UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Nitric oxide pollutant formation in high hydrogen content (HHC) syngas flames

Dinesh, KKJR; van Oijen, JA; Luo, KH; Jiang, X; (2015) Nitric oxide pollutant formation in high hydrogen content (HHC) syngas flames. International Journal of Hydrogen Energy , 40 (39) pp. 13621-13634. 10.1016/j.ijhydene.2015.08.068. Green open access

[thumbnail of Dinesh_AAM_nitric_oxide_pollutant_formation.pdf]
Preview
Text
Dinesh_AAM_nitric_oxide_pollutant_formation.pdf

Download (1MB) | Preview

Abstract

Three-dimensional direct numerical simulations (DNS) of high hydrogen content (HHC) syngas nonpremixed jet flames with a Reynolds number of Re = 6000 have been carried out to study the nitric oxide (NO) pollutant formation. The detailed chemistry employed is the GRI 3.0 updated with the influence of the NCN radical chemistry using flamelet generated manifolds (FGM). Preferential diffusion effects have been considered via FGM tabulation and the reaction progress variable transport equation. The DNS based quantitative results indicate a strong correlation between the flame temperature and NO concentration for the pure hydrogen flame, in which NO formation is mainly characterised by the Zeldovich mechanism. The results also indicate a rapid decrease of maximum NO values in H2/CO syngas mixtures due to lower temperatures associated with the CO-dilution into H2. Results on NO formation routes in H2/CO syngas flames show that while the Zeldovich mechanism dominates the NO formation at low strain rates, the high NO formation rate at high strain rates is entirely caused by the NNH mechanism. We also found that the Fenimore mechanism has a least contribution on NO formation in H2/CO syngas flames due to absence of CH radicals in the oxidation of CO. It is found that, due to preferential diffusion, NO concentration exhibits higher values near the flame base depending on the hydrogen content in H2/CO syngas fuel mixture.

Type: Article
Title: Nitric oxide pollutant formation in high hydrogen content (HHC) syngas flames
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.ijhydene.2015.08.068
Publisher version: http://dx.doi.org/ 10.1016/j.ijhydene.2015.08.068
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Syngas, Direct numerical simulation, Preferential diffusion, Zeldovich mechanism, NNH mechanism, Direct Numerical-simulation, Premixed Jet Flames, Nox Emission Characteristics, Diffusion Flames, Airstream Dilution, Nitrogen Addition, Mild Combustion, Diesel-engine, Temperature, Performance
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/1510203
Downloads since deposit
128Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item