Supporting Information

Integrated Optimisation of Upstream and Downstream Processing in Biopharmaceutical Manufacturing under Uncertainty: A Chance Constrained Programming Approach

Songsong Liua, Suzanne S. Faridb, Lazaros G. Papageorgioua,*

a Centre for Process Systems Engineering, Department of Chemical Engineering, UCL (University College London), London WC1E 7JE, United Kingdom

b The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, UCL (University College London), London WC1E 7JE, United Kingdom

* Corresponding Author
1. Literature model
The literature MILP model\(^{19}\) for the optimal chromatography strategies of antibody purification processes is presented as follows.

The integer variables, \(CN_{si}\), \(CY_{Ns}\) and \(BN\), are expressed by binary variables:

\[
CN_{si} = \sum_{j=1}^{js} j \cdot W_{sij}, \ \forall s \in CS, i \quad (S. 1)
\]

\[
\sum_{j=1}^{js} W_{sij} = X_{si}, \ \forall s \in CS \quad (S. 2)
\]

\[
CY_{Ns} = \sum_{k=1}^{ks} k \cdot Y_{sk}, \ \forall s \in CS \quad (S. 3)
\]

\[
\sum_{k=1}^{ks} Y_{sk} = 1, \ \forall s \in CS \quad (S. 4)
\]

\[
BN = \sum_{n=1}^{q} 2^{n-1} \cdot Z_{n} \quad (S. 5)
\]

For each packed-bed chromatography step, only one resin can be used:

\[
\sum_{r \in R_s} U_{sr} = 1, \ \forall s \in CS \quad (S. 6)
\]

At most one resin of each resin type can be used:

\[
\sum_{s \in CS} \sum_{r \in R_s \cap R_t} U_{sr} \leq 1, \ \forall t \quad (S. 7)
\]

The initial product protein mass, \(M_0\), is the protein mass from the upstream bioreactors:

\[
M_0 = \text{titre} \cdot \alpha \cdot brv \quad (S. 8)
\]

The product protein mass remaining after step \(s\), \(M_s\) is related to the yield of the step:

\[
M_s = n \cdot cy_s \cdot M_{s-1}, \ \forall s \notin CS \quad (S. 9)
\]

\[
M_s = \sum_{r \in R_s} (cy_s \cdot \overline{UM}_{s-1,r}), \ \forall s \in CS \quad (S. 10)
\]

\[
\overline{UM}_{s-1,r} \leq \text{titre} \cdot \alpha \cdot brv \cdot U_{sr}, \ \forall s \in CS, r \in R_s \quad (S. 11)
\]

\[
\sum_{r \in R_s} \overline{UM}_{s-1,r} = M_{s-1}, \ \forall s \in CS \quad (S. 12)
\]

The annual product output, \(AP\), is amount of product produced per year by the facility:

\[
AP = \sum_{n=1}^{q} \sigma \cdot 2^{n-1} \cdot \overline{ZM}_{sn}, \ \forall s = bf \quad (S. 13)
\]

\[
\overline{ZM}_{sn} \leq \text{titre} \cdot \alpha \cdot brv \cdot Z_n, \ \forall s = bf, n = 1, ..., q \quad (S. 14)
\]

\[
\overline{ZM}_{sn} \leq M_s, \ \forall s = bf, n = 1, ..., q \quad (S. 15)
\]

\[
\overline{ZM}_{sn} \geq M_s - \text{titre} \cdot \alpha \cdot brv \cdot (1 - Z_n), \ \forall s = bf, n = 1, ..., q \quad (S. 16)
\]
The number of completed batches, BN, is limited by an upper bound:

$$BN \leq \text{maxbn} \quad (S.17)$$

The total column volume of chromatography step s, TCV_s, is the number of columns, CN_{si}, multiplied by the single column volume, cv_{si}:

$$TCV_s = \sum_i cv_{si} \cdot CN_{si}, \ \forall s \in CS \quad (S.18)$$

Only one column size is allowed at each chromatography step.

$$\sum_i X_{si} = 1, \ \forall s \in CS \quad (S.19)$$

$$CN_{si} \leq \text{maxcn}_{s} \cdot X_{si}, \ \forall s \in CS, i \quad (S.20)$$

The total amount of resin available is no less than the minimum required amount, RV_s:

$$\sum_{k=1}^{k_s} k \cdot \overline{V}_{sk} \geq RV_s, \ \forall s \in CS \quad (S.21)$$

$$\overline{V}_{sk} \leq \text{maxcn}_{s} \cdot \text{maxcv}_{s} \cdot Y_{sk}, \ \forall s \in CS, k = 1, \ldots, k_s \quad (S.22)$$

$$\sum_{k=1}^{k_s} \overline{V}_{sk} = TCV_s, \ \forall s \in CS \quad (S.23)$$

$$RV_s = \sum_{r \in R_s} \frac{\overline{UM}_{s-1 \cdot r} \cdot \overline{d} \cdot \overline{bc} \cdot \overline{r} \cdot \overline{\mu}}{\overline{r}} \quad \forall s \in CS \quad (S.24)$$

The number of cycles, CYN_s, at each chromatography step has an upper bound:

$$CYN_s \leq \text{maxyn}_{s}, \ \forall s \in CS \quad (S.25)$$

Volumetric flow rate, VFR_s, is determined by the velocity of flow and the diameter of the column:

$$VFR_s = \frac{1}{1000} \cdot \frac{1}{60} \cdot \sum_{r \in R_s} \sum_i \text{vel}_r \cdot \pi \cdot \left(\frac{dm_{si}}{2}\right)^2 \cdot \overline{U}_{X_{sri}}, \ \forall s \in CS \quad (S.26)$$

$$\sum_{r \in R_s} \overline{U}_{X_{sri}} = X_{si}, \ \forall s \in CS, i \quad (S.27)$$

$$\sum_i \overline{U}_{X_{sri}} = U_{sr}, \ \forall s \in CS, r \in R_s \quad (S.28)$$

The initial product volume entering downstream processes, PV_0, is the working volume of bioreactor:

$$PV_0 = \alpha \cdot brv \quad (S.29)$$
The product volume remaining after each step \(s \), \(PV_s \), and the required buffer material volume at each step \(s \), \(BV_s \), are given in Eq. (A30)-(S.43):

\[
PV_s = (fvr_s + 1) \cdot PV_0, \forall s = h
\]

\[
BV_s = fvr_s \cdot PV_0, \forall s = h
\]

\[
PV_s = \sum_{r \in R_{s} \cap FTR} ecv_r \cdot k \cdot \overline{UV}_{srk} + \sum_{r \in R_{s} \cap FTR} \overline{UV}_{s-1,r}, \forall s \in CS
\]

\[
BV_s = \sum_{r \in R_{s}} \sum_{k=1}^{k_{s}} bcv_r \cdot k \cdot \overline{UV}_{srk}, \forall s \in CS
\]

\[
\overline{UV}_{srk} \leq \max cn_s \cdot \max cv_s \cdot U_{sr}, \forall s \in CS, r \in R_s, k = 1, ..., k_s
\]

\[
\sum_{r \in R_s} \overline{UV}_{srk} = \overline{VV}_{sk}, \forall s \in CS, k = 1, ..., k_s
\]

\[
\overline{UV}_{s-1,r} \leq \max pv_{s-1} \cdot U_{sr}, \forall s \in CS, r \in R_s
\]

\[
\sum_{r \in R_s} \overline{UV}_{s-1,r} = PV_{s-1}, \forall s \in CS
\]

\[
PV_s = (nv r_s + 1) \cdot PV_{s-1}, \forall s = vi
\]

\[
BV_s = nvr_s \cdot BV_{s-1}, \forall s = vi
\]

\[
PV_s = (fvr_s + 1) \cdot PV_{s-1}, \forall s = vf
\]

\[
BV_s = fvr_s \cdot BV_{s-1}, \forall s = vf
\]

\[
PV_s = \frac{M_s}{fconc}, \forall s = ufdf
\]

\[
BV_s = dvr_s \cdot \frac{M_s}{fconc}, \forall s = ufdf
\]

The total buffer usage per batch, \(BBV \), is the summation of buffer usage, \(BV_s \), in all downstream steps:

\[
BBV = \sum_s BV_s
\]

The annual total buffer volume, \(ABV \), is related to the number of completed batches:

\[
ABV = \sum_{n=1}^{q} 2^n - 1 \cdot \overline{V}_n
\]

\[
\overline{V}_n \leq \max bbv \cdot Z_n, \forall n = 1, ..., q
\]

\[
\overline{V}_n \leq BBV, \forall n = 1, ..., q
\]

\[
\overline{V}_n \geq BBV - \max bbv \cdot (1 - Z_n), \forall n = 1, ..., q
\]

The total processing time at each chromatography step, \(T_s \), is comprised of processing time for both adding buffer (\(PLT_s \)) and loading product (\(BAT_s \)):

\[
T_s = PLT_s + BAT_s, \forall s \in CS
\]
The processing time for loading product, PLT_s, is related to the incoming product volume:

\[
\frac{1}{1000} \cdot \frac{1}{60} \sum_{r \in R_S} \sum_i \sum_{j=1}^{js} \text{vel}_r \cdot \pi \cdot \left(\frac{dm_{si}}{2}\right)^2 \cdot j \cdot \overline{UWT}_{srij} = PV_{s-1}, \; \forall \; s \in CS
\]
(S.50)

\[
\overline{UWT}_{srij} \leq b_{rt} \cdot W_{sij}, \; \forall \; s \in CS, r \in R_s, i, j = 1, ..., js
\]
(S.51)

\[
\overline{UWT}_{srij} \leq b_{rt} \cdot U_{sr}, \; \forall \; s \in CS, r \in R_s, i, j = 1, ..., js
\]
(S.52)

\[
\sum_i \sum_{j=1}^{js} \sum_{r \in R_S} \overline{UWT}_{srij} = PLT_s, \; \forall \; s \in CS
\]
(S.53)

The processing time for adding buffer, BAT_s, is related to the required buffer volume:

\[
BAT_s = \sum_{r \in R_s} \sum_i \sum_{k=1}^{ks} \frac{bcv_{r-cv_{sk}} k \overline{UXY}_{srik}}{\frac{1}{1000} \cdot \frac{1}{60} \cdot \text{vel}_r \cdot \pi \cdot \left(\frac{dm_{sk}}{2}\right)^2}, \; \forall \; s \in CS
\]
(S.54)

\[
\sum_{r \in R_s} \sum_i \sum_{k=1}^{ks} \overline{UXY}_{srik} = Y_{sk}, \; \forall \; s \in CS, k = 1, ..., ks
\]
(S.55)

\[
\sum_{k=1}^{ks} \overline{UXY}_{srik} = \overline{UX}_{sri}, \; \forall \; s \in CS, r \in R_s, i
\]
(S.56)

The processing time per batch, BT, is the summation of processing time of all downstream steps:

\[
BT = \frac{\sum_{s} T_s}{60 \cdot sf \cdot sfn}
\]
(S.57)

The annual DSP time, AT, is related to the number of completed batches:

\[
AT = \sum_{n=1}^{q} 2^{n-1} \cdot \overline{ZT}_{n}
\]
(S.58)

\[
\overline{ZT}_{n} \leq (aot - st - b_{rt}) \cdot Z_n, \; \forall \; n = 1, ..., q
\]
(S.59)

\[
\overline{ZT}_{n} \leq BT, \; \forall \; n = 1, ..., q
\]
(S.60)

\[
\overline{ZT}_{n} \geq BT - (aot - st - b_{rt}) \cdot (1 - Z_n), \; \forall \; n = 1, ..., q
\]
(S.61)

The annual DSP time, AT, cannot exceed the annual available time:

\[
AT \leq aot - st - b_{rt}
\]
(S.62)

The labour cost, LC, involves the direct labour cost, DLC, supervisors cost, SC, quality control and quality assurance (QCQA) cost, QC, and management cost, MC:

\[
LC = DLC + SC + QC + MC
\]
(S.63)

\[
DLC = 24 \cdot uon \cdot w \cdot b_{rt} \cdot BN + don \cdot w \cdot sf \cdot sfn \cdot AT
\]
(S.64)

\[
SC = s\lambda \cdot DLC
\]
(S.65)

\[
QC = q\lambda \cdot DLC
\]
(S.66)

\[
MC = m\lambda \cdot DLC
\]
(S.67)
The chemical reagents cost, \(CRC \), is assumed to include the cost for buffer, \(BC \), and bioreactor media, \(MEC \):

\[
CRC = BC + MEC \tag{S.68}
\]

\[
BC = bpc \cdot ABV \tag{S.69}
\]

\[
MEC = \theta \cdot mepc \cdot \alpha \cdot brv \cdot BN \tag{S.70}
\]

The key consumables cost, \(CC \), in this study is the resin cost:

\[
CC = \sum_{s \in CS} \sum_{r \in R_s} \sum_{q} \cdot \sum_{n=1}^{\text{of _ _ _ _ _}} \cdot \Sigma_{k=1}^{p_{pc}} \cdot 2^{n-1} \cdot k \cdot Z\bar{U}Y\bar{V}_{srkn} \tag{S.71}
\]

\[
\bar{Z}\bar{U}Y\bar{V}_{srkn} \leq \text{maxtcvs} \cdot Z_n, \ \forall s \in CS, r \in R_s, k = 1, ..., k_s, n = 1, ..., q \tag{S.72}
\]

\[
\bar{Z}\bar{U}Y\bar{V}_{srkn} \leq \bar{U}Y\bar{V}_{srk}, \ \forall s \in CS, r \in R_s, k = 1, ..., k_s, n = 1, ..., q \tag{S.73}
\]

\[
\bar{Z}\bar{U}Y\bar{V}_{srkn} \geq \bar{U}Y\bar{V}_{sk} - \text{maxtcvs} \cdot (1 - Z_n), \ \forall s \in CS, r \in R_s, k = 1, ..., k_s, n = 1, ..., q \tag{S.74}
\]

The miscellaneous material cost, \(MIC \), is proportional to the total chemical reagents cost, \(CRC \), and consumables cost, \(CC \).

\[
MIC = m\iota \lambda \cdot (CRC + CC) \tag{S.75}
\]

The utilities cost, \(UC \), can be expressed as the summation of three terms:

\[
UC = a \cdot brn \cdot brv + b \cdot brv \cdot BN + c \cdot ABV \tag{S.76}
\]

The annualised capital cost, \(CAC \), is calculated by the fixed capital investment, \(FCI \), and the capital recovery factor:

\[
CAC = FCI \cdot \frac{r \cdot (1+r)^{el}}{(1+r)^{el-1}} \tag{S.77}
\]

\[
FCI = lang \cdot (1 + gef) \cdot (brn \cdot brc + \sum_{s \in CS} \sum_{i} cc_{si} \cdot CN_{si} + o\iota \lambda \cdot brc \cdot brn) \tag{S.78}
\]

Other indirect costs include the annual maintenance cost, \(MAC \), insurance cost, \(IC \), local tax costs, \(TC \), and general utilities cost, \(GUC \):

\[
MAC = m\alpha \lambda \cdot FCI \tag{S.79}
\]

\[
IC = i\alpha \lambda \cdot FCI \tag{S.80}
\]

\[
TC = t\alpha \lambda \cdot FCI \tag{S.81}
\]

\[
GUC = gu \cdot brn \cdot brv \tag{S.82}
\]

\[
OIC = MAC + IC + TC + GUC \tag{S.83}
\]
The annual total cost of goods is the summation of the above costs:

\[COG = LC + CRC + CC + MIC + UC + CAC + OIC \] (S.84)

The objective is to minimise \(\frac{COG}{AP} \):

\[OBJ = \frac{COG}{AP} \] (S.85)

Nomenclature

Indices
- \(bf \) bulk fill step
- \(h \) harvest step
- \(i \) column size
- \(j \) column number
- \(k \) cycle number
- \(n \) digit of the binary representation
- \(r \) resin
- \(s \) downstream step
- \(t \) resin type
- \(ufdf \) UF/DF step
- \(vf \) virus filtration step
- \(vi \) virus inactivation step

Sets
- \(BER \) set of resins in bind-elute mode
- \(CS \) set of chromatography steps, = capture, intermediate purification, polishing
- \(FTR \) set of resins in flow-through mode
- \(R_s \) set of resins suitable to chromatography step \(s \)
- \(R_t \) set of resins of the resin type \(t \)

Parameters
- \(a, b, c \) utilities cost coefficients
- \(aot \) annual operating time, day
- \(bcv_r \) buffer usage of resin \(r \), CV
- \(bpc \) buffer price, £/L
- \(brc \) bioreactor cost at given discrete volume for piecewise approximation, £
- \(brf \) scale-up factor of bioreactor cost
- \(brn \) number of bioreactors
- \(brt \) bioreaction time, day
- \(brv \) given discrete bioreactor volume for piecewise approximation, L
- \(cc_{si} \) column cost of size \(i \) at chromatography step \(s \), £
- \(c_f \) scale-up factor of column cost
- \(cv_{si} \) volume of column size \(i \) at chromatography step \(s \), L
- \(cy_{sr} \) product yield of resin \(r \) at chromatography step \(s \)
- \(dbc_r \) dynamic binding capacity of resin \(r \), g/L
- \(dm_{si} \) diameter of column size \(i \) at chromatography step \(s \), L
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>don</td>
<td>number of operators for downstream processing</td>
</tr>
<tr>
<td>dvr_s</td>
<td>diafiltration volume ratio of step s</td>
</tr>
<tr>
<td>ecv_r</td>
<td>elute volume of resin r, CV</td>
</tr>
<tr>
<td>el</td>
<td>equipment lifetime, year</td>
</tr>
<tr>
<td>fcon</td>
<td>final concentration of product, g/L</td>
</tr>
<tr>
<td>fvr_s</td>
<td>flush volume ratio of step s</td>
</tr>
<tr>
<td>gef</td>
<td>general equipment factor</td>
</tr>
<tr>
<td>gu</td>
<td>general utility unit cost, £/L</td>
</tr>
<tr>
<td>h_{si}</td>
<td>height of column size i at step s, cm</td>
</tr>
<tr>
<td>i\lambda</td>
<td>insurance cost ratio to the fixed capital investment</td>
</tr>
<tr>
<td>j_s</td>
<td>maximum number of columns at chromatography step s, maxcn_s</td>
</tr>
<tr>
<td>k_s</td>
<td>maximum number of cycles at chromatography step s, maxcyn_s</td>
</tr>
<tr>
<td>l_r</td>
<td>life time of resin r, cycle</td>
</tr>
<tr>
<td>lang</td>
<td>Lang factor</td>
</tr>
<tr>
<td>maxvv</td>
<td>maximum buffer volume per batch</td>
</tr>
<tr>
<td>maxbn</td>
<td>maximum number of batches</td>
</tr>
<tr>
<td>maxbrv</td>
<td>maximum bioreactor volume</td>
</tr>
<tr>
<td>maxcn_s</td>
<td>maximum number of columns at chromatography step s</td>
</tr>
<tr>
<td>maxcvs</td>
<td>maximum column volume at chromatography step s</td>
</tr>
<tr>
<td>maxcyns</td>
<td>maximum number of cycles at chromatography step s</td>
</tr>
<tr>
<td>maxpv_s</td>
<td>maximum product volume at step s</td>
</tr>
<tr>
<td>ma\lambda</td>
<td>maintenance cost ratio to the fixed capital investment</td>
</tr>
<tr>
<td>mepc</td>
<td>media price, £/L</td>
</tr>
<tr>
<td>mi\lambda</td>
<td>miscellaneous material cost ratio to chemical reagent and consumable costs</td>
</tr>
<tr>
<td>m\lambda</td>
<td>management cost ratio to direct labour cost</td>
</tr>
<tr>
<td>ncy_s</td>
<td>product yield of non-chromatography step s</td>
</tr>
<tr>
<td>nvr_s</td>
<td>neutralisation volume ratio of step s</td>
</tr>
<tr>
<td>oe\lambda</td>
<td>other equipment cost ratio to the bioreactor cost</td>
</tr>
<tr>
<td>of</td>
<td>overpacking factor of resin</td>
</tr>
<tr>
<td>q</td>
<td>maximum digit number in the binary representation of number of batches, $[\log_2 maxbn]$</td>
</tr>
<tr>
<td>q\lambda</td>
<td>QCQA cost ratio to direct labour cost</td>
</tr>
<tr>
<td>r</td>
<td>interest rate</td>
</tr>
<tr>
<td>rpc_r</td>
<td>resin price of resin r, £/L</td>
</tr>
<tr>
<td>refbrc</td>
<td>reference cost of a bioreactor, £</td>
</tr>
<tr>
<td>refbrv</td>
<td>reference volume of a bioreactor, L</td>
</tr>
<tr>
<td>refcc</td>
<td>reference cost of a chromatography column, £</td>
</tr>
<tr>
<td>refdm</td>
<td>reference diameter of a chromatography column, cm</td>
</tr>
<tr>
<td>sfd</td>
<td>duration per shift, hour</td>
</tr>
<tr>
<td>sfn</td>
<td>number of shifts per day</td>
</tr>
<tr>
<td>st</td>
<td>seed train bioreaction time, day</td>
</tr>
<tr>
<td>s\lambda</td>
<td>supervisors cost ratio to direct labour cost</td>
</tr>
<tr>
<td>titre</td>
<td>upstream product titre, g/L</td>
</tr>
<tr>
<td>t\lambda</td>
<td>tax cost ratio to the fixed capital investment</td>
</tr>
<tr>
<td>uon</td>
<td>number of operators per bioreactor in upstream processing</td>
</tr>
<tr>
<td>vel_r</td>
<td>linear velocity of flow for resin r, cm/h</td>
</tr>
<tr>
<td>w</td>
<td>wage of an operator, £/h</td>
</tr>
<tr>
<td>a</td>
<td>bioreactor working volume ratio</td>
</tr>
<tr>
<td>\theta</td>
<td>media overfill allowance</td>
</tr>
</tbody>
</table>
\(\mu \) chromatography resin utilisation factor
\(\sigma \) batch success rate

Continuous Variables

\(ABV \) annual buffer volume, L
\(AP \) annual product output, g
\(AT \) annual downstream operating time, day
\(BAT_s \) time for adding buffer per batch at chromatography step \(s \), min
\(BBV \) buffer volume added per batch, L
\(BC \) buffer cost, £
\(BRC \) bioreactor cost, £
\(BT \) downstream processing time per batch, day
\(BV_s \) buffer volume per batch in chromatography step \(s \), L
\(CAC \) capital cost, £
\(CC \) consumables cost, £
\(COG \) annual cost of goods, £
\(CRC \) chemical reagents cost, £
\(DLC \) direct labour cost, £
\(FCI \) fixed capital investment, £
\(GUC \) general utility cost, £
\(IC \) insurance cost, £
\(LC \) labour cost, £
\(M_0 \) initial product mass entering downstream processes per batch, g
\(M_s \) initial product mass per batch after step \(s \), g
\(MAC \) maintenance cost, £
\(MC \) management cost, £
\(MEC \) media cost, £
\(MIC \) miscellaneous material cost, £
\(OBJ \) objective
\(OIC \) other indirect costs, £
\(PLT_s \) time for loading product per batch at chromatography step \(s \), min
\(PV_0 \) initial product volume entering downstream processes per batch, L
\(PV_s \) product volume per batch after step \(s \), L
\(QC \) QCQA cost, £
\(RV_s \) resin volume required at chromatography step \(s \), L
\(SC \) supervisors cost, £
\(T_s \) processing time per batch of step \(s \), min
\(TC \) tax cost, £
\(TCV_s \) total column volume at chromatography step \(s \), L
\(UC \) utilities cost, £
\(VFR_s \) volumetric flow rate at chromatography step \(s \), L/min

Binary Variables

\(U_{sr} \) 1 if resin \(r \) is selected at chromatography step \(s \); 0 otherwise
\(W_{si,j} \) 1 if there are \(j \) columns of size \(i \) at chromatography step \(s \); 0 otherwise
\(X_{si} \) 1 if column size \(i \) is selected at chromatography step \(s \); 0 otherwise
\(Y_{sk} \) 1 if there are \(k \) cycles at chromatography step \(s \); 0 otherwise
\(Z_{n} \) 1 if the \(n \)th digit of the binary representation of variable \(BN \) is equal to 1; 0 otherwise
Integer Variables

\(BN \)
number of completed batches

\(CN_{si} \)
number of columns of size \(i \) at chromatography step \(s \)

\(CYN_{s} \)
number of cycles at chromatography step \(s \)

Auxiliary Variables

\(\bar{UM}_{s-1,r} \)
\(\equiv U_{sr} \cdot M_{s-1} \)

\(\bar{UV}_{s-1,r} \)
\(\equiv U_{sr} \cdot PV_{s-1} \)

\(\bar{UW}_{sti}^{rsij} \)
\(\equiv U_{sr} \cdot W_{sij} \cdot PLT_{s} \)

\(\bar{UX}_{sri} \)
\(\equiv U_{sr} \cdot X_{si} \)

\(\bar{UXY}_{sri}^{rsjk} \)
\(\equiv U_{sr} \cdot X_{si} \cdot Y_{sk} \)

\(\bar{UYY}_{sri}^{rsjk} \)
\(\equiv U_{sr} \cdot Y_{sk} \cdot TCV_{s} \)

\(\bar{YW}_{s} \)
\(\equiv Y_{sk} \cdot TCV_{s} \)

\(\bar{ZM}_{sn} \)
\(\equiv Z_{n} \cdot M_{s} \)

\(\bar{ZT}_{sn} \)
\(\equiv Z_{n} \cdot BT \)

\(\bar{ZV}_{sn} \)
\(\equiv Z_{n} \cdot BBV \)

\(\bar{ZUY}_{srkn} \)
\(\equiv Z_{n} \cdot U_{sr} \cdot Y_{sk} \cdot TCV_{s} \)

2. Case study data

More data of the case study are presented in Tables S1 and S2.

<table>
<thead>
<tr>
<th>Unit operation parameter</th>
<th>Value</th>
<th>Unit operation parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell culture</td>
<td></td>
<td>Cell culture</td>
<td></td>
</tr>
<tr>
<td>bioreaction time (days)</td>
<td>15</td>
<td>processing time (h)</td>
<td>1.5</td>
</tr>
<tr>
<td>seed train bioreaction time (days)</td>
<td>29</td>
<td>yield (%)</td>
<td>95</td>
</tr>
<tr>
<td>bioreactor working volume ratio (%)</td>
<td>75</td>
<td>flush volume ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>media overfill factor</td>
<td>1.2</td>
<td>processing time (h)</td>
<td>4</td>
</tr>
<tr>
<td>media price (£/L)</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus filtration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yield (%)</td>
<td>95</td>
<td>processing time (h)</td>
<td>4</td>
</tr>
<tr>
<td>Harvest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yield (%)</td>
<td>95</td>
<td>processing time (h)</td>
<td>4</td>
</tr>
<tr>
<td>flush volume ratio</td>
<td>0.1</td>
<td>final concentration (g/L)</td>
<td>75</td>
</tr>
<tr>
<td>processing time (h)</td>
<td>4</td>
<td>diafiltration volume</td>
<td>7</td>
</tr>
<tr>
<td>Ultra/Diafiltration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus inactivation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yield (%)</td>
<td>90</td>
<td>filling time (h)</td>
<td>6</td>
</tr>
<tr>
<td>neutralisation volume ratio</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk fill</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S2. More data for cost and time

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_t) (day)</td>
<td>340</td>
<td>(a) (£/L)</td>
<td>14.145</td>
</tr>
<tr>
<td>(\delta_t) (day)</td>
<td>15</td>
<td>(b) (£/L)</td>
<td>4.234</td>
</tr>
<tr>
<td>(u_{on}) (day)</td>
<td>3</td>
<td>(c) (£/L)</td>
<td>0.071</td>
</tr>
<tr>
<td>(sf_d) (hours/shift)</td>
<td>8</td>
<td>(\sigma)</td>
<td>90%</td>
</tr>
<tr>
<td>(sf_n) (shift/day)</td>
<td>1</td>
<td>(q)</td>
<td>1</td>
</tr>
<tr>
<td>(w) (£/h)</td>
<td>20</td>
<td>(m)</td>
<td>1</td>
</tr>
<tr>
<td>(b_{pc}) (£/L)</td>
<td>1</td>
<td>(m_i)</td>
<td>0.1</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>90%</td>
<td>(o_{e})</td>
<td>0.8</td>
</tr>
<tr>
<td>(gef)</td>
<td>0.7</td>
<td>(m_{a})</td>
<td>0.05</td>
</tr>
<tr>
<td>(gu) (£/L)</td>
<td>90</td>
<td>(i)</td>
<td>0.005</td>
</tr>
<tr>
<td>(lang)</td>
<td>6</td>
<td>(t)</td>
<td>0.01</td>
</tr>
</tbody>
</table>