completely independent of the path
history and the process is consequently Markovian with respect to position [93,
94]. Note, that by analysing junction lengths, the two-dimensional motion of

vertices reduces down to one-dimensional length changes.

58
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One metric for describing a random walk is the distribution of persistence
lengths. Persistence length is defined as the distance travelled before switching
direction - i.e. the change in junction length during each period of contraction and
expansion. To extract this information from the data, the time series is filtered
using a moving average Hanning window. This is a low-pass digital filter, defined

by the window function w(n), where N is the width in terms of time points (Eq.

5.1).

w(n) =05(1—cos(2nmn/(N—-1))) ne[0,N—1] (5.1)

Segment boundaries are placed where the first derivative of the filtered time
series changes sign or is zero and takes opposite signs on either side. This is
shown in the top panel in Figure The calculation of the persistence lengths is
based on the raw time series - the filter is only used to establish the position of

segment boundaries.

In the case of a one-dimensional random walk, which is our starting hypothesis
for the behaviour of junctions on short time scales, the persistence lengths follow
an exponential distribution. Figure shows the distribution of persistence
lengths, from 60737 segments, along with an exponential function of the form
1/t exp(—t/ T). The parameter is T = 0.197 pm. There is reasonable agreement
between the data and the fit. However, the distribution does skew left relative
to the exponential and, with p = 0.001, the Lilliefors test confirms that the data
is not consistent with a simple random walk. This suggest that the dynamics of
junction fluctuations might be better described by a constrained random walk.
Indeed, based on physical constraints (cells cannot become arbitrarily large),

some form of mean-reverting behaviour would be expected.
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Figure 5.1: Junction length time series for T1 and non-T1

a) Time series for a junction not undergoing neighbour exchange. The corresponding
fluorescent image of the junction is shown for three time points. Scale bar = 5 pm. b)
Time series for a junction undergoing neighbour exchange. The point where a four-way
vertex configuration is reached, is marked by a red star. The corresponding fluorescent
image of the junction is shown for three time points. Scale bar = 5 pm. The scale on the
y-axis is the same for both figures.
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Figure 5.2: Distribution for persistence length

a) Time series for a junction length. The data have been filtered using a moving average
Hanning window, with a filter setting of 5, and split into segments where the junction
is contracting or expanding. The persistence time (PT) and persistence length (PL) are
defined as the duration of a segment and the change in junction length, respectively. b)
Histogram showing the relative frequency of persistence lengths for a filter setting of 5.
N = 60737 segments, 4 nota. (green line) Best fit for an exponential function of the form
1/Texp(—t/7). The parameter is T = 0.197 um, with confidence bounds [0.1958 0.1989].
The function has been scaled by a factor 0.03 (the binsize) to fit the histogram. (inset)
Number of segments in each bin of the histogram plotted on semi-log along with the

exponetial

fit.
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5.2 The mean squre displacement curve for junction

fluctuations shows subdiffusive behaviour

Another way of quantifying the dynamics of junction fluctuations is mean square
displacement (MSD) analysis. This is a common method for characterizing
stochastic processes, such as the diffusion of single molecules [95| 96| 97|]. The

mean square displacement f(7) is a two-point correlation function and is given

by:

F) = {1t +7) = 1())r. (5.2)

Here I(t 4+ T) — I(t) is the change in junction length (usually the displacement
of the particle) between time t and t + 7. The average is over the whole time
series. Figure [5.3|shows how the mean square displacement curve is calculated

for a single junction in the tissue.

In the case of pure diffusive motion, the mean square displacement scales
linearly with the lag time T and the diffusion coefficient may be read off the
slope, with the prefactor depending on the dimensionality of the system. In one

dimension:

f(tr) =2Dt. (5.3)

For different diffusion regimes, the MSD curve may exhibit more compli-
cated behaviour. For subdiffusive and superdiffusive processes the MSD curves

downwards/upwards and can be described by a powerlaw ~ t*.

Figure 5.4/ shows the ensemble-averaged MSD curve, i.e. the average curve for
all junctions in the four embryos we have data for. The behaviour is subdiffusive,
in agreement with the results of the previous section. This suggests that junction

fluctuations are constrained and mean-reverting.
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Figure 5.3: Schematic for mean square displacement

a) Time series for the junction length of a single junction in the notum at 12h. b) Mean
square displacement for the junction shown above. The MSD for this junction saturates,
but that is not representative of the range of behaviours observed. ¢) Plot of the MSD,
in arbitrary units, for different diffusion regimes. For normal diffusion (blue), the MSD
is a linear function of time, ~ D x lag, and the diffusion coefficient may be read off the
slope (with a prefactor depending on dimensionality). For superdiffusive (green) and
subdiffusive (red) processes, the MSD curves upwards/downwards and is described by a
power-law ~ lag®.
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Figure 5.4: Ensemble-averaged mean sqaure displacement curve for junction fluctua-
tions
Ensemble-averaged MSD curve (N = 4 nota). The ensemble-mean is calculated for each

notum separately, then the average for each tissue type is calculated. The errorbars shown
are the standard deviation of the ensemble-means for different nota.
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5.3 There is no significant difference between the
persistence length distributions of T1 and non-T1

junctions

Having established that junction fluctuations are stochastic, we are interested
in what role such fluctuations play in neighbour exchange events. Anecdotal
evidence, such as the time series of a T1 and non-T1 junction in Figure
suggests that junction fluctuations in the tissue display contraction and expansion
events of a similar magnitude as those observed during junction remodelling.
Our hypothesis, then, is that neighbour exchange events are a consequence of
stochastic fluctuations that occasionally generate a four-way vertex configuration,
as oppose to the scenario where junctions undergo directed contraction and
expansion to perform neighbour exchange, even if they otherwise fluctuate

randomly. In this section, I develop a rigourous method for testing this hypothesis.

The approach I take is to separate the time series for junction length fluctua-
tions into segments where the junction is monotonically expanding or contracting,
using the method described in the previous section. I then identify the segments
associated with neighbour exchange events - these are the segments on either
side of the time point at which the junction is at a four-way vertex and will be
refered to as "T1 segments’. This allows me to compare the properties of T1 and

non-T1 segments in a rigourous way using appropriate statistical tests.

Figure 5.5/ shows the time series for a junction going through a neighbour
exchange event and reaching a four-way vertex around 40 min into the movie.
The T1 event is marked by a red star and the T1 segments are demarcated by red
dotted lines. Given the difficulty in determining a definite time for onset and
completion of a T1 event, it is necessary to carry out the analysis and statistical
tests for different levels of filtering. In Figure the filter level was set such
that it removed segmentation errors, but otherwise followed the raw time series
closely. Applying that level of filtering for comparing T1 and non-T1 events,
would not be a fair test. Even if T1 transitions are distinct events, contraction and
expansion could occur in a stepwise fashion. In fact, in germ-band elongation

the length change for junctions oriented along the D-V axis has been shown to
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occur through successive steps of shrinkage and arrest [54]. Hence, a low level of

filtering could underestimate the duration of neighbour exchange events.

Figure 5.6/ shows the persistence length distributions for T1 and non-T1 junc-
tions separately, using the same filter settings as shown in Figure Note that,
increasing the filter settings and introducing a minimal threshold for the size of
segments, shifts the distribution of persistence lengths such that it displays a peak
at a non-zero value. The number of segments included in each distribution are
listed in Table The first and last segment of each time series has been excluded
from the analysis, since the actual duration cannot be determined. Higher levels
of filtering results in longer, and therefore fewer, segments. Differences in the
number of T1 segments come from T1 events occuring in the first or last segment

and therefore being excluded from the analysis.

I use a two-sample Kolmogorov-Smirnov test to compare the distributions
for T1 and non-T1 segments. It is a nonparametric hypothesis test and it does
not assume that the data are from any particularly distribution (Gaussian or
otherwise). It is, however, not valid if the underlying distribution is discrete. The
test evaluates the difference between the cumulative distribution functions (CDFs)
of the two samples and hence tests for any difference, including median, variance
and shape of the distribution. The null hypothesis (Hp) is that the samples are
drawn from the same underlying distribution and is rejected if p < 0.05. The
analysis was carried out for a total of seven different levels of filtering, between
10 and 40, and the results are presented in Table In every case the statistical
test supports the null hypothesis, indicating that - at least in terms of persistence
length - there is no difference between the contraction/expansion giving rise to

neighbour exchange events and the ubiquitous stochastic fluctuations of junctions.

In addition to analyzing the persistence lengths, we can quantify the per-
sistence time of junction fluctuations. As shown in Figure the persistence
time is given by the duration of each period of contraction or expansion. In the
case of a random walk with constant step size, the persistence length is simply
the persistence time multiplied by the step size. Note, that during neighbour
exchange events, we often observe pausing in the four-way vertex configuration.

The persistence length is robust to this phenomenon (since there is zero length
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change during pausing), but it would lead us to overestimate the persistence
time for these junctions. For this reason, the pause times have been detected

computationally and subtracted from the persistence times for T1 segments.
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Figure 5.5: Filtering of junction length time series

The figure shows the junction length over time for a junction that undergoes at T1
event around 40 min into the movie (marked by a red star). The time series has been
split into segments where the junction length is monotonically increasing or decreasing.
This was done by filtering the data using a moving average Hanning window - if the
first derivative changes sign or is zero with opposite signs on either side of that point,
a segment boundary is placed. Using a higher setting for the filter, results in fewer
segments. The filter settings used are a) 10, b) 20, c) 40. The analysis is done using the
raw data - the filter is only used to establish the position of the segment boundaries. The
segments on either side of the T1 event (marked with red dotted lines) are defined as
T1-segments.
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Figure 5.6: Persistence lengths

Persistence length distributions for (left) non-T1 and (right) T1 segments. The filter
settings used are a) 10, b) 20, c) 40, as shown in Figure The number of segments
included in each histogram, are listed in Table The distributions for T1 and non-T1
segments are compared used a two-sample Kolmogorov-Smirnov test. The p-values
are listed in Table[8.1|and in every case the statistical test, at the 0.05 significance level,
supports the null hypothesis that the samples are drawn from the same underlying
distribution.
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Filter level | segments non-T1 | segments T1

10 22819 122
20 11377 114
40 4895 92

Table 5.1: Number of segments included in each of the persistence length distributions
shown in Figure Higher levels of filtering results in longer, and therefore fewer,
segments. The first and last segment of each time series is excluded from the analysis,
regardless of whether a T1 event occurs, therefore the number of T1 segments included
can vary with filter level.

Filter level | p-value | Hypothesis
10 p = 0.5142 Hy
15 p = 0.2727 Hy
20 p = 0.5294 Hy
25 p = 0.2569 Hy
30 p = 0.1081 Hy
35 p = 0.1881 Hy
40 p = 0.2572 Hy

Table 5.2: The persistence length distributions for T1 and non-T1 segments are compared
using a two-sample Kolmogorov-Smirnov test. The null hypothesis, Hy, is that the
samples are drawn from the same underlying distribution. The analysis was carried out
for seven different levels of filtering, between 10 and 40, and in every case the statistical
test supports the null hypothesis at the 0.05 significance level. Note that, since we are
testing a set of statistical inferences simultaneously, the appropriate significance level
for the individual hypothesis tests is lower than the significance level for the set as a
whole. Using the Bonferroni correction, we would get & = a/k = 0.05/7 = 0.007. Since
the p-values are all above 0.05, this is not something we need to worry about.
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5.4 Contraction and expansion is symmetric in neighbour

exchange

We have established that junction length changes during neighbour exchange
events are indistinguishable from the general fluctuations of junctions in the
tissue. As an additional test, we separate the contraction and expansion phases
of junction remodelling. It is possible that, say, expansion is the result of junction
fluctuations, while contraction occurs in a directed manner, and that grouping

the processes together obscures this difference.

First, we consider the ballistic velocity of junction fluctuations - this is the
persistence length divided by persistence time and gives the average rate of
contraction/expansion for each segment. The results are presented as boxplots in
Figure The median contraction rate for T1 junctions is 0.81 4= 0.097 um/min.
Interestingly, this is consistent with the value of 0.83 pm/min reported for germ-
band elongation [57]. According to the Kolmogorov-Smirnov test, there is no
statistically significant difference between the ballistic velocities of T1 and non-T1

segments, in agreement with our results from the previous section.

I then repeated the analysis, but grouped segments according to whether the
junction is contracting or expanding and analysed these separately. Based on
the Kolmogorov-Smirnov test, there is no significant difference in the rate of
contraction and expansion, both for non-T1 fluctuations and T1 events. Similarly,
I found no significant difference in the persistence lengths of contracting and

expanding segments, both for non-T1 fluctuations and T1 events.

The results show that, at least phenomenologically, neighbour exchange events
are symmetric. In particular, the rate of contraction and expansion is the same,
going into and coming out of a four-way vertex. This is in agreement with our
previous result, in Figure 4.7, for the average change in junction length during

neighbour exchange.
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Figure 5.7: Persistence lengths, time, and ballistic velocity

a) Histograms for the persistence length of non-T1 (left) and T1 segments (right). Con-
tracting (blue) and expanding (red) segments are shown separately. The p-values for a
Kolmogorov-Smirnov test comparing the distributions are: contracting non-T1 vs expand-
ing non-T1 p = 0.5576 (ns), contracting T1 vs expanding T1 p = 0.7276 (ns), all non-T1 vs
all T1 p = 0.5294 (ns). b) Histograms for the persistence time of non-T1 and T1 segments.
The Kolmogorov-Smirnov test is not valid for discrete distributions. ¢) Boxplots for the
ballistic velocity (persistence length / persistence time) for non-T1 and T1 segments. The
The p-values for a Kolmogorov-Smirnov test comparing the distributions are: contracting
non-T1 vs expanding non-T1 p = 0.1613 (ns), contracting T1 vs expanding T1 p = 0.9594
(ns), all non-T1 vs all T1 p = 0.3243 (ns). The filter setting is 20. N = 11377 non-T1
segments and 114 T1 segments from 4 nota.
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5.5 Discussion

The aim of this chapter was to investigate the hypothesis that the contraction and
expansion events giving rise to neighbour exchange result from the ubiquitous
stochastic fluctuations of junctions in the tissue. Interestingly, T1 events do not
appear to have a well-defined time and length scale, which motivated carrying out
the analysis and statistical tests for a wide range of filter settings. For every level
of filtering, the statistical tests showed no difference between junction fluctuations
and neighbour exchange. This supports viewing neighbour exchange events as
an epiphenomenon of the stochastic fluctuations present in the tissue, rather than

as directed singular processes.

We also found that neighbour exchange events are symmetric with respect to
the rate of contraction and expansion, going into and coming out of a four-way
vertex configuration. Interestingly, the rate of contraction is very similar to what

has been reported for junction remodelling during germ-band elongation [57].

Two observations that will inform how we model junction dynamics later, are
(i) that the distribution of persistence lengths skew left relative to the expectation
for a simple random walk process, and (ii) that the mean square displacement
curve shows subdiffusive behaviour. This suggests that junction fluctuations
could be consistent with a constrained random walk and that will be our starting

point for the modelling in Chapter m

However, we first establish the phenomenology of tissue ordering. Specifically,
in the next chapter, we will consider different measures of order and quantify the

time course of the ordering process.



CHAPTER 6

Ordering over the course of

pupal development

The aim of this thesis is to understand how order emerges in the Drosophila notum
and how neighbour exchange events contribute to that process. In this section I
address the premise of this research question, namely that tissue packing does
in fact become more regular over the course of pupal development and that this
process is associated with neighbour exchange events. I quantify order in the
tissue at different points in development and track a time course of the ordering

process.

There are different measures of the degree of order in a tissue. From time-lapse
imaging of the notum, we visually perceive an increase in the regularity of the cell
array. In general, finding an objective proxy for our perception of spatial order, is
non-trivial [98]]. Here I will focus on the distribution of polygons and junction
lengths. In the absence of cell division and cell extrusion, changes in polygon
number are caused solely by neighbour exchange events. By contrast, ordering in
terms of junction lengths is driven by tension in the system and does not rely on
neighbour exhange. Hence, these two measures of order are complementary and
are directly related to experimentally measurable quantities: neighbour exchange

frequency and junction tension.

In the previous sections we studied junction dynamics in the absence of per-
tubing cellular events, such as division and extrusion, using time-lapse imaging
at 12h AP. Around 13.5h AP there is an onset of cell division, with every cell in
this part of the notumﬂ dividing once. In addition, a small proportion of cells

(0.5 £0.3%) delaminate from the tissue through a stochastic process of live cell

IThe scutum, mesonotum
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extrusion. [89]. This period of pupal development lasts until around 20h AP,
after which the tissue resumes the process of refinement. Therefore, to track the

ordering process over several hours, we image the notum post division.

6.1 Tissue order increases over the course of development

The distribution of polygons is an important measure of order in the tissue.
Without cell division or cell extrusion, the only way a cell can change its number
of edges is by going through a neighbour exchange event. Figure |6.1| shows his-
tograms for the polygons at different developmental time points. The proportion
of hexagons in the tissue increases over time and the standard deviation of the
distribution decreases. In particular, there is a reduction in the number of cells
with 4 or 8 edges. Hence cells in the tissue become more hexagonal over the
course of development. The figure also shows histograms for the junction lengths.
The first thing to notice is that post division, cells are smaller and junction lengths
are shorter. I therefore use the coefficient of variation (std/mean) to compare the
distributions. The coefficient of variation decreases over time, corresponding to

junction lengths becoming more even in the tissue.
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Figure 6.1: Ordering over the course of pupal development

a) Fluorescent images of Drosophila tissue at different developmental time points. The
bright spots in the images at 25 h AP and 30 h AP, are microchaete bristle cells. Scale
bar = 5 um. b) Histogram of the polygon distribution at different developmental time
points. N = 236 cells from 4 nota (12.5 h), 296 cells from 3 nota (25 h), 250 cells from 3
nota (30 h). Errorbars indicate the variation between nota, i.e. the standard deviation
of the standard deviations for different nota. ¢) Standard deviation for the polygon
distributions shown in b). Errorbars indicate the standard deviation between nota. The
p-values for an F-test comparing the variances are: 12 h v 25 h p < 0.0001 (*), 12h v
30 h p < 0.0001 (*), 25 h v 30 h p = 0.3346 (ns). d) Histogram of the junction length
distribution at different developmental time points. N = 828 junctions from 4 nota (12.5
h), 1059 junctions from 3 nota (25 h), 936 junctions from 3 nota (30 h) e) Coeffcients of
variation (0 /(I)) for the junction length distributions shown in d). Errorbars indicate the
standard deviation between nota. The p-values for an F-test comparing the variances are:
12h v 25h p < 0.0001 (*), 12h v 30 h p < 0.0001 (*), 25 h v 30 h p = 0.2624 (ns). Bristle
cells and cells adjacent to bristle cells have been excluded from the analysis.



ORDERING OVER THE COURSE OF PUPAL DEVELOPMENT 77

6.2 Steady increase in order over several hours is driven

entirely by neighbour exchange

The results in Figure [6.1| show that, both in terms of polygon distribution and
junction lengths, tissue packing in the notum becomes more regular over de-
velopmental time. To investigate the time course of the ordering process, we
follow the tissue over a period of several hours. Since, the onset of cell division
around 13.5 h AP disrupts the ordering of the tissue, we study how packing
proceeds post division. We imaged the nota from 20 h AP, at 10 min intervals.
The tissue is stable in the sense that we do not observe cell division, delamination
or apoptosis events. However, during this window of pupal development, a
pattern of microchaete bristle cells emerges on the notum [50]. Bristle cells are
external mechanosensory organs and are part of the Drosophila peripheral nervous
system [99]. From around 25 h AP, the michochaetes grow in apical area and
number of edges, triggering a slew of neighbour exchange events that perturb the
surrounding tissue. As microchaetes grow, adjacent cells go through neighbour
exchange to accomodate the increase in apical area and this, in turn, affects the

neighbours of those cells.

Figure |6.2 shows the apical area and polygon number of michochaetes relative
to other cells for a single notum. The time point at which microchaete bristle cells
deviate by more than one standard deviation from non-bristle cells is marked,
as is the time point at which the growth phase ends and the area and polygon

number stabilizes.

During the growth phase, microchaetes perturb the surrounding tissue and
disrupts polygon ordering. Even though development of the microchaete bristle
pattern is an interesting problem (see [50, 100]), our focus here is the ordering
process that happens in the absence of this pertubation. For this reason, bristle

cells and cells adjacent to bristle cells are excluded from the analysis.

As shown in Figure we observe a steady increase in order between 22h and
34h. The proportion of hexagons increases and the standard deviation of polygon
type decreases, moving the system towards hexagonal packing. Interestingly, this

increase in tissue order is driven entirely by neighbour exchange events.
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The other measure of order we are using is the variance of junction lengths.
Figure |6.4{ shows that the coefficient of variation (std/mean) for junction lengths
decreases steadily over time, leading to a more regular tissue architecture. The fig-
ure also shows the average coefficient of variation for junctions within individual
cells and this follows a similar trajectory. Hence, both across the tissue and within
cells, junction lengths even out over time. Unlike for polygon distributions, this
ordering process is not necessarily driven by neighbour exchange, as networks

under tension generally exhibit this type of behaviour.
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Figure 6.2: Disruptive effect of bristle cells

a) Tissue at different developmental time points. (left) 22 h 30 min AP and (right) 33
h 50 min AP. Scale bar = 10 um. b) Mean cell area for bristle cells (red, N = 8) and
non-bristle cells (blue, N = 312). The errorbars are the standard deviation for the cell
areas of non-bristle cells. The dashed line at t = 26.5 h indicates where the mean cell area
of bristle cells falls outside one ¢ of that of non-bristle cells. ¢) Mean polygon number
for bristle cells (red, N = 8) and non-bristle cells (blue, N = 312). The errorbars are
the standard deviation for the polygon distribution of non-bristle cells. The dashed
line at t = 27 h 10 min indicates where the mean polygon number of bristle cells falls
outside one ¢ of that of non-bristle cells. For b) and c), the dashed line at t = 31 h 40
min is placed by eye where the mean cell area and polygon number of the bristle cells
appear to stabilize. Cells adjacent to a bristle cell are excluded from the analysis. Not all
cells persist for the duration of the movie due to translation of the tissue relative to the
microscope.



80 ORDERING OVER THE COURSE OF PUPAL DEVELOPMENT

a)

0.8

Proportion Hexagons
g
[9)]

0.7

0.6

0.4 1 1 1 1 1
22 24 26 28 30 32 34
Time after pupal formation [h]
b)
0.9
_075f
g
S0
<=
=
i
206
0.45 1 1 1 1 1
22 24 26 28 30 32 34

Time after pupal formation [h]

Figure 6.3: Ordering of polygons

a) Proportion of hexagonal cells in the tissue, tracked over a period of 12 hours. The figure
shows the mean for 5 nota, with a combined 395 cells. The errorbars are the standard
deviation on the mean. Bristle cells and cells adjacent to bristle cells are excluded from
the analysis. b) Standard deviation for the polygon distribution of cells in the tissue,
tracked over a period of 12 hours. The figure shows the mean for 5 nota, with a combined
395 cells. The errorbars show the variation between nota, i.e. they are the standard
deviation on the mean for the standard deviation of the polygon distribution for the 5
nota. Bristle cells and cells adjacent to bristle cells are excluded from the analysis.
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Figure 6.4: Ordering of junction variation, global and local

a) Schematic and plot for the coefficient of variation (¢/(I)) for junction lengths in the
tissue, tracked over a period of 12 hours. The figure shows the mean and standard
deviation for 5 nota, it includes data from a total of 2427 junctions. b) Schematic and
plot for the mean coefficient of variation (¢/(I)) within cells, tracked over a period of 12
hours. For each cell, the CoV is calculated for junctions in that cell and the average is
taken over all cells in the tissue. For the figure, the mean CoV has been calculated for
5 nota separately and the mean and standard deviation of these are taken. The figure
includes data from a total of 395 cells. Not all junctions or cells persist for the duration of
the movie. Bristle cells and cells adjacent to bristle cells are excluded from the analysis.

6.3 Discussion

The results in this section show that the notum orders over the course of pupal
development. The proportion of hexagonal cells in the tissue increases and the
variance in polygon type and junction length decreases, leading to a more regular

tissue packing.

Tracking a time course for the ordering process, over a period of 12 hours post
division, shows a steady increase in order driven entirely by neighbour exchange
events. The proportion of hexagons increases and the standard deviation of

polygon type decreases, moving the system towards hexagonal packing.
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I also calculated the coefficient of variation for junction lengths over time.
The variation in the length of junctions across the tissue and within cells are
very similar and both show a clear decrease over the course of development.
Interestingly, microchaete bristle cell growth appears to disrupt ordering in
terms of polygons but not junction lengths (the disruption was visible in the
graphs for individual nota, but averages out when data from several nota are
combined). This could be related to Lewis Law, which dates back to the 1920’s
and states that apical cell areas increase linearly with the number of edges [101,
102]. As described in [Curran 2015], this relation holds almost perfectly for cells
in the Drosophila notum, with the exception of microchaete bristle cells late in
development. When microchates grow it disrupts the cell area and polygon
ordering in the surrounding tissue. But, by Lewis Law, larger/smaller cells have
more/fewer junctions and, as such, junction lengths do not depend on cell size

and are therefore unaffected by the pertubation.

Taken together with the previous section, which showed that neighbour
exchange events are stochastic, the results give rise to the question of how
stochastic events can drive ordering. To answer this, we first investigate the

source of stochasticity in the tissue and this will be the focus of the next section.



CHAPTER 7

The role of myosin in

regulating junction fluctuations

Before attempting to answer how junction length fluctuations contribute to tissue
ordering, we consider how such fluctuations arise within the tissue. In particular,

we want to identify the underlying source of stochasticity in the tissue.

On a molecular level, junction tension is generated by the contractile action
of actomyosin. Linking of the actomyosin cytoskeleton to adherens junctions
converts the force generated, by the movement of Myosin II molecular motor
proteins along actin filaments, into junction tension. The localisation of Myosin
II changes over the course of pupal development. Around 12h AP, Myosin II is
observed both at junctions and in a medial pool. As the tissue matures, Myosin II
increases at junctions - forming dense cables - and is lost from the medial pool.
This relocalisation of Myosin II correlates with an increase in line tension, as
described in [Curran 2015]. In germ-band elongation, Myosin II is specifically
enriched at shrinking junction oriented along the D-V axis and this polarized
distribution has been shown to be necessary for successful elongation of the
tissue [53]. Hence, Myosin II is a prime candidate for how stochastic junction

fluctuations originate and are regulated within the tissue.

In this section, we describe the properties and dynamics of junctional Myosin
II in the Drosophila notum. In particular, we identify similarities and differences
with GBE to understand the components of stereotyped junction remodelling.
Using a combination of experiment and modelling, we investigate how Myosin II

contributes to stochasticity and what role it has in regulating junction dynamics.
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7.1 There is no polarization of junctional Myosin II

within the tissue

One aim of this section is to determine if there are any biases in how Myosin
II is localised within the tissue. To this end, we use single time-point images at
12h AP to study the static distribution of Myosin II and Bazooka. The results are
shown in Figure

For Bazooka, the measured intensity is uncorrelated with junction length,
whereas there is a slight negative correlation for Myosin II. Hence, relative to
length, Myosin II intensity is higher for shorter junctions - the intensity per pixelﬂ
for a 2 um junction is approximately 15% higher than for a 10 pm junction. There
is no significant correlation between the intensity of Myosin II and Bazooka on

individual junctions.

As is evident from the fluorescent images in Figure Myosin II intensity
varies more across the tissue than Bazooka. The figure shows the distribution
of Myosin II and Bazooka for junctions in the tissue - the standard deviations
are 0.11 and 0.077, respectively, demonstrating that Myosin II is more spatially
heterogeneous. The most important result for the localization of Myosin II is that
the intensity is uncorrelated with junction orientation, demonstrating that there
is no polarization of Myosin II within the tissue. This is in contrast with GBE,

where Myosin II is enriched in shrinking junctions oriented along the D-V axis.

1Normalizing by the number of pixels gives the same results as normalizing by junction length,
but is more accurate.
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Figure 7.1: Properties of Myosin and Bazooka in the tissue

a) Normalized (average intensity per pixel) Bazooka intensity plotted against junction
length. Each data point corresponds to one junction. b) Normalized Myosin intensity
plotted against junction length. ¢) Normalized Myosin intensity vs normalized Bazooka
intensity. The Pearson correlation coefficient is —0.097, indicating that there is no
significant relation between the quantities. d) Distribution of the normalized Bazooka
intensity of junctions, standard deviation = 0.077. e) Distribution of the normalized
Myosin intensity of junctions, standard deviation = 0.11. f) Normalized Myosin intensity
versus the angle of the corresponding junction. The angle is measured relative to the
midline so junctions parallel with the midline have angle = 0. Each of the figures contain
data from three movies, in total 809 junctions. In each case only the first time frame of
the movie is used.
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7.2 Myosin II on individual junctions fluctuates over time

The spatial heterogeneity of Myosin II in the tissue and the negative correlation
with junction length, suggests that Myosin II could be involved in regulating
junction dynamics. Combining the analysis of fluorescence intensity, described
in the Methods chapter, with the tracking of junctions over time, allows us to

compare the temporal behaviour of Myosin II with changes in junction length.

Figure|7.2| shows time traces for the intensity of Myosin II and Bazooka, along
with junction length. Imaging was done at 5s and 30s intervals (on separate
occasions), to both get a high temporal resolution and follow the dynamics
on longer time scales. The examples shown are representative. Two things
are worth noting. Firstly, Myosin II intensity varies significantly over time,
whereas Bazooka intensity remains relatively stable. The spatial uniformity and
temporal invariance of Bazooka, indicates that it is a suitable control in this
system. Secondly, it appears that Myosin II and junction length are anti-correlated
and this is corroborated by visual inspection of time traces for other junctions
in the tissue. To make this observation more rigourous, we turn to correlation

analysis.



Normalized Myosin Intensity

Normalized Myosin Intensity

THE ROLE OF MYOSIN IN REGULATING JUNCTION FLUCTUATIONS

87

1.15 T T T T T 5
£ 11
72}
5}
= 1.05
= 1
=
§
= 095
S
Q
= 09
=5 0.85
Z
08 1 1 1 1 1 1 3
0 2 4 6 8 10 12
Time (min)
1.75 B ~| T T T T T T T T 14
) Iy .
= L Y vy A
] ! 1) I 1 n .-' Al 'V|¢
= 16 P TR ! ) -1
£ b L A 13
— ' v LI “
s 1451 ./ 7N K -
= Y i : )
S [ AW Lt Ly VA ) A T
S 13} HAAIEHE M H | 12
Ev ’ “"“": ' ' “‘ :‘.-'l k -‘-'-' ‘~"‘: ‘\:"I AT
2 115F -
= —411
g 1F m R e . '\’,n 2 CAY AR e it .'”,'\"-'.-"‘.""“ Y \_,“,'.,‘,“‘,':"J e .'-‘:‘.\:'-"‘,"",‘\.‘,'
Z. v YR u‘\‘ " .~ '.“ I,f‘,‘,\: A) AT -
0.85 ’ 1 1 | 1 1 1 1 1 1 1 10
0 10 20 30 40 50 60 70 80 90 100 110

Time (min)

Figure 7.2: Time traces for junction length and Bazooka and Myosin intensities.

Time traces for junction length and Bazooka and Myosin intensities for individual
junctions. a) Junction with ID 26 in the 5s SqghAx3-BazmCh 301014 movie. b) Junction
with ID 109 in the 30s SqghAx3-BazmCh 060813 movie. The examples are representative

of the dynamics observed for junctions in the tissue
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7.3 The autocorrelation for Myosin II fluorescence

intensity decays exponentially

The correlation function (unbiased) of two time series x, and y, of length N is

given by

m—1
ny(m) - Z x”eryn (7.1)
n=0

Here m is the number of lags. The autocorrelation is commonly normalized by

dividing by the variance ¢

, resulting in a value of Ry =Tlatm=0. Similarly, the
crosscorrelation is normalized by the product of the standard deviation of each
of the two processes 0,0y,. I calculate the mean of the correlation function for all
junctions in the tissue as this captures the essential features of the process while
reducing the effect of spurious correlations in the time series. The correlation

function for each junction is normalized before the population mean is taken.

=ty Y
Ryy(m) = = X Y (7.2)
Xy ]]':1 O'JJCO';]V(N— ‘m|) = n+mdn

Figure [7.3|shows the mean autocorrelation for Myosin II intensity calculated
from 269 junctions in a tissue imaged at 30s intervals. The decay of the autocorre-
lation function is in good agreement with an exponential function of the form
exp —t/7 and this is consistent with the expectation for an Ornstein-Uhlenbeck
process. The turnover time for the process is T = 3.48 £ 0.093 min, which is simi-
lar to the value of 108 £ 66 s reported in [103] for dorsal closure in the Drosophila

embryo.
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Figure 7.3: Myosin autocorrelation

(blue) The unnormalized autocorrelation for Myo-II intensity (N = 269 junctions, 1
notum). (red) The best fit for an exponential of the form y = a*xexp(—t/1). The
coefficients are: a = 0.0103 4= 0.00017, T = —3.48 £ 0.093 min. The standard deviation
on the turnover time is calculated from the variance-covariance matrix for the fitted
coefficients. (inset) A zoom of the first 10 min figure, showing the experimental data
points.

7.4 Changes in Myosin II precede changes in junction

length

To study the interaction between Myosin II and junction fluctuations, I calculate
the crosscorrelation. Figure shows the crosscorrelation function for both
Myosin II and Bazooka intensity against junction length. The correlation function
for Bazooka is symmetric with a negative correlation at lag 0. This is what
you would see if the total Bazooka on a junction were conserved - as a junc-
tion contracts/expands the number of Bazooka molecules stays the same and
therefore the concentration increases/decreases. Note that if junction length
changes happened purely by vertices sliding, we would expect that the Bazooka
concentration would remain constant and the crosscorrelation function would
be flat. Combined with Figure a), the result shows that Bazooka intensity
is independent of junction length, but when the junction length fluctuates the
Bazooka intensity transiently goes above or below its steady state level. Unlike
Bazooka, the crosscorrelation function for Myosin II is distinctly asymmetric

with a minimum at a lagtime of —35 s (7 frames), demonstrating that changes



90 THE ROLE OF MYOSIN IN REGULATING JUNCTION FLUCTUATIONS

in Myosin II intensity preceede changes in junction length. This result is highly

non-trivial and suggests a causative role for Myosin in regulating junction length.

I first did this analysis using time-lapse imaging taken at 30 s intervals and
observed a minimum at a negative lag of 1 frame, which motivated collecting
data at a higher temporal resolution to be able to determine the position of the

minimum more accurately.

Interestingly, the timescale for the interaction between junction length and
Myosin II is in agreement with what has been reported in germband elongation.
Collinet et al. [104] studied cell intercalation focusing on the extension of new
junctions following neighbour exchange. They report that the crosscorrelation for
the extension rate and the rate of change of junctional Myosin II intensity has a

minimum at —40 s, with changes in junction length laggin

%In Collinet et al. [104], the crosscorrelation function is given in Figure 4 (j), but they do not
report the position of the minimum. This was instead found by taking a measurement from the
figure.
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Figure 7.4: Crosscorrelation functions for Myosin II and Bazooka intensity against
junction length

a) Mean crosscorrelation for Bazooka intensity and junction length (N = 269, 1 notum)
for a notum imaged at 30 s intervals. The minimum for the crosscorrelation function
occurs at lag = 0. b) Mean crosscorrelation for Myosin intensity and junction length,
same notum as in a). The minimum for the crosscorrelation function occurs at lag = —1,
corresponding to 30 s. ¢) Mean crosscorrelation for Bazooka intensity and junction length
(N = 747, 3 nota) for nota imaged at 5 s intervals. The minimum for the crosscorrelation
function occurs at lag = 0. d) Mean crosscorrelation for Myosin intensity and junction
length, same nota as in c). The minimum for the crosscorrelation function occurs at
lag = —7, corresponding to 35 s.
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7.5 Stochastic Model of Junction Fluctuations Driven by

Turnover of Myosin

To understand the role of Myosin II in regulating junction fluctuations, particularly
the causality suggested by the crosscorrelation function in Figure we turn
to modelling. Our starting point is a recently published model for oscillatory
behaviour in an elastic contractile material with a turnover of force-producing
molecules [103]. In the paper, the model is applied to describe cellular oscillations
in the Drosophila embryo during dorsal closure. During dorsal closure, the lateral
epidermal sheets are pulled together, fusing along the midline, to close the
hole in the dorsal epithelium left by germ band retraction [105]. It is the last
major morphogenetic event before the window of pupal development that we are
imaging. At 12 h AP, cells in the midline region have an anisotropic geometry
and are under compression, but as the tissue matures - through a process of
neighbour exchange and delamination - cells become isotropic and the midline

becomes indistinguishable from the rest of the tissue [89].

The model, developed by Dierkes et al., consists of a set of coupled differential
equations describing the dynamics of myosin concentration ¢ (Eq. and

junction length I (Eq. [7.4).

pI = T T(0) - K() (7.4)
T. = T(co) +K(lo) (7.5)
T(c) = T(eo) +ti(c—co) (7.6)
K() = Kio)+hki(l—1Ip)+ks(l—1p)? = 7.7)
phy = —h(e=c) kI~ o) ~ k(1 - o) 78)

Here, cg is the equilibrium concentration of myosin and [y is the equilibrium
length. The first term in equation [7.3|comes from turnover of myosin with binding
and unbinding rates k., = co/7 and k,fs = ¢/ 7, respectively. The second term

is related to matter conservation and ensures that, in the absence of turnover,
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cl is constant. Hence, changes in length affect the concentration, but not the
total amount, of myosin on a junctionE] Note that the third order term does
not significantly affect the dynamics, but has been included here to maintain

agreement with the model of Dierkes et al.

Within the model, a junction consists of a spring and dashpot in parallel with
a contractile unit. The spring element has an elastic restoring force K(I), the
tension generated by the contractile unit is given by T(c) and depends on the
concentration of myosin, and the damping coefficient u adds viscous dissipation
to the system. In addition, there is an external tension T, from neighbouring
junctions. Since the whole network is under tension, T, opposes contraction of
the junction. In the paper, Dierkes et al. assume that the system is at steady state
with the external and internal tension terms balancing. The terms T(c) and K(I)
can then be expanded around the steady state, to give equation As described
in the paper, the system exhibits three types of behaviour, depending on the

combination of parameters.

e Stability. After the transient has decayed, both ¢ and I are constant and

equal their equilibrium values cy and /.

e Oscillations. The system undergoes a Hopf bifurcation at (t1¢9)/ (k1lp) =
14 p/(k17). The resulting limit cycle is stable with sustained oscillations

around the equilibrium values ¢y and Io.

e Collapse. A further increase of tension in the system causes the system to

collapse to I = 0.

For our purposes, we are interested in the behaviour of the system in the
presence of stochasticity and I therefore modify the model in Dierkes et al. to
study this. It is known that binding and unbinding of myosin is a stochastic
process [106| [107]. Although, we do see some evidence of binding cooperativ-
ity in how the variance of myosin intensity scales with the mean intensity on

individual junctions (data not shown), for now we ignore mechanical coupling

3 i i i de _ _cdl o lde _ _1dl
A quick calculation shows how this term keeps cl constant. 7z = —;% & 57 = — [ 51 Use

integration by parts. 1+ [ 1dt = —1— [ %dt < In(c) +In(l) = =2 < In(cl) = —2. Hence l is
constant.
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between myosin molecules and introduce stochasticity in myosin turnover via an

uncorrelated white noise term ¢(t).

¢() = 0 (7.9)
@et)) = o(t—+t) (7.10)

First, we rewrite equations[7.3]and [7.8]in terms of the nondimensional variables
for myosin concentration (x), length (y), and time (z). The white noise term has a
prefactor 1/ \/z to make the equations invariant to changes in the size of the time

step Jz in the simulations.

c l t
X = a ;Y= % , Z= ﬁkl (711)

kicodx C, _klcofdi/ L

de _ _F -t 1

= klr(x 1) y dz + 7z (2) (7.13)

d
kllodfz = —teo(x—1) —kilo(y —1) —kslg(y — 1)° (7.14)

d]/ . t1C0 k3l(2] 3

1 —m(x -1)-(y—-1)— T (y—1) (7.15)

The nondimensional parameters are given in leaving us with the nondi-

mensional equations governing the dynamics of the system

_H _ thico _ ksl}
n=2z B= e T (7.16)
d d 1
e e Ao
d
= —px-1) - (- -y -1 (7.17)
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To study the behaviour of the system, I use a discrete-time numerical simula-
tion. The uncorrelated white noise is a random variable sampled from a uniform
distribution in the interval [—0.5,0.5] scaled by the noise strength ¢. There are
two things to note about the system. Firstly, changing the noise strength does
not affect the parameter space of the model. However, noise blurs the border
between adjacent basins of attraction, occasionally leading to collapse in regions
of parameter space that are otherwise stable. Secondly, the parameter space does
in general depend on the initial conditions. The initial conditions determine
which basin of attraction the system starts in and therefore which solution it
converges towards. Here, we assume the system is at steady state and therefore
focus on fluctuations around equilibrium. Varying the initial conditions around
the equilibrum values cy and Iy does not change the behaviour of the system (data

not shown).

Figure [7.5/ shows simulated time traces for the fluctuations of myosin and
junction length. The simulations are carried out using the nondimensional
parameters and time. Fortuitously, the time is nondimensionalised in such a way

that we only require the value of 7 to translate it into experimental time.

_ _*
z = ykl AN a= kit = (7.18)
t = zat (7.19)

This allows us to present the time traces and crosscorrelation function in
units of minutes using T = 3.48 min from the autocorrelation in Figure The
standard deviation of the myosin time series depends on the noise strength
and, for { = 0.3, is similar to the average experimental value. Our model
does not include the fluctuations in junction length arising from mechanical
coupling to other junctions and taking these into account would increase junction
length variation. From the simulated time traces we can calculate the mean
crosscorrelation in the same way as in Figure Interestingly, this gives the
same asymmetry as observed for the experimental data, with changes in myosin

leading changes in junction length, at least for the set of parameters chosen here.

Several factors combine to cause the experimental crosscorrelation to be weaker
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than in the model. The experimental data is for the fluorescence intensity of
myosin rather than the actual concentration and the relation between those two
quantities may be nonlinear. Measurement errors from segmentation and the

finite resolution of the microscope would also weaken the correlation.

a)

13 - - - 1.1
b 1.2 B T =
g 1.1 %”
z 1 =
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2 o5
= i =

0.71 | = Std: 0.115 |

0.6 : : : 0.9
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b)

Crosscorrelation Intensity vs Length
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Figure 7.5: Myosin model

a) Simulated data for the fluctuation of myosin intensity and junction length from the
system of equations in b) Mean crosscorrelation for myosin intensity and junction
length for 100 realizations of the system of equations in with nondimensional
parameters p/ (ky * T) = 0.28 and t; * o/ (k1 * Iy) = 0.3. The noise level is set to { = 0.3.
The nondimensional time is translated into minutes using the experimental value of
T = 3.48 min for the turnover time of myosin. The minimum for the crosscorrelation
function occurs at —37.5 min.
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As shown in Figure for at least one combination of parameters, the model
is able to reproduce the Myosin II time traces and crosscorrelation function for
the experimental data. Rather than attempt to fit the model parameters, we
want to investigate which parameter regions give rise to the asymmetry in the
crosscorrelation function. This is done by scanning over combinations of the
nondimensional parameters & and p and calculate the position of the minimum
in the mean crosscorrelation function. In Figure the results are presented
as a heatmap. The minimum is given in units of minutes using Eq. and
T = 3.48 min. The collapse of the system occurs for the same combination of
parameters as reported in Dierkes et al. [103]. The position of the minimum is
negative for all combinations of parameters, demonstrating that the asymmetry
in the crosscorrelation function is a general qualitative feature of the model.
This supports our interpretation of a causal role for Myosin II in regulating
junction dynamics. In addition, it demonstrates that the observed interaction
between Myosin II and junction length can be explained by stochastic turnover in
conjunction with tension. The region of parameter space, where the model has the
same position of the minimum as in experiment, is at 1/ k1T ~ 0.5, corresponding
to the viscous damping and elastic restoring force having the same order of

magnitude.

As in Dierkes et al. [103], we observe oscillations in both myosin and junction
length in the region above the Hopf bifurcation at (t1¢o)/ (k1lo) = 1+ u/ (k1 7).
Whether these are visible as distinct oscillations or are obscured by the stochastic
fluctuations of the system, depends on the noise strength. Hence, the appearance
of oscillations in the system corresponds to high levels of myosin and low levels

of noise.
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Position of minimum for myosin—length crosscorrelation [min]
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Figure 7.6: Myosin model, crosscorrelation minimum

For the system of equations in the nondimensional parameters u/ (ki * T) and
ty * co/ (ky = ly) were varied and the mean crosscorrelation function (of 5 realizations)
was calculated. The heatmap shows the position of the minimum for each combination
of parameters. The noise level is set to ¢ = 0.1. For the black region in parameter space
(upper left corner), the systems collapses. The position of the minimum is negative for the
range of parameters investigated. For the region of parameter space with yp/k;T ~ 0.5,
the position of the minimum in the crosscorrelation function in the model is the same as
in experiment.
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7.6 Discussion

Our analysis showed that, in the Drosophila notum, the spatial distribution of
Myosin II is unpolarized with respect to junction orientation. This is in contrast
to the embryonic germ band, where a planar polarized distribution of Myosin
IT causes oriented cell intercalation, with junctions shrinking along the D-V axis
and expanding along the A-P axis, leading to an overall elongation of the tissue.
As discussed in section 4 disruption of the polarized action of Myosin II in
the germ band results in neighbour exchange dynamics that resemble what we
observe in the notum. In Kr mutant embryos and Kr(RNAi) embryos, neighbour
exchange events are not polarized in the plane of the epithelium and junction
remodelling is reversible[53, 54} 92]. This suggests that planar polarization of
Myosin II introduces a bias into the system and may be considered a special case

of a more general mechanism.

Tracking the fluorescence intensity on individual junctions over time allowed
us to extract temporal information about Myosin II dynamics. We found that
the decay of the fluorescence intensity autocorrelation is exponential, which is
consistent with simple first order binding kinetics for Myosin II molecules to the
actin network. So although we did see some evidence of binding cooperativity
in how the standard deviation of Myosin II fluctuations scales with the mean
amount of Myosin II on junctions, the results suggest that this can be ignored for
the purposes of modelling. The turnover time for Myosin II was measured to
be 3.48 £ 0.093 min, which is similar to the value of 108 £ 66 s reported in [103]
for dorsal closure in the Drosophila embryo. The crosscorrelation function for
Myosin II intensity and junction length is distinctly asymmetric with a minimum
at —35 s, which shows that changes in Myosin II intensity preceede changes
in junction length. Interestingly, the same asymmetry has been reported for
junctional Myosin II intensity during the extension phase of junction remodelling
in germ-band elongation with a lagtime of —40 s [104]. As a control, there was
no asymmetry in the crosscorrelation function for Bazooka intensity and junction
length. The result for Myosin II is non-trivial and suggests a causal role for

Myosin II in regulating junction length fluctuations.

Based on a stochastic model, we were able to show that the asymmetry in



100 THE ROLE OF MYOSIN IN REGULATING JUNCTION FLUCTUATIONS

the crosscorrelation can be explained by stochastic turnover of Myosin II in
conjunction with tension being a function of the concentration of Myosin II
on a junction. This supports our interpretation of a causal role for Myosin II.
Importantly, the asymmetry is a general qualitative feature of the system and
does not depend on the choice of parameters. Looking more specifically at the
position of the minimum points to a region of parameter space where y/k1T ~ 0.5,
indicating that the viscous damping and elastic restoring force are of the same

order of magnitude.

Our question at the start of this chapter was: what is the source of stochasticity
and how do junction fluctuations arise in the tissue? The model suggests that
the stochastic behaviour of junctions, which we quantified in section {5 can be
explained by stochasticity in the turnover of Myosin II. This prompts us to ask
how changing the level of Myosin II in the tissue would affect junction fluctuations

and neighbour exchange events. This will be the focus of the next section.

Since the model in this chapter was based on published work by Dierkes et
al. describing dorsal closure [103]] and the crosscorrelation timescale for our data
agrees with what has been reported in germband extension[104], our results show
that Myosin II dynamics in the notum are similar to what is observed in other
processes in the Drosophila embryo. As we will see in the next section, the same
behaviour of Myosin II on the molecular level can have very different effects at

the tissue level depending on whether the spatial distribution is polarized or not.



CHAPTER 8

The role of Myosin Il in

neighbour exchange events

The previous section demonstrated that noisy junction length fluctuations can
be explained by stochasticity in the turnover of Myosin II. We now turn to how
Myosin II affects neighbour exchange events. The aim is that by perturbing
Myosin II, we are able to elucidate how it contributes to ordering of the tissue
over the course of pupal development. In particular we quantify the frequency
of neighbour exchange events in mutants with altered levels of Myosin II and
attempt to explain the differences we observe. In germ band elongation, planar
polarized Myosin II drives neighbour exchange and a decrease in the level of
Myosin II is associated with fewer neighbour exchange events [57]. It is unclear
how altering the level of Myosin II would affect the rate of neighbour exchange

in the notum given the isotropic spatial distribution of Myosin II.

Both reduction and overexpression of Myosin II were achieved in two different

ways (see [Curran 2015] for additional details).

e Drosophila Rho-kinase (Rok) regulates the phosphorylation of the myosin
regulatory light chain (MLRC) and thereby the activity of Myosin II. We
used RNA-mediated interference to inhibit Rok (UAS-RokRN4%) and reduce
Myosin II levels in the tissue. Conversely, a constitutively active version of

Rok (UAS-Rok“4T) was expressed to increase Myosin II levels.

e The Drosophila spaghetti squash (sqh) gene encodes the myosin regulatory
light chain of Myosin II. Expression of a non-phosphorylatable, and there-
fore inactive, form of MRLC (UAS—sthA) results in a loss of Myosin II

101
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from the tissue. The opposite phenotype was acheived by expressing a

phosphomimetic form of MRLC that is constitutively active (UAS-sgh®F).

8.1 The frequency of neighbour exchange events is

inversely proportional to Myosin II levels

To quantify the frequency of neighbour exchange events, I use the software de-
scribed in Methods to detect every time a cell changes neighbours. To avoid
overcounting from segmentation errors, I manually checked every computation-
ally detected event by looking at the fluorescent time-lapse images and only
including clear neighbour exchange events. Figure |8.1| shows the frequency of
neighbour exchange events for both Control and mutant phenotypes. Interest-
ingly, the frequency scales inversely with the level of Myosin II in the tissue.

hAA

kRNAi or sq

Loss of active Myosin II from the tissue, whether by Ro , increases

neighbour exchange and a gain in Myosin II, through either Rok®AT or sthE,
reduces neighbour exchange in the tissue. The differences are striking with
neighbour exchange events being 3.6 times as common in RokRN4? than RokAT.
This is opposite to what is observed in germ band elongation, where a decrease in
Myosin II - by expression of sqgh”* - results in fewer neighbour exchange events

[57].
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Figure 8.1: Frequency of neighbour exchange events

Frequency of neighbour exchange events. The neighbour exchange events have been
detected computationally, with the settings set to include all potential events. Each event
was then checked manually, by looking at the fluorescent images, using the criterion that
the extension of the junction, following a four-way vertex configuration, should be stable
and clearly visible from the images. To calculate the frequency, the number of neighbour
exchange events has been normalized by the total number of junctions in each tissue
(excluding border junctions) and the length of the movie in minutes. The figure includes
data from Control (N = 4 nota), Rok RNAi (N = 3 nota), Rok CAT (N = 5 nota), SqhEE
(N = 3 nota), and SqhAA (N = 3 nota). The errorbars indicate the standard deviation
among nota. The mean values are: 0.85 £ 0.150 x 103 (Control), 1.18 £+ 0.186 x 1073
(Rok RNAI), and 0.33 £ 0.146 x 1073 (Rok CAT).
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8.2 A reduction in Myosin II makes neighbour exchange

events more reversible

We are also interested in how Myosin II affects the reversibility of neighbour
exchange events. As in sectiond, we calculate the Kaplan-Meier survival curves to
quantify the probability that the configuration created by a neighbour exchange
event persists, without reverting back, for at least a time t. The advantage of this
approach is that it allows us to combine data from movies of different lengths and
take into account that a neighbour exchange at the start of a movie is observed for
longer than one occuring towards the end. To help build intuition for what the
data looks like, Figure 8.2)includes bar charts showing the proportion of neighbour
exchange configurations that persists for the duration of each movie versus those
that reverse. We class neighbour exchange events where the configuration persists
as unidirectional. It is interesting that in Rok RN Ai we occasionally observe the
same junction undergoing up to four consecutive neighbour exchange events.
The bar charts suggest that Myosin II reduces reversibility and this is borne out

by the Kaplan-Meier analysis.

From the survival curves, we can extract the probability that a neighbour
exchange configuration persists for at least 150 min in each tissue type. That
probability is 69% in Control, 26% in Rok RNAi embryos, where Myosin activity
is low, and 82% in Rok CAT embryos, where Myosin activity is high. The
appropriate statistical test for comparing the survival curves of two samples is
the log-rank test. It is a nonparametric hypothesis test that deals with censored
data and considers the null hypothesis that there is no difference between the
survival curves - i.e. at any time point the probability of reversing is the same
for each tissue type. The log-rank test shows that the difference is statistically
significant for Control and Rok RNAi (p = 0.00041), but not for Control and Rok
CAT (p = 0.27399). Although, with the frequency of neighbour exchange events
being lower in Rok CAT, there is considerably less data available for this analysis.
The results demonstrate that an increase in junctional levels of Myosin II makes

neighbour exchange events less reversible.
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Figure 8.2: Reversibility of neighbour exchange events

a) Bar charts showing what proportion of junctions undergo unidirectional, bidirectional, and
multidirectional neighbour exchange events. For each tissue type, the longest available movie
was chosen. b) Same as in a), but in a stacked bar chart. Each movie has been truncated at 75
min to make a direct comparison possible. N = 48 junctions / 51 T1 events, 4 nota (Control).
N = 42 junctions / 53 T1 events, 3 nota (Rok RNAi). N = 25 junctions / 26 T1 events, 5 nota
(Rok CAT). c) Kaplan-Meier survival curves showing the probability that a neighbour exchange
event is unidirectional for a given length of time. From the survival curves, the probability of a
configuration persisting for at least 150 min, along with the 95% confidence interval, is: Control
0.687 [0.5175 0.8567], Rok RNAi 0.258 [0.1250 0.3915], Rok CAT 0.821 [0.6572 0.9841]. A log-rank
test is used to determine if differences between the survival curves are statistically significant.
Control vs Rok RNAi p = 0.00041 (*), Control vs Rok CAT p = 0.27399 (ns). In addition, for
Rok RNA, there is sufficient data to calculate a median time for the persistence of a neighbour
exchange configuration: 64.8 min.
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8.3 Regulation of the frequency of neighbour exchange

events

There are two possible hypotheses for explaining the observed differences in
the frequency of neighbour exchange events. The requirements for a neighbour
exchange event to occur are that a junction contracts to a four-way vertex configu-
ration and that the four-way vertex is resolved to give a change in cell neighbours.
So either (i) Myosin II changes the fluctuation of junctions and affects how fre-
quently junctions reach a four-way vertex configuration or (ii) Myosin II affects
the probability of successfully going through a neighbour exchange once at a

four-way vertex.

We start by exploring the first hypothesis. As we established in section [5|and
[7} neighbour exchange events are indistinguishable from stochastic junction fluc-
tuations and those fluctuations are regulated by Myosin II. Hence, a change in the
level of Myosin II in the tissue could alter junction fluctuations. In the following
sections I quantify junction fluctuations, using various statistical measures, and

compare Control and mutant phenotypes.

8.3.1 The variation of junction lengths is similar in Control, RokRNAi

and Rok¢AT

To start with, we simply consider the variation of junction lengths, both within the
tissue and over time, as shown in Figure The temporal variation is quantified
by calculating the standard deviation over the mean for individual junctions and
grouping the data by tissue type. The median value is slightly higher for Rok CAT.
However, two things are worth noting about the Rok CAT phenotype. Firstly,
increasing Myosin II levels induces discontinuities in the adherens junctions with
DE-cadherin missing, particularly at vertices. In addition, DE-cadherin was seen
to be lost from the four-way vertex during neighbour exchange events. The same

effect was observed in sthE

and appears to be phenotypical of increased Myosin
IT activity [Curran 2015]. The discontinuties makes segmentation more difficult
and, hence, the junction fluctuation analysis for Rok CAT is more impacted by

segmentation errors than either of the other tissue types. Secondly, in three of the
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five Rok CAT embryos, we saw significant local deformations of the tissu Such
deformations cause junctions to undergo directed contraction and expansion,
making the fluctuations appear ballistic. This increases the standard deviation
of individual junctions and, as we shall see in the next section, affects the mean

square displacement. It is not clear what induces deformation of the tissue.

For the spatial variation, calculated as the standard deviation of junction
lengths divided by the population mean at a single time point, the difference
between tissue types is not statistically significant and there is no significant
change over a period of 75 min. The results demonstrate that the variation in
junction lengths are not able to explain differences in the frequency of neighbour
exchange events. Nonetheless, even if the overall variation is the same, differences

in junction dynamics might be important.

Temporal std/mean Spatial std/mean
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Figure 8.3: Standard deviation of junctions

a) Boxplots of the standard deviation for the lengths of junctions over time. For each
junction, o /(l) is calculated from the junction length time series. Since the standard
deviation varies with the length of the movie, all time series are truncated at 75 min. The
data shown is for Control (N = 4 nota), Rok RNAi (N = 3 nota), Rok CAT (N = 5 nota).
b) Standard deviation over population mean for junction lengths within the tissue at two
different time points, 12h AP and 13h 15min AP. The errorbars indicate the standard
deviation among embryos.

8.3.2 The mean square displacement curves are similar for Control

and mutants

The dynamics of junction fluctuations can be quantified used mean square dis-

placement (MDS) analysis. The method is described in section 5l Our model

IThe deformations within the tissue were quantified using Optical Flow Analysis. See Chapter
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for the dynamics of junction length changes, resembles an Ornstein-Uhlenbeck
process (with an additional coupling term from tension generated by Myosin).

The mean square displacement for an Ornstein-Uhlenbeck process is given by

F(A) =2DT*(1 — expl~#)) (8.1)

where the time scale T* is defined by the ratio of the viscous damping term
and the elastic restoring force a/K. The term D is the diffusion coefficent and
represents the magnitude of the stochastic input to the system. From this, the
mean square displacement saturates at a value of 2D7* and this value scales
inversely with the elastic restoring force, or stiffness, of the tissue. Hence, based
on tension measurements (see [Curran 2015]), we expect Rok RNAI to saturate at

a higher value than Control and Rok CAT to saturate at a lower value.

Figure 8.4/ shows the ensemble-averaged mean square displacement curves for
Rok RNAi and Rok CAT, with Control on the same graph for comparison. The
initial jJump at the first time point is from segmentation errors and is, as expected,
larger for Rok CAT. Both Control and Rok RNAi display subdiffusive behaviour,
with Rok RNAi approaching a higher saturation value. Surprisingly, the curve
for Rok CAT is almost linear and, contrary to our expectation, placed above
Control. Visual inspection of the MSD curves for individual junctions reveal that
they display a wide range of behaviours - some saturate, some are ballistic, and
some have other more complicated dynamics. It is therefore not the case that the
majority of junctions in Rok CAT tissue have linear mean square displacement
curves, but rather that a few ballistic junctions bias the ensemble-average. As
discussed in the previous section, this could be related to the local deformation

of the tissue observed in Rok CAT.

Separating the fluctuations caused by local deformations from the fluctuations
intrinsic to the junction has proved to be highly non-trivial. Documenting the
various approaches I have tried are beyond the scope of this thesis, but have
included subtracting the local deformation (using the velocity field extracted
from Optical Flow Analysis) before calculating the mean square displacement

and looking at the correlated and uncorrelated components of the time series of
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neighbouring junctions. Overall, there are indications that, without the pertubing
effect of local deformations, the mean square displacement curve for Rok CAT
might saturate at a lower value than Control. However, in the absence of either
data free from tissue deformations or a rigourous method for separating the

components of fluctuations, this will have to remain an open question.
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Figure 8.4: Mean square displacement curves

Ensemble-averaged MSD curves for a) Rok RNAi (N = 3 nota), b) Rok CAT (N =5
nota). The ensemble-average is calculated for each notum separately, then the average for
each tissue type is calculated. The errorbars shown are the standard deviation for the
ensemble-averages for nota of the same type, and therefore reflects the embryo-to-embryo
variability rather then the within-embryo variability. The MSD curve for Control (N = 4
nota) is included in each figure for comparison.
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8.3.3 Moyosin II slightly reduces the diffusion coefficient of junction

fluctuations

Even though the MSD curves for individual junctions display a complicated
range of behaviours, they all start out linear. This makes it possible to extract the
diffusion coefficient by fitting a straight line to the initial slope. The number of
datapoints used for the fit can affect the diffusion coefficient (see [95, 96]). I use

the first 5 min / 10 frames.

Figure 8.5/ shows the diffusion coefficients for different tissue types. For each
junction, the MSD curve is calculated and the diffusion coefficient is extracted.
As shown in panel (a, right), a straight line provides a good fit to the data.
The resulting diffusion coefficients are then combined by tissue type to give the
distributions shown in panels (b-e). This approach provides stronger statistical
support than a single fit to the ensemble-averaged MSD curve. Particularly for
Control 25 h and Rok CAT, the distributions are heavily left-skewed, I therefore
use the median value to get a more representative estimate for the diffusion
coefficient. Figures [8.5(f) shows the median values with errorbars given by the 95
% confidence interval, which for every data set is larger than the standard error

on the median.
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Figure 8.5: Diffusion coefficients estimated from MSD curves

a) (left) Example of an MSD curve for a single junction. The diffusion coefficient is determined
by fitting a straight line - shown in red, to the first 10 frames / 5 min of the curve. (right)
Zoom on the first part of the MSD curve, showing the goodness of fit. b) - e) The resulting
distributions of diffusion coefficients, with the data grouped by tissue type for Control (N = 733
junctions, 4 nota.), Rok RNAi (N = 588 junctions, 3 nota.), Control 25 h (N = 913 junctions, 3
nota.), and Rok CAT (N = 1222 junctions, 5 nota.). f) Plot of the median diffusion coefficient,
from the distributions shown. The errorbars are the 95% confidence interval for the median.
All data is for the actual junction length, as oppose to the vertex-vertex distance.
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We can test whether the differences between the medians are statistically

significant. The Wilcoxon rank-sum test is nonparametric and tests the null
hypothesis that data in, say, y1 and y2 are samples from continuous distributions
with equal medians, against the alternative that they are not. Table [8.1] shows
outcomes at the p = 0.01 significance level - H; indicates that the null hypothesis

of equal medians has been rejected.

Table 8.1
Control Rok RNAi Rok CAT late
Control . p = 0.0346 , Hy | p < 0.00001, H; | p =0.0014, H;
Rok RNAi . . p < 0.00001, H; | p < 0.00001, Hy
Rok CAT . . . p = 0.0014 , H;
late

The medians of Control and Rok RNAI are significantly different from Rok
CAT. For Control and Rok RNAI the difference is significant at 5% significance
level, but not 1%. However, the diffusion coefficient of Rok CAT is only around
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15% lower than Rok RNAi. While this could contribute to a decrease in the rate
of neighbour exchange events, it is not clear that it would be sufficient to give the

observed threefold reduction.

8.3.4 Junction fluctuations are mean-reverting, but the degree does

not depend on Myosin II

Another way we can attempt to capture differences in the dynamics of junctions,
is to look directly at mean reversion. If an increase in Myosin II causes junction
fluctuations to be more mean reverting it would reduce the likelihood of reaching
a four-way vertex configuration and could explain differences in the frequency of

neighbour exchange events.

Unlike a random walk, where the position is unbounded, a mean-reverting
process tends towards some equilibrium value. The Ornstein-Uhlenbeck process
is an example of such a process that consists of random fluctuations with a bias
that depends on its current value - above the (long term) mean the bias is negative
and below it is positive, causing the process to revert towards its (long term) mean.
Simply based on spatial constraints (cells cannot become arbitrarily large), we
would expect junctions to be mean-reverting. From the mean square displacement
curves it is not clear whether junctions in Rok RNAi and Rok CAT nota display
mean-reverting behavioulﬂ Instead, we can analyse the mean reverting behaviour
directly by looking at how the length change at a given point in time depends on
the current length of the junction, as shown in Figure The figure is based on
the method described in section |5, The time series for each junction is split into
segments where the junction length is monotonically increasing/decreasing and
the persistence length is defined as the signed change in length for each segment
- i.e. contraction corresponds to a negative persistence length. The figure shows
a clear bias in the persistence length with longer junctions being more likely to
contract and shorter junctions being more likely to expand than predicted by

the baseline expection of a random walkﬂ Hence, junctions display clear mean

2For a random walk, the mean absolute displacement is (|6!|) = v/2Dt. Given the measured
diffusion coefficient of 0.01 um?/min and an average junction length of 4 um, the expected time
for a junction to double in length is 800 min or around 13 hours. Hence, it is not unexpected that
the spatial constraints become evident in the mean square displacement curves only on time scales
longer than the duration of these movies.

3Tt would be interesting to use exact shape of the mean reversion to elucidate nature of the
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reverting behaviour. Interstingly, there does not appear to be a difference in the

degree of mean reversion for Control, Rok RNAi, and Rok CAT.

x 102

5 T T T T T T T T T

—— Control

4r T — Rok RNAi ]
Rok CAT

— Random Walk |]

Persistence length [pum]

-5 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

Junction length [pum]

Figure 8.6: Mean reversion of junction length fluctuations

The figure shows the persistence length as a function of junction length. The persistence
length is calculated, as described in section 5 by splitting the time series into segments
where the junction length is monotonically increasing/decreasing and taking the the
change in length for that segment. The corresponding junction length is the length at the
start of each segment. The filter is a moving average Hanning window with a width of
5. Carrying out the analysis for filters with width 10 and 20 gave the same dependence
on junction length, as did calculting the length change for a time window of set size.
Data from Control (N = 60737 segments, 1519 junctions, 4 nota), Rok RNAi (N = 83152
segments, 1187 junctions, 3 nota), and Rok CAT (N = 116439 segments, 1960 junctions, 5
nota), are shown. The data has been binned and errorbars are the standard error on the
mean. In addition, the result is shown for 300 realizations of a simulated random walk,
with a diffusion coefficient of D = 0.01 umZ /min and a time series length of 250 min.

“attractive force’. Le. is it greater when the process is further away from the equilibrium value,
as would be the case for a spring, or is it uniform with a strong boundary effect at some value?
However, we will not be investigating this further in this thesis.
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8.4 The frequency of neighbour exchange events can be
explained by the probability of successful junction

remodelling once at a four-way vertex

The methods for quantifying junction fluctuations, described in the previous sec-
tion, show little difference between Control and the mutants with increased /decreased
p-Myosin Il levels. We observed a small, but significant, difference in the diffusion
coefficients, indicating that - at least on short time scales - Myosin II inhibits
junction fluctuations. However, it is not clear whether such differences are func-
tionally important. Instead, we turn to the second hypothesis and investigate
the probability of successfully going through a neighbour exchange event once a

four-way vertex configuration has been reached.

We will refer to events where a junction shrinks to a four-way vertex, regardless
of the eventual outcome, as "attempted” neighbour exchange events. These events
are detected computationally and, as in section |5, I set the threshold at which a
four-way vertex is reached at 0.5 pm. When a junction shrinks down to a four-way
vertex it is counted as a single event regardless of how long the configuration
persists for. Figure shows the ratio of successful and attempted neighbour
exchange events, as well as the frequency of attempted events, for each tissue

type. In addition, the total counts and frequencies are shown in Table

Strikingly, the frequency with which junctions reach four-way vertex configu-
rations is the same in each of the three tissue types. Consequently, differences
in junction fluctuations cannot explain the observed differences in the rate of
neighbour exchange events. This is consistent with the previous section where we
found only small differences in the junction fluctuations of Control and mutant

embryos.

Instead, the frequency of neighbour exchange can be explained entirely by the
probability of successful junction remodelling at the four way vertex. Specifically,
in Control 28% of four-way vertex configurations are resolved by neighbour
exchange, whereas the numbers for Rok RNAi and Rok CAT are 42% and 12%,
respectively. So the probability of successfully going through a four-way vertex is

3.6 times higher in Rok RNAi than in Rok CAT - the same as the ratio of the rates
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of neighbour exchange in these tissues.
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Figure 8.7: Frequency of attempted neighbour exchange events

a) The percentage of four-way vertex configurations that result in a neighbour exchange
event. b) Frequency of all events where a junction shrinks to a four-way vertex, irrespec-
tive of whether the configuration is resolved by neighbour exchange. The frequency is
normalized by the total number of junctions in the tissue and the length of the movie,
giving units of events/(junction*min). Based on a two-sample t-test, there is no statistical
difference between the means: Control vs Rok RNAi p = 0.7525 (ns), Control vs Rok CAT
p = 0.5740 (ns), Rok RNAi vs Rok CAT p = 0.8450. The data is for N = 4 nota (Control),
N = 3 nota (Rok RNAi), and N = 5 nota (Rok CAT). The numbers from the figures are
shown in Table

Control Rok RNAi Rok CAT
Full T1s 74 131 49
Attempted T1s 273 329 400
Ratio full/attempted 0.279 £0.0605 | 0.416 4 0.0854 | 0.116 + 0.0347
Full T1 frequency x1073 0.84540.1499 | 1.183 +0.1864 | 0.331 4 0.1457
Attempted T1 frequency x1073 | 3.154 +0.9782 | 2.926 +0.7626 | 2.811 4 0.7767

Table 8.2: Total counts and frequencies for full and attempted neigbhour exchange events
in Control, Rok RNAi and Rok CAT. The frequency is normalized by the total number of
junctions in the tissue and the length of the movie, giving units of events/(junction*min).
Note that the ratio, T1 frequency and attempted T1 frequency are calculated as the mean
of the values for the individual nota. Hence, the mean ratio differs slightly from taking
the ratio of the total number of full Tls and attempted T1s. Errorbars are the standard
deviation between individual nota. Since the data for each nota differs with respect to
the duration of imaging and the size of the tissue within the frame, the total numbers for
full T1s and attempted T1s cannot be directly compared.

8.5 Myosin II regulates neighbour exchange events late

in development

As we saw in Chapter[f tissue packing in the notum becomes more regular over

the course of development. Post division, the proportion of hexagonal cells in the
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tissue increases and the variance of the polygon distribution decreases.

The previous results on neighbour exchange in mutant phenotypes, showed
that Myosin II significantly inhibits junction remodelling. This suggests the
hypothesis that the gradual increase in junctional Myosin II over developmental
time is regulated to drive the ordering of the tissue to its hexagonally packed
configuration. To address this, I analyzed unperturbed neighbour exchange

events and junction fluctuations in the notum at a later point in development.

Figure [8.8| compares junction remodelling at 12 h and 25 h AP. The frequency
of neighbour exchange events is reduced by a factor 2.7 and events are less
reversible; the probability that a neighbour exchange configuration persists for
at least 65 minutes increases from 0.82 [0.707 0.936] at 12h to 0.93 [6.807 1] at
25 h AP. We note that the results for the notum at 25h AP and Rok CAT at 12h
AP are similar. In fact, there is no statistical difference between the frequencies
(p = 0.8485) or Kaplan-Meier survival curves (p = 0.1765) for Control 25h and
Rok CAT. As shown in Figure for both Rok CAT and the unperturbed notum
at 25 h AP, the distribution of diffusion coefficients is heavily left-skewed with a

median value that is significantly lower than Control 12 h.

The similarity in results was expected since overexpression of Myosin II
activity in Rok CAT mirrors the developmental increase Myosin II at junctions.
The correspondence between the Rok CAT phenotype at 12h and the notum at 25h

establishes that Myosin II has a primary role in regulating neighbour exchange.

I also quantified the frequency with which junctions shrink to a four-way
vertex and, based on a two-sample t-test, found no statistical difference between
the mean frequency early and late in development (p = 0.1024). In contrast,
the probability of successful junction remodelling once at a four way vertex is
significantly lower at 25 h AP (18%) compared to 12 h AP (28%). Again, the
results late in development mirror those seen in the Rok CAT mutant phenotype,
in which there is also a reduced probability of remodelling at four-way vertices

(12%).
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Figure 8.8: Results for Control 25h

a) Frequency of neighbour exchange events for Control 12 h (N = 4 embryos) and
Control 25 h (N = 3 embryos). The neighbour exchange events have been detected
computationally then checked manually. To calculate the frequency, the number of
neighbour exchange events has been normalized by the total number of junctions in each
tissue (excluding border junctions) and the length of the movie in minutes. The errorbars
indicate the standard deviation among embryos. The mean values are 0.85 4 0.150 x 1073
(Control 12h) and 0.31 4 0.11 x 1073 (Control 25 h). b) Frequency of all events where a
junction shrinks to a four-way vertex, irrespective of whether the configuration is resolved
by neighbour exchange. The frequency is normalized by the total number of junctions
in the tissue and the length of the movie, giving units of events/(junction*min). The
mean frequencies are: 3.2 +0.98 x 103 (Control 12h) and 1.8 & 0.72 x 103 (Control 25
h). Based on a two-sample t-test, there is no statistical difference between the means,
p = 0.1024. The probability of successful junction remodelling once at a four way vertex,
i.e. the ratio of successful to attempted T1s, is 0.2793 £ 0.0605 for Control 12h and
0.1838 £ 0.0709 for control 25h. ¢) Kaplan-Meier survival curves showing the probability
that a neighbour exchange event is unidirectional for a given length of time. From the
survival curves, the probability of a configuration persisting for at least 65 min, along
with the 95 % confidence interval, is: Control 12 h 0.821 [0.7071 0.9356] and Control 25 h
0.933 [6.8071 1]. A log-rank test is used to determine if differences between the survival
curves are statistically significant, giving p = 0.044 (1-tailed test) and p = 0.088 (2-tailed
test).
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8.6 Discussion

We started this chapter with the observation that the frequency of neighbour
exchange events scales inversely with the level of Myosin II in the tissue. The
difference is significant with neighbour exchange events being more than three
times as common in Rok RNAi than Rok CAT. In addition to resulting in more
neighbour exchange events, we found that a reduction in Myosin II causes
neighbour exchange events to be more reversible, with the proportion of neighour
exchange configurations that persists for longer than 150 min dropping from
69% in Control to 26% in Rok RNAi. Both these results are opposite to what is
observed in the embryonic germ band. Kasza et al. (2014) report a decrease in
the frequency of neighbour exchange events in sqhAA embryos, where myosin
activity is reduced, with both a lower proportion of junctions contracting to a
four-way vertex and a higher rate of vertices failing to resolve by neighbour
exchange. For sqhEE embryos, where myosin activity is up, they see an increase
in unstable neighbour exchange events that either reverse completely or contract
back down to a four-way vertex. So unlike in the notum, in the germ band a
decrease in Myosin II leads to fewer neighbour exchanges and an increase in
Myosin II causes neighbour exchange events to be more reversible. It is very
interesting that the action of Myosin II has such opposite effects in these two
systems. A key difference is of course that the Myosin 1II is planar polarized in

the germ band and not in the notum.

Focusing on the difference in the frequency of neighbour exchange events, we
put forward two hypotheses. Either Myosin II changes junction fluctuations and
this affects how frequently junctions contract to a four-way vertex or Myosin II

changes the probability of acheiving neighbour exchange once at a vertex.

We did observe some differences in the junction fluctuations of Control com-
pared to the mutants with altered Myosin II levels. In particular, we saw a small
but significant difference in the diffusion coefficients, indicating that an increase
in Myosin II dampens junction fluctuations on short time scales. The presence of
local tissue deformations in Rok CAT mean that it is difficult to make any definite
conclusions about the behaviour on longer time scales. However, we also found

that the frequency with which junctions reach a four-way vertex configuration is
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the same for Control, Rok RNAi and Rok CAT. Consequently, regardless of how
Myosin II affects junction fluctuations, the observed difference in the frequency
of neighbour exchange events can be explained entirely by the probability of

successful junction remodelling at the four-way vertex.

It is not clear what the molecular mechanism is regulating junction remod-
elling at the four-way vertex. In all treatments that increased Myosin II activity, we
saw a loss of DE-cadherin from the four-way vertex during neighbour exchange,
indicating that the flow of DE-cadherin to vertices is disrupted in this phenotype.
Since DE-cadherin is required for junction remodelling, this could cause neigh-
bour exchange events to be less permissible in the tissue. Interestingly we also
observed discontinuities at vertices, as well as lower rates of neighbour exchange,
in the shibire mutant line, where endocytosis of DE-cadherin is blocked [Curran
2015]. It has been shown that Myosin II is involved in supporting the integrity of
DE-cadherin contacts [109]], suggesting a possible mechanism that explains how
increasing levels of Myosin II could inhibit junction remodelling. However, more
work needs to be done to understand the interaction of the various molecular

components involved.

I also examined neighbour exchange events in unperturbed nota later in
development. At 25h AP, the frequency of neighbour exchange events is reduced
and junction remodelling is less reversible. The correspondence between the
notum late in development and the Rok CAT mutant phenotype at 12h AP
suggests that the level of Myosin Il in the tissue is indeed the key factor regulating
neighbour exchange. It follows that the gradual increase in Myosin II during
development could be functionally important for ordering in the tissue. Early in
development, Myosin II levels are low, junction fluctuations are ubiquitous, and
neighbour exchange events are frequent and reversible, allowing the tissue to
explore a large set of possible configurations. As ordering proceeds and junctional
Myosin II increases, neighbour exchange events are inhibited and cell-cell contacts

eventually become locked in place.

This narrowing of the space of accesible configurations over time is reminis-
cent of simulated annealing, as described in section Recall that simulated

annealing is an algorithm for robustly finding the global minimum of an energy
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function. It does so by gradually lowering the temperature or noise in the system.
If the process of epithelial ordering can be cast as the minimization of some
energy function, as in most existing models [64} |66, 70], our results directly
propose that the tissue implements a form of simulated annealing to perform
this minimization. Here the increase in junctional Myosin II is analogous to the
reduction in temperature as it has the effect of restricting the configurations the
system can access. The decrease in the probability of going through a neighbour
exchange once at a four-way vertex corresponds to an increase in the energy
barrier for that transition. This annealing schedule could be implemented in any
of the equilibrum models described in section We should note that epithelial
tissues are in fact active systems, characterized turnover of junctional material
and dissipation of energy, and as such the framework of energy minimization
might not be applicable. In this case the equivalence with simulated annealing

would not hold.

Irrespective of the modelling viewpoint, our results outline how the tissue
transitions from a disordered to an ordered state. Stochastic junction fluctuations
facilitate neighbour exchange events, but the primary regulation of these events
occurs at four-way vertices. Myosin II both generates junction fluctuations and
inhibits junction remodelling. We speculate that inhibition specifically at four-way
vertices could allow the tissue to accomodate mechanical pertubations without
disrupting tissue topology. How homeostatic tissues are able to respond to
local pertubations while maintaining tissue integrity is an important question.
Further work on the regulation of neighbour exchange in mature epithelia could
determine whether vertex-specific inhibition is a more general mechanism for

maintaining tissue integrity.



CHAPTER 9

Spatial correlations in the tissue

9.1 The effect of junction fluctuations does not spread

beyond first neighbours

A somewhat separate aspect of tissue mechanics is how junction fluctuations
are correlated between neighbouring junctions and how far such correlations
spread in the tissue. Figure 9.1|shows that changes in the length of neighbouring
junctions tend to be anti-correlated, whereas the correlation between junctions
separated by one or more junctions averages to zero. The minimum of the mean
crosscorrelation is at a lag of zero, indicating that there is no temporal delay in

the force transmission between neighbouring junctions.

Another way to visualize how the effect of fluctuations spread, is to generate
a spatial map of correlations in the tissue. For Figure I calculated the cross-
correlation between a single junction and every other junction in the tissue. This
was then repeated for all junctions and the resulting spatial maps were aligned
and averaged. The map shows how the crosscorrelation varies with distance
and angle. In particular, the region corresponding to the typical position of 1st
neighbour junctions is negatively correlated and beyond that correlations average

to zero.

122
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Figure 9.1: Crosscorrelation for neighbouring junctions

a) Crosscorrelation for the junction length time series of neighbouring junctions (N = 1042
junction pairings, 4 nota). The mean and standard error at zero lag is = —0.22 £ 0.0087.
(inset) Histogram of the lag time where the crosscorrelation function for individual
junction pairs has its minimum (N = 905 pairings, 4 nota). Some junctions (137) are
positively correlated and the crosscorrelation function decreases to reach its minimum
value at the maximum lag. In this case it is not meaningful to talk about the minimum of
the crosscorrelation function and the junction pairings are not included in the histogram.b)
Boxplot of the crosscorrelation (at zero lag) for the junction lengths for 1st, 2nd, 3rd, and
4th neighbours.
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Figure 9.2: Crosscorrelations across the tissue

The figures contain data from time-lapse imaging of four wildtype pupae. a) The figure is
generated by considering each pair of junctions in the tissue and determining the distance
between their midpoints and their relative angle. This information is then used to generate a
spatial map of the density of junction midpoints. The position of nearest neighbour junctions is
restricted to a specific region, but beyond that there is very little structure in the distribution.
Note that information about the absolute orientation of junctions is removed and it is only
meaningful to consider relative angles between 0 and 90°. Hence the analysis generates a plot
for the upper right quadrant with the junction midpoint in origo. For illustration purposes, this
plot has been mirrored, to create the four-fold symmetry seen in the figure. A schematic of five
junctions, of average length and with angles of 120° have added to the figure. b) Spatial map of
cross-correlations in the tissue. The map is generated by calculating cross-correlations for each
junction with every other junction in the tissue and binning this data according to relative angle
and distance. The region of 1st neighbour junctions are anti-correlated, in accordance with the
results in Figure but correlations do not extend beyond this. The binsize is 5 pixels.
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9.2 The angle-dependence of cross-correlations can be

explained by a simple analytical model

Figure suggests that the correlation between neighbouring junctions depends
on angle. In particular, junctions are most strongly anti-correlated if they are
close to being parallel and almost uncorrelated if they are perpendicular. We can
develop a simple model to get some intuition for this angle-dependence. Start by
considering a simple example of three junctions joined at a vertex (see figure 9.3).
Say we are interested in the cross-correlation between the length of junction J;

and J», and denote the inner angle between these junctions by «.

In a), the junctions are almost parallel (¢ ~ 180°). Consequently, when the
length of junction J; decreases by J, the change in the length of junction J5 is also
of the order é. By contrast, in b), the junctions are perpendicular (« ~ 90°). In

this case, there is no first order change in the length of J,. for small J,

a~180° = A ~6 (9.1)

a~90° = A~0 (9.2)

If the change in length of J; and ], are of the same order of magnitude
(but opposite sign), the junctions are strongly anti-correlated (cross-correlation
is negative). From this 'geometric’ argument we would therefore expect the

cross-correlation to be zero at 90° and decrease monotonically with the angle «.

Now, let us construct an analytical model. With the arrangement of junctions
in figure consider the movement of the vertex joining junctions J; and ],
and assume that the movement all other vertices is uncorrelated (such that
contraction/expansion affects 1st neighbours only). We can find the new length

]é, after a length change ¢ in junction J;, from the cosine rule.

Jo = /13 + 62 — 226 cos(a) 9.3)

This is exact. The quantity we are interested in is the length change J, — .

Since § << ], we can make a few simplifying approximations.
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Figure 9.3: Schematic for crosscorrelation as a function of angle

Schematic of three junctions showing the configuration and notation used to develop the
model. a) The junctions are almost parallel (¢ ~ 180°). When the length of junction J1
decreases by J, the vertex shared between junction J1 and J2 moves J, and the change
in the length of junction J2 is also of the order J. b) The junctions are perpendicular
(« ~ 90°). In this case, there is no first order change in the length of J,. for small .

L=l = \JB+&-2]scos(a)~ I 94)
=~ /] —2]ad cos(a) ~ ] 9.5)
= ] 1—25C;)25(0‘)—I2 (9.6)
= -2, ©7)
= —bcos(a) (9.8)

A length-change —¢ in junction J; thus corresponds to a change —é cos(«) in
junction [, (note that cos(a) is negative for « > 90 degrees). As a result the

unnormalized crosscorrelation (for lag zero) is given by:

Riy(0) = Y Ji(t) = J2(t) = cos(a) (5()%); (9.9)

t

Using the assumption that the vertices at either end of a junction are moving
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independently of each other (say by amounts 6 and €), the variance of a junction

is given by:

o? = (1 = (1)) = (8()*) + (e(t)?) = 2(3(1)*) (9.10)

Consequently, the crosscorrelation goes as (¢02/2) cos(oc)ﬂ The junctions are
anti-correlated for « > 90° and is zero when the junctions are perpendicular to
each other. The model prediction of the angle-dependence of the cross-correlation
is shown in Figure [9.3| alongside the experimental result. In addition, a fit to
the data that includes a free parameter 8 is shown and this yields the function

3.26 cos(«), which is in good agreement with the prediction from the parameter-

free model.
{ *  wildtype
17 o2 cos(a) |7
3.26 cos(a)
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Figure 9.4: Crosscorrelation as a function of angle

(blue) Experimental data for the cross-correlation as a function of the angle between junc-
tions. (red) The prediction from the analytical model, (0%/2) cos(a). The experimentally
measured variance for junction lengths is 6.70 um?. (green) Best fit using f cos(«), where
B is a free parameter. The same calculation for Rok RNAi and Rok CAT yields values for
B of 3.87 and 3.61, respectively.

The key assumptions of the model are:

e Fluctuations are accommodated locally, i.e. the effect does not extend

Note that including the uncorrelated movement of the second vertex would not change the
calculation of the crosscorrelation since the change in junction J; would be J + § for half the time
points and 6 — J for the other half.
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beyond nearest-neighbour junctions. In particular, the movement of vertices

connected by a junction is uncorrelated.

e Fluctuations in the position of vertices cause the total length of junctions
to change. Even if most of this change comes from the exchange of length
between junctions by the sliding of a shared vertex, the model would require
that junctions have some degree of elasticity or that addition and removal

of junctional material is able to accommodate length changes.
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Conclusion

In this thesis we set out to examine how order emerges in epithelial tissue during
development in an effective and robust manner. Specifically, we wanted to
investigate what heuristic the tissue implements to evolve from a disordered to
an ordered state. I studied this using data from live imaging of the Drosophila
notum - a tissue that develops hexagonal order without undergoing substantial

growth or directed morphogenesis.

I developed a custom software package to process and analyse the live imaging
data. The code is written using class-based object oriented programming with
each junction and cell in the tissue stored as an object. In addition, the code
tracks junctions and cells over time, assigning each a unique ID, and determines
cell-cell connectivity within the tissue. The format makes it possible to query the
properties of any junction or cell. The code made the analysis in this part of the

thesis possible and will be of value for future projects in the lab.

I first characterized the properties of neighbour exchange events in the notum
and showed that they differ in several ways from junction remodelling during
germband elongation. In the notum, neighbour exchange events are often re-
versible, with the same junction undergoing several consecutive transitions. By
contrast, junction remodelling during germband elongation is strictly irreversible.
I then examined how neighbour exchange events in the notum can occur without
causing large-scale deformation of the tissue, when such events drive morphogen-
esis in the embryonic germband. I found that, even though junction remodelling
is associated with internal rearrangement and a resdistribution of apical area
in the four cells involved, the aspect ratio of the four-cell cluster is unchanged.
Hence, even if neighbour exchange events were oriented along the same axis,

the cumulative effect would not reshape the tissue. I also studied the temporal
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distribution of neighbour exchange events and found that they occur somewhat
randomly in time. In particular, I could not decisively reject the hypothesis that
the temporal distribution of events is consistent with a Poisson process. This
suggests that neighbour exchange events in the notum are not highly coordinated

and stereotyped processes, the way they are in germband elongation.

To investigate the hypothesis that neighbour exchange events are generated
by a stochastic process in the tissue, I examined junction fluctuations and how
they relate to neighbour exchange events. An analysis of the mean square
displacement curve and the distribution of persistence lengths demonstrated that,
on average, junction fluctuations are subdiffusive and resemble a constrained or
mean-reverting random walk. We had anecdotal evidence that the magnitude of
junction fluctuations are similar to the contraction and expansion observed during
neighbour exchange. This was borne out by statistical analysis demonstrating
that there is no difference in the persistence length of junction fluctuations and
neighbour exchange events. Furthermore, I found no significant difference in the
rate of contraction and expansion, going into and coming out of a four-way vertex
configuration. Hence, phenomenologically junction remodelling in the notum is
symmetric. The results suggest a model where neighbour exchange events are
an epiphenomenon of stochastic fluctuations present in the tissue, rather than

directed singular processes.

I then investigated how junction fluctuations originate and are regulated
within the tissue. I used data from live imaging of transgenic Drosophila strains
expressing Sqh-GFP to extract temporal information about Myosin II dynamics.
From this analysis, I found that Myosin II intensity and junction lengths are
anticorrelated, with changes in Myosin II preceeding changes in junction length
by 35s. This suggests that Myosin II has a causal role in regulating junction
fluctuations. To investigate this, I extended the mathematical model by Dierkes
et al. [103] to incorporate stochastic turnover of myosin. This model was able
to reproduce several features of Myosin II and junction dynamics, including the

asymmetry in the anticorrelation and lagtime.

Having established a role for Myosin II both in generating and regulating

junction fluctuations, I turned to how Myosin II affects neighbour exchange
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events. For this, [ used data from transgenic Drosophila strains with altered levels
of Myosin II. I found that, across several mutant phenotypes, the frequency of
neighbour exchange events scales inversely with the level of active Myosin II in
the tissue. The effect was striking with neighbour exchange events being more
than three times as frequent in Rok RNAi than in Rok CAT. In addition, changes
in the level of Myosin II also affected the reversibility of neighbour exchange
events. In Control at 12h AP, the probability that a cell neighbour configuration
persists for longer than 150 min, following junction remodelling, is 69% and
this drops to 26% in Rok RNAi. Notably, the results for both the frequency and
reversibility of neighbour exchange events are opposite to what is reported in
germband elongation, where a reduction in Myosin II activity is associated with a
decrease in the frequency and overexpression of Myosin II increases reversibility

[57].

To attempt to explain the observed differences in the frequency of neighbour
exchange events across phenotypes, I quantified how frequently junctions reach a
four-way vertex configuration, regardless of the eventual outcome. Interestingly,
I found that the frequency is the same in Control 12h, Rok RNAi and Rok CAT.
Consequently, the frequency of neigbhour exchange events can be explained
by the likelihood of going through once at a four-way vertex. The molecular
mechanism for such vertex-specific regulation is not known. However, we did
observe that mutant phenotypes with increased Myosin activity displayed a loss
of DE-cadherin from four-way vertices during neighbour exchange. In addition,
we found that the frequency of neighbour exchange events is reduced in the
shibire mutant line, where endocytosis of DE-cadherin is blocked [Curran 2015].
Since DE-cadherin is required for junction remodelling and Myosin II is known to
affect the stability of DE-cadherin cell-cell contacts [109], this suggests a possible
mechanism. However, more work is needed to determine the role of the various

molecular components involved.

To investigate the role of neighbour exchange in ordering, I examined junction
remodelling and junction fluctuations in unperturbed nota later in development.
From 12h AP to 25h AP, the frequency of neighbour exchange events decreases

by a factor 2.7 and events become less reversible. The observed correspondence
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between the notum at 25h AP and the Rok CAT mutant phenotype at 12h AP
demonstrates that Myosin II has a primary role in regulating neighbour exchange

in the tissue.

Taken together, our results provide a heuristic for how the tissue transitions
from a disordered to and ordered state during development. The data supports
the hypothesis that the gradual developmental increase in Myosin II drives
ordering in the tissue by generating junction fluctuations and regulating junction
remodelling. Early in development, stochastic fluctuations of junctions allow the
tissue to explore different configurations. They also facilitate neighbour exchange
events, which are frequent and reversible at this stage. As the density of junctional
Myosin II increases, junction remodelling is inhibited and cell-cell contacts are

eventually locked in place.

Within the framework of equilibrium models this heuristic corresponds to
a form of simulated annealing. Specifically, one where the annealing schedule
involves an increase in the energy barrier at four-way vertices rather than a

lowering of the temperature for the entire system.

We speculate that inhibition of junction remodelling specifically at four-way
vertices could have advantages for the tissue. Such inhibition might enable
the tissue to retain a certain degree of fluidity and responsivity to mechanical
pertubations, while preventing changes in cell-cell connectivity. Further work is

needed to address whether vertex-specific inhibition is a more general mechanism.
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