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Abstract
Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam anti-

biotics and are a significant challenge to modern medicine. We have developed an auto-

mated classification and analysis protocol that exploits structure- and sequence-based

approaches and which allows us to propose a grouping of serine beta-lactamases that

more consistently captures and rationalizes the existing three classification schemes: Clas-

ses, (A, C and D, which vary in their implementation of the mechanism of action); Types

(that largely reflect evolutionary distance measured by sequence similarity); and Variant

groups (which largely correspond with the Bush-Jacoby clinical groups). Our analysis plat-

form exploits a suite of in-house and public tools to identify Functional Determinants (FDs),

i.e. residue sites, responsible for conferring different phenotypes between different classes,

different types and different variants. We focused on Class A beta-lactamases, the most

highly populated and clinically relevant class, to identify FDs implicated in the distinct phe-

notypes associated with different Class A Types and Variants. We show that our FunFHM-

Mer method can separate the known beta-lactamase classes and identify those positions

likely to be responsible for the different implementations of the mechanism of action in these

enzymes. Two novel algorithms, ASSP and SSPA, allow detection of FD sites likely to con-

tribute to the broadening of the substrate profiles. Using our approaches, we recognise 151

Class A types in UniProt. Finally, we used our beta-lactamase FunFams and ASSP profiles

to detect 4 novel Class A types in microbiome samples. Our platforms have been validated

by literature studies, in silico analysis and some targeted experimental verification. Although

developed for the serine beta-lactamases they could be used to classify and analyse any

diverse protein superfamily where sub-families have diverged over both long and short evo-

lutionary timescales.
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Author Summary

Beta-lactamases are bacterial proteins largely responsible for resistance to beta-lactam anti-
biotics and so pose a significant challenge to modern medicine. Whilst there are many stud-
ies cataloguing beta-lactamases, antibiotic screening has not always been consistent or
comprehensive, causing confusion in the classification of these proteins and difficulty in
recognising bacteria with different resistance profiles. We therefore developed strategies for
automatically and consistently classifying distinct classes and types of beta-lactamases, hav-
ing particular antibiotic resistance profiles. Our methods focus mainly on the sequences of
the beta-lactamases, as for most new bacterial strains we will only know the sequence. We
have classified all sequenced beta-lactamases stored in major public repositories into clas-
ses. We then mainly focus on the Class A beta-lactamases as these are responsible for most
of the resistance to clinically relevant antibiotics. We applied methods to pinpoint key
sequence sites where changes result in new antibiotic resistance properties. Understanding
which sites confer resistance is important for recognizing whether new evolving strains can
evade current antibiotic regimes. Our classification methods allowed us to classify 151
Class A serine beta-lactamase types and to recognize a new type of Class A beta-lactamase
in a bacteria found in a drain sample.

Introduction
In this article we demonstrate the value of different clustering and analysis platforms for classi-
fying an important superfamily of bacterial proteins, the beta-lactamases. Our approaches are
based largely on the sequence properties of the relatives although structural information is con-
sidered for some analyses. The purpose of the classification was to aid the identification of
functional determinants (FDs), i.e. residue sites influencing the functional properties of the rel-
atives, where these properties relate to implementation of the catalytic mechanism or substrate
profiles. In particular, we aimed to show that identification of these sites could aid in the pre-
diction of phenotype for newly determined relatives not yet experimentally characterised.

Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam antibi-
otics and are a significant challenge to modern medicine. Beta-lactam antibiotics are character-
ised by the possession of a four-atom beta-lactam ring, as shown in red in the main categories
of antibiotics (penicillins, cephalosporins, carbapenems and monobactams) in Fig 1. Beta-lac-
tamases catalyse the hydrolysis of the bond between the nitrogen atom and the carbonyl group
of the beta-lactam ring, breaking the ring open and thus inactivating the antibiotic. There is a
large pool of naturally occurring beta-lactamases in environments such as the human gut that
are selected for, mutated and transmitted horizontally into pathogenic bacteria following the
introduction of new antibiotics [1].

All beta-lactamases are assigned the Enzyme Commission (EC) number 3.5.2.6 which is
shorthand for “a member of the hydrolases, acting on carbon-nitrogen bonds, other than pep-
tide bonds, in cyclic amides”. The EC functional classification scheme does not extend to more
specific distinctions than this. The Gene Ontology (GO) [2] molecular function ontology term
GO:0008800 represents “beta-lactamase activity” which is further subdivided into GO:0033250
“penicillinase activity” and GO:0033251 “cephalosporinase activity”. Both terms refer to activ-
ity against a broad range of chemically distinct antibiotics (i.e. having different “R-groups”)
based on the penicillin and cephalosporin core structures shown in Fig 1a and 1c, which also
includes ampicillin to illustrate an example penicillin “R-group” (Fig 1b). There are also other
beta-lactam antibiotic core structures, such as that possessed by carbapenems which are
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commonly reserved as antibiotics of last resort to combat multi-resistant bacteria (see Fig 1d).
The recent spread of carbapenemases, such as the New Delhi metallo-beta-lactamase NDM-1
is a cause for some alarm [3]. A frequently used term in the scientific literature, “broad spec-
trum” indicates that penicillins and cephalosporins are inactivated at the same rate, while the
term “extended-spectrum” indicates the ability to inactivate third-generation cephalosporins
with an oxyimino side chain as well as monobactams (see Fig 1e). Inhibitors such as clavulanic
acid inhibit the activity of some beta-lactamases and are often used in treatments in conjunc-
tion with beta-lactam antibiotics.

An early classification of beta-lactamases by Ambler [4], based on sequence comparison
and preliminary structural data grouped beta-lactamases into classes A and B. A class A struc-
ture (PDB 1BTL) was experimentally determined in 1987, providing structural evidence for the
involvement of a key catalytic serine residue in the hydrolysis reaction [5]. In 1995, the first
class B structure was experimentally determined (PDB 1BMC), which represented a new type
of active site zinc-binding protein fold. Based on differences in sequence motifs, classes C and
D have subsequently been added and revealed to possess the same protein fold and the same
catalytic serine as the class A beta-lactamases.

The single domain serine beta-lactamases (Classes A, C and D) are revealed by structural
and catalytic residue similarity to be closely related to the beta-lactam antibiotic targets, the
DD-peptidases (also known as DD-transpeptidases). The serine beta-lactamases are thought to

Fig 1. Chemical structures of the beta-lactam antibiotics discussed in this work—(a) core structure of
penicillins, (b) structure of ampicillin, a broad-spectrum antibiotic in the penicillin group of
antibiotics, (c) core structure of cephalosporins, (d) core structure of carbapenems and (e) core
structure of monobactams. The beta-lactam ring is highlighted in red in all the antibiotics.

doi:10.1371/journal.pcbi.1004926.g001
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have evolved from the DD-peptidases about 2 billion years ago after fungi evolved the ability to
synthesize beta-lactam antibiotics [6]. The DD-peptidases are involved in cross-linking bacte-
rial cell walls, which is essential to their survival. The metallo-beta-lactamases (Class B) are a
group of enzymes that are structurally unrelated to serine beta-lactamases and appear to have
evolved independently of DD-peptidases [7].

Singh et al. [8] report a graph-based clustering of best bi-directional hits (generated using
BLASTP) of beta-lactamase sequences that reproduces the four classes proposed by Ambler (A,
B, C and D). They also suggest the possibility of two additional small groups that they classify
as E and F, which seem to be more closely related to class B metallo-beta-lactamases than to
the serine beta-lactamases. An online database “Dlact” is also reported but this does not seem
to be available at the time of writing. Two other online databases do provide some limited
information about beta-lactamase antibiotic resistance specificity: the ARDB Antibiotic Resis-
tance Genes Database (http://ardb.cbcb.umd.edu/) [9] and the Beta-LActamase Database,
BLAD (http://www.blad.co.in) [10].

Developing a simple tool or database for relating a sequence cluster or motif to antibiotic
specificity is likely to be challenging. This is well illustrated by the Bush-Jacoby classification of
beta-lactamase sub-types, where a different group can be assigned following the mutation of a
single residue and by the study of Verma et al. [11]. In an extensive investigation of the physio-
chemical properties of class A beta-lactamases, Verma et al. [11] revealed that new antibiotic
resistance activities, including those found in “extended-spectrum” beta-lactamases, are evolu-
tionarily easy to achieve because they come about through small changes that do not globally
affect structure nor the concomitant electrostatic properties (e.g. electrostatic network, pairwise
energies, electrostatic network composition, residue charge, and per residue pKa shifts). They
do, however, report a statistically significant correlation between global protein charge and
antibiotic resistance specificity. Guthrie et al. [12] also report success with a network model
used to identify co-evolving residues within the class A type TEM beta-lactamases. Triple
mutant combinations are found that increase cefotaxime resistance. Mandage et al. [13] ana-
lyse residue conservation on the surface of beta-lactamases using the ConSurf [14] server but
this property does not appear to relate clearly to antibiotic resistance specificity. The Livesay
group have developed a Distance Constraint Model (DCM) to examine changes in protein sta-
bility and flexibility and this been applied to proteins from Class C serine beta-lactamases [15]
and metallo-beta-lactamases [16].

The goal of the work reported here is to analyse sequence features of serine beta-lactamases
at different levels of classification: 1) ‘Classes’–distinguishing different implementations of the
mechanism of action; 2) ‘Types’ or sequence clusters; and 3) ‘Variants’, that provide a context
within which to understand the subtle evolution of antibiotic resistance specificity.

Our FunFHMMer algorithm [17] identifies functional families (FunFams) that distinguish
well the Class A, C, D serine beta-lactamases. Subsequent clustering of the Class sequences,
using CD-HIT [18] based on an optimal sequence identity cut-off, largely reproduces well-
characterised types within the Class A serine beta-lactamases. To identify key functional posi-
tions (e.g. catalytic residues) and FDs that vary significantly between different types, we devel-
oped the novel Active Site Structural Profile (ASSP) algorithm, which exploits both structure
and sequence and uses parsimony to characterise residues in the enzyme active site, which are
likely to have a functional role.

Over the last few decades, the introduction and overuse of Man-made antibiotics have
driven the evolution of beta-lactamase variants with broader substrate profiles. In particular,
novel variants in the Class A TEM-type are responsible for a significant proportion of clinically
reported inhibitor resistance. We use another parsimony-based approach, Secondary Shell Par-
simony Analysis (SSPA), to identify driver mutations in serine beta-lactamase Class A variants
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that confer resistance to Man-made beta-lactam antibiotics and beta-lactamase inhibitors. We
examine the locations of these variant mutations relative to the conserved core of the active site
and the FDs that distinguish the different classes and types.

In summary, we propose that the precise antibiotic resistance specificity and inhibitor resis-
tance of serine beta-lactamases can be seen as a synthesis of various levels of classification: 1)
implementation of the mechanism of action (distinguishing A, C, D classes); 2) a sequence
cluster correlating with specificity (beta-lactamase type(s)); and 3) variant (beta-lactamase
sub-type). We focus mainly on the Class A beta-lactamases, the class which currently has most
clinical relevance, and apply our classification approach to identify Class A beta-lactamase
types in all complete bacterial genome sequences in our comprehensive CATH-Gene3D
resource [19,20]. Our classification approaches are then applied to find and examine novel
types in microbiome samples from human gut and drain.

Results

Structure-based classification of beta-lactamases
It is already known that beta-lactamases fall into two distinct structural superfamilies and this
is supported by the results of our structure comparisons using SSAP [21,22]. Classes A, C and
D (i.e. serine beta-lactamases) are assigned to CATH DD-peptidase/Serine beta-lactamase
superfamily, (3.40.710.10), on the basis of both structural similarity and conservation of key
catalytic residues in the active site. Class B metallo-beta-lactamases adopt a different structural
fold and are assigned to CATH superfamily 3.60.15.10 (see S1 Fig).

The DD-peptidase/Serine Beta-Lactamase superfamily contains a large number of DD-
peptidases. Although Class A, C and D beta-lactamases tend to have lower structural similar-
ity with the DD-peptidases than with each other (see S1 Table), there is conservation of the
structural core across this superfamily. In particular, the active site and catalytic serine, which
is found in both DD-peptidases and the Class A, C and D beta-lactamases, superpose well (see
S2 Fig).

In this study we focus on the classification and analysis of serine beta-lactamases. Whilst S1
Table and S3 Fig show that structural similarity can be used to distinguish Class A, C and D
beta-lactamases, most beta-lactamases in public repositories and discovered by metagenome
studies have not been structurally characterised yet. Therefore, we developed sequence-based
approaches to distinguish these classes.

Sequence-based classification of the serine beta-lactamase classes
Serine beta-lactamases are thought to have evolved independently from the DD-peptidases
three times (i.e. Class A, C, D beta-lactamases) more than 2 billion years ago [23]. We predicted
105,810 sequences from UniProt [24] and Ensembl [25] belonging to the CATH DD-pepti-
dase/Beta-Lactamase superfamily (3.40.710.10) using our in-house Gene3D classification pro-
tocol [19,20]. This superfamily is moderately functionally diverse as summarised in S2 Table.
All member domains are hydrolases and belong to three main “branches”: peptidase activity;
hydrolase activity acting on carbon-nitrogen (but not peptide) bonds; and hydrolase activity
acting on ester bonds. The region of the GOMolecular Function Ontology (MFO) Directed
Acyclic Graph (DAG) that is encompassed by experimentally determined UniProt [24] anno-
tations within this superfamily has eleven most specific terms, of which seven are leaf terms
[2].

The DD-peptidases use the same mechanism of action as the beta-lactamases but the chem-
istry is a little different since an N-C peptide bond is being broken as opposed to a N-C bond
in a cyclic amide. It is possible that the mechanism of action is as ancient as the fold itself and
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we expect similar mechanisms of actions are also used by the other main esterase “branch” in
the GO molecular function ontology, as illustrated in S2 Table. All scissile bonds are character-
ised by delocalisation of electrons, which may be an essential feature of the mechanism of
action. Thus, in this superfamily it appears that mechanism is the most conserved and evolu-
tionarily ancient aspect, perhaps as old as the fold itself, and that its specific implementation,
are secondary.

Simple pairwise sequence approaches (e.g. BLAST) can be used to recognise homologues
with very closely related sequences (i.e. greater than 60% identity) in each class of beta-lacta-
mases. However, since distant relatives in each class can share less than 30% sequence identity
(see S3 Table) more sensitive techniques are needed to distinguish classes. Our FunFHMMer
protocol [17] sub-classified the superfamily into distinct functional families (FunFams). Man-
ual inspection of the UniProt [26] descriptions of the serine beta-lactamases confirmed that
three FunFams captured well the three classes A, C and D respectively. Small manual adjust-
ments result in complete agreement between FunFam classification and beta-lactamase classes.
For each FunFam (i.e. Class A, C, D) we inspected the experimental annotations given in Uni-
Prot and removed those few sequences having non beta-lactamase annotations, e.g. having a
DD-peptidase annotation. These comprised fewer than 2% of sequences within each FunFam.
Two large and sequence diverse, functionally pure DD-peptidase FunFams are also automati-
cally identified by FunFHMMer.

Almost every domain sequence that can be assigned to the DD-peptidase/Serine beta-lacta-
mase superfamily has an SXXK motif that maps to equivalent structural locations when the
domain structures are superposed (S2a Fig). There are 3 catalytic residues (Ambler residues
serine 70, lysine 73 and lysine 234) that are common to all known DD-peptidases and beta-
lactamases (see S2b Fig). There have been a number of studies examining how residue differ-
ences in these proteins account for their diverse substrates (linear versus cyclic peptides) but
the mechanistic roles of the residues remain unclear apart from a few relatives [23,27].

Identifying functional determinants (FD) between the Class A, C, D beta-lactamases.
As regards the ability to degrade beta-lactam substrates, different solutions appear to have
emerged three times during evolution, encoded by the Class A, C and D beta-lactamases. Previ-
ous analyses in the literature suggest that a major difference between the three classes is that
they employ different implementations of the same mechanism of action, defined here as the
reduction of activation energy of the hydrolysis reaction and the concomitant transfer of pro-
tons and electrons between enzyme, water and substrate.

Information in the MACiE [28] database (https://www.ebi.ac.uk/thornton-srv/databases/
MACiE/) and the scientific literature [29] (Fig 2) reveal differences in sequence motifs between
the Class A (MACiE entry M0002), C (M0257) and D (M0210) serine beta-lactamases, involv-
ing residues that perform the catalytic mechanism of action. The same structurally-equivalent
catalytic serine is activated by the same structurally-equivalent lysine, and performs the nucleo-
philic attack on the beta-lactam ring, forming an acyl-intermediate with the antibiotic. How-
ever, there are differences in the location of residues activating the water molecule that
performs the subsequent hydrolysis. In addition, there are differences in the residue types (Ser/
Tyr) hydrogen bonding to and protonating the amide nitrogen atom [27,30].

We assessed whether the FunFHMMer predictions of functional determinants (FDs) in the
three classes captured the residue differences in the active sites reported in MACiE and the lit-
erature, and whether FunFHMMer could reveal additional sites distinguishing these classes. A
three-way FunFam alignment was created by aligning the pooled sequences from each FunFam
(Class A, C and D) to an HMM (Hidden Markov Model) [31], built on the basis of a multiple-
structural alignment of representatives from each FunFam. The method works by finding resi-
dues conserved in one class but not conserved, or conserved in a different way, in another
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class. Many of the positions reported in the literature as contributing to the implementation of
the mechanism are identified by FunFHMMer (see Fig 2) and we discuss these below. S3 Fig
shows the proximity of these FDs to catalytic residues and the distinct structural features lying
near the active site in each class.

For example, a well-known position which differentiates between the three classes, and
identified by FunFHMMer, is Ambler residue 166 which is a catalytic glutamate in Class A,
activating the hydrolytic water for the acylation and deacylation steps [30]. Different residues
are found at this position in the other two classes—alanine in Class C and tryptophan in Class
D. The tryptophan in Class D, W166, is known to be involved the hydrogen bonding network
near the catalytic serine and lysine [32], however, the exact role of the alanine residue in Class
C is not yet known. The catalytic glutamate, E166, in Class A beta-lactamases lies in the
'omega-loop' region [30], a conserved structural element in the Class A beta-lactamases, in
which lies three other key residues identified by FunFHMMer, near to the E166—Ambler resi-
dues 157, 169 and 179, all differentially conserved in the 3 classes.

Another well-known difference between the three classes is the Ambler residue 130, which
is a catalytic serine in Class A and D protonating the amide nitrogen atom of the beta-lactam
ring after formation of the tetrahedral intermediate. By contrast, Class C has a catalytic tyrosine
at position 130, which is also implicated in activating the hydrolytic water during the deacyla-
tion step [27]. Ambler residue 131 is also identified as having a functional role by FunFHM-
Mer, in Class A (aspartate). This has been reported in the literature as being important for
maintaining the enzyme activity by mutation studies [33]. The corresponding residues in the
other two classes are different but also conserved, although to a lesser extent, and so may also
play a functional role.

Another interesting FunFHMMer predicted site is Ambler residue 211, which is a highly
conserved glutamate in Class C and usually a methionine residue in the other two classes. The
E211 in Class C is located on the opposite side of the E166 in Class A beta-lactamases and is
known to be involved in the hydrogen bonding network around the catalytic serine and affects
the deacylation step to a small extent [34]. Class A and Class C beta-lactamases are known to
use opposite faces of the acyl-enzyme species for the approach of the hydrolytic water [27]. The

Fig 2. Sequence logo of the three-way structure-based sequence alignment of three classes (A, C and D) of serine beta-
lactamase FunFams in the CATH superfamily 3.40.710.10. The Ambler numbering scheme [4] is used to label the residue positions.
FunFHMMer-identified conserved positions, predicted to be functional determinants, are coloured and the height of a character indicates
its degree of conservation. The catalytic residues (S70, K73 & K234), all of which are predicted by FunFHMMer, are shown in red. Other
FunFHMMer predicted residues which are also cited in the literature (including MACiE [28]) are shown in blue, whilst those in yellow are
predicted but not yet cited in the literature.

doi:10.1371/journal.pcbi.1004926.g002
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tyrosine at Ambler position 130 in Class C is implicated in activating water as mentioned
above [27,30] and it is likely that this tyrosine (lying in between E211 and S70, see Fig 3) assists
the E211 in activating the water molecule. This is necessary since E211 is rather distant from
the catalytic S70 in the Class C beta-lactamases [34].

S4 Table summarises all the functional sites identified by our FunFHMMer analysis. The
validation of some of these sites by experimental data reported in the literature and in MACiE
(discussed above), demonstrates the power of the FunFHMMer protocol to detect these sites
and then exploit this information to correctly separate the three classes. Many of these residues
appear to be involved in different strategies for activating the water molecule used for hydroly-
sis of the acylated beta-lactams. The other positions, not yet reported in the literature and lying
in close proximity of the catalytic residues (see S3 Fig), may be good targets for mutagenesis
experiments to better characterise the reaction chemistry of the serine beta-lactamases.

Sequence-based classification of Class A serine beta-lactamase types
Within each serine beta-lactamase class relatives have diverged considerably in sequence iden-
tity and in their phenotypes, e.g. the ability to degrade different ranges of beta-lactam sub-
strates. Several classification approaches have been used to distinguish relatives. In particular,
‘types’ are commonly referred to in the literature and these groups tend to be associated with
particular substrate profiles and efficacies. Another approach, based more on clinical pheno-
types, e.g. resistance to specific beta-lactamase inhibitors, is the Bush-Jacoby classification.
However, it is not always clear from the literature that the identified types and Bush-Jacoby
(BJ) classes have been identified using the same standardised experimental screening against
an explicit repertoire of compounds. For that reason, we derived a classification protocol, the
results of which matched the ‘types’ and ‘BJ classes’ reported in the literature as far as possible,
but which exploits standard sequence-based approaches that would be easy to replicate by
other biomedical researchers.

Fig 3. Functional determinants (Ambler numbers 130, 166 and 211) in Class A & Class C beta-
lactamases are shown in green and blue for Class A and Class C, respectively and the catalytic
residues (S70, K73 & K234) are shown in red.

doi:10.1371/journal.pcbi.1004926.g003
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Table 1 shows the sequence population of each serine beta-lactamase Class (i.e. the number
of Gene3D sequence counts) and lists types that have been identified in the literature and that
have at least ten annotated members, together with their UniProt annotations and a represen-
tative structural domain.

We first considered the Class A (3.40.710.10.blA) and Class C (3.40.710.10.blC) FunFams
as these are sufficiently sequence diverse to benefit from a sequence-based classification that
could ultimately be used to characterise changes in functional residues likely to be modifying
the phenotypes. Furthermore, the sequence diversity was sufficient for HMMs derived for
these classes to be powerful enough to recognise both close and remote homologues in
metagenome sequences. Because the Class C FunFam (3.40.710.10.blC) only contains one
major clinically significant type (and three sub-types) we focused on the class A FunFam
(3.40.710.10.blA) that contains fifteen clinically significant types and which, as we demon-
strate here, contains sufficient sequence information to accurately characterise changes in
functional residues in the active site.

Because of their clinical significance, the type names: CTX-M, TEM, SHV, Z, L2, KPC,
OXY, PER, OKP, GES, LEN, CfxA, RAHN, CARB and PSE, or variations thereon, are fre-
quently used in the UniProt descriptions of the protein sequences and thus provided a guide
for automatically subdividing the Class A FunFam into types [26]. We have only considered
well-populated types having at least ten annotated sequences in CATH-Gene3D. 1,321 out of
2,154 (~60%) full-length Gene3D domain sequences assigned to the Class A FunFam are anno-
tated with clinical type information in UniProt.

CATH-Gene3D domain sequence intra- and inter-type pairwise sequence identities are
derived from the full FunFam alignment and their distributions are shown in S4 Fig. Edit dis-
tance from the UniProt annotation of types (number of split and merge operations) is calcu-
lated for a range of sequence identity cut-offs used in CD-HIT clustering and a minimum is
found at 60% sequence identity (see S5 Table). Clustering with a 60% sequence identity cut-off
is performed for all 2,154 Gene3D domain sequences and the resulting “cluster60” distribu-
tions of inter- and intra-cluster sequence identities are shown in Fig 4.

Using this cut-off, the 15 types highlighted in the literature fall into 9 cluster60s (i.e. 9 pre-
dicted types, see Table 2). The 60% cut-off for separation of function specificity are supported
by other studies relating functional similarity to sequence identity [35,36] and may avoid over-
fitting to the currently available annotation data and therefore over estimation of the number
of types that can be found in nature. Where different types defined in the literature are merged
into the same 60% sequence identity cluster, the Bush-Jacoby groups (i.e. resistance phenotype)
associated with them tend to be very similar (see Table 2).

Using the 60% threshold to cluster CATH-Gene3D sequences in the Class A FunFam into
types, we identified 151 types of which 142 are new types not reported in the scientific literature
(ftp://ftp.biochem.ucl.ac.uk/pub/cath/v4_0_0/supplementary_files/151_types_uniprot_cath-
gene3d.dat).

Table 1. Types identified in the literature. Sub-types are given in parentheses.

FunFam Gene3D sequence
Count

Representative
structure?

Types

Class A 2154 Yes CTX-M, TEM, SHV, Z, L2, KPC, OXY, PER OKP, GES, LEN, CfxA, RAHN, CARB,
PSE

Class C 639 Yes AmpC (CMY, PDC, DHA)

Class D 52 Yes OXA

doi:10.1371/journal.pcbi.1004926.t001
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ASSP analysis to identify residue sites in the active sites of Class A
serine beta-lactamases likely to be affecting phenotype
In order to explore the differences between the Class A types and understand changes in their
substrate specificities and efficacies, we developed a new approach (the ASSP protocol, see
Methods) to landscape the active site characteristics of these different groupings. Although
FunFHMMer can identify conserved sites differing between pairs of types, because there are
151 types an optimisation strategy is needed to identify the specific residues differing between
all types. Furthermore, some types have few relatives to date, most of which are recently
diverged. FunFHMMer’s entropy-based approach works best in distinguishing residue sites
conserved differently between groups over significant evolutionary time-scales. Comparing
types that have recently emerged is challenging, since many residues appear to be conserved
sites over these much shorter time scales and need to be considered as possible FDs. To narrow

Fig 4. Intra- and inter-type pairwise sequence identity distributions for CD-HIT clusters (i.e. predicted types) of all domain sequences in the
Class A beta-lactamase FunFam using a 60% sequence identity cut-off.

doi:10.1371/journal.pcbi.1004926.g004

Table 2. The clinically significant types of serine beta-lactamase found in the Class A serine beta-lactamases in Gene3D. They are clustered accord-
ing to similarity in sequence. The number of annotated sequences in Gene3D is given for each type. The Bush-Jacoby groups found within each type are
also given.

Annotation in UniProt Predicted Type Bush-Jacoby Group Gene3D sequence count (annotated)

TEM 1 2b, 2be, 2br, 2ber 337

SHV 1 2b, 2be, 2br 251

OKP 1 ? 34

LEN 1 2a 29

CTX-M 2 2be 382

OXY 2 ? 36

RAHN 2 2be 20

Z 3 ? 57

L2 4 ? 40

KPC 5 2f 39

GES 6 2f 30

CARB 7 2c 17

PSE 7 2c 10

CfxA 8 2e 20

PER 9 2be 19

doi:10.1371/journal.pcbi.1004926.t002
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down the number of residue sites to consider, ASSP exploits structural information and uses a
parsimony based approach to explore different combinations of residues in the active site that
could be influencing the substrate and resistance profiles.

An initial Active Site Structural Profile (ASSP) was derived (see Methods) based on all 151
types identified in the CATH-Gene3D Class A FunFam. It comprised all those Ambler residues
that lie within 8Å of the catalytic serine. This gave an ASSP with 31 positions. S6 Table shows
the residues found at each ASSP position for each of the 9 predicted Class A types having
clinical annotations in UniProt. For many positions in the ASSP, many types share the same
residues.

The next steps of the ASSP method find the smallest combination of residue positions in
this original ASSP for which all Class A types have different residues. In other words, the small-
est combination of residues best able to capture the active site diversity of Class A types. To do
this we analysed first two-residue, then three-residue, up to N-residue permutations of the 31
residue positions in the first stage ASSP to identify unique configurations of residues between
all the types (see Methods for a schematic representation of the approach). For each N-residue
configuration examined, the number of unique residue combinations across all types was
counted. Subsequently, the distribution of these counts was plotted for each N. Z-scores (mini-
mum and maximum) were calculated for each distribution (i.e. from the maximum or mini-
mum number of types observed). Fig 5 shows the distribution of the number of observed
configurations in the 151 types, for all 4,495 three-position (triplet) permutations of the 31
positions in the first stage ASSP.

Minimum and maximum Z-scores for configurations of up to eight positions (N = 8) are
shown in Table 3 and it can be seen in Fig 6 that 7 residues in the configuration are necessary
to fully distinguish all of the Class A types. The highest maximum Z-score occurs for a triplet

Fig 5. Distribution of the number of three-position (i.e. N = 3 triplet) configurations for different triplets
examined.

doi:10.1371/journal.pcbi.1004926.g005
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configuration (N = 3). Although not all types have a unique configuration until N = 7 (see S1
Text for ASSP N = 7 residue configuration and S5 Fig for the N = 7 functionally important
positions highlighted in the Class A serine beta-lactamase domain), the maximum Z-score for
this number of residues in the configuration is not very significant, i.e. finding a unique

Table 3. Maximum andminimum Z-scores in the distributions of counts for different sizes of specific-
ity determining configurations. A triplet configuration gives the highest maximum Z-score–shown in bold.

Number of residues in the configuration (N) Maximum Z-score Minimum Z-score

1 1.87 -1.67

2 3.83 -1.64

3 3.86 -1.89

4 3.24 -2.22

5 2.72 -2.64

6 2.25 -3.22

7 1.98 -3.96

8 1.70 -4.83

doi:10.1371/journal.pcbi.1004926.t003

Fig 6. (a) Maximisation and (b) minimisation of parsimony for identifying functional determinants (FDs) and the core catalytic machinery of the
FunFam.

doi:10.1371/journal.pcbi.1004926.g006
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configuration of these number of residues is not very unlikely. The line in Fig 6a rises steeply
up to N = 3 but then takes a long time to level off and a triplet configuration distinguishes 114/
151 (75%) of the predicted types with a highly statistically significant Z-score of 3.86. The low-
est minimum Z-score for the configuration which captures positions common to all types is
difficult to identify as the algorithm has not converged by 8 positions and is too computation-
ally expensive to proceed to higher numbers of positions.

Based on the highest maximum Z-score in Table 3, FDs distinguishing between the types
are given by a triplet consisting of Ambler positions 74, 129, and 244. We assume that this con-
figuration of positions has been under strong selective pressure for long evolutionary periods
to efficiently inactivate the wide variety of beta-lactam antibiotics that have been produced by
fungi. The 8 positions giving the lowest minimum Z-score achieved in our analysis (i.e. residues
conserved between all types which should include the known catalytic residues) together with
the 3 positions likely to be FDs and differing in their composition between most of the types,
are shown in Table 4 below.

Assessing the validity of the predicted FDs. We sought independent approaches verifying
the involvement of the predicted FDs, i.e. residue positions 74, 129 and 244, on the properties
of Class A types. A number of studies characterising active site residue mutations have been
reported in the literature. Position 129 is implicated by Maveyraud et al. [37] and position 244
is implicated by Vakulenko et al. [38]. In addition, we examined the structural locations of the
residues to known catalytic residues, docked substrates and inhibitors bound in the active site.

1. Structural conservation of the FD locations across types and proximity to known catalytic res-
idues. The location of the FDs in the final ASSP is shown in Fig 7 in the structural superposi-
tion of representatives from eight of the clinical types. Type 8 (CfxA) does not currently
have an experimentally determined structure.

2. Proximity of FDs to beta-lactam substrate docked into a beta-lactamase structure. Another
approach for assessing the predicted FDs is to use docking. SwissDock [39](http://www.
swissdock.ch/) is used, where coordinates and parameters for many beta-lactam antibiotics
can be found in the associated ZINC database [40](http://zinc.docking.org/). Solutions are
restricted to those within 10Å of the catalytic serine since we already know the biologically
relevant binding site. An example of a reasonable docking solution can be seen in Fig 8 for

Table 4. The final ASSP for the nine classified clinically significant beta-lactamase types in the Class A FunFam. Residues exposed to the active site
cleft are marked up with an asterisk and the functional determinants (FDs) in the triplet are in italics.

Ambler residue
number

Class A FunFam clinically significant beta-lactamase types (common UniProt clinical annotations)

1 (TEM, SHV, OKP and
LEN)

2 (CTX-M, OXY and
RAHN)

3 (Z) 4 (L2) 5 (KPC) 6 (GES) 7 (CARB and
PSE)

8 (CfxA) 9 (PER)

70* Ser Ser Ser Ser Ser Ser Ser Ser Ser

73 Lys Lys Lys Lys Lys Lys Lys Lys Lys

74 Val Val Ala Ser Gly Phe Thr Val Leu

129* Met Tyr Tyr Thr Tyr Leu Thr Gln His

130* Ser Ser Ser Ser Ser Ser Ser Ser Ser

131 Asp Asp Asp Asp Asp Asp Asp Asp Asp

132* Asn Asn Asn Asn Asn Asn Asn Asn Asn

166 Glu Glu Glu Glu Glu Glu Glu Glu Glu

234* Lys Lys Lys Lys Lys Lys Arg Lys Lys

236* Gly Gly Gly Gly Gly Gly Gly Gly Gly

244* Arg Thr Arg Arg Ala Arg Arg His Thr

doi:10.1371/journal.pcbi.1004926.t004
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ampicillin bound to a TEM-1 beta-lactamase which is known to be effective against this
antibiotic. The carbonyl-carbon of the beta-lactam ring contacts the nucleophilic oxygen of
the catalytic serine and so is suitably positioned for nucleophilic attack. Three hydrogen
bonds are also seen including one between ampicillin and Arg244, one of the three FDs,
therefore validating this residue as a FD.

3. Proximity of FDs to beta-lactams bound to inactive,mutant beta-lactamase structures. A
more native-like pose of a beta-lactam compound in the active site can potentially be
derived by mutating residues that are involved in the degradation reaction so that the beta-
lactam is not degraded and remains bound within the active site. Two solved structures
were identified in the PDB representing acyl-intermediate complexes between beta-lactam
antibiotics and deacylation-incompetent class A beta-lactamases with site-directed muta-
tions that replace Glu166. PDB 1FQG is a TEM-1 beta-lactamase belonging to our type 1
predicted cluster (FDs: Val74-Met129-Arg244) in complex with the first generation penicil-
lin Benzylpenicillin, while PDB 1IYO is a Toho-1 beta-lactamase and is almost identical to
CTX-M beta-lactamases in our type 2 predicted cluster (FDs: Val74-Tyr129-Thr244) in
complex with the third generation cephalosporin Cefotaxime. Fig 9 shows the superposition
of 1FQG and 1IYO showing antibiotics covalently bound to Ser70 and the location of the
FD triplets: 74-129-244.

S7 Table gives the proximity of the FD residues to the bound compounds in these structures.
As with docking analysis above, the FD at position 244 is making a hydrogen bond with the
carboxyl group of the penicillin and cephalosporin cores. The remaining two FDs are more

Fig 7. (a) Structural configuration of the Class A types with conserved positions in blue and the FDs in
red and (b) structural superposition of FDs from seven representative structures for clinical Types
1–7 and 9 (red, orange, yellow, green, blue, purple, violet, grey). There is no experimentally determined
structure for Type 8.

doi:10.1371/journal.pcbi.1004926.g007

Fig 8. Docking results for ampicillin and TEM-1 (PDB 1BTL).

doi:10.1371/journal.pcbi.1004926.g008
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distant and not oriented to interact directly with the beta-lactam compounds. This can also be
seen in the LigPlot+ [41] diagram for PDB 1FQG (S6 Fig). Note that the arginine at Ambler
position 244 in PDB 1FQG is labelled in the PDB as Arg243.

Visual inspection of the two structures suggests that two FDs not in contact with the beta-
lactam compound are likely to be promoting contacts between structural regions of the domain
close to the active site. They have probably co-evolved within different types of beta-lactamases
and are well conserved within a given type, not because they have a catalytic or substrate bind-
ing role, but because they lie within the secondary shell of the active site and may be implicated
in conformational rearrangements enabling the binding or degradation of the beta-lactam sub-
strates they act on.

Verifying catalytic sites predicted by the ASSP protocol. Four out of six of the proposed
catalytic residues in the literature are identified by ASSP as being conserved, while a fifth cata-
lytic residue (244) is one of the FDs that we identify. However, mutations at this position are

Fig 9. Superposition of PDB 1FQG (Type 1, shown in beige) and PDB 1IYO (Type 2, shown in blue) showing antibiotics covalently bound to
Ser70 and Functional Determinant triplets 74-129-244.

doi:10.1371/journal.pcbi.1004926.g009
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identified in the literature as conferring a beta-lactam resistant phenotype, implying that catal-
ysis can still occur after mutation at this position. The Guthrie datasets, discussed in the intro-
duction, have mutations at this position associated with both the inhibitor-resistant and
extended-spectrum phenotypes. The ASSP result is significant at p< 0.01 according to Fisher's
exact test applied to the following contingency table (Table 5).

Secondary shell parsimony analysis (SSPA) of Class A, Type 1 to
identify driver mutations in subtypes associated with different substrate
profiles
The Type 1 Class beta-lactamases, which include the TEMs, are a highly populated type, cap-
turing a significant proportion of clinically characterised beta-lactamases. Recent divergence
of these enzymes has given rise to relatives with extended-spectrum beta-lactam resistance
(i.e. ability to inactivate third-generation cephalosporins with an oxyimino side chain as well as
monobactams) and inhibitor resistance (e.g. resistant to the inhibitors Clavulanic acid and Sul-
bactam). We were interested in exploring the mutations responsible for these clinically signifi-
cant phenotypes. In this case, we are dealing with very recent divergence and many residue
positions will appear conserved across the TEMs. Here, we wished to determine which muta-
tions occurring in a variant TEM sequence, were contributing to the phenotype. However,
reports in the literature of multiple driver mutations, some occurring remote from the active
site (see S8 Table), meant that we could not restrict our analysis to active sites residues. We
therefore developed another parsimony-based approach to identify driver mutations likely to
be conferring these phenotypes. We validated our approach by examining how well our predic-
tions agreed with experimentally confirmed genotype-phenotype data in the literature.

The parsimony-based SSPA method applied to the inhibitor-resistant phenotype.
Applying the SSPA-based method to the set of variant sequences associated with inhibitor
resistance phenotypes reported in the literature [12], we initially identify 12 mutant positions
which are potential FDs. Putative FDs are residue positions at which one or more inhibitor-
resistant TEMs have a mutation that differs from the consensus residue for TEM sequences. S9
Table shows the residues found at these positions for each variant of Type 1 TEMs with inhibi-
tor resistance. By applying the parsimony analysis of SSPA we identified five residue positions
—69, 130, 244, 275 and 276 (see S9 and S10 Tables) most likely to be influencing phenotype.
SSPA is not restricted to the vicinity of the active site and the parsimony analysis works by
identifying the minimum number of residue positions for which each variant associated with a
particular phenotype, has a mutation in at least one of those positions (see Methods for further
details).

Only three positions identified by SSPA are within 8Å of the catalytic serine. Some muta-
tions are quite distant from the catalytic centre (see S8 Table). Guthrie et al.[12] report five
positions– 69, 165, 244, 275 and 276 that are known to influence phenotype. Sun et al. impli-
cate position 130. Drawz and Bonomo [30] list 69, 130, 244, 275 and 276. So, all 5 positions
predicted by SSPA are confirmed by the literature. Position 165, predicted by Guthrie, is not

Table 5. Contingency table of ASSP-predicted conserved residues in the active site that are reported
as catalytic in the literature. Fisher's exact test p-value < 0.01.

Catalytic in literature Not catalytic in literature

ASSP conserved 5 3

Not ASSP conserved 2 21

doi:10.1371/journal.pcbi.1004926.t005
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selected by SSPA since other predicted positions are found in the variants in which this muta-
tion occurs. Position 165 is also not listed by Drawz and Bonomo [30]. Of the 6 literature
positions that could have been predicted, SSPA: predicts 5, disagrees with the literature by dis-
carding one, and agrees with the literature by discarding 6. The parsimony approach SSPA
works well for the inhibitor resistance phenotype and the result is statistically significant. Fish-
er's exact test applied to the contingency table below (Table 6) is significant at p< 0.01 for the
inhibitor-resistant phenotype.

The parsimony-based SSPA method applied to the extended-spectrum resistance pheno-
type. Applying the SSPA-based method to the set of variant sequences associated with
extended-spectrum resistance phenotypes reported in the literature [12], we initially identify
24 mutant positions which are potential FDs. Again, these putative FDs are selected, because
one or more extended-spectrum resistance TEMs have a mutation that differs from the consen-
sus residue for TEMs, at this position (see ftp://ftp.biochem.ucl.ac.uk/pub/cath/v4_0_0/
supplementary_files/SSPA_mutant_positions_extended-spectrum_resistance.txt which shows
the residues found at these positions for each TEM variant with extended-spectrum resistance).
By applying the parsimony analysis of SSPA we identified 12 residue positions most likely to be
influencing phenotype (shown in S11 Table) of which 5 have experimental validation of their
influence on phenotype already reported in the literature [12,42–49] (see Table 7).

Unlike the analysis of the inhibitor-resistant TEMs, in this case there are insufficient variant
sequences to resolve some alternative parsimonious solutions. The value of SSPA is in its ability
to discard irrelevant (passenger) mutations but in the case of the extended-spectrum pheno-
type there are not yet enough sequences of this phenotype to properly home in on all the driver
mutations. The Fisher’s exact test applied to the contingency table in Table 6, does not suggest
significance.

Seven out of the 12 sites predicted by our approach have not been experimentally tested and
a permutation test examining how frequently (in 100,000 runs) a random selection of 12 sites
includes 5 cited in the literature [12,42–49], was statistically significant (p< ~10E-04). It is rea-
sonable to assume that with a larger dataset of extended-spectrum resistance TEMs, SSPA
would be able to identify additional driver mutations. In the meantime, the 7 positions identi-
fied by SSPA (but not reported in the literature) provide a set of putative driver mutation posi-
tions which can be targeted for experimental verification.

Summary of functional determinants in the active site. Table 7 highlights the proximity
of residue sites identified by ASSP and SSPA to known catalytic sites and sites experimentally
validated to be associated with the different phenotypes analysed, further supporting the valid-
ity of these parsimony-based approaches for identifying potentially important sites linked to

Table 6. Contingency tables for a) the inhibitor-resistant phenotype and b) the extended-spectrum
phenotype.

a) Inhibitor-resistant phenotype

Implicated in literature Not implicated in literature

Retained by parsimony 5 0

Discarded by parsimony 1 6

b) Extended-spectrum phenotype

Implicated in literature Not implicated in literature

Retained by parsimony 5 7

Discarded by parsimony 2 10

doi:10.1371/journal.pcbi.1004926.t006
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clinical phenotypes. These protocols may therefore have a useful role in selecting positions for
mutagenesis to confirm sites modifying substrate profiles or degree of resistance.

Fig 10a shows the 3D location of all the FDs identified by our classification and analysis
methods. It can be seen that many of the predicted FDs cluster in or very near to particular
regions within the active site (coloured red and orange in the Fig 10b). These ‘hot regions’
cover three regions likely to have functional significance, i.e. they are: 1) close to the catalytic
residues; 2) in the omega loop thought to have a functional role; 3) in a region at the top of
the beta-sheet which is close to and possibly exerting a structural influence on the omega
loop.

Table 7. Summary of functionally important positions reported in the literature and predicted in this work that are found around the main catalytic
serine of the Class A beta-lactamases. The string ‘XXXXX’ is used to highlight certain types of residues, e.g. known catalytic residues, predicted FDs. Liter-
ature studies reporting experimental verification of sites identified by SSPA are also cited in the table for reference.

Ambler
residue
number

FunFHMMer
conserved
residues i.e.
possible catalytic

MACiE
catalytic
residues

Literature
catalytic

ASSP
Predicted
FDs

SSPA Predicted
FDs extended-
spectrum
phenotype

Literature
extended-
spectrum
phenotype

SSPA
Predicted FDs
inhibitor-
resistant
phenotype

Literature
inhibitor-
resistant
phenotype

53 XXXXX

55 XXXXX

65 XXXXX

69 XXXXX XXXXX [12,30]

70 XXXXX XXXXX XXXXX [37]

73 XXXXX XXXXX XXXXX [37]

74 XXXXX

100 XXXXX

104 XXXXX XXXXX [12,42–
47]

118 XXXXX

129 XXXXX

130 XXXXX XXXXX XXXXX [37] XXXXX XXXXX [30,32]

131 XXXXX

132 XXXXX

164 XXXXX XXXXX
[12,42,44–46]

166 XXXXX XXXXX XXXXX [37]

182 XXXXX XXXXX
[12,42,46,48]

234 XXXXX XXXXX [37]

236 XXXXX

237 XXXXX XXXXX [37]

238 XXXXX XXXXX [12,42–
47,49]

240 XXXXX XXXXX
[12,42,43,45]

244 XXXXX [37] XXXXX XXXXX XXXXX [12,30]

265 XXXXX

275 XXXXX XXXXX [42]

276 XXXXX XXXXX [42]

280 XXXXX

doi:10.1371/journal.pcbi.1004926.t007
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Searching for novel serine beta lactamase Class A types in gut and drain
metagenomes
As well as using our approaches to analyse sites implicated in beta-lactam resistance, we also
applied FunFHMMer and ASSP to search for novel Class A types in metagenomes sampled
from human gut and a bathroom drain environment. Although BLAST can be used to detect
known types (i.e. sequences having greater than 60% sequence identity to one of the Class A
types identified using the CD-HIT clustering above), novel Class A types (i.e. having< 60%
sequence identity) are difficult to distinguish from Class D beta-lactamases. Furthermore,
microbiome sequences are sometimes incomplete and a preliminary analysis of BLAST
matches revealed incomplete sequences with> 60% identity to a Class A beta-lactamase but
lacking fragments of sequence containing the catalytic or FD residues, making it impossible to
identify the type. Therefore, we used FunFHMMer to identify very safe matches within these
microbiomes, which could then be subjected to experimental validation.

Sequences taken from thirteen human gut microbiomes (see Methods for details) were
scanned against the HMM for the Class A FunFam using FunFHMMer. This identified 136 full
length matches to Class A. These human gut microbiome beta-lactamase sequences clustered
into 8 types, of which 7 were previously identified by our classification of Class A types above,
and 3 of those 7 had clinical annotations. Therefore, 1 out of the 8 types found in gut micro-
biome sequences is novel, suggesting a reasonable level of novelty in the human gut metagen-
ome. This new cluster, which is a singleton, has a unique FD triplet, FEV. However, the
sequence lacked a signal peptide, suggesting that it may have evolved a different function and
therefore it was not tested for activity.

Scans of sequences from our in-house drain metagenome data against the Class A FunFam
HMM identified one match. This had 37% sequence identity to the closest Class A beta-lacta-
mase in our CATH-Gene3D dataset, marking it out as a novel type. This was confirmed by the
detection of a unique FD triplet, IQA (combination 1 in Table 8). This sequence was cloned
and expressed in E. coli, and its activity was tested against a range of beta-lactam compounds

Fig 10. Summary of the functionally important positions reported in the literature and predicted in this work highlighted in the Class A
serine beta-lactamase domain (1shvA00). In both (a) and (b) the omega loop has been shaded black. (a) In this figure, the catalytic residues
are shown as red sticks, ASSP predicted residues are shown in green, SSPA predicted residues in magenta. The residues predicted by
FunFHMMer and cited in the literature are shown in blue and those not yet cited are shown in yellow. (b) In this figure, any predicted residues
having experimental validation are shown in red along with the catalytic residues which are shown as sticks. Any predicted residue in this work
that lie within 5Å radius of any experimentally-validated residue are shown as orange. Other residues outside the 5Å radius are coloured
according to the colour scheme in (a).

doi:10.1371/journal.pcbi.1004926.g010
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known to be acted on by Class A beta-lactamases (see Methods). For this purpose, a qualitative
agar-diffusion test was performed with the following antibiotics: amoxicillin, ampicillin, oxacil-
lin, cloxacillin and carbenicillin at concentrations of 2, 5, 10 and 20 μg/ml. The size of zone of
inhibition around 10 and 20 μg/ml of amoxicillin suggested that both with the native signal
and the pelB signal, candidate beta-lactamase could give resistance to this antibiotic and that
the one with native signal has higher activity. 5 different concentrations of amoxicillin were
then tested: 10 (the lowest concentration that inhibited growth), 15, 20, 25, 30 μg/ml, all of
which gave positive results. The agar-diffusion test was also performed with higher concentra-
tions of ampicillin, oxacillin, cloxacillin and carbenicillin: 10, 20, 25, 50 μg/ml. The size of
zones of inhibition suggests that the candidate beta-lactamase could also give resistance to
ampicillin, again the protein with native signal has higher activity. The lowest concentration
that inhibited growth was 25 μg/ml of ampicillin.

We were surprised that so few Class A matches were found in the drain microbiome sample.
However, this could reflect the fact that the sequence samples lack important regions of the
sequence and therefore fail to meet the strict Class A FunFam HMM inclusion threshold. We
therefore examined 14 matches which failed to meet the inclusion threshold but which gave
high scores against the Class A FunFam and significantly higher matches to Class A FunFams
than to DD peptidases, Class C or Class D beta-lactamases.

These putative matches were examined for the following criteria: 1) contained all three
motif regions identified by FunFHMMer for Class A beta-lactamases (see Methods for details),
2) contained a new combination of FD residues, and 3) had a bit score very close to the Class A
inclusion threshold and very far from the DD-peptidase, and Class C and D inclusion thresh-
olds. Three unique combinations of the FDs were found (see combinations 2, 3 and 4 in
Table 8) suggesting that there are potentially three further novel types within this microbiome.

Discussion
In conclusion, we have constructed a classification and analysis platform for beta-lactamases
that applies a number of structure and sequence-based algorithms to distinguish beta-lacta-
mases from DD-peptidases and to sub-classify classes and types of serine beta-lactamases.
Importantly, our protocols search for residue sites likely to be exerting an influence on the
function. This could relate to implementation of the catalytic mechanism or to the substrate
profile. Our protocols provide a strategy for recognising previously unreported ‘types’, which
could have novel resistance profiles and reveal emerging resistance to new drug regimes.

Although sequences sharing high sequence similarity (> 60%) to known serine beta-lacta-
mases can easily be recognised by BLAST, in the twilight zone of sequence identity (< 30%) it
is difficult to distinguish different classes of serine beta-lactamases from each other and from
the DD-peptidases. Structural analyses can provide important clues, as we and others have
reported, but few of the sequences emerging from high throughput studies e.g. metagenome
studies, have structural data.

Table 8. Four unique combinations of the ASSP FDs in sequences closely matching the Class A beta-
lactamase FunFam.

Ambler No. 74 129 244

Combination 1 I Q A

Combination 2 L V E

Combination 3 L S A

Combination 4 L Q A

doi:10.1371/journal.pcbi.1004926.t008
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Therefore, our classification pipeline focused mainly on sequence data. Our FunFHMMer
derived FunFams for the Class A, C and D beta-lactamases allowed us to recognise even very
distant relatives of these beta-lactamase classes (< 20% sequence identity) as they capture dis-
tinct residue patterns associated with each class. Our results show that FunFHMMer was not
only able to distinguish sequences with the beta-lactamase Gene Ontology (GO) term from
sequences coming from other conflicting GOMolecular Function “branches” in the DD-pepti-
dase superfamily, but also to separate FunFams corresponding to different implementations of
the mechanism of beta-lactamase action i.e. separate the Class A, C and D beta-lactamases.
Detailed analysis of the Functional Determinant (FD) residues differing between these classes
revealed residue positions likely to be contributing to differences in the implementation of the
catalytic mechanism. Many of these positions are validated by reports in the literature. Other
FDs revealed by our method suggest sites that could be targeted to gain better understanding of
the determinants separating the classes from each other and from the DD-peptidases.

The Class A beta-lactamases are the largest and most diverse class, responsible for most of
the resistance to clinically relevant beta-lactams. We therefore decided to perform more
detailed analyses of this Class. Fifteen clinically relevant types are reported in the literature,
having largely different substrate profiles. However, it is not clear whether these assignments
are based on standardised compound screening protocols. We found that using a sequence
identity threshold of 60%, a value that corresponds to other studies identifying functionally
related proteins [35,36], we obtained a good separation of the clinically reported types that also
largely corresponded to similarity of Bush-Jacoby groups within each predicted type. Applying
this threshold identified 151 types amongst the UniProt and Ensembl sequences assigned to
the Class A FunFam in CATH-Gene3D, 142 more than reported in the literature.

Again, by revealing specific residue sites differing between the types and likely to be influ-
encing the phenotypes (i.e. substrate profiles) we can provide a more refined analysis tool for
classifying these types. FunFHMMer was not so suited to this task since some types are very
recently diverged and because it is not designed to identify residues differing across multiple
groups. We found that a simpler parsimony based approach (ASSP), that focused on residues
close to the active site, could be used to find these FDs. Our ASSP predictions of catalytic sites
showed significant agreement with catalytic positions reported in the literature, and the puta-
tive FDs were shown to be located very close to the catalytic residues or in the secondary shell.
Further studies using docked substrates and using a substrate bound to an inactive mutant sup-
ported proximity of the FDs to the beta-lactam substrate. One of the positions makes a hydro-
gen bond with the beta-lactam and there are reports in the literature of its involvement with
the catalytic activity. The other positions are more remote from the catalytic residues but
located within the secondary shell of the active site where they may influence conformational
rearrangements necessary to support changes along the reaction pathway.

Finally, we analysed variants in the TEM-Type Class A beta-lactamases, the type responsible
for much of the clinically relevant resistance to beta-lactams. Again, the fact that some of these
variants or ‘subtypes’ emerged very recently and that some driver mutations have been found
quite far from the active site meant that a new strategy was needed. SSPA is not restricted to
sites close to catalytic residues but examines all mutations. Validation against positions
reported in the literature, showed that SSPA successfully identified 5 sites known to be associ-
ated with inhibitor resistance and 5 known to be associated with extended-spectrum resistance
phenotype. Inspection of the SSPA predictions in 3D showed that many SSPA sites not yet
experimentally verified lie close to ‘hot regions’ which are lying in or near the active site, or
close to the omega loop which is thought to have a functional role.

We tested the validity of our SSPA approach by applying it to an important subtype in the
beta-lactamase TEMs, i.e. mutants having a 2be phenotype in the Bush-Jacoby classification.
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However, the success of SSPA in identifying previously experimentally characterised sites sug-
gests that it would be useful to apply SSPA to other subtypes which have sufficient genotype-
phenotype data necessary for this approach.

We tested the ability of our Class A FunFam to recognise Class A serine beta-lactamases in
two microbiome samples. A putative novel type was identified in the drain microbiome, which
met the Class A FunFam inclusion threshold but which was likely to be a novel type as it shared
less than 40% sequence identity to any Class A beta-lactamase in our Gene3D dataset and con-
tained a unique FD triplet. Experimental validation confirmed its resistance to a range of com-
pounds associated with Class A beta-lactamase activity. Much more extensive screening work
can now be done to comprehensively explore its substrate range and how that differs from
other known types.

Because of the stringency of the FunFam inclusion threshold, and the general poor quality
of the metagenome sequences the matches reported in this study actually only represent about
2% of all the significant matches (E-value� 0.0001) that were found. Manual analysis of a sam-
ple of these missed significant matches showed that fragments with key catalytic or FD residues
were missing from the sequence. If the metagenomic data were of better quality, then we might
reasonably expect to see at least an order of magnitude more novel beta-lactamase clusters.

In summary, we have developed a classification and analysis platform that allows us to sepa-
rate relatives within the serine beta-lactamase superfamily according to their implementation
of the mechanism of action and their substrate profiles. Our FunFHMMer method can separate
the known beta-lactamase classes and identify those positions likely to be responsible for the
different implementations of the mechanism of action in these enzymes, which emerged inde-
pendently from DD-peptidases, three times during evolution. The ASSP algorithm detects FD
sites which can help to classify the different Class A Types, whilst the SSPA algorithm detected
sites conferring inhibitor resistance or extended-spectrum resistance phenotypes. Each algo-
rithm has specific features designed to suit the nature of the dataset being analysed.

The FDs that we recognise can be used as fingerprints to classify new relatives and predict
their likely resistance profiles. We tested the predictive value of our classification by uncovering
and experimentally verifying a new Class A Type within a drain microbiome ie having a unique
fingerprint of FD residues.

Finally, our parsimony based approaches for identifying FDs and for distinguishing driver
from passenger mutations could obviously be applied to other protein superfamilies and one
can imagine other medical applications where resistance to chemical challenges has emerged
recently in evolution. For example, kinases implicated in certain cancers, which evolve resis-
tance to drugs, and where residue configurations close to catalytic residues or other functional
sites e.g. activation loops, could be analysed to detect driver mutations associated with different
phenotypes, such as responses to drug treatments. Our functional family classification and
analysis pipeline provides a strategy for detecting residue sites playing a functional role in the
emergence of new phenotypes.

Methods

Structure-based classification of beta-lactamases and DD-peptidases
Domain structure representatives for each of the Class A, B, C and D beta-lactamases, and DD-
peptidases were selected from our in-house CATH classification of protein domain superfami-
lies [20]. Each structural domain pair was compared using the in-house SSAP structure com-
parison algorithm [21,22]. The SSAP algorithm uses a well-established double dynamic
programming algorithm to identify a reliable residue alignment between each pair of struc-
tures. A SSAP score is returned in the range of 0 to 100, where 100 indicates identical
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structures. The SSAP alignment was used as input to the ProFit algorithm (Martin, A.C.R.,
http://www.bioinf.org.uk/software/profit/), which superimposes the structures and calculates
their RMSD.

Classification and analysis of functional determinants in the serine beta-
lactamase classes and the DD-peptidases using FunFHMMer
For our analysis of beta-lactamase proteins we used the dataset of protein domains classified in
our in-house Gene3D resource [19]. Gene3D is a sister resource of CATH [20] and version 12
comprises nearly 50 million domain sequences from UniProt version 2013_02 and Ensembl
version 70, predicted to belong to CATH superfamilies. Domain sequences are assigned to a
particular CATH superfamily following hmmscan scans against superfamily HMMs built from
representative sequences (17).

An in-house automatic function classification method FunFHMMer [17] was used to sub-
classify the CATH-Gene3D DD-peptidase/serine beta-lactamase superfamily into distinct
functional families (FunFams). The superfamily sequences are initially clustered using the
GeMMA agglomerative clustering algorithm [50] that creates a hierarchical tree of sequence
relationships within the superfamily. GeMMA clusters close sequence relatives into starting
clusters using CD-HIT [18]. Multiple sequence alignments for each starting cluster are built
using MAFFT [51]. GeMMA then performs an iterative all-against-all profile-profile compari-
son of a set of clusters using COMPASS [52] followed by merging of the most similar clusters
and realignment of the merged clusters by MAFFT. This iterative process continues until one
cluster remains. The merging order is then used to build a hierarchical tree from the leaf nodes
to the root rode. Once the tree has been generated, functional families (FunFams) are identified
by FunFHMMer, which partitions the tree based on the identification of positions which are
differentially conserved in different FunFams. Thresholds for partitioning superfamily trees
have been optimised by validation against experimentally determined functions and functional
sites [17].

Once FunFams have been identified, HMM profiles are built for each FunFam using
HMMER version 3 [53]. Putative serine beta-lactamases can be identified by scanning query
sequences against the Class A, C, D FunFam HMMs. Sequences are assigned to a particular
FunFam provided they return a bit score that is greater than or equal to the inclusion threshold
for that FunFam (14). FunFHMMer has been validated in silico [17] and independently vali-
dated for its performance in function prediction, ranking in the top 5 (out of 126 methods) in
the international Critical Assessment of Protein Function Annotation [54] (CAFA) 2 experi-
ment (Radivojac, P., personal communication).

FunFHMMer exploits the GroupSim [55] method to detect residue sites that are differen-
tially conserved between FunFams. It was used to report sites differentially conserved between
Class A, C, D FunFams and thus likely to play a functional role [17,56]. GroupSim takes an
alignment containing pre-defined functional groups as input and provides a prediction score
for each column in the alignment. The score ranges from 0 to 1, where any position in the
alignment having a score greater than 0.65 may be a functional determinant (FD) [17].

To identify key FD residues between the three serine beta-lactamase classes (A, C and D) we
built a three-way structural alignment of the corresponding FunFams. This was done by select-
ing representative sequences (at 60% sequence identity), with known structure, from each class
and constructing a multiple alignment by performing successive pairwise structure alignments
against the representative that best matches all other representatives. After this, hmmbuild
from the HMMER package [53] was used to create an HMM for the structure-based alignment.
Sequence relatives from the Class A, C, D FunFams were then aligned to the HMM using the
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hmmalign command from the HMMER package [53]. The resulting structure-based sequence
alignment was then used for site analysis by applying GroupSim [55].

Sub-clustering of Class A serine beta-lactamases
To sub-classify relatives in the serine beta-lactamase Class A FunFam into clusters correspond-
ing to ‘types’ identified in the literature, the CD-HIT [18] algorithm was used. CD-HIT can
very rapidly cluster protein sequences according to sequence identity at levels of similarity
above about 40%. It is widely used in computational biology due to its speed and the reliability
of its results.

Parsimony-based identification of the functional determinants (FDs) in
Class A beta-lactamases-The ASSP algorithm
In order to help understand the evolution of beta-lactamases, we characterised the extent and
nature of the active site by the construction of Active Site Structural Profiles (ASSPs). These
structure-based profiles were applied to the Class A serine beta-lactamases and first capture all
residues within a threshold distance of well-characterised catalytic residues reported in the sci-
entific literature. Subsequently, a parsimony-based approach identifies those residues (FDs)
likely to have a role in modifying functional features between types. This approach helped to
distinguish differences in key residue sites between Class A serine beta-lactamase types.

We decided to apply structural criteria in ASSP as a number of other methods have success-
fully explored residues lying close to catalytic residues to detect additional functionally impor-
tant sites. For example, JESS [57], uses an initial active site template (constituting 2–5 amino
acid residues) from the Catalytic Site Atlas (CSA) [58] to search for similar conformations of
residues in other protein structures. For putative matches, residues within a 10 Å sphere are
compared to calculate a local similarity score (SiteSeer score) that is used to rank the template
match [59]. Similarly, the Evolutionary Trace method [60] identifies functionally important
residues by partitioning a phylogenetic tree to identify subfamilies and focusing on highly con-
served residues that lie within 4 Å of each other. Whilst the subfamily classification method,
DASP (Deacon Active Site Profiler) [61,62], selects all residues within a 10 Å sphere of known
catalytic residues which are then concatenated to build a structure based profile. Structural rel-
atives having similar profiles are clustered into subfamilies and the subfamily profiles subse-
quently transformed into PSSMs and used to identify sequence relatives.

The first stage in the construction of the ASSPs is the analysis of the PDB data of a represen-
tative structure for the FunFam. The PDB 1SHV was chosen as the representative structure for
ASSP analysis. This structure satisfied a number of criteria: it had a high score when compared
to the HMM representing the FunFam; it is a wild-type sequence; it was expressed in reason-
ably physiological-like experimental conditions; and it has no bound ligand. 1SHV not only
satisfied all of these criteria but its use of the standard Ambler residue numbering scheme
helped with reference to the literature and analysis of mutation and phenotype data [63].

Details of the construction of the initial ASSP and its processing to produce the final ASSP
is described in Figs 11 and 12.

Identifying residues exposed to the catalytic cleft. Residues that are exposed to the active
site cleft were identified using a method employing the Voss Volume Voxelator (3V) [64]. The
Solvent.exe program in the 3V distribution was executed using a grid spacing of 0.5Å, a small
probe radius of 1.5Å and a big probe radius of 6Å. Residues in positions that are exposed to
clefts in the representative structure were defined as those that contained at least one atom
within 2.5Å of a 3V grid point. This cut-off was chosen since the largest atomic radius assigned
by 3V is 2.0Å (assigned to CA atoms) and the grid spacing is 0.5Å. Residues belonging to the
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Fig 11. Active site structural profile (ASSP) algorithm for identifying active site conserved residues and
functional determinants (FDs).

doi:10.1371/journal.pcbi.1004926.g011

Functionally Classifying and Characterising Beta-Lactamases

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004926 June 22, 2016 25 / 33



intersection of this “exposed to clefts subset” and the 8Å radius subset may be considered as
being exposed to the active site cleft and were marked up as such in the ASSP.

Parsimony-based analysis of variant TEM beta-lactamases–The
secondary shell parsimony analysis (SSPA) algorithm
The first plasmid borne beta-lactamase was identified in E. coli in Greece in 1963 and was
named “TEM” after the patient from whom it was isolated [65]. Today it is the most commonly
encountered beta-lactamase in Gram-negative bacteria and the TEM-1 subtype accounts for
up to 90% of ampicillin resistance in E. coli. Mutation and phenotype data for variant TEM
beta-lactamases are made available in Supporting Information by Guthrie et al. [12]. A parsi-
mony-based approach was applied to this Guthrie dataset to distinguish driver from passenger
mutations associated with the inhibitor-resistant (e.g. Clavulanic acid and Sulbactam) and
extended-spectrum phenotypes (i.e. resistant to penicillins, cephalosporins and third-genera-
tion cephalosporins).

SSPA matrices were created for each of the two phenotypes where each column in the
matrix represents a residue position where a mutation is found relative to the consensus
sequence of the multiple alignment of all the variant TEM beta-lactamase sequences. Each vari-
ant possessing a distinct phenotype (i.e. inhibitor-resistant [12,30,32,42] or extended-spectrum
phenotype [12,42–49]) occupies a row in the matrix. We then determine the minimum number
of columns (i.e. putative driver mutations) for which one or more of these positions is mutated
in every variant with a phenotype.

Identifying novel serine beta-lactamase types in metagenome data
To identify novel Class A types we analysed two different microbiomes–gut and drain. Meta-
genome sequences were scanned against the Class A FunFam HMM. Sequences assigned to the
Class A (i.e. meeting the inclusion threshold for the FunFam) were then compared against the
sequences classified into the 151 types identified in this class to identify novel types having less
than 60% sequence identity to sequences in any of these types.

Pre-processed gut metagenome sequences were obtained from theMG-RAST [66] and EBI
Metagenomics [67] resources (S12 Table). Some of the MG-RAST and EBI microbiomes were
already partially assembled into contigs but where this was not the case, MetaVelvet [68] was used
for assembly to increase the chance of finding complete beta-lactamase domain sequences. Addi-
tional metagenome data derived from a bathroom drain and sequenced using Illumina MiSeq

Fig 12. Schematic diagram of using the ASSP algorithm to find the triplet of residues (N = 3) giving the
maximum number of unique combinations of putative FDs. Four types are analysed in this example. (a) 3
unique combinations of putative FDs are found among the 4 types, for the triplet of residues shown in the
schematic illustration of the active site. The redundant combination of residues is marked with an asterisk. (b)
4 unique combinations of FD residues are identified for a different triplet of residues shown in the schematic
illustration.

doi:10.1371/journal.pcbi.1004926.g012
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technology was processed by theWard group at UCL (deposited in the EBIMetagenomics
resource under project ID ERP011520). The paired-end reads were quality assessed and filtered
using the Paired-End ToolKit (PETKit version 1.1b, http://microbiology.se/software/petkit/). Con-
tiguous read assembly was performed on the clean reads using IDBA-UD [69]. Contig sequences
were translated into protein sequences using a 6-frame translation with the tool Transeq from
EMBOSS v6.6.0.0 [70]. Open-reading frames were predicted using Prodigal v2.6.2 [71].

Gene sequences from the drain environment and contig sequences from the human gut
environments were scanned by FunFHMMer [17] against HMMs from the DD-peptidase/Ser-
ine beta-lactamase superfamily. If the resulting bit-score was greater than or equal to the inclu-
sion threshold, the sequence was assigned to that FunFam [17]. Any sequence that was less
than 80% of the average length of all sequences assigned to the FunFam was deemed a fragment
and filtered out. Sequences sharing less than 60% sequence identity to any of the CATH-G-
ene3D Class A serine beta-lactamases were selected as potential novel types. To further refine
matches likely to be novel types, metagenome-derived sequences giving a significant match to
the Class A FunFam were aligned to the existing Class A alignment using the MAFFT algo-
rithm [72]. Sequences long enough to contain the three main functional motifs [27,30] in Class
A beta-lactamases, and capturing all the serine beta-lactamase catalytic residues (Motif 1:
Ambler nos. 70–73 (SXXK); Motif 2: Ambler nos. 130–132 (SDN loop); Motif 3: Ambler nos.
234–236 (K[T/S]G)) and the FDs identified by the ASSP method (Ambler residue nos. 74, 129
and 244) were examined closely to analyse changes in residues. Those having a novel combina-
tion of the three FDs distinguishing the types, and not observed in any of the types classified in
CATH-Gene3D [19] were considered for experimental validation.

Experimental validation of a novel Class A beta-lactamase
A predicted gene encoding beta-lactamase, bla-29843, was amplified directly from the drain
metagenomic DNA by a two–step PCR using a Phusion High-Fidelity DNA Polymerase (NEB)
and conditions suggested by the manufacturer. The following PCR primers were used: forward,
5’- CATATGCGACGCGCCTCTCTCGTG– 3’ and reverse, 5’–GCGGCCGCGTTGACGGTA
AGGAAATGGTCGTAAGCG– 3’. The blunt-ended PCR product was ligated into pCR-Blunt
vector with a Zero Blunt PCR Cloning Kit (Invitrogen) followed by the transformation into
chemically competent E. coli DH5α. pCR-Blunt vector containing bla-29843 gene was con-
firmed by DNA sequencing. This vector was further used as a template for PCR amplification
with primers designed to incorporate 50 NdeI restriction site followed by a pelB leader sequence
and a 30 NotI restriction site. The N-terminal pelB leader sequence was added to enable the
periplasmic secretion of beta-lactamase via the Sec translocation machinery. Two PCR prod-
ucts were generated for bla-29843, one with its native N-terminal signal sequence and the other
with the pelB leader sequence instead. The following PCR primers were used: (i) forward and
reverse primers for bla-29843 with the native signal sequence were 5’- CATATGCGACGCG
CCTCTCTCGTG—3’ and 5’—GCGGCCGCGTTGACGGTAAGGAAATGGTCGTAAGCG
—3’ (ii) forward and reverse primers for bla-29843 with pelB sequence were 5’- TATACATAT
GAAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCGG
CGATGGCCATGGCACCCGCAACAACGATCGCG– 3’ and 5’–GCGGCCGCGTTGACGG
TAAGGAAATGGTCGTAAGCG– 3’. PCR products were purified and restriction cloned into
NdeI and NotI sites of the bacterial expression vector pET-29a (+) (Novagen). The resulting
vectors encode beta-lactamases containing an N-terminal leader sequence and a C-terminal
poly-histidine tag preceded by 5 amino acids.

Expression of beta-lactamases was carried out in BL21 (DE3) pLysS E. coli cells (Invitrogen)
harbouring pET29a- beta-lactamases vectors described above. To test susceptibility to
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antibiotics, diffusion in solid agar was used. All antibiotics (amoxicillin, ampicillin, oxacillin,
cloxacillin, kanamycin) were purchased from Sigma except carbenicillin that was purchased
from Invitrogen. Bacteria for lawn seeding were grown overnight at 37°C with shaking in
Luria-Bertani (LB) medium supplemented with 50 μg/ml of kanamycin. Inoculum was spread
on solid LB agar plates supplemented with 1mM IPTG. Holes were punched with a plastic tip
and filled with the same amount of antibiotic solutions. Plates from three independent repli-
cates were analyzed individually for the inhibition zone diameter. BL21 (DE3) pLysS E. coli
cells carrying an empty pET29a vector were used as a negative control.

Supporting Information
S1 Fig. Differences in structural fold between serine and metallo-beta-lactamases. (a), A
Class A beta-lactamase protein domain (CATH ID: 1btlA00). The different structural fold
adopted by Class B beta-lactamases is illustrated by subfigure (b) (CATH ID: 3dhaA01). Both
(a) and (b) are coloured according to their secondary structure content.
(TIF)

S2 Fig. Serine beta-lactamases and DD-peptidases share a common structural fold and a
SXXKmotif. (a) Superposition of a Class A beta-lactamase protein domain in white (CATH
ID: 1btlA00) and a DD-peptidase protein domain in dark grey (CATH ID: 1vqqB04). The
shared structural core between the two domains is shown in raspberry. Catalytic residues are
shown in yellow: these are described by literature entries for 1BTL in the Catalytic Site Atlas
and their structurally-equivalent positions in 1VQQ are shown. (b) Superposition of the
domains from a Class A beta-lactamase (CATH ID: 1btlA00, in white) and a DD-peptidase
(CATH ID: 1vqqB04, in dark grey). The SXXK motif is highlighted in red and green for the
beta-lactamase and DD-peptidase, respectively. The catalytic Serine and Lysine within this
motif are labelled along with their Ambler numbers and shown as sticks. The third catalytic
residue conserved among beta-lactamases and DD-peptidases, Lysine 234, is also shown in
stick format.
(TIF)

S3 Fig. Figures showing structural differences between the Class A, C, D serine beta-lacta-
mases. Residues predicted by FunFHMMer to be involved in implementation of the mecha-
nism of action are also shown (those cited in literature shown in blue and those not yet cited
shown in yellow). Catalytic residues are shown in red. The structural differences in the beta-
lactamase structures of different Classes (Class A in white, Class C in grey and Class D in pink)
are highlighted by pale green circles outlined in black and the distance in Å from the nearest
catalytic residue is given. The omega loop region in Class A structure is highlighted in black.
(a) Class A vs Class C (CATH IDs: 1shvA00 and 1zkjA00), (b) Class A vs Class D (CATH IDs:
1btlA00 and 1m6kA00), (c) Class C vs Class D (CATH IDs: 2qz6A00 and 1k57A00). Pairs of
domains were compared having the lowest normalised RMSD.
(TIF)

S4 Fig. Intra- and inter-type pairwise sequence identity distributions for Class A beta-lacta-
mases annotated with clinical type information in UniProt in the Class A beta-lactamase
FunFam.
(TIF)

S5 Fig. Summary of the functionally important positions reported in the literature and pre-
dicted in this work using FunFHMMer, ASSP (N = 7) and SSPA in this work highlighted in
the Class A serine beta-lactamase domain (1shvA00). This figure is similar to Fig 10 in the
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main text where only ASSP (N = 3) predicted residues are shown. The omega loop has been
shaded black. In this figure, any predicted residues having experimental validation are shown
in red along with the catalytic residues which are shown as sticks. Any predicted residue using
ASSP (N = 7), SSPA and residues predicted by FunFHMMer that lie within 5Å radius of any
experimentally-validated residue are shown as orange. SSPA predicted residues and residues
predicted by FunFHMMer outside the 5Å radius are coloured in magenta and yellow respec-
tively.
(TIF)

S6 Fig. LigPlot+ diagram for PDB 1FQG.Note that the Arginine at Ambler position 244 in
PDB 1FQG is labelled in the PDB as Arg243.
(TIF)

S1 Table. Pairwise structure comparisons between domains within and between beta-lacta-
mase classes A, B, C and D, and DD-peptidase domains.
(DOCX)

S2 Table. Summary of the functional diversity of the CATH DD-peptidase superfamily
(3.40.710.10) domains. The root of the DAG is shown at the bottom of the table. Leaf nodes
(at the top of the table) in the GOMolecular Function Ontology DAG are indicated with a
bold font.
(DOCX)

S3 Table. Sequence identities and their frequencies, resulting from comparing beta-lacta-
mase and DD-peptidase sequences from Gene3D against each other with BLAST using an
E-value cut-off of 0.001. A dash represents no significant match found between the two groups
compared.
(DOCX)

S4 Table. The predicted functional sites identified from a three-way structure-based
sequence alignment of three classes (A, C and D) of serine beta-lactamase FunFams in the
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