A recurrent p.Arg92Trp variant in steroidogenic factor-1 (NR5A1) can act as a molecular switch in human sex development

Anu Bashamboo,1 Patricia A. Donohoue,2 Eric Vilain,3 Sandra Rojo,1 Pierre Calvel,1 Sumudu N. Seneviratne,4 Federica Buonocore,5 Hayk Barseghyan,6 Nathan Bingham,7 Jill A. Rosenfeld,10 Surya Narayan Mulukutla,11 Mahim Jain,10 Lindsay Burrage,10 Shweta Dhar,10 Ashok Balasubramanyam,11 Brendan Lee10 Members of UDN12 Caroline Eozenou,1 Jenifer P. Satharalingham,5 KSH de Silva,4 Lin Lin,5 Joelle Bignon-Topalovic,1 Francis Poulat,8 Carlos F. Lagos,9 Ken McElreavey,1,*,† and John C. Achermann,5,†

1Human Developmental Genetics, Institut Pasteur, Paris, 75724 France, 2Department of Pediatrics, Endocrinology & Diabetes, Medical college of Wisconsin, Milwaukee, WI, USA, 3Departments of Human Genetics, Pediatrics and Urology, David Geffen School of Medicine at UCLA, CA, USA, 4Department of Pediatrics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka, 5Genetics & Genomic Medicine, UCL Institute of Child Health London, London, UK, 6Department of Human Genetics, David Geffen School of Medicine at UCLA, CA, USA, 7Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University, Nashville, TN, USA, 8Genetic and Developmental Department, Institute of Human Genetics, CNRS, Montpellier, France, 9Department of Endocrinology, Pontificia Universidad Católica de Chile, and Universidad San Sebastián, Santiago, Chile, 10Department of Molecular and Human Genetics, Baylor College of Medicine, TX, 11Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston TX, USA and 12Undiagnosed Diseases Network (members listed in Supplemental Material)

*To whom correspondence should be addressed at: Human Developmental Genetics, Institut Pasteur, Paris, France. Tel: +00 33 1 45688920; Fax: +00 33 1 45688639; Email: kenmc@pasteur.fr

Abstract

Cell lineages of the early human gonad commit to one of the two mutually antagonistic organogenetic fates, the testis or the ovary. Some individuals with a 46,XX karyotype develop testes or ovotestes (testicular or ovotesticular disorder of sex)
Introduction

Disorders of (or differences in) sex development (DSD) are defined as congenital conditions in which the development of chromosomal, gonadal or anatomical sex is atypical (1,2). Classic forms of DSD affect approximately one in every 2000 to 4000 people and may present in many ways, such as a baby with atypical genitalia where it cannot immediately be said whether the newborn is a boy or girl, or a teenage girl with primary amenorrhoea. Related conditions, such as hypospadias, are more prevalent, affecting up to one in 500 boys.

DSDs encompass a wide range of different setiologies (1–3). Sex chromosome mosaicism (45,X/46,XY) and 46,XY DSD (gonadal dysgenesis, disorders of androgen synthesis and action) are relatively common causes, whereas most individuals with 46,XX forms of DSD have congenital adrenal hyperplasia (CAH; MIM: 202010). Importantly, a subset of individuals with a 46,XX karyotype has ovotestes or testes rather than an adrenal condition. These forms of ovotesticular DSD (OTDSD) and testicular DSD (TDSD) were historically known as “true hermaphroditism” and “XX males”, respectively, and need different approaches to counselling and management compared to CAH (2,3).

Our molecular understanding of the causes of OTDSD/TDSD is incomplete. Some individuals with OTDSD/TDSD have upregulation of genes involved in testis determination (e.g. SRY; MIM: 400045, SOX9; MIM: 278850, SOX3; MIM: 300833), whereas others have reduced function of genes expressed in the developing ovary that repress testis development (e.g. WNT4 (MIM: 202010). Importantly, a subset of individuals with a 46,XX karyotype has ovotestes or testes rather than an adrenal condition. These forms of ovotesticular DSD (OTDSD) and testicular DSD (TDSD) were historically known as “true hermaphroditism” and “XX males”, respectively, and need different approaches to counselling and management compared to CAH (2,3).

Our molecular understanding of the causes of OTDSD/TDSD is incomplete. Some individuals with OTDSD/TDSD have upregulation of genes involved in testis determination (e.g. SRY; MIM: 400045, SOX9; MIM: 278850, SOX3; MIM: 300833), whereas others have reduced function of genes expressed in the developing ovary that repress testis development (e.g. ESP01; MIM: 610644, WNT4; MIM: 611812; 4–9). To date, coding mutations in single genes causing non-syndromic OTDSD/TDSD have not been described.

NR5A1, also known as steroidogenic factor-1 (SF-1) is a nuclear receptor transcription factor with key roles in reproductive development and function (10). Loss-of-function changes in NR5A1 are associated with a wide spectrum of conditions including gonadal (testicular) dysgenesis (MIM: 612965), hypospadias, and male factor infertility (MIM: 613957) in 46,XY individuals, as well as primary ovarian insufficiency (POI, MIM: 612964) in 46,XX children and adults from four unrelated families. Remarkably, in one family a sibling raised as a girl and carrying this NR5A1 mutation was found to have a 46,XY karyotype with partial testicular dysgenesis. These unique findings highlight how a specific variant in a developmental transcription factor can switch organ fate from the ovary to testis in mammals and represents the first missense mutation causing isolated, non-syndromic 46,XX testicular/ovotesticular DSD in humans.

Results

Clinical phenotypes

Family 1, of European-American ancestry, have two 46,XX children with ovotestes (Figure 1A; Table 1). The first child (1.1) presented with atypical (“ambiguous”) genitalia at birth. Gonads were palpable in the right inguinal region and higher in the left labioscrotal fold. The karyotype was 46,XX (SRY-negative) and 17-hydroxyprogesterone was low, excluding CAH. Gonadal biopsies showed dysgenetic testicular tissue. Vaginoscopy revealed a rudimentary vagina and uterine cervix. Following discussions with the parents, the female sex assignment was considered appropriate. Gonadal histology showed a left dysgenetic testis and right ovotestis, with a 46,XX karyotype in this tissue. A diagnosis of OTDSD was made. A second child (1.2) presented with similar genitalia at birth (Figure 1A; Table 1). Investigations revealed a 46,XX karyotype, intra-abdominal gonads and a uterus. Gonadal histology showed bilateral ovotestes, suggesting a diagnosis of familial OTDSD. The mother had no known androgenization but had menopause at the age of 40 years.

Family 2, of Latino/Hispanic ancestry, have a boy (2.1) who was referred at seven months of age because of a small penis that was partly buried in suprapubic fat (stretched length 2.8cm, typical range 4.3cm +/- 0.8) (Figure 1A; Table 1). Both gonads were palpable at the time. At 9 months of age, chromosome analysis and ultrasound were ordered as the gonads were no longer palpable. A 46,XX karyotype (SRY-negative) was observed and two structures in the inguinal regions (1.3 x 0.5 x 0.7cm; 0.9 x 0.5 x 0.7cm) that had morphological and Doppler appearances of testes. Anti-Müllerian Hormone (AMH, MIM: 478 pmol/l [342–594]) and inhibin B (85 pg/ml [40–630]) concentrations were within normal ranges for a child with testes and a good testosterone response was seen following three days stimulation with human chorio-gonadotropin (basal <0.1 nmol/l, peak 15.1 nmol/l). No testicular biopsy was done. The diagnosis of 46,XX TDSD was made.

Family 3, of African and African-American ancestry, have a son (3.1) who presented with small testes and low testosterone at 16 years of age (Figure 1A; Table 1). He was on testosterone supplementation inconsistently through his late teens and 20s. At 30 years of age, he was found to have bilateral atrophic testes (less than 5cc) and small phallus (5–6 cm stretched length). Genetic evaluation showed a 46,XX karyotype (SRY-negative) with a normal microarray. Endocrine evaluation showed primary testicular failure, based on very low testosterone (34 ng/dL [300–1080]), raised gonadotrophins (FSH (25 mIU/mL [1.3–11.4]) and LH (15 mIU/ml [1.2–7.8]), and low AMH (0.657 pmol/l [15–219.2]) and inhibit B (<10 pg/ml [40–450]). Adrenal function and sex-hormone binding globulin levels were normal. Testosterone levels remained low after following a 4-day hCG stimulation test (testosterone 46 ng/dL, androstenedione 0.272 ng/ml [0.33–1.34], and dihydrotestosterone 55 pg/ml [112–955]). Semen analysis showed azoospermia. The diagnosis of 46,XX TDSD was made.

Family 4, of South Asian ancestry, have an older girl (4.1) who was seen in six years of age because of labial fusion and...
mild clitoral enlargement. The karyotype was 46,XY (SRY-positive) (Figure 1A; Table 1). Gonads were palpable in the inguinal region, which were dysgenetic testes on histology. No uterus was found and a diagnosis of partial gonadal (testicular) dysgenesis was made. A younger brother (4.2) had severe penoscrotal hypospadias but palpable gonads in the scrotum. Biopsy of the right testis showed dysgenetic testicular tissue (Figure 1B).

NR5A1 p.Arg92Trp mutation associated with 46,XY DSD and 46,XX OTDSD/TDSD

In families 1, 2 and 3, whole exome (1 & 2) and whole genome sequencing (3), respectively, revealed a heterozygous NR5A1 mutation p.Arg92Trp (p.R92W, c.274C>T) as the best candidate for the phenotype (Figure 1A and C, Table 1). In Family 4 direct sequencing of NR5A1 and p.Arg92Trp DNA-binding domain in complex with DNA. The RGGR motif of the A-box interacts with the minor groove of DNA. The basic arginine residue (Arg, R) in wild-type NR5A1 (left panel) is replaced by a neutral tryptophan residue (Trp, W) with a bulky indole side chain (right panel).
NR5A1 is expressed in somatic cells of the early embryonic ovary

In order to assess whether NR5A1 is expressed in the early human ovary, studies were performed using foetal tissue between 6–10 wpc. In contrast to the mouse, where Nr5a1 is expressed specifically in the somatic cells of the early testis and only trace expression is observed in the early ovary (16,17), we found that the expression of human NR5A1 was similar in the ovary and testis and significantly greater than in control tissue (data not shown). NR5A1 protein localized specifically to the nuclei of somatic cells in the ovary (Figure 2A). These data show that NR5A1 is expressed in ovarian somatic cells that can regulate cell fate at an early stage.

P.Arg92Trp alters the biological activity of the protein

We hypothesized that the p.Arg92Trp mutation could be associated either with inappropriate activation of testis-specific pathways in the ovary, or with disruption of the pathways that oppose testis development and maintain ovarian integrity. In general, the p.Arg92Trp NR5A1 mutant showed loss of binding to a consensus NR5A1 response element and reduced activation of several minimal promoters (Amh, Cyp11a1) and enhancers (Sox9 Tesco) involved in testis development (Figures 2B and 2C, and Supplementary Material, Figure S5) consistent with 46,XY partial gonadal dysgenesis seen in the girl (4.1). Furthermore, the p.Arg92Trp NR5A1 mutant was unable to upregulate endogenous Sox9 expression in mouse XX S/J-GFP+ gonadal supporting cells compared to the WT NR5A1 protein (Supplementary Material, Figure S6). We recently described a homozygous p. Arg92Gln mutation in a girl with adrenal insufficiency and no ovotestis (18). We assayed the ability of these two different mutations to influence the pro-ovary canonical WNT/RSPO1 signalling pathway using the TOP-Flash reporter system. β-catenin has been shown to interact functionally with NR5A1 to activate target genes synergistically, including Nr0b1 (Dax-1). In contrast to p.Arg92Gln, the p.Arg92Trp NR5A1 mutant showed selective loss of synergy with β-catenin (Figure 2D). Therefore, the phenotype in the 46,XX children with the p.Arg92Trp variant may be due to altered expression of ovarian factors that oppose testis development.

Discussion

When a child presents with potential differences in sex development, making a specific diagnosis can have important implications for management and for supporting the family and young person appropriately (2,3,19). Most children with a 46,XX karyotype and atypical genitalia will have a form of CAH, usually due to 21-hydroxylase deficiency, and will require urgent investigation and adrenal steroid replacement. However, less common conditions such as ovotesticular DSD should also be considered in a baby with atypical genitalia, or testicular DSD in a boy with a 46,XX karyotype. Men with 46,XX testicular DSD typically present with small testes, testosterone insufficiency and infertility. Such individuals are often diagnosed through infertility clinics as several Y chromosomal genes are required to support spermatogenesis and two X chromosomes is deleterious for germ cell development in the XX testis. Experienced genetic counselling and support are needed to help the young person understand their condition and how it might
affect their future. Given the increasingly recognized role of NR5A1 in many reproductive phenotypes a detailed family history is needed as other family members might be affected and could benefit from endocrine evaluation and appropriate counselling.

In humans, the embryonic gonad remains “bipotential” until around 6 wpc. In the developing testis, expression of the testis-determining gene SRY leads to upregulation of SOX9 and subsequent stimulation of testis-specific pathways (Figure 2E; 20). Although poorly understood, it is emerging that many ovary-specific genes and pathways exist (21). Some of these signalling pathways, such as R-spondin-1 and WNT4, modulate their effects via β-catenin to “oppose” testis development by attenuating factors such as SOX9 (9,22,23).

NR5A1 clearly plays an important role in supporting testis development at multiple stages and loss of NR5A1 is associated with a wide range of testicular phenotypes. The relative phenotypes in Families 2 and 3 point to a differential ability of the NR5A1 mutant in sustaining in Sertoli and Leydig cell function early in human embryological development vs. later in...
postnatal life. Both subjects had evidence of testicular descent and absent Müllerian structures supporting functional Sertoli and Leydig cell activity. However, the subject in family 3 had no endocrinological evidence of such function in adult life (no inhibin B, AMH, and negative HCG stimulation) supporting the adult requirement for NR5A1 for maintaining Sertoli and Leydig cell function. The p.Arg92Ttp mutant NR5A1 also likely disrupts pro-testis pathways to some extent given the results of functional studies as well as the partial testicular dysgenesis seen in the 46,XY girl in Family 4.

In contrast to the effects on testis development pathways, we suggest that the p.Arg92Ttp NR5A1 variant switches organ fate from ovary to testis through disruption of ovary-specific pathways that would normally oppose testis development, rather than by activating testis pathways directly (Figure 2E). Indeed, our data show that, in contrast to the mouse model, NR5A1 is expressed in the somatic cells of the developing human ovary, and the p.Arg92Ttp NR5A1 mutant shows a reduced ability to interact with β-catenin to synergistically activate reporter gene activity (16,17,24). Of note, a similar effect was not seen with the p.Arg92Gln mutant (Figure 2D), an NR5A1 variant which has been reported recently in a 46,XX girl without ovotestes (18). The expression of Nr5a1 in the mouse embryonic gonad is sexually dimorphic. In contrast to its continuous expression in the mouse embryonic testis, Nr5a1 transcripts are absent during the period of ovarian formation between E13.5-E16.5 (25). The absence of expression during ovarian formation suggests that a mouse model of the p.Arg92Ttp mutant may not generate the same phenotype in XX mice and furthermore there is no guarantee that the p.Arg92Ttp substitution will be pathogenic in the context of the mouse polypeptide.

Phenotype expression can be variable with NR5A1, as is often the case for developmental disorders. Children (46,XX) harbouring the p.Arg92Ttp mutation had a phenotypic spectrum ranging from atypical (“ambiguous”) genitalia and a uterus to a phenotypic male with testes. Moreover, the mothers in families 1 and 4 transmitted the variant but had mild phenotypic features. Possibly a second genetic variant could have accounted for variability. In addition, identification of this specific p.Arg92Ttp change in multiple members of unrelated families of diverse ancestry suggests that it is the primary genetic driver of the condition. Sex development is exquisitely sensitive to dose-dependent effects. If a critical threshold of testis-determining factor function (e.g., SOX9) is reached then the testis-development pathway will result, and a testis (or ovotestis) will form. We suspect that critical thresholds have been reached in these children, whereas these have not in the mothers. Indeed, familial cases would by definition only be identified if the mother had mild features and maintained fertility (26–28).

This report highlights the complexity of human sex development, reveals subtle but potentially important differences with the mouse system and it reveals a novel genetic cause of non-syndromic testis development in 46,XX individuals. Remarkably, a single amino acid change in a key transcription factor can function as a bidirectional switch the choice of developmental fate of tissues in early embryonic life.

Materials and Methods

Complete methods are described in detail in Supplementary Material, Materials and Methods.

Ethics committee approval and written informed consent was obtained (Supplementary Material, Methods). Exome sequencing and direct sequencing of NR5A1 was performed as described in the Supplemental Methods. Control data for NR5A1 was obtained from direct sequencing of healthy fertile controls and public variant databases (Supplementary Material, Methods). Models of wild-type, p.Arg92Gln NR5A1 and p.Arg92Ttp NR5A1 (hSF-1, Uniprot Q13285) in complex with DNA were generated with MODELLER software (29) and the crystal structure of mouse Nr5a1 bound to the inhibin α-subunit promoter (PDBid 2FF0) as a template (Supplementary Material, Methods). Human embryonic and fetal tissues were obtained from the Human Developmental Biology Resource (www.hdbr.org) following ethical approval and with informed consent (see Supplementary Material, Methods). Binding of wild-type and mutant NR5A1 to a consensus NR5A1 DNA binding site (CCAGGTTCA) was assessed using electromobility shift assays. Transient gene activation studies of NR5A1 were performed for wild-type and mutant cDNA using a range of different putative NR5A1 targets (Amp, Cyp11ar1, Testo) in different cell lines (HEK, KGN, NT2D1, mouse embryonic stem cells; 23). Synergistic activation of the TOP-Flash reporter system by NR5A1 and β-catenin binding was studied as reported previously (24 and see Supplementary Methods).

Supplementary Material

Supplementary Material is available at HMG Online.

Acknowledgements

We are grateful to Dianne Gerrelli, Richard Ross, Andy Duncan and Mike Hubank.

Conflict of Interest statement. None declared.

Funding

This work was supported in part by Actions Concertees InterPasteuriennes (ACIP to A.B.), the EU call FP7-INCO-2011-6 (A.B. and K.M.) and an ESPE Collaborative Project Grant 40000767 (A.B.). The human embryonic and fetal material was provided by the Joint MRC/Wellcome Trust [grant # 099175/2/12/2] Human Developmental Biology Resource (www.hdbr.org). E.V. and H.B. are partially funded by the DSD-TRN (Disorders of Sex Development-Translational Research Network), grant # R01 HD068138 from the Eunice Kennedy Shriver National Institute of Child and Human Development (NICHD). J.C.A. is a Wellcome Trust Senior Research Fellow in Clinical Science [grant 098513/Z/12/Z] with support from the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London. Research reported in this manuscript was supported by the NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH Director under Award Number U01 HG007709-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Funding to pay the Open Access publication charges for this article was provided by The Welcome Trust.

Web Resources

References


