
EDITORIAL 

Introduction to Special Issue on Mitochondrial Redox Signaling in Health and Disease 

____________________________________________________________________________________________________________________ 

Mitochondria are functional entities that harbor the energy-conservation machinery that 

supports cell function through the coordination of mitochondrion-derived molecules involved in 

the regulation of cell signaling and transcription. Conversely, mitochondria are targets of an 

ever-increasing number of signaling pathways and their activity is also modulated by several 

transcription factors. The cell’s energy-redox homeostasis is primarily a function of 

mitochondrial oxidative phosphorylation and the formation of O2
.–/H2O2.  Notably, other 

mitochondrion-driven processes contribute to cellular homeostasis, such as mitochondrial 

biogenesis and dynamics, mitochondrial quality control (autophagy and mitophagy), 

mitochondrial proteostasis and the role of the mitochondrial unfolded protein response (UPRmt), 

and redox signaling in the homeostatic control of mitochondrial function. This Free Radical 

Biology & Medicine special issue on Mitochondrial Redox Signaling in Health and Disease  

covers some aspects of the myriad of processes embraced by mitochondrial biology and 

physiology, provides mechanistic insights linking mitochondrial function with cell function, and 

recognizes mitochondrial function as an amenable therapeutic target. 

 

Energy metabolism: Mitochondria and the organelle network 

Mitochondrial function cannot be viewed as that originating from isolated organelles, for 

extensive cross-regulation of organelle function occurs at organelle contact sites, e.g., MAM 

(mitochondria-associated membranes) between mitochondria and ER [1]. Other organelle 

interactions involve the ER, Golgi apparatus, nucleus, plasma membrane and others, and are 

associated with the regulation of several cellular processes.  These organelle contact sites acquire 

further significance when considering that they serve as a platform for cell signaling, as in the 

case of MAM alterations and processes associated with insulin resistance [2].  

The most important function of mitochondria is oxidative phosphorylation with formation of 

ATP to maintain the cell’s energy homeostasis: electrons flowing through the respiratory chain 

complexes linked with pumping of H+ across the inner mitochondrial membrane and energy 

conservation as a protonmotive force drives the synthesis of ATP. The complexity of the 

oxidative phosphorylation system has revealed the occurrence of supercomplexes with different 

proportions of complexes I, III, and IV [3, 4], the formation of which is assisted by several 

assembly factors. The occurrence of two different coenzyme Q pools (one trapped within the 

supercomplex structure and another free in the inner mitochondrial membrane) serves to 

reconcile diverging experimental evidences under the plasticity model [5]. It may be surmised 
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that supercomplex organization is an adaptive mechanism of mitochondria to optimize their 

function in response to fuel availability and/or oxidant concentration [5]. Mitochondrial 

translation is essential for the oxidative phosphorylation system biogenesis and, consequently, 

for cellular energy supply. The synthesis of mtDNA-encoded polypeptide subunits of oxidative 

phosphorylation complexes is supported by a key quality control factor in mitochondrial 

translation, the mitochondrial translation factor 4 (mtEF4) [6], which –together with other 

translational activators– facilitates the crosstalk between mitochondrial translation and cytosolic 

translation, a process regulated by mTOR signaling  [6]. 

In addition to supercomplex organization, metabolic reprogramming is increasingly 

recognized among the many enabling features that drive tumorigenesis and required to sustain 

proliferation and affecting the tumor microenvironment: metabolites from the tricarboxylic acid 

cycle due to mutations of fumarate hydratase, succinate dehydrogenase, and isocitrate 

dehydrogenase –termed oncometabolites – drive oncogenic signaling [7].  

Plant mitochondria exhibit the highest respiration rates during seed germination, pollen 

development, and fruit ripening, i.e., mitochondria are key players in plant development and this 

high energy requirement is met by an increased number of mitochondria [8]. Bypass of the 

electron-transfer complexes of the respiratory chain by the alternative oxidase does not 

contribute to ATP generation but plays an important role in stress tolerance in plants, and this 

activity helps dissipate excess energy thus preventing formation of H2O2 [8]. 

 

Mitochondrial H2O2: The link between energy metabolism and redox biology 

The respiratory supercomplexes also have implications for mitochondrial O2
.– and H2O2 

production, e.g., oxidant production by complex I is lower when superassembled with complex 

III [5]. There are several sources of mitochondrial O2
.– and H2O2 within the NADH/NAD+ 

isopotential group (e.g., -ketoglutarate dehydrogenase, pyruvate dehydrogenase, and others) 

and the QH2/Q isopotential group (e.g., glycerol-P-dehydrogenase and acyl-dehydrogenase) in 

complexes I and III of the respiratory chain [9]. The highest rates of O2
.–/H2O2 occur at the 

QH2/Q isopotential group; a thorough analysis of the factors that lead to mitochondrial O2
.– 

production suggested reverse electron transport at the level of complex I when the NADH/NAD+ 

ratio is high [10]. This underscores the significance of assessing the cellular and mitochondrial 

pyridine nucleotide levels by genetically encoded NAD+/NADH sensors [11, 12] or fluorescence 

lifetime imaging microscopy (FLIM) [13]. The latter offers the potential to discriminate between 

the NAD and NADP pools and provides metabolic information into the changes of time-resolved 

(NAD(P)H fluorescence in pathophysiological situations [13].   

Mitochondrion-derived H2O2 is the most likely signal leading to short-term responses (redox 
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signaling) and long-term responses (redox regulation of transcription) [10]. H2O2-mediated redox 

regulation of signaling and transcription entails thiol/disulfide exchange reactions [14, 15]. In 

this special issue, mitochondrion-derived H2O2: (a) establishes a link between energy 

metabolism and inflammatory responses [16], acting on redox-sensitive targets such as Nrf2, 

NFB, JNK, IIS [17, 18], and stimulates mitochondrial biogenesis [19]; (b) is at the interface 

between bioenergetics, autophagy, and circadian control [20]; (c) is controlled during cholesterol 

oxidation in steroidogenic cells and brings together the coordinated activities of peroxiredoxin III 

–the major H2O2 reducing system within mitochondria– sulfiredoxin, which recovers 

hyperoxidized peroxiredoxin III [21]; (d) is involved in the activation of phospholipases and is 

an important physiological function associated with O2 sensing in astrocytes and regulation of 

breathing [22]; (e) regulates mitogenic cellular signaling in proliferating cells through HIF 

activation and transcriptional activation of genes required for metabolic adaptations to 

proliferation and induction of angiogenesis [23]. It has been proposed that transducing an H2O2 

signal can be accomplished by peroxiredoxin-2 and STAT3 [24]. 

Mitochondrial H2O2 production can be viewed as the integration of an energy component 

(acetyl-CoA as a metabolic hub, tricarboxylic acid cycle, respiratory chain) and a redox 

component (mitochondrial NADPH-supported GSH- and thioredoxin-dependent antioxidant 

networks) into the energy-redox axis [18]. Hepatic GSH levels can be regulated by microRNAs 

by either targeting glutamate-cysteine ligase (GCL) or downregulating the levels of Nrf2, noting 

that miR433 is redox sensitive and downregulates the expression of GCL in an Nrf2- independent 

manner. The liver methionine pathway is also regulated by a specific set of miRNAs [25]. 

Impairment of the integration of metabolism and redox biology entailed in the energy-redox axis 

results in mechanisms underpinning removal of damaged organelles (autophagy, mitophagy), 

i.e., quality control, which is monitored at the protein, organelle and sub-organelle levels [26]. 

Mitophagy entails the coordinated activity of mitochondrial kinase PINK1 and the ubiquitin 

ligase Parkin that tag mitochondria for lysosomal degradation; conversely, USP30 deubiquitinase 

inhibits mitophagy by opposing Parkin-mediated ubiquitination [27].  Essential to mitochondrial 

quality control is the recognition of receptors that sense different signals and associate the 

mitophagy machinery with mitochondrial dynamics [26]. Examples of mitophagy receptors are 

ATG32 (Autophagy-related protein 32), FUNDC1 (FUN14 domain-containing protein 1), and 

BCL2-L-13 (BCL-2-like protein 13) as well as others. Activation of these receptors is linked to 

the DRP1-driven mitochondrial fission machinery [26]. Signaling through these receptors can be 

triggered by bioenergetics deficits, hypoxia, oxidative stress and inflammation [26].  

O2
.– formation by mitochondria appears to be a requirement for activation of mitochondrial 
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poly(ADP-ribose) polymerase (mtPARP), thereby catalyzing the poly(ADP-ribosyl)ation 

(PARylation) of the electron transfer complexes and decreasing energy production [28]. In 

plants, H2O2 signaling is important in reproductive development, i.e., pollen germination, pollen 

tube growth and fertilization, and pollen maturation [8]. 

Another type of mitochondrion-driven signaling, not necessarily redox in nature, is 

accomplished by mt-DNA-encoded mitochondrial-derived peptides (MDPs), although 

mechanisms of mitochondrial export are still under investigation [29]. As a mitochondrial signal, 

MOTS-c (Mitochondrial ORF within the Twelve S rRNA c) has several metabolic targets 

(folate-methionine cycle and related AMPK and sirtuin signaling), stimulates glucose uptake, 

regulates fat and muscle metabolism [29].  

 

Mitochondrial function in neurodegenerative disorders 

Deficits in cell bioenergetics are a common denominator in several neurodegenerative 

disorders as well as in aging. Alzheimer’s disease [17], Parkinson’s disease [30], Friedrich ataxia 

[31], among others, also share some aspects of impairment of glucose homeostasis and insulin 

resistance. In this special issue, impairment of oxidative phosphorylation and increased 

formation of mitochondrial H2O2 in Parkinson’s disease leads to a compensatory increase in 

glycolysis (upon oxidant-mediated stabilization of HIF-1) that, in turn, impairs pentose 

phosphate pathway activity [30]. This metabolic shift and oxidative damage in Parkinson’s 

disease also impairs mitochondrial quality control pathways and leads to the consideration of 

Parkinson’s disease as a metabolic syndrome-like disorder [30]. The interconnected 

mitochondrial energy- and redox systems in mouse models of Alzheimer’s disease [17] are 

consequences of deficits in brain glucose availability, reduced oxidative phosphorylation, 

compensatory glycolysis, increased formation of mitochondrial H2O2, all leading to the 

bioenergetics hypothesis of Alzheimer’s disease. Thus, redox dysregulation is viewed in this sub-

section as a common denominator and link to the inflammatory hypothesis, where microglia 

activation is considered as the driving force for neuroinflammation [17]. The genetic deficiency 

of the mitochondrial protein frataxin is the cause of Friedreich ataxia. Frataxin deficiency is not 

associated with cognitive impairment, but with increased oxidative stress with alterations in lipid 

metabolism, which are  discussed as potential therapeutic approaches in Friedreich ataxia [31]. 

The mitochondrial Lon protease is involved in several neurological disorders, such as hereditary 

Parkinson’s disease, Friedreich ataxia, familial amyotrophic lateral sclerosis, brain ischemia and 

stroke [32]. In these disorders, the physiological functions of the Lon protease are altered: as a 

protease, as a chaperone,and as a mtDNA-binding protein [32]. 

The involvement of mitochondrial dysfunction and oxidative stress in the pathogenesis of 
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several neurodegenerative diseases represent potential therapeutic targets. Concerning oxidative 

stress, astrocytes play a key role in providing antioxidant support to neurons [33] through redox 

regulation of the astrocytic Nrf2 pathway, whereas in neurons the synaptic activity-dependent 

expression of genes of the GSH and thioredoxin-peroxiredoxin families are the major antioxidant 

systems. Agonists of the peroxisome proliferation-activated receptor gamma (PPAR), a ligand-

activated transcription factor involved in the regulation of mitochondrial bioenergetics and 

turnover, antioxidant defenses, and immune responses, are important therapeutic agents in 

neurodegenerative diseases [34]. Mitochondrial sirtuins (SIRT3, SIRT4, SIRT5) have a variety 

of functions, deacetylase, ADP-ribosylase, lipoamidase, succinylation, glutarylation; hence, these 

sirtuins are involved in the regulation of a broad range of metabolic pathways and, as a corollary, 

implicated in a range of metabolic diseases, such as neurodegeneration, diabetes, cancer, cardiac 

dysfunction, and age-related disorders [35]. 

 

Mitochondrial genomics in health and disease 

Several mechanisms link mtDNA defects to atherosclerosis, and although a causative role of 

oxidants in the development of plaque formation has been widely reported, oxidative stress is not 

necessarily required for mtDNA damage to impact energy metabolism, lead to apoptotic cell 

death, activate inflammatory responses and promote atherogenesis [36]. In addition to mtDNA 

damage, defects in mt-translation elongation factors have been associated with several human 

diseases [6]. mtPARP is also involved in the repair of mtDNA by interacting with essentia l 

factors of the mtDNA repair machinery however, under oxidative stress conditions, excess of 

O2
.– formation, mtPARP PARylates those essential factors, thereby promoting the disassembly of 

the mtDNA repair complex [28] and contributing to mtDNA oxidative damage. As mentioned 

above in mitochondrial signaling, the short open reading frames (sORFs) in mtDNA encode 

humanin and other small humanin- like peptides [29]. In plants, the highly dynamic nature and 

diversity of mtDNA has profound implications for response to stresses as well as development 

[8]. 

 

This Free Radical Biology & Medicine Special Issue on Mitochondrial Redox Signaling in 

Health and Disease covers only a small part of the many biological processes in which 

mitochondria operate as a cellular hub. The significance of mitochondrial function is increased 

because of the large number of mitochondrion-centric mechanisms accounting for 

pathophysiological situations as well as the development of mitochondrial pharmacology [31, 34, 

37].  The invited review articles in this Special Issue will be of interest to researchers in the field 

of mitochondrial redox signaling, including postdoctoral fellows and graduate students. The 
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Editors’ long-term objective is to provide readers with informed updates of this research field 

every 3-4 years in Free Radical Biology & Medicine.  
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