Explaining socio-economic trends in coronary heart disease mortality

England 2000-2007: the IMPACTsec model

Madhavi Bajekal PhD

Senior Research Fellow (Honorary)
Department of Applied Health Research
University College London

The future of human longevity: cardiovascular disease
Swiss Re Centre for Global Dialogue, Rüschlikon, 2013
Outline

• Setting the context: socioeconomic differentials in all-cause mortality England in:
 • Life expectancy
 • Lifespan variability
 • Morbidity and disability
• Why CHD? (coronary heart disease)
• IMPACTsec model and results
• Next steps
Index of Multiple Deprivation 2007, England

(map at district level)

- IMD 2007 combines indicators across 7 deprivation domains into a single index score
 - Income, employment, health, education, housing and services, crime, and living environment
- Lowest-level geography IMD calculated for 32,482 Lower Super Output Areas (LSOAs) in England with c. 1,500 people each
- LSOAs ranked by ascending IMD 2007 score and grouped into population quintiles
 - Q1: Least deprived quintile
 - Q5: Most deprived quintile

Trends in LE@65: 1982-2006 Males

Area-based deprivation

Individual socioeconomic status

Gap = 3.9y

Gap = 2.6y

Gap = 2.1y

Gap = 3.1y
Lifespan dispersion measures

(Males, E&W, 2010)

- Life expectancy (79y)
- Median (81y)
- Mode (85y)
Lifespan variation Q1 v Q5: England 2001
(deaths pooled 1999-2003, smoothed moving average over 5 years of age)

Men (aged 25+)

Women (aged 25+)

Measure of dispersion

<table>
<thead>
<tr>
<th>Measure of dispersion</th>
<th>Eng</th>
<th>Q1</th>
<th>Q5</th>
<th>Q1-Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modal age of death</td>
<td>83</td>
<td>84</td>
<td>77</td>
<td>7</td>
</tr>
<tr>
<td>Median age of death</td>
<td>78</td>
<td>81</td>
<td>74</td>
<td>7</td>
</tr>
<tr>
<td>LE@25</td>
<td>52</td>
<td>55</td>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>LE@65</td>
<td>16</td>
<td>17</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Stdev lifespan</td>
<td>12.7</td>
<td>11.5</td>
<td>13.8</td>
<td>-2.5</td>
</tr>
<tr>
<td>S_{25}</td>
<td>8.0</td>
<td>7.9</td>
<td>8.1</td>
<td>-0.3</td>
</tr>
<tr>
<td>S_{65}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measure of dispersion

<table>
<thead>
<tr>
<th>Measure of dispersion</th>
<th>Eng</th>
<th>Q1</th>
<th>Q5</th>
<th>Q1-Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modal age of death</td>
<td>85</td>
<td>88</td>
<td>84</td>
<td>4</td>
</tr>
<tr>
<td>Median age of death</td>
<td>82</td>
<td>84</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>LE@25</td>
<td>56</td>
<td>58</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>LE@65</td>
<td>19</td>
<td>21</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>Stdev lifespan</td>
<td>12.0</td>
<td>11.2</td>
<td>13.1</td>
<td>-1.9</td>
</tr>
<tr>
<td>S_{25}</td>
<td>8.3</td>
<td>8.0</td>
<td>8.7</td>
<td>-0.7</td>
</tr>
<tr>
<td>S_{65}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7yr gap in modal age of death

4yr gap in modal age of death
Cause of death distribution by age: males

Least Deprived (Q1)

Most Deprived (Q5)
Multi-morbidity by age and deprivation deciles
Scotland, 2007

- Young and middle-aged people (25-70y) living in the most deprived areas had multiple morbidity (2+ diseases) rate as high as those 10+ years older living in most affluent areas.
Males: Life expectancy with and without disability: at birth and age 65 by deprivation quintiles England 2007-2010
(Source: adapted from ONS ‘Inequalities in DFLE, 2013’)

LE at birth

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Disability-free</th>
<th>With disability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least</td>
<td>70</td>
<td>12</td>
</tr>
<tr>
<td>Q2</td>
<td>68</td>
<td>13</td>
</tr>
<tr>
<td>Q3</td>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>Q4</td>
<td>62</td>
<td>15</td>
</tr>
<tr>
<td>Most</td>
<td>55</td>
<td>19</td>
</tr>
</tbody>
</table>

LE at age 65

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Disability-free</th>
<th>With disability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Q2</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Q3</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Q4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Most</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Legend:
- Disability-free
- With disability
To recap..

• People in disadvantaged circumstances live shorter lives, get diseases earlier and spend more years of their (shorter) life with disability.
• Poor and rich die from the same causes, but at different rates.
• There is an inverse social gradient in health – each higher social grade has lower rates of ill-health and death.
Why model CHD?

• Fall in CHD mortality has driven rapid improvements in life expectancy over last 25 years.

• But it still remains a leading cause of death and of persistent inequalities.

• Model to explain why CHD mortality fell:
 – was it better treatments; or reductions in risk factors?
 – did the contributions of these factors differ by socioeconomic circumstances?
We live in a golden age of medical progress …

Decline in Deaths from Cardiovascular Disease in Relation to Scientific Advances

Source: Nabel & Braunwald E, NEJM 2012
Decline in Deaths from Cardiovascular Disease in Relation to Important Public Health and Primary Care: An alternative view

Age standardised CHD mortality rates by deprivation quintiles 1982-2006

Males

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
</tr>
</tbody>
</table>

Females

<table>
<thead>
<tr>
<th>Year</th>
<th>Rate per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
</tr>
</tbody>
</table>
Average annual percentage fall in age-standardised CHD mortality rates by deprivation and sex 1982-2006

Modelled estimates of annual % change using JoinPoint
Average annual percentage change in CHD mortality by deprivation 1982-2006

Males

Females

![Graph showing average annual percentage change in CHD mortality by deprivation for males and females from 1982 to 2006.](image-url)
Explaining the fall in CHD mortality
The IMPACT model 1981-2000 (England and Wales)

Incidence CHD ↓: improved population risk factors, & detection/treatment high risk individuals

Case-fatality ↓: better treatments in acute phase, & improved secondary prevention

Risk Factors worse +13%
Obesity (increase) +4%
Diabetes (increase) +5%
Physical activity (less) +4%

Risk Factors better -71%
Smoking -41%
Cholesterol -9%
Population BP fall -9%
Deprivation -3%
Other factors -8%

Treatment -42%
AMI treatments -8%
Secondary prevention -11%
Heart failure -12%
CABG & PTCA - 4%
Angina: Aspirin etc - 5%
Hypertension therapies -3%

68,230 fewer CHD deaths

50%-75% due to net risk factor reduction

25%-50%: due to evidence-based therapies
IMPACT\textsubscript{sec} model coverage

- **Coverage:**
 - England, total population aged 25+
 - Period: 2000 (base year) to 2007 (final year) (2)
 - Estimates stratified by age & sex (7*2)
 - SEC as measured by small-area deprivation quintiles (IMD07 at LSOA level) (5)

- **Risk Factors** – 7 (smoking, diabetes, physical inactivity; systolic blood pressure (SBP), total cholesterol, fruit & veg, BMI)

- **45+ treatments in 9 patient groups** (e.g. heart attack (N/STEMI), stable angina, heart failure)
CHD mortality fall 2007 by IMD quintiles

Target Deaths Prevented or Postponed (DPP) = 38,070
Change in key risk factor levels: Males
Age standardised rates by IMD quintiles

Systolic BP (mmHg), age 55+

Diabetes, age 25+

Source: Health Survey for England
Summary: Risk factor change by deprivation

Adults (55+), England 2000 to 2007

<table>
<thead>
<tr>
<th>Annual % Δ</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
</table>
| Significant decrease across all SEC groups | Smoking ↓↓
SBP ↓↓
Total cholesterol ↓↓ | Smoking ↓↓ (~Q4)
SBP ↓↓
Total cholesterol ↓↓ |
| Significant increase across all SEC groups | Obesity↑
Diabetes↑ | Obesity↑ (~Q2)
Diabetes↑ |
| Mixed picture by SEC | Phys activity increase: Q1-Q3
Fruit & Veg increase: Q3 | Phys activity increase: Q1-Q4
Fruit & Veg increase: Q3-Q4 |

Q1 = least deprived; Q5 = most deprived

Scholes, SSM 2010
Change in treatment uptake post-MI: males 55-74

Statins

ACE-Inhibitors

Source: General Practice Research Dataset
CHD deaths prevented in England
2000 to 2007

Risk Factors worse
- BMI (increase) + 2%
- Diabetes (increase) + 7%

Risk Factors better
- Smoking - 3%
- Cholesterol - 6%
- SBP fall - 29%
- Physical inactivity - 2%
- Fruit & Veg - 4%

Treatments uptake change
- AMI/NSTEACS - 1%
- 2' post MI - 9%
- 2' post-revasc - 2%
- Stable Angina - 13%
- Heart failure - 10%
- Hypertension therapies - 4%
- Hyperlipidemia Rx - 12%

Unexplained 14%

Source: Bajekal, Scholes, Love, Hawkins, O'Flaherty, Raine, Capewell. Plos Medicine, 2012
CHD deaths prevented 2007 affluent vs deprived areas

Least Deprived (Q1)

- CHD deaths prevented: DPPs 7,353
- Percentage change: -8% to 6%

Most Deprived (Q5)

- CHD deaths prevented: DPPs 6,558
- Percentage change: -8% to 16%

Distribution of deaths prevented by IMD

Key strength and limitation of English IMPACTsec model

• First ever trend analysis to examine the socio-economic dimension of treatment and risk factor contributions to falls in CHD mortality.

• Changes in risk factor levels could not explain 20% of observed CHD fall in affluent groups
 – social gradient in effect modification?
 – Imprecision/biases in survey estimates?
 – Synergistic effects?
 – Other ‘upstream’ risk factors – e.g. psychosocial?
IMPACTsec: main messages

• CHD mortality fell by 36% in just 7 years: treatments explained approximately half of this (52%) and risk factors a third (34%).

• ↑ ↑ in drug prescribing in community, AND no inequity in uptake.

• More lives saved due to bigger ↓ risk factors in deprived than affluent areas.

• But these are partly offset by faster ↑ in diabetes & BMI in deprived areas.
Implications of findings on future trends in total mortality

• CHD is the leading cause of death and so trends in CHD have a major impact on total mortality trends.
• The relative importance of smoking as a driving force for CHD mortality reductions has diminished over the latter part of the 20th century.
• However, this has not led to the (anticipated) reduction in the aggregate pace of mortality improvement in CHD or total mortality.
• Better medical management of patients has played/will continue to play an important, incremental, role in driving-up life expectancy in the early 21st century.
Next steps: linked patient records analysis

- Drilling deeper to look at socio-economic inequalities in phenotypes of CHD + Stroke.
- Survival analysis: descriptive and analytic modelling of predictors.
- Key Q: for which CVD phenotype, and at what points along the disease pathway, do inequalities widen/remain the same/shrink and by how much?
With thanks to:

• The IMPACTsec team:
 – Shaun Scholes, Prof Rosalind Raine (UCL)
 – Prof Simon Capewell, Martin O’Flaherty, Nathaniel Hawkins (Univ of Liverpool)
 – Hande Love (L&G)

• Legal & General Longevity Risk Team

• Other collaborators: Paul Norman, Andres Villegas (CASS), ONS mortality team

Contact: m.bajekal@ucl.ac.uk
Thank you. Any questions?

Explaining socio-economic trends in coronary heart disease mortality
England 2000-2007: the IMPACTsec model

Madhavi Bajekal PhD
Senior Research Fellow (Honorary)
Department of Applied Health Research
University College London

The future of human longevity: cardiovascular disease
Swiss Re Centre for Global Dialogue, Rüschlikon, 2013
RESERVE SLIDES
Model parameters for calculating deaths prevented or postponed (DPPs)

IMPACT is a deterministic model quantifying change between 2 time points.

DPPs due to TREATMENT : (improved survival with CHD)

- \[\text{DPPs} = \text{Eligible Patients} \times \text{treatment uptake} \times \text{relative mortality reduction} \times \text{one year case fatality} \]
- Net change \(\text{DPP} = \text{DPP final year} - \text{DPP base year} \)

DPPs due to POPULATION RISK FACTOR CHANGE: (reduced CHD incidence)

- \[\text{DPPs} = \text{expected CHD deaths in 2007 (applying 2000 mortality rates)} \times \text{risk factor change between 2000 and 2007} \times B\text{-regression coefficient} \]
- \[\text{DPPs} = \text{expected CHD deaths in 2007 (applying 2000 mortality rates)} \times (\text{PARF2000} - \text{PARF2007}) \]

3 mmHg fall in systolic BP in women aged 55-64

<table>
<thead>
<tr>
<th>CHD deaths in base yr</th>
<th>Beta coefficient</th>
<th>Reduction 1980-2000</th>
<th>Deaths prevented or postponed (DPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(\beta)</td>
<td>(c)</td>
<td>(a*(1-(\exp\beta * c)))</td>
</tr>
</tbody>
</table>

\[
26,350 \times -0.035 \times 3 = 2700 \text{ DPP}
\]

SOURCES
- Mortality statistics
- Oxford PSC
- HSfE
- meta-analyses
- surveys
AMI: Thrombolysis & Aspirin, Men 55-64 years

<table>
<thead>
<tr>
<th>Patients eligible</th>
<th>Treatment uptake</th>
<th>Relative risk reduction</th>
<th>Case Fatality</th>
<th>Deaths prevented or postponed (DPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102,280</td>
<td>0.21</td>
<td>0.26</td>
<td>0.054</td>
<td>303</td>
</tr>
</tbody>
</table>

\[
a \times b \times c \times d = a \times b \times c \times d
\]

Sources
- HES statistics
- MINAP audits
- Estess & FTT
- Meta-analyses
- US/Wijeysundera
β Coefficients = % fall in CHD mortality per unit decrease in risk factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Reduction in CHD deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol lowering</td>
<td></td>
</tr>
<tr>
<td>↓ 0.1 mmol/l mean pop cholesterol</td>
<td>≈ ↓ 5%</td>
</tr>
<tr>
<td>Fruit & Veg</td>
<td></td>
</tr>
<tr>
<td>↑ 1 portion/day</td>
<td></td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
</tr>
<tr>
<td>↓ 1 mm Hg Systolic BP</td>
<td>≈ ↓ 3.5% (log -0.035)</td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
</tr>
<tr>
<td>↓ 1 Kg/M² BMI</td>
<td>≈ ↓ 2.5%</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td>↓ 1% diabetic population</td>
<td>≈ ↓ 2%</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
</tr>
<tr>
<td>↓ 1% Smoking prevalence</td>
<td>≈ ↓ 1%</td>
</tr>
<tr>
<td>Physical Activity</td>
<td></td>
</tr>
<tr>
<td>↓ 1% inactive population</td>
<td>≈ ↓ 0.3%</td>
</tr>
</tbody>
</table>
Females: Life expectancy with and without disability: at birth and age 65, by deprivation quintiles, England 2007-2010

(ONS: Inequalities in DFLE, 2013)
Basic Copyright Notice & Disclaimer

©2013 This presentation is copyright protected. All rights reserved.

You may download or print out a hard copy for your private or internal use. You are not permitted to create any modifications or derivatives of this presentation without the prior written permission of the copyright owner. This presentation is for information purposes only and contains non-binding indications. Any opinions or views expressed are of the author and do not necessarily represent those of Swiss Re. Swiss Re makes no warranties or representations as to the accuracy, comprehensiveness, timeliness or suitability of this presentation for a particular purpose. Anyone shall at its own risk interpret and employ this presentation without relying on it in isolation. In no event will Swiss Re be liable for any loss or damages of any kind, including any direct, indirect or consequential damages, arising out of or in connection with the use of this presentation.